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Bergelson and Tao have recently proved that if G is a D-quasi-random group, and x, g are

drawn uniformly and independently from G, then the quadruple (g, x, gx, xg) is roughly

equidistributed in the subset of G4 defined by the constraint that the last two coordinates

lie in the same conjugacy class. Their proof gives only a qualitative version of this result.

The present note gives a rather more elementary proof which improves this to an explicit

polynomial bound in D−1.
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Let G be a compact group, and let (X,Σ, μ) be G with its Borel σ-algebra and Haar

probability measure, regarded as an abstract probability space. The regular representations

give two natural μ-preserving G-actions on X:

Sgx := gx and Tgx := xg−1.

Observe that S and T commute, and that SgT g is the action of g on X = G by conjugation.

Let Φ � Σ be the sub-σ-algebra of conjugation-invariant (that is, ST -invariant) sets. Also,

let D := {z ∈ C : |z| � 1}.
Following Gowers [5], the group G is D-quasi-random if it has no non-trivial represent-

ations of dimension less than D. This note will prove the following.

Theorem 1. If G is D-quasi-random, then∫
G

∣∣∣ ∫
X

f1(x)f2(gx)f3(xg)μ(dx) −
(∫

X

f1dμ

)(∫
X

E(f2|Φ)E(f3|Φ)dμ

)∣∣∣dg � 4D−1/8 (1)

for all measurable functions f1, f2, f3 : X −→ D.
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In the recent paper [2], Bergelson and Tao prove that there is some upper bound c(D)

for the left-hand side of (1) which tends to 0 as D −→ ∞. (They consider only finite groups

G, but this is inconsequential.) Their method does not give an effective formula for c(D),

but they conjecture that it is polynomial in D−1, so Theorem 1 confirms this. The proof

of Theorem 1 below also seems much more direct than theirs. Their approach uses a

passage to an ultralimit along a sequence of increasingly quasi-random groups, followed

by results from [1] concerning limits along idempotent ultrafilters in infinite groups. This

is why their estimate is ineffective. The proof below has a few early steps in common with

theirs, but then uses only an elementary inequality from representation theory. In this, it

is rather closer to Gowers’ original estimates for quasi-random groups in [5, Section 4].

Its format is also similar to Furstenberg’s proof in [4] that weakly mixing transformations

are weakly mixing for multiple recurrence.

After writing the first version of this paper, I learned of another short proof of

the Bergelson–Tao result due to Anush Tserunyan. Her initial version again used

ultraproducts, but some small modifications gave another effective proof, which improves

the bound in Theorem 1 to 4D−1/4. That argument is presented in [6, Section 5].

The reader may consult [2] for a discussion of the interpretation of Theorem 1 in

terms of the distribution of the quadruple (g, x, gx, xg) when x, g are drawn uniformly

and independently at random from μ. That paper also derives some combinatorial

consequences of Theorem 1, discusses possible generalizations to larger values of d, and

gives some related results that can be obtained by more straightforward combinatorial

arguments.

The basis of our argument is the following inequality. In its formulation, if π : G � V is

a unitary representation, then we let V ◦
π denote its trivial component (that is, the subspace

of π-fixed points), and let P ◦
π : V −→ V ◦

π be the orthogonal projection.

Lemma 2. If G is D-quasi-random, π : G � V is a unitary representation, ‖ · ‖V denotes

the norm on V , and u, v ∈ V , then

‖P ◦
π⊗π(u ⊗ v) − P ◦

π u ⊗ P ◦
π v‖Vπ⊗π

� D−1/2‖u‖V‖v‖V .

Proof. Let π =
⊕

i�0 ρi be a decomposition of π into (not necessarily distinct) irredu-

cibles, let Vi � V be the direct summand corresponding to ρi, let di := dimVi, and let

u =
⊕

i ui and v =
⊕

i vi be the corresponding vector decompositions. This decomposition

of π gives

V ◦
π⊗π =

⊕
i,j

V ◦
ρi⊗ρj

�
⊕
i,j

Vi ⊗ Vj �
(⊕

i

Vi

)
⊗

(⊕
j

Vj

)
.

As is standard, for each i, j one may identify Vi ⊗ Vj with the space Hom(V ∗
j , Vi), which

becomes a Hilbert space when endowed with the trace inner product,

〈S, T 〉Hom(V ∗
j ,Vi) := tr S∗T = trT ∗S,
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and is given the action

(ρi ⊗ ρj)
gT := ρ

g
i ◦ T ◦ (ρgj )

∗ for g ∈ G, T ∈ Hom(V ∗
j , Vi).

