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By applying a general large-deviation theorem of Kifer and Ruelle’ s Smale space
technique, some large-deviation estimates are proved for Axiom A endomorphisms.

1. Introduction and statement of main results

Consider a discrete time dynamical system generated by a measurable self-map
f : X Á- of some measurable space (X; B). Let P be a reference probability measure
on (X; B) and let Á : X ! R be an observable. If (1=n)

Pn¡1
k = 0 Á ¯ f k converges to

some constant Á ¤ P -a.e. as n ! 1, then, for given " > 0,

Qn(") :=

½
x 2 X :

¯̄
¯̄ 1

n

n¡1X

k = 0

Á(f kx) ¡ Á ¤
¯̄
¯̄ > "

¾

satis­ es P (Qn(")) ! 0 as n ! +1. Large-deviation theory in this set-up deals with
estimates of the exponential speed of this last convergence to zero. More precisely
and more generally, large-deviation questions concern estimates of the following
form,

lim sup
n ! + 1

1

n
log P

½
x 2 X :

1

n

n¡1X

k = 0

Á(fkx) 2 K

¾
6 ¡ inf

z 2 K
I(z) (1.1)

for any closed set K » R and

lim inf
n! + 1

1

n
log P

½
x 2 X :

1

n

n¡1X

k = 0

Á(f kx) 2 G

¾
> ¡ inf

z 2 G
I(z) (1.2)

for any open set G » R, where I : R ! [0; +1) is a lower semi-continuous function
and is called a rate function. Such questions have been well studied by Orey and
Pelikan [9] for Anosov di¬eomorphisms and by Young [13], among other things, for
Axiom A attractors. Developing the ideas of [2,4,5,12], Kifer [7] presents a uni­ ed
approach to large deviations of dynamical systems and stochastic processes based
on the existence of a pressure function and on the uniqueness of equilibrium states
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for certain potentials, and this approach enables one to generalize results from [9]
and [13] and to recover the large-deviation estimates in Donsker and Varadhan [3].
In this paper, we apply Kifer’s results in [7], together with Ruelle’s Smale space
technique in [11], to give some large-deviation estimates for Axiom A endomor-
phisms.

Our set-up and main results are as follows. Let M be a Riemannian manifold
without boundary, O an open subset of M with compact closure and f : O ! M a
Cr (r > 1) map. Let ¤ = f( ¤ ) » O be a compact invariant set of f and let

¤ f := f·x = (xi)
+ 1
¡1 : xi 2 ¤ ; f (xi) = xi + 1; i 2 Zg

be the orbit space of ( ¤ ; f) with ¼ f : ¤ f ! ¤ f denoting the left-shift operator on
¤ f . Write E = p ¤ T ¤ M for the pull-back bundle of T ¤ M via the natural projection
p : ¤ f ! ¤ , ·x 7! x0, and write

E·x = p ¤
·xTx0 M ­ p¤

p¤
·x

Tx0 M

for the natural isomorphisms between the ­ bres E·x and Tx0 M . A ­ bre-preserving
map on E that covers ¼ f can be de­ ned by

p ¤
¼ f (·x) ¯ T f ¯ p ¤ : E·x ! E¼ f (·x)

for all ·x 2 ¤ f , and, for simplicity of notation, we will denote it still by T f .

Definition 1.1. ¤ is called a hyperbolic set of f if there is a continuous splitting
E = E s © E u , together with constants C > 0 and 0 < ¶ < 1, such that

T fE s » E s ; T fE u = E u

and, for all n > 0, jT fn ¹ j 6 C¶ nj ¹ j for ¹ 2 E s , jT f n ² j > C¡1 ¶ ¡nj ² j for ² 2 E u .

Via a change of Riemannian metric we may|and will|assume that C = 1. Note
that there may be points in ¤ at which T f is degenerate, and that the splitting
E·x = E s

·x © E u
·x may depend on the past of ·x, i.e. it may happen that p¤ E u

·x 6= p ¤ E u
·y

while p(·x) = p(·y). In what follows we denote by Sf the set of points in O at which
T f is degenerate, and by m the Lebesgue measure on M .

