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SUMMARY
A class of three-legged modular reconfigurable parallel
robots is designed and constructed for precision assembly
and light machining tasks by using standard active and
passive joint modules in conjunction with custom designed
links and mobile platforms. Since kinematic errors, espe-
cially the assembly errors, are likely to be introduced,
kinematic calibration becomes particularly important to
enhance the positioning accuracy of a modular reconfigur-
able robot. Based on the local frame representation of the
Product-Of-Exponentials (Local POE) formula, a self-
calibration method is proposed for these three-legged
modular reconfigurable parallel robots. In this method, both
revolute and prismatic joint axes can be uniformly
expressed in twist coordinates by their respective local
(body) frames. Since these local frames can be arbitrarily
defined on their corresponding links, we are able to calibrate
them, and yet retain the nominal local description of their
respective joints, i.e., the nominal twist coordinates and
nominal joint displacements, to reflect the actual kinematics
of the robot. The kinematic calibration thus becomes a
procedure of fine-tuning the locations and orientations of
the local frames. Using mathematical tools from differential
geometry and group theory, an explicit linear calibration
model is formulated based on the leg-end distance errors.
An iterative least-square algorithm is employed to identify
the error parameters. A simulation example of calibrating a
three-legged (RRRS) modular parallel robot shows that the
robot kinematics can be fully calibrated within two to three
iterations.

KEYWORDS: Parallel robots; Self-calibration; Leg-end distance;
Local POE.

1. INTRODUCTION
A parallel robot is a closed-loop mechanism in which the
mobile platform is connected to the base by at least two
serial kinematic chains (legs). Applications of this type of
robot can be found in the pilot training simulators and in the
high precision surgical tools because of the high force
loading capacity and fine motion characteristics of the
closed-loop mechanism. Recently, researchers are trying to
utilize these advantages to develop parallel-type robot based
multi-axis machining tools1 and precision assembly tools.2

However, the design, trajectory planning, and application

development of the parallel robot are difficult and tedious.
This is because the closed-loop nature of the mechanism
limits the motion of the platform and creates complex
kinematic singularities in the workspace of the mobile
platform. To overcome this drawback, we employ modular
design concept in the development of parallel robots. A
modular parallel robot system consists of a set of independ-
ently designed modules, such as actuators, passive joints,
rigid links (connectors), mobile platforms, and end-effectors
that can be rapidly assembled into a complete robot with
various configurations having different kinematics and
dynamic characteristics. The concept of modularity has
been previously used in the design of serial-type robots for
flexibility, ease of maintenance, and rapid deployment.3–6 A
modularly designed reconfigurable parallel robot not only
possess the above advantages but can also shorten the
development cycle, i.e., the time from design, construction,
to deployment. The modular design is able to reduce the
complexity of the overall design problem to a manageable
level.

One of the main concerns in the modular robot system is
the positioning accuracy of the robot end-effector. A set of
robot modules are joined together to form a complete
parallel robot assembly. Factors like machining tolerance,
compliance, misalignment of the connected modules, and
wear of the connecting mechanism will affect the position-
ing accuracy of the robot. As a result, the assembly errors of
a modular robot are usually larger than those of a robot
having fixed configuration. Hence, identifying the critical
kinematic parameters to improve the positioning accuracy
of the robot end-effector becomes a very important issue for
modular reconfigurable parallel robots.

Based on the closed-loop structure of the parallel robot,
the calibration procedure is normally divided into two steps,
i.e. self-calibration of the closed-loop mechanism and
calibration of the end-effector. The purpose of self-
calibration is to calibrate the closed-loop mechanism by
using the built-in sensors in the passive joints. The end-
effector calibration, on the other hand, is to improve the
absolute positioning accuracy of the end-effector by using
external measuring equipment. Once the parallel robot is
self-calibrated, the subsequent end-effector calibration can
be easily performed. In this step, only the kinematic errors
in the fixed transformations from the robot world frame to
robot base frame and from the mobile platform frame to the
end-effector frame need to be identified. Because of the
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importance of the self-calibration step, past research efforts
on calibration of parallel robots have been concentrated on
the self-calibration techniques.7–12 A representative work in
this approach is presented by Zhuang.7 In this work, a self-
calibration method is proposed for the conventional
six-legged Stewart platform through the installation of
redundant sensors in several passive joints and constructing
a measurement residues with measured values and the
computed values of these readable passive joint angles.
When these passive joint angles are recorded at a sufficient
number of measurement configurations, the actual kine-
matic parameters can be estimated by minimizing the
measurement residues. Since this model is based on the
linearization of the kinematic constraint equations, it
converges rapidly. Wampler, Hollerbach, and Arai12 presents
a unified formulation for the self-calibration of both serial-
link robots and robotic mechanisms having kinematically
closed loops by using the implicit loop method. In this
method, the kinematic errors are allocated to the joints such
that the loop equations are exactly satisfied, simplifying the
treatment of multi-loop mechanisms. Inrascu and Park13

develop a unified geometric framework for the calibration of
kinematic chains containing closed loops. Both joint
encoder readings and end-effector pose measurements can
be uniformly included into this frame work. As a result, the
kinematic calibration is cast as a nonlinear constrained
optimization problem. There is only a handful of works on
the calibration of the three-legged manipulators.13,14 Notash
and Podhorodeski14 presents a methodology allowing kine-
matic calibration of three-legged parallel manipulator based
on the minimization of the leg-end distance error. The work
employs the Lavenberg-Marquardt nonlinear least-square
algorithm to identify kinematic parameters of the manip-
ulator.

