
doi:10.1017/S0963548318000408

Analysis of Robin Hood and Other Hashing
Algorithms Under the Random Probing Model, With

and Without Deletions

P. V. POBLETE1† and A. VIOLA2‡

1 Department of Computer Science, University of Chile, Casilla 2777, Santiago, Chile
(e-mail: ppoblete@dcc.uchile.cl)

2 Instituto de Computación, Universidad de la República, Montevideo 11300, Uruguay
(e-mail: aviola@fing.edu.uy)

Received 12 September 2016; revised 18 July 2018

Thirty years ago, the Robin Hood collision resolution strategy was introduced for open addressing
hash tables, and a recurrence equation was found for the distribution of its search cost. Although
this recurrence could not be solved analytically, it allowed for numerical computations that, re-
markably, suggested that the variance of the search cost approached a value of 1.883 when the
table was full. Furthermore, by using a non-standard mean-centred search algorithm, this would
imply that searches could be performed in expected constant time even in a full table.

In spite of the time elapsed since these observations were made, no progress has been made
in proving them. In this paper we introduce a technique to work around the intractability of the
recurrence equation by solving instead an associated differential equation. While this does not
provide an exact solution, it is sufficiently powerful to prove a bound of π2/3 for the variance, and
thus obtain a proof that the variance of Robin Hood is bounded by a small constant for load factors
arbitrarily close to 1. As a corollary, this proves that the mean-centred search algorithm runs in
expected constant time.

We also use this technique to study the performance of Robin Hood hash tables under a long
sequence of insertions and deletions, where deletions are implemented by marking elements as
deleted. We prove that, in this case, the variance is bounded by 1/(1 − α), where α is the load
factor.

To model the behaviour of these hash tables, we use a unified approach that we apply also
to study the First-Come-First-Served and Last-Come-First-Served collision resolution disciplines,
both with and without deletions.
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1. Introduction

In 1986, Celis, Larson and Munro [6, 7] introduced the Robin Hood collision resolution strategy
for open addressing hash tables. Under this discipline, collisions are decided in favour of the
element that is farthest from its home location. While this does not change the expected search
cost, it turns out to have a dramatic effect on its variance. In effect, unlike other disciplines
where the variance tends to infinity as the table becomes full, the variance of Robin Hood seems
to remain constant, and very small. This fact, conjectured from numerical computations, has not
been proved in the years since it was observed, and is the main focus of our work. This problem
has been hard to solve because the distribution of the search cost obeys a nonlinear recurrence
equation for which no successful line of attack has been found.

To show the kind of recurrence involved, we now quote Theorem 3.1 from [6] (our notation
will be slightly different).

Theorem (from [6]). In the asymptotic model for an infinite Robin Hood hash table with load
factor α (α < 1), the probability pi(α) that a record is placed in the ith or further position in its
probe sequence is equal to

p1(α) = 1, pi+1(α) = 1−
(

1−α
α

)
(eα(p1(α)+···+pi(α)) −1). (1.1)

He then goes on to define another function ri(α) = α(pi(α)+ · · ·+ p∞(α)), in terms of which
the variance can be expressed as

V (α) =
2
α

∞

∑
i=1

ri(α)+
ln(1−α)

α
− ln2(1−α)

α2
. (1.2)

He shows that ri(α) satisfies the following recurrence equation:

ri(α)− ri+1(α) = 1− e−ri(α), (1.3)

with r1(α) = − ln(1 − α). By leaving the ‘(α)’ implicit and using the Δ operator (defined as
Δri = ri+1 − ri), this can be rewritten as Δri = f (ri) where f is the function f (x) = −1+ e−x.

This seemingly simpler equation has, nonetheless, so far remained unsolved.
In this paper, we will introduce a technique applicable to equations of this form, and we will

use it first to prove a bound on the variance of Robin Hood hashing. Then we will use it to study
another recurrence equation of the same type arising from the problem of hashing with deletions.