By Schur’s lemma (see, for instance, [3, Chapter 2]), one has V ◦
ρi⊗ρj

= 0 unless ρj ∼= ρ∗
i .

In that case Hom(V ∗
j , Vi) ∼= End(Cdi ), and under this isomorphism, V ◦

ρi⊗ρ∗
i
is identified with

the one-dimensional subspace generated by the identity matrix 1di ∈ End(Cdi ), which has

trace-norm equal to d
1/2
i .

Let R be the relation on N defined by

iRj ⇐⇒ ρj = ρ∗
i ,

and for pairs i, j such that iRj, let Iij be the element of Hom(V ∗
j , Vi) that corresponds

to d
−1/2
i 1di . Substituting the above consequence of Schur’s lemma into the expression for

V ◦
π⊗π , we obtain

V ◦
π⊗π =

⊕
iRj

C · Iij .

This now gives

P ◦
π⊗π(u ⊗ v) =

⊕
iRj

〈ui ⊗ vj , Iij〉Vi⊗Vj
· Iij =

⊕
iRj

d
−1/2
i 〈ui, vj〉Vi

· Iij .

On the other hand, if I := {i ∈ N : ρi = triv}, then

P ◦
π u ⊗ P ◦

π v =
⊕
i,j∈I

ui ⊗ vj .

Subtracting the latter from the former and computing norms, we obtain

‖P ◦
π⊗π(u ⊗ v) − P ◦

π u ⊗ P ◦
π v‖2

Vπ⊗π
=

∑
i,j∈N\I,

iRj

d−1
i |〈ui, vj〉Vi

|2

� D−1
∑
iRj

|〈ui, vj〉Vi
|2

� D−1

(∑
i

‖ui‖2
Vi

)(∑
i

‖vi‖2
Vi

)
� D−1‖u‖2

V‖v‖2
V ,

as required.

Corollary 3. With the same data as above, one has∫
G

|〈u, πgv〉V − 〈P ◦
π u, P

◦
π v〉V |2 dg � D−1/2‖u‖2

V‖v‖2
V .
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Proof. By replacing, say, u with u − P ◦
π u (which still has norm at most ‖u‖V ), we may

reduce to the case P ◦
π u = 0. Now simply observe that∫

G

|〈u, πgv〉V |2 dg =

∫
G

〈u ⊗ u, (πg ⊗ πg)(v ⊗ v)〉V⊗V dg

=
〈
u ⊗ u,

∫
G

(πg ⊗ πg)(v ⊗ v) dg
〉
V⊗V

= 〈P ◦
π⊗π(u ⊗ u), P ◦

π⊗π(v ⊗ v)〉V⊗V

� ‖P ◦
π⊗π(u ⊗ u)‖V⊗V‖P ◦

π⊗π(v ⊗ v)‖V⊗V � ‖v‖2
V‖P ◦

π⊗π(u ⊗ u)‖V⊗V ,

at which point we may apply the preceding lemma.

Proof of Theorem 1

Step 1: Initial re-arrangement. We start in the same way as [2]. If f1 is constant, say equal

to α, then |α| � 1, and an easy calculation gives∫
G

∣∣∣ ∫
X

f1(x)f2(gx)f3(xg) μ(dx) −
(∫

X

f1 dμ

)(∫
X

E(f2 | Φ)E(f3 | Φ) dμ

)∣∣∣ dg

= |α|
∫
G

∣∣∣ ∫
X

f2(gx)f3(xg) μ(dx) −
∫
X

E(f2 | Φ)E(f3 | Φ) dμ
∣∣∣ dg

�
(∫

G

∣∣∣ ∫
X

f2(gxg
−1)f3(x) μ(dx) −

∫
X

E(f2 | Φ)E(f3 | Φ) dμ
∣∣∣2 dg

)−1/2

,

where the last estimate uses the Cauchy–Bunyakowski–Schwarz inequality. Let V :=

L2(G), π : G � V be the action of composition by conjugation on G, and let u := f3 and

v := f2. Then these both have ‖ · ‖2-norm at most 1, and so Corollary 3 bounds the last

line above by D−1/4 � D−1/8.