A hyperbolic set ¤ is said to be an Axiom A basic set if ¤ is locally maximal
(i.e. there exists a neighbourhood U of ¤ such that

T + 1
n= ¡1 f nU = ¤ ) and f is pos-

itively topologically transitive on it (i.e. (f nx0)n>0 is dense in ¤ for some x0 2 ¤ ).
(It can be shown that periodic points are dense in an Axiom A basic set.) If an
Axiom A basic set ¤ has arbitrarily small open neighbourhood U such that f ·U » U
and

T + 1
n = 0 fnU = ¤ , it is then called an Axiom A attractor, and U is called a basin

of attraction of ¤ . Applying Ruelle’s Smale space technique, Qian and Zhang [10]
presents an ergodic theory of such an Axiom A basic set ¤ . In particular, they
proved that ( ¤ ; f ) admits a unique equilibrium state · ¿ for each H�older continuous
¿ : ¤ ! R and, in case of ¤ being an attractor of f 2 C2(O; M) with basin of
attraction U and m(Sf ) = 0, ¤ supports a unique f-invariant measure » , called the
SRB measure, which is generic with respect to Lebesgue measure in the following
sense: for m-a.e. x 2 ·U , one has

lim
n ! 1

1

n

n¡1X

k = 0

Á(f kx) =

Z

¤

Á d » for all Á 2 C( ·U ):
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Our main results of this paper are as follows, where P(X) denotes the space of Borel
probability measures on a compact metric space X endowed with the topology of
weak convergence.

Theorem 1.2.

(1) Let ¤ be an Axiom A basic set of f 2 C1(O; M ), let ¿ : ¤ ! R be H�older
continuous and let · ¿ be the unique equilibrium state. Then there hold

lim sup
n! + 1

1

n
log · ¿

½
x 2 ¤ :

1

n

n¡1X

k = 0

¯ fkx 2 K

¾
6 ¡ inffJ( ¸ ) : ¸ 2 Kg (1.3)

for any closed K » P( ¤ ) and

lim inf
n ! + 1

1

n
log · ¿

½
x 2 ¤ :

1

n

n¡1X

k = 0

¯ f kx 2 G

¾
> ¡ inffJ( ¸ ) : ¸ 2 Gg (1.4)

for any open G » P( ¤ ), where

J( ¸ ) =

8
<

:
Pf ( ¿ ) ¡

Z
¿ d ¸ ¡ h ¸ (f ) if ¸ 2 Pf ( ¤ );

+1 otherwise;
(1.5)

Pf ( ¤ ) is the set of f -invariant measures on ¤ , Pf ( ¿ ) is the pressure of f for
¿ and h ¸ (f ) is the entropy of (f; ¸ ).

(2) Let ¤ be an Axiom A attractor of f 2 C2(O; M ) and let » be the SRB measure
on ¤ . Then (1.3) and (1.4) hold true with · ¿ being replaced by » and with
J(¢) being de¯ned by

J( ¸ ) =

8
><

>:

Z X

i

¶ (i)(x) + m(i)(x) d ¸ ¡ h ¸ (f) if ¸ 2 Pf ( ¤ );

+1 otherwise;

(1.6)

where ¶ (i)(x), 1 6 i 6 r(x), are the Lyapunov exponents of f at x, m(i)(x) is
the multiplicity of ¶ (i)(x) and a + := maxfa; 0g.

(3) Assume the circumstances of (2). Let U be a su± ciently small basin of attrac-
tion of ¤ and let ·m be the normalized Lebesgue measure on ·U . Then (1.3)
and (1.4) hold true with · ¿ and ¤ being replaced by ·m and ·U , respectively,
and with J(¢) being given by (1.6).

The proof of this theorem will be given in x 2. From theorem 1.2 and the con-
traction principle, we have the following result.