2. Modeling hashing algorithms

In this paper we will study the search cost of a random element in a hash table, using the random
probing model. This is an open addressing hashing scheme in which collisions are resolved by
additional probes into the table. The sequence of these probes is considered to be random and
depends only on the value of the key. The difference from uniform probing is that positions may
be repeated in this sequence. We use the asymptotic model for a hash table with load factor α
[7, 11, 12, 14], where we assume that the number of keys n and the table size m both tend to
infinity, while keeping their ratio α = n/m constant.
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Each element has associated with it an infinite probe sequence consisting of i.i.d. integers
uniformly distributed over {0, . . . ,m−1}, representing the consecutive places of probes for that
element. The probe sequence for element x is denoted by h1(x),h2(x), . . . . Elements are inserted
sequentially into the table. If element x is placed in position hj(x), then we say that element x has
age j, as it requires j probes to reach the element in the case of a search. When an element x of
age j and an element y of age k compete for the same slot (hj(x) = hk(y)), a collision resolution
strategy is needed.

In the standard method [13], a collision is resolved in favour of the incumbent key, so the
incoming key continues probing to its next location. We call this a First-Come-First-Served
(FCFS) collision resolution discipline. Several authors [2, 4, 10] have observed that a collision
could be resolved in favour of any of the keys involved, and used this additional degree of
freedom to decrease the expected search time in the table.

Celis, Larson and Munro [6, 7] were the first to observe that collisions could be resolved
having variance reduction instead as a goal. They defined the Robin Hood (RH) heuristic, in
which each collision occurring during an insertion is resolved in favour of the key that is farthest
away from its home location (i.e. oldest in terms of age). Later, Poblete and Munro [16] defined
the Last-Come-First-Served heuristic, where collisions are resolved in favour of the incoming
key.

In both cases, the variance is reduced, and this can be used to speed up searches by re-
placing the standard search algorithm by a mean-centred one that first searches in the vicin-
ity of where we would expect the element to have drifted to, rather than in its initial probe
location. This mean-centred approach was introduced in [6] (and called ‘organ-pipe search’)
to speed up successful searches in the Robin Hood heuristic, with expected cost bounded by
the standard deviation of this random variable. Numerical computations in [6] suggest that
for full tables the variance of the search cost for RH is constant, but no formal proof is
given.

In this paper we formally settle this conjecture, by proving that this is in fact the case, and
give an explicit upper bound (although not as tight as the numerical results seem to suggest). As
a consequence we prove that the mean-centred searching algorithm in [6] has constant expected
cost for full tables.

In Section 4 we extend this approach to perform the analysis of hashing with deletions.
Deletions in open addressing hash tables are often handled by marking the cells as deleted instead
of empty, because otherwise the search algorithm might fail to find some of the keys. The space
used by deleted cells may be re-used by subsequent insertions. Intuitively, search times should
deteriorate as tables become contaminated with deleted cells and, as Knuth [13] points out, in
the long run the average successful search time should approach the average unsuccessful search
time.

In this paper we analyse the effect of a long sequence of insertions and deletions in the
asymptotic regime (α-full tables with 0 � α < 1) and prove a bound for the variance of RH
with deletions that is close to numerical results.

There is an alternative algorithm designed to keep variance low in the presence of deletions.
This method marks cells as deleted, but keeps the key values (these cells are called tombstones).
In this paper we do not study the algorithm with tombstones. We note that [14] derives equations
for this algorithm, but only obtains numerical solutions.
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3. Analysis without deletions

To analyse the cost of searching for a random element, we begin by presenting a general frame-
work, based on the one used in [8]. As we will see, this framework applies to FCFS and LCFS
and RH. and in this paper we will focus mainly on RH, whose analysis has been a long-standing
open problem. As stated before, we use the asymptotic model for a hash table with load factor α
and random probing.

Under this model, if collisions are resolved without ‘looking ahead’ in the table, the cost of
inserting a random element is 1 plus a random variable that follows a geometric distribution
with parameter 1 − α , and therefore its expected cost is 1/(1 − α), independent of the collision
resolution discipline used.

Let pi(α) be the probability that a randomly chosen key has age i when the table has load
factor α .

