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�-STABILITY ANDMORLEY RANK OF BILINEAR MAPS, RINGS
AND NILPOTENT GROUPS

ALEXEI G. MYASNIKOVANDMAHMOOD SOHRABI

Abstract. In this paper we study the algebraic structure of �-stable bilinear maps, arbitrary rings, and
nilpotent groups. We will also provide rather complete structure theorems for the above structures in the
finite Morley rank case.

§1. Introduction. In this paper we provide structure theorems for the algebraic
structure of �-stable bilinear maps, arbitrary rings, and nilpotent groups. We will
also provide rather complete structure theorems for the above structures in the finite
Morley rank case. Our results are based on several classical works from 1970s.Mac-
intyre in [10, 11] showed that torsion-free �-stable abelian groups are precisely the
divisible ones, while infinite �-stable integral domains with unit are algebraically
closed fields. In [8] Cherlin and Reineke described algebraic structure of �-stable,
as well as of finite Morley rank, commutative associative rings with unit. These are
the results we use through out the paper. In [24] Zilber gave a precise description
of ℵ1-categorical torsion-free nilpotent groups and rings of characteristic zero. Our
description of groups and rings in question may be seen as a natural generalization
of the Zilber’s one, only taken further to the finite Morley rank and �-stable cases.
However, our techniques are quite different, for example, we do not use Zilber’s
indecomposability theorem in our theorems on theMorley rank of rings and nilpo-
tent groups. Instead, we rely on first-order interpretability of the largest ring of
scalars and its actions in a bilinear map from [12,13,15]. This gives a powerful gen-
eral method in model-theoretical algebra that works for various groups and rings,
which are not necessarily even �-stable. Indeed, the technique of bilinear maps was
essential in proving the following results: description of the algebraic structure of
models of complete theories of finite dimensional algebras (see Theorem 4.14 below
for the exact statement in the directly indecomposable case) and unipotent groups,
as well as in giving a decidability criterion of such theories [14]; a precise description
of arbitrary groups elementarily equivalent to a given free nilpotent group of finite
rank [2]; Belegradek’s characterization of groups elementarily equivalent to a given
unitriangular group UT (n,Z); elementary coordinatization of finitely generated
nilpotent groups [1].
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Recently, some interest in torsion-free nilpotent groups of finite Morley rank
reappeared, though from a different angle. In [20] Altinel and Wilson studied alge-
braic structure of such groups proving, in particular that they have faithful linear
representations over algebraically closed fields of characteristic zero. Their tech-
niques are inspired by those of B. Zilber [23]. Some other remarkable results have
been obtained by O. Frécon [6, 7], where the main objective is to find and study a
suitable analogue of unipotence in the context of groups of finitelyMorley rank.We
encourage the reader to compare Fact 3.13 in [7], which offers a structure theorem
for nilpotent groups of finite Morley rank with our Theorem 1.10 below. It seems
that our result clarifies the precise structure of the components in the mentioned
structure theorem.
We now describe the main results and structure of this paper. Section 2 collects
some of the classical structure theorems for�-stable commutative rings and groups.
We discuss bilinear maps in Section 3. Most results in the torsion-free case are
taken from [13] and [15] and inevitably we need to recall some material from those
papers. Later in that section we provide rather complete structure theorems for
arbitrary �-stable (of finite Morley rank) bilinear maps.
In Section 4 we analyze �-stable rings (of finite Morley rank). For us a ring is
just an abelian group with operation “ + ” together with a binary operation “ · ”,
where “ · ” distributes over “ + ”. However a scalar ring is always assumed to be
commutative associative with a unit. We say that a ring R has characteristic zero if
its additive groupR+ is torsion-free. Here are the main results in characteristic zero
case.

Theorem 1.1. Let R be an �-stable ring of characteristic zero. Then R can be
decomposed into a finite direct product

R ∼= R1 × · · · ×Rn ×R0,
where eachRi is an indecomposableki -algebra,ki is a characteristic zero algebraically
closed field, and R0 is a Q-algebra with zero multiplication.