This paper is focused on the self-calibration of a class of
three-legged modular parallel robots. The calibration objec-
tive is, though minimizing the leg-end distance errors, to
identify the kinematics errors in the robots. A general and
effective linear calibration algorithm is developed for
modular parallel robots based on the local frame representa-
tion of the Products-Of-Exponentials (POE) formula. The
POE representation method describes the joint axes as
twists based on line geometry. It is, therefore, uniform in
modeling manipulators with both revolute and prismatic
joints. The kinematic parameters in the POE model vary
smoothly with changes in joint axes so that the model can
cope with certain formulation singularity problems that can
not be handled by using other kinematic parameterization
methods. Significantly, the POE formula has a very explicit
differential structure such that it can be easily differentiated
with respect to any of its kinematic parameters.15–17 Since a
modular reconfigurable parallel robot has unlimited con-
figurations, it is necessary for the calibration algorithm to be
as generic to robot configurations. For these reasons, the
POE formula would be the most appropriate modeling tool
for the modular parallel robot calibration.

The remaining sections of this article are organized as
follows: The design consideration for robot modules and
possible parallel robot configurations are briefly introduced
in Section 2. The kinematic modeling issues including the

local POE formula, the forward displacement analysis, and
the inverse kinematics are briefly addressed in Section 3.
The self-calibration model, based on the local POE formula,
is presented in Section 4. Simulation examples are included
in Section 5. The summary is in Section 6.

2. DESIGN CONSIDERATIONS

2.1 Robot modules
A set of commercial grade and custom designed actuator
modules, passive joint modules, rigid link modules (con-
nectors), and mobile platforms are considered as the basic
parallel robot modules. Off-the-shelf intelligent mecha-
tronic drives, PowerCube, from Amech GmbH, Germany
are selected as actuator modules for rapid deployment. Both
prismatic (Fig. 1(a)) and revolute (Fig. 1(b)) actuator
modules are considered. Each of the actuator modules is a
self-contained drive unit with a built-in motor, a controller,
an amplifier, and the communication interface. It has a cubic
or double-cube design with multiple connecting sockets so
that two actuator modules can be connected in many
different orientations. Three types of passive joint modules
(without actuators) are designed and fabricated: the rotary
joint (Fig. 2(a), the pivot joint (Fig. 2(b)), and the spherical

Fig. 1. Actuator modules.

Fig. 2. Passive joint modules.
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joint (Fig. 2(c)). To facilitate the forward kinematics
analysis, an angular displacement sensor is built into each of
the passive rotary and pivot joint modules. A set of rigid
links with various geometrical shapes and dimensions has
been customly designed for connecting joint modules (Fig.
3). A circular mobile platform has also been designed and
fabricated (Fig. 4), which can be used along with parallel
robots with various number of legs.

2.2 Possible robot configurations
Based on the module designs, many possible parallel robot
configurations can be constructed. Here, however, we
mainly focus on the 6-DOF, nonredundant, parallel robot
configurations. An enumeration scheme for such parallel
robot topological structures is presented in.18 In this work, a
class of three-legged, nonredundant, parallel robots is
identified as having simple kinematics and desirable
characteristics. Such a parallel robot consists of three legs.
Each leg has two active joints, one passive 1-DOF (revolute)
joint, and one passive 3-DOF (spherical) joint which is
placed at the end of the leg. Based on this fact, all of the

possible robot configurations can be enumerated (refer to
reference [18] for more detail). Figure 5 shows two such
possible robot configurations.

3. KINEMATICS OF THREE-LEGGED MODULAR
PARALLEL ROBOTS
In order to develop a self-calibration model for the three-
legged parallel robots, the kinematic algorithms of both
forward and inverse kinematics analysis are briefly intro-
duced in this section. These algorithms, based on the POE
formula, are general enough to deal with the three-legged
modular parallel robots having different assembly con-
figurations. For more detail, please refer to our previous
paper.19

3.1 The local POE formula
Brockett20 shows that forward kinematic equation of an
open chain robot containing either revolute or prismatic
joints can be uniformly expressed as a product of matrix
exponentials. Because of its compact representation and its
connection with Lie groups and Lie algebras, the POE

Fig. 3. Custom designed links (connectors).

Fig. 5. Two modular 3-leg parallel robot configurations.