Suppose we insert a new element. Depending on the insertion discipline used, a number of
keys will change locations and therefore increase their ages as a consequence of the arrival of
the new element. Let us call ti(α) the expected number of elements that probe their ith location
during the course of an insertion. It is easy to see that

t1(α) = 1, ∑
i�1

ti(α) =
1

1−α
. (3.1)

Before the insertion, the expected number of keys of age i is αmpi(α). After the insertion, it is

(αm+1)pi

(
α +

1
m

)
= αmpi(α)+ ti(α)− ti+1(α). (3.2)

If we write Δα = 1/m and qi(α) = α pi(α), this equation becomes

qi(α +Δα)−qi(α)
Δα

= ti(α)− ti+1(α) (3.3)

and, as Δα → 0 (i.e. m → ∞),

∂α qi(α) = ti(α)− ti+1(α), (3.4)

where ∂α denotes a derivative with respect to α , and with the initial condition qi(0) = 0.
We introduce a notation that we will use throughout the paper. For any sequence ai we define

its tail ai as

ai = ∑
j�i

a j. (3.5)

Also, to simplify notation we will leave the ‘(α)’ implicit whenever there is no ambiguity.
Using these conventions, equation (3.4) can be rewritten as

∂α qi = ti. (3.6)

We note that this equation is valid for all three collision resolution strategies, and it generalizes
formula (10) in [14], where it is proved only for RH.

The mean of the search cost can be obtained using the tail notation, as

μα = p1 =
1
α

q1 (3.7)
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and the variance as

σ 2
α = 2p1 − μα − μ2

α =
2
α

q1 − μα − μ2
α . (3.8)

We note that we can already compute the expected search cost, without needing to know the
exact form of the function ti. Taking tails in both sides of (3.6), we have ∂α qi = ti. Now setting
i = 1 and using (3.7), we obtain ∂α(αμα) = 1/(1−α), and from this we obtain

μα =
1
α

ln
1

1−α
(3.9)

independent of the collision resolution discipline used.
The fact that the mean search cost is independent of the collision resolution discipline used

does not necessarily carry over to higher moments or to the distribution of the search cost. To
compute them, we need to know the ti for the specific discipline.

3.1. Analysis of FCFS
For FCFS we have simply ti = α i−1, and therefore (3.6) becomes ∂α qi(α) = α i−1 with qi(0) = 0.
The solution to this equation is qi = α i/i, and therefore from (3.8) we obtain the following result.

Theorem 3.1. Under the asymptotic model for an infinite hash table with random probing and
FCFS collision resolution discipline, the probability distribution of the search cost of a random
element is

pi =
α i−1

i
− α i

i+1
for i � 1, (3.10)

and the variance of the distribution is

σ 2
α =

2
1−α

− 1
α

ln
1

1−α
− 1

α2
ln2 1

1−α
. (3.11)

3.2. Analysis of LCFS
For LCFS, every time a key tries to occupy a location and finds it occupied by some other key,
it forces this other key to try its next probe location. Since the ‘victim’ is chosen randomly, we
have

ti+1(α) =
1

1−α
qi(α) for i � 1. (3.12)

Introducing the generating functions q(α,z) = ∑i�1 qi(α)zi and t(α,z), defined similarly, we
have

t(α,z) = z

(
1+

1
1−α

q(α,z)
)
. (3.13)

On the other hand, (3.4) implies that

∂α q(α,z) =
(

1− 1
z

)
t(α,z)+1 (3.14)
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with q(0,z) = 0. Combining these two equations, we have

∂α q(α,z)+
1− z
1−α

q(α,z) = z. (3.15)

This can be solved to obtain

p(α,z) =
1
α

((1−α)1−z − (1−α)), (3.16)

from where we can compute the distribution and the variance.

Theorem 3.2. Under the asymptotic model for an infinite hash table with random probing and
LCFS collision resolution discipline, the probability distribution of the search cost of a random
element is

pi =
(

1
α

−1

)
lni(1/(1−α))

i!
for i � 1, (3.17)

and the variance of this distribution is

σ 2
α =

1
α

ln
1

1−α
− 1−α

α2
ln2 1

1−α
. (3.18)

The distribution of the search cost is a positive Poisson distribution (i.e. a Poisson distribution
with the zero state suppressed, and then renormalized), with parameter λ = ln1/(1−α).

3.3. Analysis of RH
For RH, a key will be forced to try its (i + 1)st probe location or higher each time there is a
collision between an incoming key of age i or higher and another key in the table that is also of
age i or higher. Therefore, we have

ti+1 = tiqi. (3.19)

Together with equation (3.4), this implies ∂α qi = (1 − qi)∂α qi. Then, after integrating both
sides of the equation we have ln1/(1−qi) = qi from where we obtain qi = 1 − e−qi . Moreover,
by expressing q as the difference of two q, we arrive at the following result.

