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By applying a general large-deviation theorem of Kifer and Ruelle’s Smale space
technique, some large-deviation estimates are proved for Axiom A endomorphisms.

1. Introduction and statement of main results

Consider a discrete time dynamical system generated by a measurable self-map
f + X « of some measurable space (X, B). Let P be a reference probability measure
on (X,B) and let ¥ : X — R be an observable. If (1/n) Zz;é o f* converges to
some constant ¥* P-a.e. as n — 00, then, for given € > 0,

-

satisfies P(Q,(¢)) — 0 asn — +oo. Large-deviation theory in this set-up deals with
estimates of the exponential speed of this last convergence to zero. More precisely
and more generally, large-deviation questions concern estimates of the following
form,

S

n—1
0nle) i= {m e x: |2 piste) - v
k=0

n—-4oo

n—1
1 1
limsupzlogp{m € X: -~ Zz/)(ka) € K} < —ziél}if(z) (1.1)
k=0

for any closed set K C R and

] 15 .
l;glilgglogp{xe)( : Ekz_%w(f ) GG} > — inf I(2) (1.2)
for any open set G C R, where I : R — [0, +00) is a lower semi-continuous function
and is called a rate function. Such questions have been well studied by Orey and
Pelikan [9] for Anosov diffeomorphisms and by Young [13], among other things, for
Axiom A attractors. Developing the ideas of [2,4,5,12], Kifer [7] presents a unified
approach to large deviations of dynamical systems and stochastic processes based
on the existence of a pressure function and on the uniqueness of equilibrium states

© 2003 The Royal Society of Edinburgh
https://doi.org/10.1017/5S0308210500002997 Published online by CaTgu’ﬂ?e University Press


https://doi.org/10.1017/S0308210500002997

1380 P.-D. Liu, M. Qian and Y. Zhao

for certain potentials, and this approach enables one to generalize results from [9]
and [13] and to recover the large-deviation estimates in Donsker and Varadhan [3].
In this paper, we apply Kifer’s results in [7], together with Ruelle’s Smale space
technique in [11], to give some large-deviation estimates for Axiom A endomor-
phisms.

Our set-up and main results are as follows. Let M be a Riemannian manifold
without boundary, O an open subset of M with compact closure and f: O — M a
C" (r 2 1) map. Let A = f(A) C O be a compact invariant set of f and let

Af = {:i’ = (:L’Z)irz cx; € A, f(:EZ) =Tijy1, 1 € Z}

be the orbit space of (A, f) with o7 : A7 — A/ denoting the left-shift operator on
AT Write E = p*TyM for the pull-back bundle of T4 M via the natural projection
p: Al — A, T x0, and write

By = piToyM =2 Tyy M

for the natural isomorphisms between the fibres E; and T,, M. A fibre-preserving
map on F that covers oy can be defined by

Doy 0 Tfope: Bz — Epp)
for all Z € A, and, for simplicity of notation, we will denote it still by T'f.

DEFINITION 1.1. A is called a hyperbolic set of f if there is a continuous splitting
E = E®® E", together with constants C' > 0 and 0 < A < 1, such that

TfESC E*, TfE"=E"
and, for all n > 0, |Tf"¢] < CA"[¢] for € € ES, [Tfmn| > C~1A""|n| for n € EV.

Via a change of Riemannian metric we may-and will-assume that  C' = 1. Note
that there may be points in A at which T'f is degenerate, and that the splitting
Ez = B3 & E may depend on the past of Z, i.e. it may happen that p.E} # p.E}
while p(Z) = p(y). In what follows we denote by St the set of points in O at which
Tf is degenerate, and by m the Lebesgue measure on M.