Fig. 4. Custom designed mobile platform.
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formula has proven to be a useful modeling tool in robot
kinematics.16,20–23 For our purpose, only the local frame
representation of the POE formula is introduced in this
article.

3.1.1. Dyad kinematics. Let link i – 1 and link i be two
adjacent links connected by joint i, as shown in Fig. 6. Link
i and joint i are termed as link assembly i. If we denote the
body coordinate frame on link assembly i by frame i, then
the relative pose (position and orientation) of frame i with
respect to frame i – 1, under a joint displacement, qi can be
described by a 4 � 4 homogeneous matrix, an element of
SE(3), such that

Ti�1, i (qi ) = Ti�1, i (0)eŝi qi, (1)

where ŝi �se(3) is the twist of joint i expressed in frame i,
and Ti�1, i (0)�SE(3) is the initial pose of frame i relative to
frame i�1.

Ti�1, i (0) = � Ri�1, i (0)
0

di�1, i (0)
1 � (2)

where Ri�1, i (0) � SO(3) and di�1, i (0) � �3� 1 are the
initial orientation and position of frame i relative to frame
i�1, respectively.

The twist of joint i can be written as

ŝi = � ŵi

0
�i

0 �, (3)

where � i (= (� i x, � i y, � i z )
T ) is the positional vector of the joint

axis i expressed in frame i, and ŵi is a skew-symmetric
matrix related to wi ( = (wix, wiy, wiz )

T ) which is the
directional vector of joint axis i expressed in frame i. ŵi is
given by

ŵi =
0

wiz

�wiy

�wiz

0
wix

wiy

�wix

0
. (4)

The twist, ŝi, can also be expressed as a 6-dimensional
vector through a mapping: ŝi � s = (� i, wi )

T � �6� 1, termed
as twist coordinates. In the local POE formula, the twists are
expressed in their local frames. Without loss of generality,
we always assign the local frame i in a simple way such that
the joint axis i passes through origin of frame i. Hence, si =
(0, wi ) for revolute joints, where wi is the unit directional

vector of the joint axis i and � wi � = 1; si = (�i , 0) for
prismatic joints, where � i is the unit directional vector of the
joint axis i and �� i � = 1.

An explicit formula for the computation of e ŝi qi is given in
references 20 and 21. For the local POE formula, it can also
be simplified as

e ŝi qi = � e ŵi qi

0
�i qi

1 � , (5)

where qi is the displacement of joint i and

e ŵi qi = I + ŵi sin qi + ŵ 2
i (1�cos qi ). (6)

3.1.2. The local POE formula for open chains. Based on
the Dyad kinematics, the forward kinematic transformation
for an open kinematic chain can be easily derived. Consider
an open kinematic chain with n + 1 links, sequentially
numbered as 0, 1, . . ., n (from the base 0 to the end link n).
The forward kinematic transformation thus can be given
by:

T0,n (q1, (q2, . . . , qn ) = T0,1(q1)T1,2(q2) . . . T(n�1),n (qn )

= �n

i = 1

(T(i�1), i (0)eŝi qi). (7)

3.2 Forward displacement analysis
We consider a class of modular three-legged (6-DOF)
parallel robots as shown in Fig. 7. Each leg contains four
joint modules, i.e., two actuator modules, one passive
revolute (rotary or pivot) joint module, and one passive
spherical joint module which is at the end of the leg.
We assume that joint ij (ŝi j) is an active joint (i = 1, 2, 3;
j = 1,2), and joint i3 (ŝi3) is a passive joint (i = 1,2,3). Define
frame A as the local frame attached to the mobile platform
and frame B as the base frame. The forward displacement
analysis becomes to determine the pose of frame A with
respect to the base frame B when the joint displacements of
the six active joints, qij (i = 1, 2, 3; j = 1, 2), are known.

3.2.1 Sensor-based solution approach. The sensor-based
method is a simple and practical approach for the forward
displacement analysis of parallel robots. The basic idea is to
install a sensor in each of the passive joint modules to
measure its corresponding joint displacement. In this case,
the position vector of point Ai (i = 1, 2, 3) with respect to the
base frame B can be directly determined. It is a function of
both the active and passive joint displacements in leg i.
Based on the local POE formula (Eqn. (7)), pi – the
positional vector of point Ai, can be given by

Fig. 6. Two consecutive links: a dyad.
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� pi

1 � = TB,i0Ti0, i1(0)eŝi1qi1Ti1, i2(0)eŝi2qi2Ti2, i3(0)eŝi3qi3 � p�i
1 �,

(8)

where TB, i0 is the fixed kinematic transformation from base
frame B to local frame i0 and p�i is the position vector of
point Ai with respect to local frame i3 (i = 1, 2, 3). Note that
the homogeneous coordinate representation is employed in
Eqn. (8). Once the position vector pi (i = 1, 2, 3) is
computed, we can determine the pose of the mobile
platform.19