Theorem 3.3. Under the asymptotic model for an infinite hash table with random probing, and
Robin Hood collision resolution discipline, the double tail of the probability distribution of the
search cost of a random element satisfies the recurrence

qi+1 = qi −1+ e−qi (3.20)

with the initial condition q1 = ln1/(1−α).

This is exactly equation (1.3), which we quoted from [6], but we obtained it via a completely
different derivation. As we mentioned above, numerical computations performed in [7] indicate
that as α → 1, the variance converges to a small constant, approximately equal to 1.883. Figure 1
compares the shape of the distributions of search costs for the three disciplines.
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FCFS

LCFS

RH

0

pi(α)

0.5

1 i 20

Figure 1. Density function for the distribution of search costs for FCFS, LCFS and RH for α = 0.9999.

3.4. Bounding the variance of RH
We begin by rewriting equation (3.20) as

Δqi = −1+ e−qi , (3.21)

with q1 = ln1/(1−α). This equation is of the form

Δqi = f (qi), (3.22)

where f is the function f (x) = −1 + e−x. This recurrence equation seems very hard to solve
exactly, but we will be able to obtain useful information about its solution by studying instead
the differential equation

Q′(x) = f (Q(x)) (3.23)

with the same initial condition Q(1) = ln1/(1−α).
We note that both equation (3.22) and (3.23) are of the type called autonomous equations,

defined as follows.

Definition. A differential or a difference equation is called autonomous if it does not depend
explicitly on the independent variable.

Theorem 3.4. Let the qi satisfy the autonomous difference equation Δqi = f (qi) with the initial
condition q1 = αμα , let Q(x) satisfy the autonomous differential equation Q′(x) = f (Q(x)) with
the same initial condition Q(1) = αμα and let

g(u) =
∫

u
f (u)

du.

Then

σ 2
α < h(α), (3.24)
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where

h(α) =
2
α

(g(0)−g(αμα))− μ2
α . (3.25)

The proof of this theorem will be given in Section 3.5.
Theorem 3.4 allows us to obtain the main result of our paper, to prove the conjecture presented

in [6].

Theorem 3.5. Under the asymptotic model for an infinite α-full hash table with random prob-
ing and RH collision resolution discipline, the variance of the search cost of a random element
satisfies

σ 2
α <

π2

3
. (3.26)

Proof. For the function f (x) = −1+ e−x we have

g(u) =
∫

u
f (u)

du = −1
2

u2 −u ln(1− e−u)+dilog(1− e−u), (3.27)

where the dilog function is defined as

dilog(x) =
∫ x

1

ln t
1− t

dt. (3.28)

Substituting in (3.24) and simplifying using the identity 27.7.3 from [1],

dilog(x)+dilog(1− x) = − lnx ln(1− x)+
π2

6
, (3.29)

we can show that

h(α) =
2dilog(1−α)

α
− (1−α) ln2 (1−α)

α2
. (3.30)

Figure 2 compares the exact value of σ 2
α (computed numerically) and the upper bound h(α).

To see that h(α) is an increasing function, we use formula 27.7.2 from [1],

dilog(x) = ∑
k�1

(−1)k (x−1)k

k2
, (3.31)

to compute its Taylor expansion,

h(α) =
4
3

+∑
i�1

2Hi+1

(i+1)(i+2)
α i, (3.32)

where Hi denotes a harmonic number. As all coefficients are positive, h(α) is increasing, and it
takes its maximum value at α = 1−, with h(1−) = π2/3.

This gives us an upper bound of approximately 3.29 for the variance of Robin Hood Hashing.
Although a numerically computed value of approximately 1.883 has been known for a long time,
this is the first proof that this variance is bounded by a small constant as α → 1.
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0

1

2

3

4

≈ 1.883

π2

3

0 1α

σ 2
α

h(α)

Figure 2. Comparison of σ2
α and h(α).

As Celis, Larson and Munro observed, the fact that the variance is very small can be used to
carry out a more efficient mean-centred search. If we call X the random variable ‘search cost of a
random key’, the expected cost of this modified search is Θ(E|X − μα |). But Jensen’s inequality
implies that

E|X − μα | = E

√
(X − μα)2 �

√
E(X − μα)2 = σα , (3.33)

so the mean value of the search cost of a mean-centred search is proportional to the standard
deviation of the cost of a standard search. Theorem 3.5 then implies that this search algorithm
runs in expected constant time in a full table.