A hyperbolic set A is said to be an Aziom A basic set if A is locally maximal
(i.e. there exists a neighbourhood U of A such that ﬂ::ioo f"U = A) and f is pos-
itively topologically transitive on it (i.e. (f™o)n>0 is dense in A for some z¢ € A).
(It can be shown that periodic points are dense in an Axiom A basic set.) If an
Axiom A basic set A has arbitrarily small open neighbourhood U such that fU C U
and ﬂ:i% f"U = A, it is then called an Axiom A attractor, and U is called a basin
of attraction of A. Applying Ruelle’s Smale space technique, Qian and Zhang [10]
presents an ergodic theory of such an Axiom A basic set A. In particular, they
proved that (4, f) admits a unique equilibrium state p4 for each Holder continuous
¢ : A — R and, in case of A being an attractor of f € C?(O, M) with basin of
attraction U and m(Sf) = 0, A supports a unique f-invariant measure p, called the
SRB measure, which is generic with respect to Lebesgue measure in the following
sense: for m-a.e. € U, one has

n—oo N

n—1
lim + > w(frr) = / vdp for all € C(U).
k=0 A
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Our main results of this paper are as follows, where P(X) denotes the space of Borel
probability measures on a compact metric space X endowed with the topology of
weak convergence.

THEOREM 1.2.

(1) Let A be an Aziom A basic set of f € CY(O, M), let ¢ : A — R be Hélder
continuous and let 1y be the unique equilibrium state. Then there hold

n—-+oo

n—1
hmsup—logu¢{x€/1 ZéfkweK} <—inf{J(v):ve K} (1.3)

for any closed K C P(A) and

nfl
hmlnf— logu¢{x eA: Z Opky € G’} >—inf{J(v):veG} (1.4)
=0

for any open G C P(A), where

Pr(6) — / bdv—hy(f) if v ePyA),

400 otherwise,

J() = (1.5)

Ps(A) is the set of f-invariant measures on A, Pt(¢) is the pressure of f for
¢ and h,(f) is the entropy of (f,v).

(2) Let A be an Aziom A attractor of f € C*(O, M) and let p be the SRB measure
on A. Then (1.3) and (1.4) hold true with g being replaced by p and with
J(-) being defined by

/Zw Tm () dv — h,(f) if v € Pp(A),

400 otherwise,

(1.6)

where A\ (z), 1 < i < 7(z), are the Lyapunov exponents of f at z, m® (x) is
the multiplicity of AV (z) and o™ := max{a, 0}.

(3) Assume the circumstances of (2). Let U be a sufficiently small basin of attrac-
tion of A and let m be the normalized Lebesgue measure on U. Then (1.3)
and (1.4) hold true with pg and A being replaced by m and U, respectively,
and with J(-) being given by (1.6).

The proof of this theorem will be given in §2. From theorem 1.2 and the con-
traction principle, we have the following result.

COROLLARY 1.3. Let v : O — R be a continuous function and let us be in the
circumstances of theorem 1.2 (3). For J(-) given by (1.6), put

1(z) = inf{J(y) : /wdy = z}
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Then (1.1) and (1.2) hold true with P and X being taken, respectively, as m and
U. In particular, for € > 0, there exists h > 0 such that

1n71
m{er: —Zz/)(ka)—/l/}dp‘ 26} e hm
™ =0

when n is sufficiently large.
Similar results hold true in the circumstances of (1) or (2) of theorem 1.2.

2. Proof of theorem 1.2

2.1. A large-deviation theorem from Kifer [7]

Let (X,d) be a compact metric space, f : (X,d) < a continuous map, and, as
before, P(X) the space of Borel probabilities on X endowed with the weak conver-
gence topology and P;(X) the set of those elements in P(X) that are f-invariant.
Forx e X, e>0and n € N, put

By(z,e,n) = {y € X :d(fFz, ffy) <e, 0Kk <n—1}

The following theorem is a special case of the general large-deviation results of [7],
and we will apply it to Axiom A endomorphisms in this paper.