3.2.2 Numerical solution approach. The limitation of the
sensor-based algorithm is that it can only be implemented
on the actual parallel robot in which each of the passive
joints is measurable. Hence, in situations where the passive
joint displacements are unable to be obtained, e.g., off-line
computations and simulations, the iterative numerical
solution method will be more practical. To mathematically
derive the passive joint displacements, a differential kine-
matic model has been formulated by Yang et al.19 based on
the POE formula. This model describes the differential
relationship between the leg-end distance and the passive
joint displacement in a manner:

da = J f dq, (9)

where da and dq represents the differential changes of the
leg-end distance and the passive joint displacement respec-
tively and Jf is the Jacobian matrix of the forward

displacement analysis. Eqn. (9) can be written as an iterative
form, i.e.,

q(k+1) = q(k) + (J �1
f da)(k), (10)

where k represents the number of iterations. Based on the
standard iterative form of Eqn. (10), the Newton Raphson
method is employed to derive the numerical solution of the
passive joint displacements. After the passive joint displace-
ment q is derived, the pose of the mobile platform can be
easily determined by using the rest of the sensor-based
algorithm.

3.3 Inverse Kinematic Analysis
The purpose of the inverse kinematic analysis for parallel
modular robots is to determine the active joint displace-
ments when the desired pose of the mobile platform is
given. As shown in Fig. 7, when the pose of mobile platform
frame with respect to the base frame TB,A is given, the
position vector of point Ai with respect to the base frame,
i.e., pi (i=1, 2, 3), can be directly determined through a
simple kinematic transformation such that

� pi

1 � = TB,A� p �1
1 � , (11)

where p �i is the position vector of point Ai with respect to the
mobile platform frame A.

Therefore, each of the three legs can be treated as an
independent serial open chain. Because of the simple
kinematic structures of the legs, most of the inverse
kinematic algorithms for the serial manipulators can be

Fig. 7. A 3-leg parallel robot.
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implemented here for the solutions. It should be noted that
the inverse solution of the parallel manipulator exists if and
only if the inverse solutions exist for every individual leg.
Following the POE approach, we employ the Paden-
Kahan’s method22 for the inverse kinematic analysis.

4. THE CALIBRATION MODEL

4.1 Basic considerations
Due to the closed-loop structure of a parallel robot, the
forward kinematic transformations of its legs are coupled
together through the spherical joints and the unique mobile
platform. The overall kinematic errors of a parallel robot are
contributed by the kinematic errors in each of the legs and
those in the mobile platform in a coupled manner.
Traditionally, the self-calibration model of a parallel robot is
formulated through constructing a measurement residual
with measured values and the computed values of the
readable passive joints. Although the calibration idea is
simple, the model formulation is complicated. Besides,
during the parameter identification process, the passive joint
displacements need to be updated at each of the iterations by
using the numerical forward displacement analysis algo-
rithm, which lowers the computational efficiency.

Based on the local POE formula, a simple self-calibration
model is formulated for a class of three-legged parallel
robots in this section. The identification objective function
is defined as the leg-end distance errors because they are
very sensitive to the variations of the kinematic parameter
so as to speed up the identification process. In order to
simplify the calibration model, we assume that (1) the
kinematic errors in a dyad exist only in the relative initial
pose, (2) the joint twist coordinate and the joint angle offset
in a dyad have no kinematic error and remain in their
nominal values. Since all the readable passive joints can be
considered as the active joints, they will always take their
measured values during the identification process and the
forward displacement analysis at each iteration becomes
unnecessary. Note that in this formulation, we also assume
that the 3-DOF spherical joint is kinematically perfect such
that its three axes intersect at one point.

4.2 Kinematic Errors in an Individual Leg
Now let us first consider the kinematic errors of an
individual leg. Due to the kinematic errors in the leg
assembly, the actual leg-end position will be different from
its nominal value. From Eqn. (8), the forward kinematic
transformation of leg i can also be given by

� pi

1 � = TB,i1(0)eŝi1qi1Ti1, i2(0)eŝi2qi2Ti2, i3(0)eŝi3qi3� p �1
i � , (12)

where TB,i1(0) is the fixed kinematic transformation from
the base frame B to the initial pose of frame i1,
TB,i1(0) = TB,i0Ti0, i1(0).

According to the definition of matrix logarithm defined
on SE(3), there exists at least a t̂ � se(3) for a given

T � SE(3), such that et̂ = T. Hence, for the initial pose
Ti( j–1),ij (0), it is sufficient to let et̂i j = Ti( j�1), ij (0) (with
et̂i1 = TB, i1(0)), where t̂ij � se(3) (i, j = 1, 2, 3). Eqn. (12) can
be rewritten as

� pi

1 � = et̂i1eŝi1qi1et̂i2eŝi2qi2et̂i3eŝi3qi3 � p �i
1 � . (13)

For each of the legs, we assume that the kinematic errors
occur only in the initial pose Ti(j�1), ij(0) (hence in t̂ij) and the
position vector p�i. Let the kinematic errors in t̂ij be
expressed in the local frame i( j – 1), denoted by �t̂ij. Since
t̂ij � se(3), � t̂ij also belongs to se(3). Geometrically,
�et̂ij = � t̂ij et̂ij. Linearizing Eqn. (12) with respect to ̂tij and p�i,
we have