Corollary 1.3. Let Á : O ! R be a continuous function and let us be in the
circumstances of theorem 1.2 (3). For J(¢) given by (1.6), put

I(z) = inf

½
J( ¸ ) :

Z
Á d ¸ = z

¾
:
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Then (1.1) and (1.2) hold true with P and X being taken, respectively, as ·m and
·U . In particular, for " > 0, there exists h > 0 such that

·m

½
x 2 ·U :

¯̄
¯̄ 1

n

n¡1X

k = 0

Á(fkx) ¡
Z

Á d »

¯̄
¯̄ > "

¾
6 e¡hn

when n is su± ciently large.
Similar results hold true in the circumstances of (1) or (2) of theorem 1.2.

2. Proof of theorem 1.2

2.1. A large-deviation theorem from Kifer [7]

Let (X; d) be a compact metric space, f : (X; d) Á- a continuous map, and, as
before, P(X) the space of Borel probabilities on X endowed with the weak conver-
gence topology and Pf (X) the set of those elements in P(X) that are f -invariant.
For x 2 X , " > 0 and n 2 N , put

Bf (x; "; n) = fy 2 X : d(fkx; f ky) 6 "; 0 6 k 6 n ¡ 1g:

The following theorem is a special case of the general large-deviation results of [7],
and we will apply it to Axiom A endomorphisms in this paper.

Theorem 2.1. Suppose that · 2 P(X), the support of · is the whole X and there
is ¿ 2 C(X) such that, for any given small " > 0 and for all n > 1, x 2 X ,

A"(n)¡1 6 · (Bf (x; "; n)) exp

µ
¡

n¡1X

k = 0

¿ (f kx)

¶
6 A"(n); (2.1)

where A"(n) > 0 is a constant satisfying (1=n) log A"(n) ! 0 as n ! +1. Then,
for any Á 2 C(X), there holds

lim
n ! 1

1

n
log

Z
exp

µn¡1X

k = 0

Á(f kx)

¶
d · (x) = Pf ( ¿ + Á) = Pf jY ( ¿ + Á); (2.2)

where Pf (¢) denotes the pressure of f and Y is the closure of
S

¸ 2 Pf (X) supp ¸ .
Suppose further that the entropy h ¸ (f ) is upper semicontinuous at all ¸ 2 Pf (X)
and de¯ne

J( ¸ ) =

8
<

:
¡

Z
¿ d ¸ ¡ h ¸ (f) if ¸ 2 Pf (X);

+1 otherwise:
(2.3)

Then the above conclusion implies

lim sup
n ! + 1

1

n
log ·

½
x :

n¡1X

k = 0

¯ fk x 2 K

¾
6 ¡ inffJ( ¸ ) : ¸ 2 Kg (2.4)

for any closed set K » P(X). Moreover, if there exist a countable number of func-
tions Á1; Á2; : : : 2 C(X) such that their span

¡ =

½ nX

i = 1

­ iÁi : ­ i 2 R; n 2 N

¾
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is dense in C(X) with respect to the supremum norm, and that, for each Á 2 ¡ ,
there is a unique ¸ ã 2 P(X) satisfying

Pf ( ¿ + Á) =

Z
Á d ¸ ã ¡ J( ¸ ã ); (2.5)

then one has, for any open G » P(X),

lim inf
n ! + 1

1

n
log ·

½
x :

n¡1X

k = 0

¯ fkx 2 G

¾
> ¡ inffJ( ¸ ) : ¸ 2 Gg: (2.6)

2.2. Smale spaces

Here we recall the notion and some properties of Smale spaces from Ruelle [11].

Definition 2.2. Suppose that (X; d) is a compact metric space and f : X ! X
a homeomorphism. (X; d; f ) is said to be a Smale space if, for suitable " > 0,
0 < ¯ < ", 0 < ¶ < 1, there exists a continuous map

[¢; ¢] : f(x; y) 2 X £ X : d(x; y) < "g! X

with the following properties.

(1) [x; x] = x and [[x; y]; z] = [x; z]; [x; [y; z]] = [x; z] when the two sides of these
relations are well de­ ned.