THEOREM 2.1. Suppose that pn € P(X), the support of u is the whole X and there
is ¢ € C(X) such that, for any given smalle > 0 and for alln > 1, z € X,

Au) ™ < (B ) e - Zwk )) < Ao, (2.1)

where Ae(n) > 0 is a constant satisfying (1/n)log Ac(n) — 0 as n — 4o0. Then,
for any 1 € C(X), there holds

lim —log/exp(zw fra > w(x) = Pr(p + 1) = Py (¢ + 1), (2.2)

n—oo n

where Py(-) denotes the pressure of f and Y is the closure of UuePf(X) supp v.
Suppose further that the entropy h,(f) is upper semicontinuous at all v € Pr(X)

and define
— dv —h, if v e Pr(X),
[ow =t iverx) 03
otherwise.
Then the above conclusion implies
n—1
limsup — logu{ Z Ophy € K} < —inf{J(v):v e K} (2.4)
n—-4oo

for any closed set K C P(X). Moreover, if there exist a countable number of func-
tions Y1, s,... € C(X) such that their span

:{zn:ﬂil/}iiﬂiER, TLEN}

i=1
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is dense in C(X) with respect to the supremum norm, and that, for each ¢ € T,
there is a unique vy € P(X) satisfying

Pr(o+ ) = [ wdu — (), (2.5)

then one has, for any open G C P(X),

n—4+oo N

n—1
hmlnf—logu{ Z Opry € G} > —inf{J(v):v e G} (2.6)
k=0

2.2. Smale spaces
Here we recall the notion and some properties of Smale spaces from Ruelle [11].
DEFINITION 2.2. Suppose that (X, d) is a compact metric space and f : X — X

a homeomorphism. (X,d, f) is said to be a Smale space if, for suitable ¢ > 0,
0<d<e 0< A<, there exists a continuous map

[]:{(z,y) e X x X :d(z,y) <e}— X
with the following properties.

(1) [z,z] = z and [[z,y], 2] = [z, 2], [z, [y, z]] = [z, z] when the two sides of these
relations are well defined.

(2) flz,y] = [fz, fy] when both sides are well defined and

d(f"y, f"z) < A"d(y, z) fory,z € V.7 (5), n>0,
d(f "y, f7"2) < \'d(y,z) fory,z €V, (§), n>0,

where

V) ={u:u=[uz], dlz,u) <3}

x

and

Vo (0) ={v:v=[z,v], d(z,v) < d}.

Here are some properties of a Smale space (X,d, f). Define C/(X) to be the
space of functions ¢ € C(X) that satisfy the following conditions: there exist § > 0
and K > 0 such that, if d(f*z, fFy) < 6 for k =0,1,...,n, then

S o(fhe) -3 ¢(f’“y)‘ <K @7)

k=0 k=0

(¢ € CF(X) if it is Holder continuous (see [11, p. 136])). If (X, f) is positively topo-
logically transitive, then it has a unique equilibrium state py for each ¢ € cr(X).
(X,d, f) is expansive. In the case of (X, d, f) being topologically mixing, it has
the specification property, and hence there is the following proposition, which fol-
lows from Katok and Hasselblatt [6, lemma 20.3.4 and theorem 20.3.7]. For the
transitive case, the proposition can be reduced to the mixing case by the spectral

https://doi.org/10.1017/5S0308210500002997 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002997

1384 P.-D. Liu, M. Qian and Y. Zhao

decomposition of Smale spaces (see also [11]) and by considering (f, Zifé po fh)
restricted to one of the basic sets, say Xy, in the spectral decomposmon where [ is
the number of the basic sets (note that >, :é pofiect (Xo) if ¢ € CT(X); when
f is not Holderian, nor is ZZ _o¢o I, even if ¢ is).

PROPOSITION 2.3. Assume that (X,d,[f) is a positively topologically transitive
Smale space and ¢ € CT(X). Let g be the unique equilibrium state of (X,d, f)
for ¢. Then, for small € > 0, there exist Ae, Be > 0 such that, for x € X and
n € N, one has

A < py(By(x,e,n) exp{ Z(b (ffz) +nPf(¢)} B..