Theorem 1.2. Let R be a ring of characteristic zero. Then R is of finite Morley
rank if and only if R can be decomposed into a finite direct sum

R ∼= R1 × · · · ×Rn ×R0,
where each Ri is a finite dimensional indecomposable ki -algebra, ki is a characteristic
zero algebraically closed field and R0 is a Q-algebra with zero multiplication.

Remark 1.3. Note that in Theorem 1.2 we did not claim that any of the com-
ponents Ri , i = 0, . . . , n are definable in R, and in general there is no reason that
they are. However the statement implies that each of these components has finite
Morley rank.

Proofs of Theorems 1.1 and 1.2 will appear in Sections 4.2 and 4.4, respectively.
The statements regarding the arbitrary �-stable rings (of finite Morley rank) get
more complicated and a bit less illuminating, but still rather complete. We do
not state them here in the introduction and refer the reader to Section 4. We also
provide a criterion for uncountable categoricity of rings in Section 4 (Theorem 4.15).
In Section 5 we give a quick overview of the so-called Mal’cev correspondence
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between rational Lie algebras and torsion-free divisible nilpotent groups. The reader
may also refer to [20] for further details. Finally in Section 6 we look at �-stable
nilpotent groups, as well as at nilpotent groups of finite Morley rank. The structure
theorems in the torsion-free case will almost immediately follow from those on
characteristic zero rings and the Mal’cev correspondence mentioned above. Here
are the main results in this case. Proofs will appear at the beginning of Section 6
and Section 6.2.

Theorem 1.4. Assume G is a torsion-free �-stable nilpotent group. Then G is a
finite direct product

G ∼= G1 × · · · × Gn ×G0,
where each Gi , i �= 0, is an indecomposable ki -group where ki is a characteristic zero
algebraically closed field and G0 is torsion-free divisible abelian group.

Theorem 1.5. A torsion-free nilpotent group G has finite Morley rank in the
language of groups if and only if G is a finite direct product

G ∼= G1 × · · · × Gn ×G0,
where each Gi , i �= 0, is a unipotent algebraic group over ki , ki is a characteristic zero
algebraically closed field, and G0 is a torsion-free divisible abelian group.

Then applying the following theorems of A. Nesin and our results, we get the
structure theorems for arbitrary �-stable nilpotent groups (of finite Morley rank).
We will state A. Nesin’s theorems below right after the following definition.
A group G is said to be a central product of some of its subgroups H1, . . . ,Hn if
H = H1 · · ·Hn , Hi � G for all i = 1, . . . , n, and [Hi ,Hj ] = 1 if i �= j. Then we
write G = H1 ∗ · · · ∗ Hn. Recall that for subgroups H and K of G , [H,K ] is the
subgroup generated by all the commutators x−1y−1xy = [x, y], x ∈ H , y ∈ K .
Theorem 1.6 ([16], Theorem 2). Let G be an �-stable nilpotent group. Then G is
a central product D ∗ C where D and C are definable characteristic subgroups of G ,
D is divisible, and C has bounded exponent.

Theorem 1.7 ([16],Corollary toTheorem2). The nilpotent groups of finiteMorley
rank are exactly the central products D ∗ C where D and C both have finite Morley
rank,D is divisible, C has bounded exponent, andD ∩ C is finite.
Theorem 1.8 ([16], Lemma 3 and Theorem 3). Let G be a divisible �-stable
nilpotent group. Then G ′ = [G,G ] is torsion-free. Moreover if T denotes the torsion
part of G , then T is central in G and G = T × N for some torsion-free divisible
nilpotent subgroupN . If G has finite Morley rank T is also of finite Morley rank.

Finally, here are our structure theorems for �-stable nilpotent groups (of finite
Morley rank).