(2) f [x; y] = [fx; fy] when both sides are well de­ ned and

d(f ny; fnz) 6 ¶ nd(y; z) for y; z 2 V +
x ( ¯ ); n > 0;

d(f ¡ny; f ¡nz) 6 ¶ nd(y; z) for y; z 2 V ¡
x ( ¯ ); n > 0;

where

V +
x ( ¯ ) = fu : u = [u; x]; d(x; u) < ¯ g

and

V ¡
x ( ¯ ) = fv : v = [x; v]; d(x; v) < ¯ g:

Here are some properties of a Smale space (X; d; f). De­ ne Cf (X) to be the
space of functions ¿ 2 C(X) that satisfy the following conditions: there exist ¯ > 0
and K > 0 such that, if d(f kx; fky) < ¯ for k = 0; 1; : : : ; n, then

¯̄
¯̄

nX

k = 0

¿ (f kx) ¡
nX

k = 0

¿ (f ky)

¯̄
¯̄ 6 K (2.7)

( ¿ 2 Cf (X) if it is H�older continuous (see [11, p. 136])). If (X; f ) is positively topo-
logically transitive, then it has a unique equilibrium state · ¿ for each ¿ 2 Cf (X).
(X; d; f ) is expansive. In the case of (X; d; f ) being topologically mixing, it has
the speci­ cation property, and hence there is the following proposition, which fol-
lows from Katok and Hasselblatt [6, lemma 20.3.4 and theorem 20.3.7]. For the
transitive case, the proposition can be reduced to the mixing case by the spectral
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decomposition of Smale spaces (see also [11]) and by considering (f l;
Pl¡1

i = 0 ¿ ¯ f i)
restricted to one of the basic sets, say X0, in the spectral decomposition, where l is
the number of the basic sets (note that

Pl¡1
i = 0 ¿ ¯ f i 2 Cf l

(X0) if ¿ 2 Cf (X); when
f is not H�olderian, nor is

Pl¡1
i = 0 ¿ ¯ f i, even if ¿ is).

Proposition 2.3. Assume that (X; d; f ) is a positively topologically transitive
Smale space and ¿ 2 Cf (X). Let · ¿ be the unique equilibrium state of (X; d; f )
for ¿ . Then, for small " > 0, there exist A"; B" > 0 such that, for x 2 X and
n 2 N , one has

A" 6 · ¿ (Bf (x; "; n)) exp

½
¡

n¡1X

k = 0

¿ (fkx) + nPf ( ¿ )

¾
6 B":

2.3. Smale space property of locally maximal hyperbolic sets

We ­ rst collect in the following proposition some properties of local stable and
unstable manifolds of a hyperbolic set, for details see Qian and Zhang [10] which
is the ­ rst paper to apply the Smale space technique in the study of Axiom A
endomorphisms.

Proposition 2.4. Let ¤ be a hyperbolic set of f 2 Cr(O; M), r > 1. Then
there exist in M a continuous family of Cr-embedded dim E s -dimensional discs
fW s

loc(x0)gx0 2 ¤ and a continuous family of Cr-embedded dim E u -dimensional discs
fW u

loc(·x)g·x 2 ¤ f with the following properties.

(1) For each ·x = (xi)i 2 Z 2 ¤ f , both W s
loc(x0) and W u

loc(·x) contain x0, and

fW s
loc(x0) » W s

loc(fx0); fW u
loc(·x) ¼ W u

loc( ¼ f ·x):

(2) There is a 0 < ·¶ < 1 such that, for any ·x 2 ¤ f ,

d(fy; fz) 6 ·¶ d(y; z) if y; z 2 W s
loc(x0)

and, for each y0 2 W u
loc(·x), there exists a unique y¡1 2 W u

loc( ¼ ¡1
f ·x) with

fy¡1 = y0. Furthermore, this y¡1 and the similar z¡1 for z0 2 W u
loc(·x) satisfy

d(y¡1; z¡1) 6 ·¶ d(y0; z0):