� �pi

0 � = �t̂i1e
t̂i1eŝi1qi1et̂i2eŝi2qi2et̂i3eŝi3qi3 � p �i

1 �

+ et̂i1eŝi1qi1� t̂i2e
t̂i2eŝi2qi2et̂i3eŝi3qi3 � p �i

1 �

+ et̂i1eŝi1qi1et̂i2eŝi2qi2�t̂i3e
t̂i3eŝi3qi3 � p �i

1 �

+ et̂i1eŝi1qi1et̂i2eŝi2qi2et̂i3eŝi3qi3 � �p �i
0 � , (14)

where � t̂i j � se(3) is the kinematic errors in t̂i j expressed in
module frame i ( j�1) and � p �i � �3� 1 is the kinematic
error of position vector p�i with respect to frame i3. Based on
the fact that et̂ij = Ti( j–1), i j (0), Eqn. (14) can also be simplified
as:

� �pi

0 � = � t̂i1 � p�B, i

1 � + TB,i1� t̂i2 � p�i1, i

1 �

+ TB,i 2� t̂i 3 � p�i2, i

1 � + TB,i3 � �p�i
0 � , (15)

where TB,i j ( j = 1, 2, 3) represents the forward kinematic
transformation from frame B to frame i j and p�i j, i � �3� 1

(with p�i 0, i = p�B,i) represents the position vector of point Ai

with respect to frame i j.
Eqn. (15) is actually a differential equation. It describes

the gross kinematic error of the leg-end position vector pi
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resulting from the kinematic errors in the initial pose
Ti( j�1), i j (0) and the position vector p�i. However, Eqn. (15)
appears to have a nonlinear form, which is undesirable in
robot calibration. With some modification, Eqn. (15) can be
converted into a clear linear equation as described as
follows.

Let � t̂ be an element of se (3) such that � t̂ = � � ŵ
0

�v
0 �

and p � �3� 1 be a positional vector. We have

� t̂� p
1 � = � � ŵ

0
��

0 � � p
1 � = � �� + �ŵ p

0 �

= � ��� p̂ �w
0 � = � I3� 3

0
� p̂
0 � � ��

�w � . (16)

In Eqn. (16), the matrix [I3� 3 � p̂ ] � �3� 6 can be
considered as the transition matrix related to the positional
vector p. We term such a matrix as the positional transition
matrix and denote it by Tp. Therefore, Eqn. (16) can be
rewritten as

� t̂� p
1 � = � Tp

0 � � t, (17)

where �t = (��, �w)T � �6� 1 is a 6-dimensional vector
representation of � t̂. Substituting Eqn. (17) into Eqn. (15),
we have

� �pi

0 � = � Tp�B, i

0 � �ti1 + TB, i1 � Tp�i1, i

0 � � ti 2

+ TB, i 2 � Tp�i 2, i

0 � �ti3 + TB, i3 � �p�i
0 � . (18)

Since TB,i j = � RB,i j

0
pB, ij

1 �, in which RB,ij and pB,ij (i, j = 1, 2,

3) represent the orientation and position of frame i j with
respect to the base frame B respectively, Eqn. (18) can also
be further simplified as

�pi = Tp�B, i
�ti1 + RB, i1Tp�i1, i

� ti2 + RB, i2Tp�i2, i
� ti3 + RB, i3�p�i

= Ji � ti , (19)

where

Ji = [Tp�B, i
RB, i1Tp�i1, i

RB, i2Tp�i2, i
RB,i3] � �3� 21,

�ti = (� ti1 , � ti2 , � ti3 , �p�i )T � � 21� 1.

Apparently, Eqn. (19) is a linear equation with respect to the
kinematic errors. Based on this equation, a linear self-
calibration model for the three-legged modular parallel
robots can be formulated.

4.3 Linear calibration model
Now let us consider the differential change of the leg-end
distance resulting from the kinematic errors. Without loss of
generality, we first consider the leg-end distance between
leg 1 and leg 2 denoted by a12 such that

a2
12 = ( p2 �p1)T ( p2 �p2). (20)

Differentiating Eqn. (20) with respect to p1 and p2, we have

�a12 =
(p2 �p1)

T

a12

(�p2 ��p1)

=
(p2 �p1)

T

�(p2 �p1)
T(p2 �p1)

(J2�t2 �J1�t1). (21)

Eqn. (21) describes the differential change of a12 resulting
from the kinematic errors in leg 1 and leg 2. Similarly, for
the leg-end distance between leg 2 and leg 3: a23 and the leg-
end distance between leg 3 and leg 1: a31, we have

�a23 =
(p3 �p2)

T

�(p3 �p2)
T(p3 �p2)

(J3�t3 �J2�t2); (22)

�a31 =
(p1 �p3)