Theorem 1.9. Let G be an �-stable nilpotent group. Then G is a central product
D ∗C whereD and C are definable characteristic subgroups of G , D is divisible, and
C has bounded exponent. Moreover D has a direct decomposition

D = D1 × · · · ×Dn ×D0,
where each Di , i �= 0, is a directly indecomposable ki -group over an algebraically
closed field ki of characteristic zero andD0 is a divisible abelian group.
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Theorem 1.10. Let G be a nilpotent group. Then the following statements are
equivalent.
1. G has finite Morley rank.
2. G is a central productD∗C whereD andC are definable characteristic subgroups
ofG ,D is divisible, C has bounded exponent andD ∩C is finite. BothG andD
have finite Morley rank. Moreover D has a direct decomposition

D = D1 × · · · ×Dn ×D0,
where each Di , i �= 0, is a directly indecomposable unipotent algebraic group
over an algebraically closed field ki of characteristic zero and D0 is a divisible
abelian group of finite Morley rank.

From our results we can also provide a positive solution to Conjecture 6.10 of A.
Borovik and A. Nesin [3].

Corollary 1.11. The subgroupN in Theorem 1.8 has finiteMorley rank, provided
the group G has finite Morley rank.
We would like to remark here that the structure theorems for arbitrary �-stable
bilinear maps and rings are similar to Theorem 1.9 and Theorem 1.10. In those
cases we shall also give a better description of the bounded exponent component
(See Propositions 3.13 and 4.9).
Finally we would like to mention an example due to A. Baudisch. In [4], he
constructs an uncountable categorical nilpotent group of exponent p, for a prime
p > 2, which does not interpret any infinite fields. In particular, it shows that
Theorems 1.4 and 1.5 can not be extended to the bounded exponent case.

§2. Some classical results on �-stable algebraic structures. Here we collect a few
classical results which will be frequently used in the sequel.

Theorem 2.1 (A. Macintyre [10]). An abelian groupM is �-stable if and only if
M =MD⊕MB whereMD is divisible andMB is of bounded order.MD is characteristic
and absolutely definable inM . The subgroupMB can be replaced by a characteristic
absolutely definable subgroupMC , but then we only haveM =MD +MC . IfM has
finite Morley rank then |MD ∩MC | <∞.
Theorem 2.2 (A. Macintyre [11]). An infinite �-stable integral domain with unit
is an algebraically closed field.
Theorem 2.3 (G. I. Cherlin and J. Reineke [8]). Let R be a commutative asso-
ciative �-stable unitary ring. Then R is decomposed into a finite direct product
R = R1 × · · · × Rn of local rings Ri , where the maximal ideal Ji of Ri is nilpotent
and the field of residues Ri/Ji is either algebraically closed or finite.
Theorem 2.4 (G. I. Cherlin and J. Reineke [8]). Let R be a commutative
associative unitary ring.
1. R is of finite Morley rank if and only if it can be decomposed into a finite direct
product R = R1 × · · · × Rn of local rings Ri , where each Ri is definable in R
and of finite Morley rank, the maximal ideal Ji of Ri is nilpotent, and the field
of residues Ri/Ji is algebraically closed or finite.

2. If R is local and of finite Morley rank with algebraically closed field of residues
then R is Noetherian.
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§3. Bilinear maps. Here we assume that R is a commutative associative unitary
ring and thatM1,M2, andN areR-modules. For themost part, we restrict ourselves
to those R-bilinear maps f : M1 ×M2 → N , whereM1 = M2. For our purposes
this case is general enough, even though in all we do the general case M1 �= M2
reduces to the special case (See [15], Section 2.1)
So assumef :M×M → N is anR-bilinearmap. The bilinear mapf is called full
if the corresponding canonical R-homomorphism f̄ :M ⊗R M → N is surjective.
Assume M1 and M2 are subsets of M , then by 〈f(M1,M2)〉 we denote the
R-submodule ofN generated by f(x, y), x ∈M1, y ∈M2. In particular by im(f),
we mean 〈f(M,M )〉.
The two sided kernel of f, C (f), is the R-submodule of M defined by
C (f) = {x ∈ M : f(x,M ) = f(M,x) = 0}. A mapping f is called identi-
cally degenerate if f(x, y) = 0 for all x, y ∈M . The map f is called nondegenerate
if C (f) = 0. To any bilinear map f one can associate a full nondegenerate map