By multi-linearity and a change of variables in the inner integral, it therefore suffices

to show that∫
G

∣∣∣ ∫
X

f1(x)f2(gx)f3(xg) μ(dx)
∣∣∣ dg =

∫
G

∣∣∣ ∫
X

f3(y)f1(yg
−1)f2(gyg

−1) μ(dy)
∣∣∣ dg

=

∫
G

∣∣∣ ∫
X

f3 · f1T
g · f2S

gT g dμ
∣∣∣ dg � 3D−1/8,

whenever f2, f3 : X −→ D, f1 : X −→ 2D with ‖f1‖2 � 1 and
∫
f1 dμ = 0.

Step 2: Removing the absolute values. By the Cauchy–Bunyakowski–Schwarz inequality,

the previous inequality will follow if one shows that∫
G

∣∣∣ ∫
X

f3 · f1T
g · f2S

gT g dμ
∣∣∣2 dg =

∫
G

∫
X2

F3 · F1T̃
g · F2S̃

gT̃ g dμ⊗2 dg

=

∫
X2

F3 ·
(∫

G

F1T̃
g · F2S̃

gT̃ g dg

)
dμ⊗2 � 5D−1/4,

where Fi := fi ⊗ fi : X2 −→ C for i = 1, 2, 3, and S̃ := S × S , T̃ := T × T . The key here

is that we have removed the absolute values inside the outer integral, which makes it

possible to change the order of the integrals in the last step above.
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Step 3: Expansion and another change of variables. Since ‖F3‖2 � 1, another appeal to

the Cauchy–Bunyakowski–Schwarz inequality shows that the above would follow from∫
X2

∣∣∣ ∫
G

F1T̃
g · F2S̃

gT̃ g dg
∣∣∣2 dμ⊗2

=

∫
X2

∫
G

∫
G

F1T̃
g · F1T̃

hg · F2S̃
gT̃ g · F2S̃

hgT̃ hg dg dh dμ⊗2

=

∫
G

∫
G

∫
X2

F1T̃
g · F1T̃

hg · F2S̃
gT̃ g · F2S̃

hgT̃ hg dμ⊗2 dg dh � 25D−1/2.

For the proof of this last inequality, we may change variables in the inner integral by

T̃ g−1
, and so prove instead that∫

G

∫
G

∫
X2

F1 · F1T̃
h · (F2 · F2S̃

hT̃ h)S̃ g dμ⊗2 dg dh (2)

=

∫
G

∫
X2

F1 · F1T̃
h · E(F2 · F2S̃

hT̃ h | Δ) dμ⊗2 dh � 25D−1/2,

where Δ � Σ⊗2 is the σ-algebra of S̃-invariant sets.

Step 4: Appeal to quasi-randomness. Now recall that

F2 · F2S̃
hT̃ h = (f2 · f2S

hT h) ⊗ (f2 · f2S
hT h),

a tensor product of two functions X −→ D. We may therefore apply Lemma 2 to obtain∥∥∥E(F2 · F2S̃
hT̃ h | Δ) −

∣∣∣ ∫
X

f2 · f2S
hT h dμ

∣∣∣2∥∥∥
L2(μ⊗2)

� D−1/2 for all h ∈ G.

Substituting this into (2), and using that

‖F1 · F1T̃
h‖L2(μ⊗2) = ‖f1 · f1T

h‖2
L2(μ) � (2 · 2)2 = 16,

we see that (2) will be proved (with room to spare) if one shows that∫
G

(∫
X2

F1 · F1T̃
h dμ⊗2

)
·
∣∣∣ ∫

X

f2 · f2S
hT h dμ

∣∣∣2 dh

=

∫
G

∣∣∣ ∫
X

f1 · f1T
h dμ

∣∣∣2 ·
∣∣∣ ∫

X

f2 · f2S
hT h dμ

∣∣∣2 dh � D−1/2.

Finally, this last inequality holds because∫
G

∣∣∣ ∫
X

f1 · f1T
h dμ

∣∣∣2 ·
∣∣∣ ∫

X

f2 · f2S
hT h dμ

∣∣∣2 dh � ‖f2‖4
∞

∫
G

∣∣∣ ∫
X

f1 · f1T
h dμ

∣∣∣2 dh,

and by Corollary 3 this is bounded by

D−1/2‖f1‖4
2‖f2‖4

∞ � D−1/2,

since
∫
f1 dμ = 0.
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