3.5. Using autonomous equations to prove an upper bound
We will begin by proving some results that we will use to prove Theorem 3.4.

Throughout this section we will consider, as an example, the case of f (x) = −1 + e−x with
q1 = Q(1) = ln1/(1−α). The solution to this equation is

Q(x) = ln

(
1

1−α
−1+ ex−1

)
− x+1. (3.34)

Figure 3 compares the solution qi (defined only for integer i) of recurrence equation (3.22)
to the solution Q(x) of differential equation (3.23). This plot suggests that at each integer point
i � 1, Q(i) is an upper bound for qi.

In what follows, we will be able to show that a stronger result holds. Let us extend qi to all
x � 1 by linear interpolation, and let us call the resulting function q(x). This function satisfies

q(x) = qi +(x− i) f (qi) (3.35)

for all x ∈ [i, i+1] and i � 1.
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0

1

2

1 2 3 4 5 6 7 8 9 10

Q(x)
qi

Figure 3. Comparison of qi and Q(x) for α = 0.9.

Figure 3 compares q(x) and Q(x), and from this we can conjecture that Q(x) > q(x) for all
x > 1. If we define d(x) = Q(x)−q(x) (shown in Figure 5), this is equivalent to conjecturing that
d(x) > 0 for all x > 1. The following lemma proves this conjecture.

Lemma 3.6. Let ai satisfy the recurrence equation Δai = f (ai) for all i � 1, and A(x) satisfy the
differential equation A′(x) = f (A(x)) for all x � 1, where f : [0,+∞) → (−∞,0] is a continuous
strictly decreasing function. Let a(x) be defined by a(i) = ai for integer i, and a(x) = a(i)+(x−
i) f (a(i)) for x ∈ (i, i+1). Then

A(i) � a(i) =⇒ A(x) > a(x) (3.36)

for all x ∈ (i, i+1].

Proof. Let us consider x restricted to a given interval [i, i + 1] and define d(x) = A(x)− a(x).
We will show that d(i) � 0 =⇒ d(x) > 0 for x > i. We note that A(x) and a(x) are strictly de-
creasing functions, because f (x) is negative, and d′(x) = f (A(x))− f (a(i)) is strictly increasing.
Therefore, d(x) is a convex function in the interval [i, i+1].

By hypothesis, d(i) = A(i)−a(i) � 0, and therefore d′(i) = f (A(i))− f (a(i)) � 0. Moreover,
d(i) = 0 if and only if d′(i) = 0 and, equivalently, d(i) > 0 if and only if d′(i) < 0. We will
consider the following cases.

(a) Case d(i) = 0, d′(i) = 0. In this case d has a minimum at x = i, which implies that d(x) > 0
for all other x in the interval. An example of this is the interval [0, 1] in Figure 5.

(b) Case d(i) > 0, d′(i) < 0. To prove that d(x) > 0 in the interval (i, i + 1], we reason by
contradiction. Assume function d has a leftmost zero at x∗ ∈ (i, i+1]. Then d cannot have a
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0

1

2

1 2 3 4 5 6 7 8 9 10

Q(x)

q(x)

Figure 4. Comparison of q(x) = qi +(x− i) f (qi) and Q(x) for α = 0.9.

0

0.1

0.2

1 2 3 4 5 6 7 8 9 10

Figure 5. The function d(x) for α = 0.9.
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minimum in [i,x∗) and therefore d′(x) < 0 in all that interval, and d′(x∗) � 0 by continuity.
On the other hand, d(x∗) = 0 if and only if A(x∗) = a(x∗). But a is decreasing, therefore
A(x∗) < a(i) and f (A(x∗)) > f (a(i)), or equivalently, d′(x∗) > 0, a contradiction. Therefore,
d(x) cannot have zeros in [i, i+1], and d(x) > 0 in the interval.

Corollary 3.7.

q(x) < Q(x) for all x > 1. (3.37)

Proof. By induction using q(1) = Q(1) and Lemma 3.6.