fF :M/C (f)×M/C (f)→ im(f)
in the obvious way. We call fF the foundation off. In case there is anR-submodule
MF of M such that M = MF ⊕ C (f), we call the full nondegenerate map fF :
MF ×MF → im(f) induced by f a foundation of f for obvious reasons.
3.1. Maximal scalar ring P(f) of a bilinear map f. In this section we define
a “canonical” scalar ring P(f) for a bilinear map f. The construction is taken
from [13,15] and we refer the reader to those references for the details left out here.
To follow the mentioned references we call it largest scalar ring off. Even though it
is the largest scalar ring with respect to which f remains bilinear (assuming certain
conditions on f) in a proper sense we do not use the maximality in this paper. As
it was mentioned in the introduction (and will be observed in detail below) this
commutative object reflects many of the logical and algebraic aspects of the highly
noncommutative or nonsymmetric underlying object.
All themodules are considered to be faithful. Scalar rings are always commutative
associative with a unit.
Now assume f : M ×M → N is a nondegenerate full R-bilinear mapping. We
need to introduce a few auxiliary objects first.
An R-endomorphism A of the R-moduleM is called symmetric if

f(Ax, y) = f(x,Ay)

for every x, y ∈ M . The set of all these endomorphisms is denoted by Symf(M ).
Set

Z(f) = {B ∈ Symf(M ) : A ◦ B = B ◦A, ∀A ∈ Symf(M )}.
Then Z(f) is nonempty since the unit 1 belongs to Z(f) and it is actually an
R-subalgebra of R-endomorphisms EndR(M ) ofM . For each n, let Zn(f) be the
set of all endomorphisms A in Z(f) that satisfy the formula

Sn(A)⇔∀x̄, ȳ, ū, v̄(
n∑
i=1

f(xi , yi) =
n∑
i=1

f(ui , vi)→
n∑
i=1

f(Axi , yi) =
n∑
i=1

f(Aui, vi)).

(3.1)
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i.e.,

Zn(f) = {A ∈ Z(f) : Sn(A)}. (3.2)

Each Zn(f) is also an R-subalgebra of Z(f). Now define

P(f) =def ∩∞
i=1Zn(f).

The identity mapping is in every Zn(f) so P(f) is not empty.
Note that since themappingf is full, for everyx ∈ N there arexi andyi inM such
thatx =

∑n
i=1 f(xi , yi) for somen. TheP(f)-moduleM is faithful by construction.

Now we can define the action of P(f) onN by setting Ax =
∑n
i=1 f(Axi , yi ). The

action is clearly well-defined since A satisfies all the Sn(A) and makes N into an
P(f)-module. Moreover for any x, y ∈M and A ∈ P(f) we have

f(Ax, y) = f(x,Ay) = Af(x, y),

that is, f is P(f)-bilinear. Note that P(f) is independent of the ring R.

3.2. Decomposing bilinear maps.

Definition 3.1. Given f : M ×M → N we say that f is decomposed to a
direct sum of R-bilinear mappings f1 and f2 and write f = f1 ⊕ f2 if there are
R-submodulesM1,M2,M3, andM4 ofM and N1 and N2 of N such that

1. M =M1 ⊕M2 =M3 ⊕M4 and N = N1 ⊕N2,
2. f1 :M1 ×M3 → N1 and f2 :M2 ×M4 → N2 are R-bilinear mappings,
3. f(x, y) = f1(x1, y1) + f2(x2, y2) for all x, y ∈ M , where x = x1 + x2,
y = y1 + y2, x1 ∈M1, x2 ∈M2, y1 ∈M3 and y2 ∈M4.

If condition (1.) is replaced with

1.∗ M =M1 +M2 =M3 +M4 and N = N1 +N2,

but still (2.) and (3.) hold, then we write f = f1 + f2.

Lemma 3.2 ([13], Proposition 3.1). Given a nondegenerate full bilinear mapping
f : M ×M → N , f admits a direct decomposition into directly indecomposable
mappings f = f1 ⊕ · · · ⊕fn if and only if P(f) = P1 ⊕ · · · ⊕Pn, where each Pi is a
directly indecomposable subring of P(f) and Pi = P(fi).