(3) There is ¯ > 0 such that, for any x0 2 ¤ , ·y 2 ¤ f with d(x0; y0) < ¯ , W s
loc(x0)

intersects transversely with W u
loc(·y) at a unique point [x0; ·y], which depends

continuously on (x0; ·y) 2 f(u0; ·v) 2 ¤ £ ¤ f : d(u0; v0) < ¯ g, and, furthermore,
if ¤ is locally maximal, then there is a unique ·z 2 ¤ f satisfying z0 = [x0; ·y]
and zi 2 W u

loc( ¼
¡i
f ·y).

We remark that the local stable manifolds W s
loc(x0), x0 2 ¤ , can be constructed

by the usual standard argument, but, since ¤ may contain degenerate points,
the local unstable manifolds W u

loc(·x), ·x 2 ¤ f , cannot be constructed similarly.
However, one may construct W u

loc(·x) in the following (standard as well) way. Let
·x = (xi)i 2 Z 2 ¤ f . For small r > 0, let h·x : E u

·x(r) ! E s
·x(r) be a Lipschitz map with

h·x(0) = 0 and Lip(h·x) 6 1, where

Ea
·x(r) = f ¹ 2 Ea

·x : j ¹ j < rg; a = u,s:
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Then one can show that there is a similar map h ¼ f ·x : E u
¼ f ·x(r) ! E s

¼ f ·x(r) such that

(exp¡1
x1

¯f ¯ expx0
) Graph(h·x) ¼ Graph(h ¼ f ·x) (2.8)

(see [8, proposition 2.6] for details). Starting from

h ¼ ¡ n
f ·x : E u

¼ ¡ n
f ·x

(r) ! E s
¼ ¡ n

f ·x
(r); ¹ 7! 0;

via the relation (2.8) one ends by succession with a Cr function

h
(n)
·x : E u

·x(r) ! E s
·x(r)

with h
(n)
·x (0) = 0 and Lip(h

(n)
·x ) 6 1. It is easy to show that h

(n)
·x converges as n !

+1 uniformly to a similar function

h
( 1 )
·x : E u

·x(r) ! E s
·x(r)

whose graph gives W u
loc(·x) under the exponential map.

Assume in what follows that ¤ is locally maximal. Let 0 < ·¶ < 1 be as given in
proposition 2.4 and de­ ne a metric on ¤ f by

df (·x; ·y) =

µ + 1X

i= ¡1
2¡jijd(xi; yi)

N

¶1=N

; ·x; ·y 2 ¤ f ;

where N > 0 is an integer such that ·¶ N < 1
2 .

For su¯ ciently small " > 0, de­ ne

[¢; ¢] : f(·x; ·y) 2 ¤ f £ ¤ f : df (·x; ·y) < "g! ¤ f ; (·x; ·y) 7! ·z;

where ·z is the unique point in ¤ f given in proposition 2.4 (3) corresponding to x0

and ·y. It is then easy to derive the following result.

Proposition 2.5. ( ¤ f ; df ; ¼ f ) is a Smale space.

Clearly, when ( ¤ ; f ) is positively topologically transitive, so is ( ¤ f ; ¼ f ).

2.4. Proof of theorem 1.2

In what follows, we will always endow ¤ f with the metric df (¢; ¢).

Proof of theorem 1.2 (1). Each H�older continuous ¿ : ¤ ! R gives a H�older con-
tinuous ·¿ = ¿ ¯ p : ¤ f ! R, which belongs to C ¼ f ( ¤ f ). By results in the last
two subsections, there is a unique equilibrium state ·· ·¿ of ¼ f for ·¿ and · ¿ = p·· ·¿

gives the unique equilibrium state of f for ¿ . Noting that there is a countable set
of H�older continuous functions which is dense in C( ¤ f ) and the entropy map of
( ¤ f ; ¼ f ) is upper semicontinuous, by theorem 2.1 and proposition 2.3, one has (1.3)
and (1.4) for ( ¤ f ; ¼ f ; ·· ·¿ ), with rate function