2.3. Smale space property of locally maximal hyperbolic sets

We first collect in the following proposition some properties of local stable and
unstable manifolds of a hyperbolic set, for details see Qian and Zhang [10] which
is the first paper to apply the Smale space technique in the study of Axiom A
endomorphisms.

PROPOSITION 2.4. Let A be a hyperbolic set of f € C"(O,M), r > 1. Then
there exist in M a continuous family of C"-embedded dim E®-dimensional discs
{WE (20) Yzoea and a continuous family of C”-embedded dim E"-dimensional discs
{WE(Z)}zear with the following properties.

(1) For each & = (2;)icz € AT, both W (w0) and W2.(Z) contain x¢, and
Wite(o) € Wite(fo), SWice(T) D Wi (o5 ).
(2) Thereis a 0 < A < 1 such that, for any T € AS,
d(fy, fz) < Md(y,2) if y,z € Wi(wo)

and, for each yo € W\ (&), there exists a unique y_; € Wl‘éc(oglzi) with
fy—1 = yo. Furthermore, this y_1 and the similar z_y for zo € W _(Z) satisfy
d(y-1,2-1) < Ad(yo, 20)-

(3) Thereis & > 0 such that, for any xo € A, § € A with d(xo,yo) < &, W (x0)
intersects transversely with W () at a unique point [zg,y], which depends
continuously on (xo,9) € {(uo,v) € Ax AT : d(ug,vo) < 8}, and, furthermore,
if A is locally mazimal, then there is a unique z2 € AY satisfying 2o = [0, 7]
and z; € Wl‘gc(a;ig).

We remark that the local stable manifolds W _(x¢), o € A, can be constructed
by the usual standard argument, but, since A may contain degenerate points,
the local unstable manifolds W (z), # € A/, cannot be constructed similarly.
However, one may construct W2 (Z) in the following (standard as well) way. Let
T = (2;)icz € AT. For small v > 0, let h; : EY(r) — ES(r) be a Lipschitz map with
hz(0) = 0 and Lip(hsz) < 1, where

Ez(r)={§e Bz : ¢l <r}, a=us.
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Then one can show that there is a similar map h,,z : E} ;(r) — E7 ;(r) such that

(exp, ' of oexp,,) Graph(hz) D Graph(h,,z) (2.8)
(see [8, proposition 2.6] for details). Starting from
hy—n_:E" . (r) = E*_._(r), &0,
x O'f x

oy T o;
via the relation (2.8) one ends by succession with a C" function
B s By (r) = E5(r)

with h{™(0) = 0 and Lip(h{"”)) < 1. It is easy to show that h{™ converges as n —
400 uniformly to a similar function

W B2 (r) — E3(r)

whose graph gives W% _(Z) under the exponential map. B
Assume in what follows that A is locally maximal. Let 0 < A < 1 be as given in
proposition 2.4 and define a metric on Af by

1/N
7(®9) = (22“'dxz,yz ) , zged

1=—00

where N > 0 is an integer such that AN < %
For sufficiently small € > 0, define

[ @ g) € AT x A v dp(z,) <e}— A (3,9) = z,

where Z is the unique point in A/ given in proposition 2.4 (3) corresponding to xg
and y. It is then easy to derive the following result.

PROPOSITION 2.5. (Af,dy,04) is a Smale space.

Clearly, when (4, f) is positively topologically transitive, so is (A7, o).

2.4. Proof of theorem 1.2

In what follows, we will always endow A/ with the metric dy(-,").

Proof of theorem 1.2 (1). Each Holder continuous ¢ : A — R gives a Holder con-
tinuous ¢ = ¢ op : Af — R, which belongs to Cf(Af). By results in the last
two subsections, there is a unique equilibrium state fi; of oy for ¢ and Ko = Dig
gives the unique equilibrium state of f for ¢. Noting that there is a countable set
of Holder continuous functions which is dense in C(Af) and the entropy map of
(Af, o) is upper semicontinuous, by theorem 2.1 and proposition 2.3, one has (1.3)
and (1.4) for (A7, oy, jiz), with rate function