We will need the following lemma for further results.

Lemma 3.3. Assume f : M ×M → N is an R-bilinear mapping where R is a
commutative associative unitary ring. AssumeM andN split asR-modules overC (f)
and im(f), respectively. Let N 0 denote an R-complement of im(f) in N and letMF
denote an R-complement of C (f) in M . Then f decomposes into f = fF ⊕ f0,
where fF : MF ×MF → im(f) is a nondegenerate full R-bilinear mapping and
f0 : C (f) × C (f) → N 0 is the identically degenerate bilinear mapping induced
by f.

Proof. Let fF of be the restriction of f toMF ×MF . Then fF :MF ×MF →
im(fF ) is full and nondegenerate. Note that im(fF ) = im(f) by definition. The
restriction f0 of f to C (f) × C (f) is identically degenerate and in particular
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im(f0) = 0 ≤ N 0.Moreover for any (x, y) ∈M×M there are unique x1, y1 ∈MF ,
and x2, y2 ∈ C (f) such that x = x1 + x2, y = y1 + y2 and

f(x, y) = f(x1 + x2, y1 + y2)

= f(x1, y1) + f(x1, y2) + f(x2, y1) + f(x2, y2)

= f(x1, y1) + f(x2, y2)

= fF (x1, y1) + f0(x2, y2).

This proves the statement. �

Definition 3.4 (Foundations and additions). The bilinear maps fF and f0

obtained from f in Lemma 3.3 are called a foundation and an addition of f,
respectively.

3.3. Bilinear maps as multisorted structures. Given an R-bilinear map f : M ×
M → N , we associate two multisorted structures to it. One

UR(f) = 〈R,M,N, �, sM , sN 〉,
where the predicate � describes f and sM and sN describe the actions of R on the
modulesM and N , respectively. The other one

U(f) = 〈M,N, �〉,
which contains only a predicate � describing the mapping f. When we say R and
its actions onM and N are interpretable in f, we mean that UR(f) is interpretable
in U(f).

3.4. A structure theorem for�-stable bilinear maps. This section contains a rather
complete analysis of the structure of �-stable bilinear maps. Indeed we do not give
a single structure theorem but rather a collection of statements that can not be
realistically assembled in one theorem.
Recall the decompositionsM =MD⊕MB =MD+MC fromTheorem 2.1 for an
�-stable abelian groupM . Also note that even thoughMD is absolutely definable in
M the subgroupMB is just a complement ofMD inM and not necessarily definable
(See [3], Exercise 7, page 78). HoweverMB ∼=M/MD , and as suchMB is absolutely
interpretable in M . Moreover MD = MQ ⊕ MT where MQ is a Q-vector space
and MT is a torsion divisible group. This later decomposition is not necessarily a
definable decomposition either. On the other hand, MC is absolutely definable in
M butMC ∩MD is not necessarily trivial. Lastly, we clearly haveMC ∩MD < MT .
We will follow this notation for the following results.

Proposition 3.5. Let f : M × M → N be an �-stable bilinear map. Then
f = fD + fC where fD : MD ×MD → ND is a bilinear map of divisible abelian
groups and fC : MC ×MC → NC is a bilinear map of abelian groups of bounded
exponent. Both fD and fC are absolutely definable in f. As such both fD and fC
are �-stable bilinear maps. MoreoverMD ∩MC ≤MT ≤ C (f).
Proof. Firstly, by definition M and N are definable in f. So they are both
�-stable. Therefore M = MD + MC and N = ND + NC . Now pick arbitrary
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x ∈MD and y ∈MC . By assumption there ism ∈ N+ such thatmy = 0.Moreover
by divisibility ofMD there is x′ ∈MD such thatmx′ = x. Therefore

f(x, y) = f(mx′, y) = f(x′, my) = 0. (3.3)

This shows that f = fD + fC providing that im(fD) ≤ ND and im(fC ) ≤ NC ,
which are both easy to verify using bilinearity. The components fD and fC are
both absolutely definable in f since all the involved subgroups are so. Hence both
fD and fC are �-stable as claimed.
To prove the moreover part pick any x ∈MT and any t ∈M . There are y ∈MD
and z ∈ MC such that t = x + y. there is also m ∈ N+ such that mx = mz = 0.
Again there exist x′ ∈MT and y′ ∈MD such thatmx′ = x and my′ = y. Then

f(x, t) = f(x, y + z)

= f(x, y) + f(x, z)

= f(mx, y′) + f(x′, mz)
= 0.