We are now ready to present the proof of Theorem 3.4:

Proof of Theorem 3.4. To bound the right-hand side of equation (3.8) we note that

q1 =
q1

2
+∑

i�1

qi +qi+1

2
, (3.38)

but the summation is the area under the q(x), which is bounded above by the area under Q(x).
Noting that q1 = αμα , we have

σ 2
α <

2
α

∫ ∞

1
Q(x)dx− μ2

α . (3.39)

To evaluate the integral, if g(u) is defined as

g(u) =
∫

u
f (u)

du,

then it is easy to prove by differentiation that∫
Q(x)dx = g(Q(x)).

The result follows.

3.6. Bounding the tail of RH
We focus now on the tail of the distribution of the search cost. Recall that X is the random
variable ‘search cost of a random element’. Using our notation we have

P{X � i} = pi =
1
α

qi. (3.40)

We proved earlier that qi � Q(i). By applying f to both sides and recalling that f is a decreasing
function, we have f (qi) � f (Q(i)). Using equations (3.22) and (3.23), we have Δqi = −qi �
Q′(i), and therefore

P{X � i} = pi � − 1
α

Q′(i) =
1

α +(1−α)ei−1
. (3.41)
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i = ln
1

1−α

0

1

1 20i

1
α +(1−α)ei−1

pi

Figure 6. Comparison of pi and the upper bound for α = 0.9999.

If in this inequality we substitute i = ln1/(1−α)+k, we obtain the probability that the search
cost will exceed the threshold ln1/(1−α) by a given number of steps k,

P

{
X � ln

1
1−α

+ k

}
� 1

α + ek−1
� e−(k−1), (3.42)

and we can see that the upper bound depends only on k. Therefore, as the table becomes full,
the mass of the distribution moves to the right without bound, but it remains tightly packed to
the right of the threshold, and the probability that the search cost exceeds it by a given amount
decreases exponentially with the distance.

Figure 6 compares the actual value of the tail pi with the value of the upper bound.
Finally, it is interesting to note that the upper bound 1/(α +(1−α)ex−1) can be interpreted

as the tail of a continuous distribution whose density function is

(1−α)ex−1

(α +(1−α)ex−1)2
, (3.43)

and that has its mode at x = 1 + ln(α/(1−α)). If we shift this distribution to the left so it is
centred around zero, the density becomes

1
α

ex

(1+ ex)2
. (3.44)

As α → 1, this converges to ex/((1+ ex)2), or equivalently e−x/((1+ e−x)2), which is the density
function of a Logistic(0,1) distribution [3].

4. Analysis with deletions

We assume a process where we first insert keys until the table reaches load factor α , and then we
enter an infinite cycle where we alternate one random insertion followed by one random deletion.
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If the distribution of the retrieval cost is given by pi(α) and a random element is inserted,
the effect is described by equation (3.2). If we then perform a random deletion, the following
classical lemma[9] shows that the distribution remains unchanged.

Lemma 4.1. Suppose a set contains n balls of colours 1,2, . . . ,k, such that the probability that
a ball chosen at random is of colour i is pi. Then, if one ball is chosen at random and discarded,
the a posteriori probability that a random ball is of colour i is still pi.

Proof. Call p′
i the probability that a random ball is of colour i after the deletion. The expected

number of balls of colour i afterwards is (n − 1)p′
i, but that number can also be obtained as the

expected number before, npi, minus the expected number of balls of colour i lost, that is,

(n−1)p′
i = npi −1 · pi. (4.1)

The result follows.

Therefore, equation (3.2) describes also the probability distribution after one insert–delete
step. Now, assume the process reaches a steady state. In that case, the distribution after the insert–
delete must be equal to the distribution before, i.e. pi(α + 1/m) = pi(α), and replacing this in
(3.2) we have

pi(α) = ti(α)− ti+1(α), (4.2)

and equivalently

pi(α) = ti(α). (4.3)

These equations play the role that equation (3.4) did for the case without deletions. Taking tails
in both sides of this equation and setting i = 1, we can obtain the expected search cost μα as

μα = p1 = t1 =
1

1−α
, (4.4)

confirming the prediction that the expected successful search cost should approach the expected
unsuccessful search cost when deletions are allowed.

4.1. Analysis for FCFS
Recall that for FCFS we have ti = α i−1, and therefore (4.2) becomes pi = α i−1 − α i, hence
obtaining the following result.