T

�(p1 �p3)
T(p1 �p3)

(J1�t1 �J3�t3). (23)

If we know the actual values of a12, a 23, and a31 denoted by
aa

12, a
a
23, and aa

31, respectively, the differential change of the
leg-end distance can be given by

�a =
�a12

�a23

�a31

=
aa

12 �a12

aa
23 �a23

aa
31 �a31

, (24)

where a12, a23, and a31 represents their computed nominal
values determined by the sensor readings of the passive
joint displacements. Therefore, they can be given
by �( p2 �p1)

T( p2 �p1), �( p3 �p2)
T( p3 �p2), and

�( p1 �p3)
T( p1 �p3), respectively. Note that a12, a23, and a31

are different from their original theoretical values. Arrang-
ing Eqn. (21), (22), and (23) into a matrix form, a linear
calibration model can be obtained:

�a = J� t , (25)

where
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�a =
aa

12 ��(p2 �p1)
T(p2 �p1)

aa
23 ��(p3 �p2)

T(p3 �p2)

aa
31 ��(p1 �p3)

T(p1 �p3)

� �3�1,

J =

�
(p2 �p1)

T

�(p2 �p1)
T(p2 �p1)

J1

0
(p1 �p3)

T

�(p1 �p3)
T(p1 �p3)

J1

(p2 �p1)
T

�(p2 �p1)
T(p2 �p1)

J2

�
(p3 �p2)

T

�(p3 �p2)
T(p3 �p2)

J2

0

0
(p3 �p2)

T

�(p3 �p2)
T(p3 �p2)

J3

�
(p1 �p3)

T

�(p1 �p3)
T(p1 �p3)

J3

� �3�63,

�t =
�t1

�t2

�t3

� �63�1 .

This linear calibration model is based on the assumption
that all of the actual leg-end distances, i.e., aa

12,a
a
23, and aa

31,
are known. Such an assumption, however, is not always
true. In many cases, we are unable to know the actual leg-
end distances without external measuring equipment. A
modified calibration model is therefore developed, in which
the actual leg-end distances are also considered as the
kinematic parameters to be identified. Denote the original
theoretical values of the leg-end distances as a0

12, a0
23, and

a0
31, respectively. The actual leg-end distances, which are in

the neighbourhood of their original theoretical values, can
be given by

aa
12 = a0

12 + �a*12,

aa
23 = a0

23 + �a*23,

aa
31 = a0

31 + �a*31, (26)

�a*12, �a*23, and �a*31, in Eqn. (26) represent the differential
change of the leg-end distances with respect to their original
theoretical values. They are different from �a12, �a23, and
�a31 which represent the differential change of the leg-end
distances with respect to their computed nominal values.
Substituting Eqn. (26) into Eqn. (25), we can obtain a
modified linear calibration model such that

y = A x (27)

where

y =
a0

12 ��( p2 �p1)
T(p2 �p1)

a0
23 ��( p3 �p2)

T(p3 �p2)

a0
31 ��( p1 �p3)

T(p1 �p3)

� �3� 1,

A = [J � I3� 3] � �3� 66,

x = (�t1, �t2, �t3, �a*12, �a*23, �a*31 )T � �66� 1.

In the modified calibration model, we have altogether 66
error parameters to be identified, which reflect the kinematic
errors of a three-legged modular parallel robot.

4.4 An iterative least-squares algorithm
Based on the calibration model Eqn. (27), an iterative least-
square algorithm is employed for the calibration solution.
To improve the calibration accuracy, we need to measure the
passive joint displacements in many different robot pos-
tures. Suppose we need to take m sets of measured data. For
i th measurement, we can obtain a yi, as well as an
identification Jacobian matrix A i. After m measurements,
we can stick yi and A i to form the following equation:

Ỹ = Ã x , (28)

where

Ỹ = [y1 y2 . . . ym ]T � �3m� 1,

Ã = column[A1, A2, . . . , Am ] � � 3m� 66.

Since the model Eqn. (28) consists of 3m linear equations
with 66 variables (normally m > 22), the linear least-squares
algorithm is employed for the parameter identification. The
least-square solution of x is given by

x = (Ã T Ã)�1Ã Tỹ, (29)

where (ÃT Ã )�1ÃT is the pseudoinverse of Ã. Due to the
closed loop structure of the parallel robot, the determinant
of ÃT Ã is normally very small. To avoid the computa-
tional difficulty, the Singularity Value Decomposition
(SVD) method can be employed to derive the pseudoinverse
of Ã .