- ng(q_S)—/q_SdD—h,;(of) ifDEPUf(Af),

J(p) = (2.9)

+00 otherwise.
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Since Py, (¢) = P¢(¢) and, for any v € Py(A), there is a unique 7 € P, (Af) such
that po = v, and this 7 satisfies hy(of) = h,(f), one has, for any v € P(A),

inf J(v) = J(v),

pr=v

where J(v) is given by (1.5). One then obtains theorem 1.2(1) by the contraction
principle. O

Proof of theorem 1.2 (2). Define
5'(z) = —log|det(Ty, flpy)l, 7 € AT, (2.10)

It is Holder continuous (see [10]) and the unique equilibrium state fig. of oy for ¢"
projects under p to the SRB measure p, and, in this case,

/ZM Tm @ (@) dv — h,(f) if v € Py(A),

+00 otherwise,

inf J"(p

pr=v

since Py, (¢") = 0, where JU(7) is given by (2.9) corresponding to ¢". This proves
theorem 1.2 (2). |

Proof of theorem 1.2 (3). Let ¢" be given by equation (2.10). The following result
is from [10].

LEMMA 2.6 (volume lemma). Let A be a hyperbolic set of f € C*(O,M). Then,
for smalle > 0, § > 0, there is a constant A. s > 0 such that, for T € Af,n >0,
and yo € B¢(xo,€,n), one has

A;; m(Bg(yo,0,n)) exp[ Z¢u }\ - (2.11)

LEMMA 2.7. Let A be as given in the last lemma. Then each Holder continuous
(;S A — R is homologous to some ¢ € C(AF) that satisfies (&) = ¢(j) whenever
=y; for i <0, i.e. there is u € C(AT) such that

b=¢+u—1uoos.

Proof of lemma 2.7. For each xg € A, pick (2;4,)icz € A with 20,20 = %o. Define
r: Al — A by r(Z) = 7% = (2))sez, where

QT for 7 > 0,
! Ziwo, fori <O0.

Let @: AT — R be defined by

Then ¢ = ¢+ wo oy — u satisfies the requirements (see [1, lemma 1.6] for a similar
argument). a
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Now let A be an Axiom A attractor of f € C%(O,M). Lemma 2.7 tells us that
#" is homologous to ¢" op for some ¢" € C(A). Extend ¢" to a continuous function
P" .V — R, where V is a neighbourhood of A. Take g9 > 0 such that lemma 2.6
holds for ¢ = g¢ and for all small 6 > 0. Now let U be a basin of attraction of A
such that

0 c U Wielwo) 0 Blao,o)]
zo€EA

(this union contains an open neighbourhood of 4 (see [10])), U C V and, moreover,
Ui DU D U D Us for two other basins of attraction Uy, Us of A. Put

an = supf| &"(z) — ?"(y)| : 2,y € U, d(x,y) < eoA"}.

From lemma 2.6, it follows that, for any yo € U, small § > 0 and all n > 0, one has

A(n)~1 < m(By(yo,6,m)) exp( quu ) As(n),

where
n—1

As(n) = Acy.5exp (Z ak>,

k=0

which clearly satisfies (1/n)log As(n) — 0 as n — oo. Then, by a minor modifica-
tion of the proof of [7, proposition 3.2], one can prove that, for any ¢ € C(U),

n—1
Pfly, (2" +9) < lim % log / oxp (Z w(ka)> dm(z) < Pyjy, (" +1),
k=0

which implies

. 1 n—1 N ) .
i+ p(kZ W) ) i) = P (6 +0),
where m is the normalized Lebesgue measure on U and, when working on Uy,
one may take continuous extensions of &" and . Noting that, for each Holder
continuous ¢ : U — R, there is a unique equilibrium state of f|; for " + 1 and
the entropy map of f|y is upper semicontinuous, one obtains theorem 1.2 (3) by
theorem 2.1 for X = U, u = m and by

/@u dv = /Z AD (@) Tm@ (z) dv(z)  for all v € Pp(0).
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