Theorem 4.2. Under the asymptotic model for an infinite α-full hash table with random prob-
ing and FCFS collision resolution discipline, in the steady state of a sequence of insert–delete
operations, the distribution of the search cost of a random element is given by

pi = (1−α)α i−1 (4.5)

and its variance is

σ 2
α =

α
(1−α)2

. (4.6)
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Figure 7. The variance of RH with deletions as a function of 1/(1−α).

4.2. Analysis for LCFS
Recall that for LCFS we have ti+1 = qi/(1−α), and therefore (4.2) becomes

pi =
α

1−α
(pi−1 − pi).

Solving this equation, we obtain the following result.

Theorem 4.3. Under the asymptotic model for an infinite α-full hash table with random prob-
ing and LCFS collision resolution discipline, in the steady state of a sequence of insert–delete
operations, the distribution of the search cost of a random element is given by

pi = (1−α)α i−1 (4.7)

and its variance is

σ 2
α =

α
(1−α)2

. (4.8)

These results, first obtained in ([17], show that when deletions are allowed, FCFS and LCFS
become indistinguishable!

4.3. Analysis for RH
For RH, from (4.3) we get pi = ti, and combining this with (3.19) we obtain

p1 =
1

1−α
, pi+1 =

α p
2
i

1+α pi

. (4.9)

We can use this recurrence to compute numerically the distribution for RH.
Figure 7 shows the value of the variance of RH as a function of 1/(1−α), and from the plot we

may see that the variance is very close to 1/(1−α). Moreover, Figure 8 shows the distribution
of the search cost for the three methods, for α = 0.99. As we have just proved, FCFS and LCFS
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Figure 8. Density function for the distribution of search costs for FCFS, LCFS and RH for α = 0.99.

are now identical and have very large dispersion, while RH retains a much more concentrated
shape. We prove that this is indeed the case.

4.4. Bounding the variance of RH with deletions
We begin by rewriting the recurrence equation (4.9) as

q1 =
α

1−α
, Δqi = − qi

1+qi

. (4.10)

This equation is of the form Δqi = f (qi) for f (x) = −x/(1+ x), and therefore we can apply
Theorem 3.4 to obtain the following result.

Theorem 4.4. Under the asymptotic model for an infinite α-full hash table with random prob-
ing and RH collision resolution discipline, in the steady state of a sequence of insert–delete
operations, the variance of the search cost of a random element satisfies

σ 2
α <

1
1−α

. (4.11)

Proof. For f (x) = −x/(1+ x) we have g(u) = −u(u+2)/2. The result follows by substituting
into formula (3.24).

This proves our earlier conjecture that the variance was very close to 1/(1−α).

5. Conclusions

In this paper we have presented in a unified approach the analysis of hashing algorithms with
random probing under the asymptotic model. Three heuristics are analysed in the same way:
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FCFS, LCFS and Robin Hood. Moreover the same equation (3.2), with the help of Lemma 4.1,
can be used to study these heuristics when deletions are allowed. The new results include very
tight bounds on the variance for Robin Hood both with and without deletions, and a complete
analysis of FCFS and LCFS when deletions are allowed. Our results agree very well with previ-
ous numerical computations.

The key methodological contribution of the paper is Theorem 3.24. The use of autonomous
equations has allowed us to formally prove good bounds for sequences that satisfy non linear
relations that are very difficult to analyse exactly. Using this, we have obtained a formal proof of
a 30 year-old conjecture about the variance of Robin Hood. Furthermore, this approach allows
the analysis of the tail distribution of the search cost for Robin Hood when the load factor α →
1. The main algorithmic consequence of our analysis is the proof that the ‘organ-pipe’ search
algorithm presented in [6] gives an average constant search time of a random element for full
tables. Numerical evidence for this had been presented in [6]. The running time of the algorithm
is proportional to the standard deviation of the displacement of a random element, and it is proved
to be constant in Theorem 3.5.

In our theoretical model we assume that the hash function h(x) used distributes the elements
uniformly. That is, if the table has size m, for any element x the probability that h(x) = k is
1/m for any table slot k. This is called the uniform hashing assumption. Since the introduction
of Universal Hash Functions [5], several researchers have studied to what extent this theoretical
ideal can be realized by hash functions that do not take up too much space and can be evaluated
quickly. A practical solution has been proposed in [15].
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