The solution of Eqn. (29) can be further improved
through iterative substitution as shown in Fig. 8. Once the
kinematic error parameter vector, x is identified, the initial
pose Ti( j–1, ij (0), the position vector p�i, and the actual leg-
distances are updated by substituting x into the following
equations:

Ti(j�1), i j (0)new = e� t̂ i j Ti( j�1), i j (0)old,
p�i

new = p�i
old + �p�i,

a0
12

new = a0
12

old + �a*12,
a0

23
new = a0

23
old + �a*23,

a0
31

new = a0
31

old + �a*31. (30)

The same procedures is repeated until the norm of the error
vector, �x �, approaches zero and the actual leg-end
distances converge to some stable values. Then the final
Ti( j–1), i j(0), p�i, a0

12, a0
23, and a0

31 represent the calibrated
kinematic parameters of robots, denoted by T c

i( j–1), i j(0), p�i
c,

ac
12, ac

23, and ac
31.

Note that the kinematic error vector, x, will no longer
represent the actual kinematic errors after iterations.
However, the actual kinematic errors can be extracted by
comparing the calibrated kinematic parameters with their
nominal values.

In order to evaluate the calibration result, we define a
deviation metric, i.e. the average leg-end distance error, as

�a = � 1
3m�

m

i = 1

((ac
12 �a(i)

12 )2 + (ac
23 �a(i)

23 )2 + (ac
31 �a(i)

31)2).

(31)
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In Eqn. (31), a(i)
12,  a

(i)
23, and a(i)

31 are the three leg-end distances
computed according to the calibration results.

5. SIMULATION RESULTS
In this section, a simulation example of calibrating a three-
legged (6-DOF, RRRS) parallel robot in Fig. 5(b) is given to
demonstrate the effectiveness of the calibration algorithm.
As shown in the kinematic diagram in Fig. 7, the nominal

kinematic parameters of the 6-DOF modular parallel robot
(RRRS) are given as follows:

TB, 10 =

1
2

�3
2

0
0

�
�3
2

1
2

0
0

0
0
1
0

�250

�250�3
90
1

;

TB, 20 =

�1
0
0
0

0
�1
0
0

0
0
1
0

500
0
90
1

;

TB, 30 =

1
2

�
�3
2

0
0

�3
2

1
2

0
0

0
0
1
0

�250

250�3
90
1

;

Ti0, i1 =

0
0

�1
0

0
1
0
0

1
0
0
0

90
0
0
1

; Ti1, i2 =

0
0

�1
0

0
�1
0
0

�1
0
0
0

�330
0
0
1

;

Ti2, i3 =

0
0

�1
0

1
0
0
0

0
�1
0
0

0
0
0
1

p �1 =
�205

�205�3

0

; p �2 =
410
0
0

;

p �3 =
�205

205�3

0

; p �i =
0

�330
0

;

si1 = si2 = si3 = (0, 0, 0, 0, 0, 1).

Here, i = 1, 2, and 3, and P �i represents nominal leg-end
positions with respect to the mobile platform frame. Hence,
we can compute the original theoretical values of the leg-
end distances as:

a 0
12 = �(p �2 � (p �1 )T(p �2 �p �1 ) = 410�3,

a 0
23 = �(p �3 � (p �2 )T(p �3 �p �2 ) = 410�3,

a 0
31 = �(p �1 � (p �3 )T(p �1 �p �3 ) = 410�3,Fig. 8. Iterative calibration loop.

Table I. Preset Kinematic Errors.

Parameter Preset errors Parameter Preset errors

dtij (2, 2, 2, 0.02, 0.02, 0.02)T dqij ( j ≠ 3) 0.02

dsij (0, 0, 0, 0, sin(0.02), �1 + cos(0.02))T dqij ( j = 3) 0

dp�i (2, 2, 2)T da (2, 2, 2)T
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Table II. Identified Kinematic Errors.

Dyad Kinematic errors T
c
i( j�1), i j (0)

0–1

(Leg1)

(�7.698, 7.941, �0.160,

0.01763, 0.02284, �0.00001)
T

�0.02284

0.01763

�0.99958

0.

�0.86569

0.49976

0.02859

0.

0.50005

0.86599

0.00384

0.

�210.664

�348.699

88.383

1.

1–2

(Leg1)

(1.36772, 8.42726, 3.04695,

0.00027, 0.01880, 0.02956)
T

�0.01880

�0.00001

�0.99982

0.

0.02956

�0.99956

�0.00054

0.

�0.99939

�0.02956

0.01879

0.

�328.526

�1.30877

9.237

1.

2–3

(Leg1)

(2.022, �0.097, �1.296,

0.05999, 0.00135, �0.00058)
T

�0.00133

0.05995

�0.99820

0.

0.99999

�0.99820

�0.00136

0.

�0.00062

�0.99820

�0.05995

0.

2.021

�0.059

�1.300

1.

0–1

(Leg2)

(�2.570, �10.644, �0.171,

�0.02861, �0.00384, �0.00013)
T

0.00384

�0.02860

�0.99958

0.

�0.00018

�0.99959

0.02860

0.

�0.99999

0.00007

�0.00384

0.

407.081

�8.100

91.514

1.

1–2

(Leg2)

(1.368, 8.427, 2.581,

0.00027, 0.01880, 0.02955)
T

�0.01879

�0.00001

�0.99982

0.

0.02954

�0.99956

�0.00054

0.