·J(·¸ ) =

8
<

:
P ¼ f (·¿ ) ¡

Z
·¿ d·¸ ¡ h·¸ ( ¼ f ) if ·¸ 2 P ¼ f ( ¤ f );

+1 otherwise:
(2.9)
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Since P ¼ f (·¿ ) = Pf ( ¿ ) and, for any ¸ 2 Pf ( ¤ ), there is a unique ·¸ 2 P ¼ f ( ¤ f ) such
that p·¸ = ¸ , and this ·¸ satis­ es h·¸ ( ¼ f ) = h ¸ (f ), one has, for any ¸ 2 P( ¤ ),

inf
p·¸ = ¸

·J(·¸ ) = J( ¸ );

where J( ¸ ) is given by (1.5). One then obtains theorem 1.2 (1) by the contraction
principle.

Proof of theorem 1.2 (2). De­ ne

·¿ u (·x) = ¡ log jdet(Tx0
f jEu

·x
)j; ·x 2 ¤ f : (2.10)

It is H�older continuous (see [10]) and the unique equilibrium state ·· ·¿ u of ¼ f for ·¿ u

projects under p to the SRB measure » , and, in this case,

inf
p·¸ = ¸

·J u (·¸ ) =

8
><

>:

Z X

i

¶ i(x) + m(i)(x) d ¸ ¡ h ¸ (f) if ¸ 2 Pf ( ¤ );

+1 otherwise;

since P¼ f ( ·¿ u ) = 0, where ·J u (·¸ ) is given by (2.9) corresponding to ·¿ u . This proves
theorem 1.2 (2).

Proof of theorem 1.2 (3). Let ·¿ u be given by equation (2.10). The following result
is from [10].

Lemma 2.6 (volume lemma). Let ¤ be a hyperbolic set of f 2 C2(O; M ). Then,
for small " > 0, ¯ > 0, there is a constant A";¯ > 0 such that, for ·x 2 ¤ f , n > 0,
and y0 2 Bf (x0; "; n), one has

A¡1
";¯ 6 m(Bf (y0; ¯ ; n)) exp

·
¡

n¡1X

k = 0

·¿ u ( ¼ k
f (·x))

¸
6 A";¯ : (2.11)

Lemma 2.7. Let ¤ be as given in the last lemma. Then each H�older continuous
·¿ : ¤ f ! R is homologous to some ^¿ 2 C( ¤ f ) that satis¯es ^¿ (·x) = ^¿ (·y) whenever
xi = yi for i 6 0, i.e. there is ·u 2 C( ¤ f ) such that

·¿ = ^¿ + ·u ¡ ·u ¯ ¼ f :

Proof of lemma 2.7. For each x0 2 ¤ , pick (zi;x0 )i 2 Z 2 ¤ f with z0;x0 = x0. De­ ne
r : ¤ f ! ¤ f by r(·x) = ·x ¤ = (x ¤

i )i 2 Z , where

x ¤
i =

(
xi for i > 0;

zi;x0 for i < 0:

Let ·u : ¤ f ! R be de­ ned by

·u(·x) =

+ 1X

j = 0

[ ·¿ ( ¼ j
f ·x) ¡ ·¿ ( ¼ j

f r(·x))]:

Then ^¿ = ·¿ + ·u ¯ ¼ f ¡ ·u satis­ es the requirements (see [1, lemma 1.6] for a similar
argument).
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Now let ¤ be an Axiom A attractor of f 2 C2(O; M ). Lemma 2.7 tells us that
·¿ u is homologous to ¿ u ¯p for some ¿ u 2 C( ¤ ). Extend ¿ u to a continuous function
© u : V ! R, where V is a neighbourhood of ¤ . Take "0 > 0 such that lemma 2.6
holds for " = "0 and for all small ¯ > 0. Now let U be a basin of attraction of ¤
such that