�0.99939

�0.02955

0.01879

0.

�328.530

�1.304

8.771

1.

2–3

(Leg2)

(2.022, �0.096, �1.301,

0.05999, 0.00127, �0.00058)
T

�0.00125

0.05995

�0.99820

0.

0.99999

�0.00054

�0.00124

0.

�0.00062

�0.99820

�0.05995

0.

2.021

�0.057

�1.304

1.

0–1

(Leg3)

(10.271, 2.697, �0.086,

0.01097, �0.01899, �0.00007)
T

0.01899

0.01097

�0.99976

0.

0.86585

0.49982

0.02194

0.

0.49994

�0.86606

�0.00001

0.

�196.414

356.794

90.006

1.

1–2

(Leg3)

(1.377, 8.436, 2.776,

0.01033, 0.01891, 0.02278)
T

�0.01903

0.01011

�0.99977

0.

0.02268

�0.99969

�0.01055

0.

�0.99956

�0.02288

0.01879

0.

�328.548

0.888

9.008

1.

2–3

(Leg3)

(2.022, �0.080, �1.316,

0.05999, 0.00106, �0.01057)
T

�0.00075

0.05996

�0.99820

0.

0.99994

�0.01053

�0.00138

0.

�0.01060

�0.99815

�0.05995

0.

2.021

�0.052

�1.31884

1.
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Note that the units of the kinematic parameters are in
radians and millimeters. The following procedures are
employed for the simulation of the calibration algorithm.

1. Generate 50 robot poss as well as the corresponding 50
sets of nominal passive joint angles by using the
numerical forward kinematic algorithm;

2. Assign errors at the kinematic parameters such as dti j,
dqij, dp�i , and da = (da12 , da23 , da31 )T (i = 1, 2, 3) (listed
in Table I);

3. Find the actual initial poses in each dyad:
T a

i( j�1), i (0) = Ti( j�1), i1(0)ed t̂ij, the actual position vectors
of each leg end with respect to frame i3: p �a

i = p�i + dp �i
and the actual leg-end distances: aa

12 = a0
12 + da12,

aa
23 = a0

23 + da23, aa
31 = a0

31 + da31;
4. Determine the simulated actual passive joint displace-

ments for the 50 poses using the numerical forward
kinematics algorithm.

5. Identify the kinematic errors by using the iterative
calibration algorithm.

Since each of the actuator and passive joints are assumed to
be a true 1-DOF joint, the condition for the assignment of
errors in each of the joint twists must be satisfied such
that �wi + dwi � = 1 and (wi + dwi)

T(� i + d�i) = 0, where
si = (� i, wi )

T and dsi = (d�i, dwi )
T. Moreover, in the actual

calibration experiment, all of the actual joint displacements,

including both active and passive joints, can be directly
obtained from the joints encoder readings.

The calibrated initial local frame poses as well as the
kinematic errors are listed in Table II. Since the preset and
identified errors do not have the same physical meaning and
are not one-to-one correspondence, the preset kinematic
errors are not fully recovered. Note that the calibration
solution is not unique and not necessarily identical to the
actual robot. However, the success of the calibration
simulation can be deduced from the results shown in Fig. 9,
where the average leg-end distance error (combined for the
50 poses) is reduced from about 15mm to nearly 0 within 3
iterations. This result shows that under the calibrated
parameters description, we can directly employ the nominal
joint twist coordinates and the joint displacements from
both actuator and passive joint encoder readings to compute
the actual kinematics of the parallel robot. In other words,
the parallel robot itself is precisely calibrated.

6. CONCLUSION
In this paper, a linear local POE model is proposed for the
kinematic calibration of a class of three-legged modular
parallel robot based on the leg-end distance errors. By
taking advantage of the local POE formula where the local
coordinate can be arbitrarily assigned, the kinematic
calibration is modeled as a process of refining the local
coordinate frames to reflect the robot actual geometrical
characteristics. Since the calibrated local frames are defined
in such a way that makes the twist of the joints and the joint
displacements remain in their nominal values, the resulting
calibration model is greatly simplified. Simulation studies
on a 6-DOF (RRRS) modular parallel robot shows that the
results exhibit recovery of the kinematic errors by at least
two orders. Future work will be focused on experimental
study of the proposed self-calibration algorithm.
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Table II. Continued.

Position vector Kinematic errors P�i
c

p �1 (�4.000, 4.598, 0.057)
T

(�4.000, �325.402, 0.057)
T

p �2 (�4.025, 4.598, 0.058)
T

(�4.025, �325.402, 0.058)
T

p �3 (�3.994, 4.598, 0.084)
T

(�3.994, �325.402, 0.084)
T

Leg-end distance Kinematic errors (a
c
12, a

c
23, a

c
31 )

T

(1–2, 2–3, 3–1) (�3.599, �3.599, �3.599)
T

(706.542, 706.542, 706.542)
T

Fig. 9. Leg-end distance errors before and after calibration.
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