·U »
[

x0 2 ¤

[W s
loc(x0) \ B(x0; "0)]

(this union contains an open neighbourhood of ¤ (see [10])), ·U » V and, moreover,
U1 ¼ ·U ¼ U ¼ ·U2 for two other basins of attraction U1, U2 of ¤ . Put

an = supfj © u (x) ¡ © u (y)j : x; y 2 ·U; d(x; y) 6 "0
·¶ ng:

From lemma 2.6, it follows that, for any y0 2 ·U , small ¯ > 0 and all n > 0, one has

A ¯ (n)¡1 6 m(Bf (y0; ¯ ; n)) exp

µ
¡

n¡1X

k = 0

© u (f ky0)

¶
6 A ¯ (n);

where

A ¯ (n) = A"0;¯ exp

µn¡1X

k = 0

ak

¶
;

which clearly satis­ es (1=n) log A ¯ (n) ! 0 as n ! 1. Then, by a minor modi­ ca-
tion of the proof of [7, proposition 3.2], one can prove that, for any Á 2 C( ·U ),

PfjU2
( © u + Á) 6 lim

n ! 1

1

n
log

Z
exp

µn¡1X

k = 0

Á(f kx)

¶
d ·m(x) 6 Pf jU1

( © u + Á);

which implies

lim
n! + 1

1

n

Z
exp

µn¡1X

k = 0

Á(fkx)

¶
d ·m(x) = Pfj ¤

( ¿ u + Á);

where ·m is the normalized Lebesgue measure on ·U and, when working on U1,
one may take continuous extensions of © u and Á. Noting that, for each H�older
continuous Á : ·U ! R, there is a unique equilibrium state of f j ·U for © u + Á and
the entropy map of f jU is upper semicontinuous, one obtains theorem 1.2 (3) by
theorem 2.1 for X = ·U , · = ·m and by

Z
© u d ¸ =

Z X

i

¶ (i)(x) + m(i)(x) d ¸ (x) for all ¸ 2 Pf ( ·U ):

References

1 R. Bowen. Equilibriumstatesandergodic theory of Anosov di® eomorphisms. Lecture Notes
in Mathematics, vol. 470 (Springer, 1975).

2 A. de Acosta. Upper bounds for large deviations of dependent random vectors. Z. Wahrsch.
Verw. Gebiete 69 (1985), 551{565.

https://doi.org/10.1017/S0308210500002997 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002997


1388 P.-D. Liu, M. Qian and Y. Zhao

3 M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov processes
expectations for large time. I. Commun. Pure Appl. Math. 28 (1975), 1{47.

4 R. S. Ellis. Large deviation for a general class of random vectors. Ann. Prob. 12 (1984),
1{12.

5 J. G�artner. On large deviations from the invariant measure. TheoryProb. Applic.22 (1977),
24{39.

6 A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems
(Cambridge University Press, 1995).

7 Y. Kifer. Large deviations in dynamical systems and stochastic processes. Trans. Am. Math.
Soc. 321 (1990), 505{524.

8 P.-D. Liu. Stability of orbit spaces of endomorphisms. Manuscr. Math. 93 (1997), 109{128.

9 S. Orey and S. Pelikan. Deviations of trajectory averages and the defect in Pesin’ s formula
for Anosov di® eomorphisms. Trans. Am. Math. Soc. 315 (1989), 741{753.

10 M. Qian and Z.-S. Zhang. Ergodic theory for Axiom A endomorphisms. Ergod. Theory
Dynam. Syst. 15 (1995), 161{174.

11 D. Ruelle. Thermodynamic formalism (Addison-Wesley, 1978).

12 Y. Takahashi. Entropy functional (free energy) for dynamical systems and their random
perturbations. In Taniguchi Symp., Katata, Japan, 1982, pp. 437{467.

13 L.-S. Young. Some large deviation results for dynamical systems. Trans. Am. Math. Soc.
318 (1990), 525{543.

(Issued 19 December 2003)

https://doi.org/10.1017/S0308210500002997 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500002997