The argument can clearly be repeated with respect to the second variable. SoMD ∩
MC ≤MT ≤ C (f), the first inequality being a clear one. �
Lemma 3.6 ([15], Proposition 5.1). Let f be an �-stable nondegenerate bilinear
map. ThenP(f) and its action onM are interpretable inf, i.e., the two-sortedmodule
〈P(f),M, sM 〉 is interpretable in U(f).
We need to remark that the above result is stated in [15] for torsion-free bilinear
maps. However, a quick study of the proof shows that the statement holds for the
arbitrary case.

Proposition 3.7. Assume f : MD ×MD → ND is an �-stable bilinear map of
divisible abelian groups. Then f = fQ ⊕ f0 where fQ is a foundation of f and
Q-bilinear, and f0 is an addition of f.

Proof. Tomake notation of the proof less complicated we assumef :M×M →
N is an �-stable bilinear map of divisible groups. Firstly we prove that C (f) is
divisible. Assume z ∈ C (f) and pick any nonzero integer m and consider z′ ∈ M
such thatmz′ = z. Then for any x ∈M there exists x′ ∈M such thatmx′ = x and
therefore

f(z′, x) = f(z, x′) = 0 = f(x′, z) = f(x, z′).

So z′ ∈ C (f). Since C (f) is divisible there is a subgroup MF of M where
M = MF ⊕ C (f). Next we proveMF is divisible and torsion-free, or rather that
M/C (f) is so, since MF ∼= M/C (f). It is enough to prove that it is torsion-free
since M is divisible. If mx ∈ C (f) for a nonzero integer m then for any y ∈ M ,
there exists y′ ∈ M such that my′ = y. Therefore f(x, y) = f(mx, y′) = 0 =
f(y′, mx) = f(y, x). So x ∈ C (f). This proves torsion-freeness ofMF . Consider
the largest scalar ring P(f) of f which is �-stable since by Lemma 3.6 P(f) and
its action on M are interpretable in f. MF is a Q-algebra so is P(f). By defini-
tion P(f) has a well-defined action on im(f). Since P(f) is a Q-algebra, im(f)
is also a Q-algebra and therefore torsion-free. That im(f) is divisible is a direct
corollary of definitions. Since im(f) is divisible it has a complement N 0 in N .
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So f0 : C (f)× C (f) → N 0 is an identically degenerate map, fQ : MF ×MF →
im(f) induced by f is the corresponding foundation and Q-bilinear. �
Corollary 3.8. Assume f : M × M → N is a full nondegenerate �-stable
bilinear map. Then in the notation of Propositions 3.5 and 3.7, f admits a direct
decompositionf = fQ⊕fC where bothfQ andfC are absolutely definable in f and
therefore �-stable.

Proof. Firstly MT ≤ C (f) = 0 by Proposition 3.5 and the nondegeneracy
assumption. So M = MQ ⊕MC , where MQ is absolutely definable in M as MD .
Clearly now fD = fQ. The hypothesis that f is a full bilinear map implies that

N = im(f) = im(fQ + fC ) = im(fQ) + im(fC ).

By Proposition 3.7, im(fQ) is torsion-free, so im(fQ) ∩ im(fC ) = 0, and
N = im(fQ) ⊕ im(fC ), while clearly ND = im(fQ), and NC = im(fC ). The
rest of the statement should be clear. �
Proposition 3.9 ([15], Theorem 5.2). Assume f is an �-stable bilinear map of
torsion-free abelian groups. Then it decomposes into

f = f1 ⊕ · · · ⊕ fn ⊕ f0,
where each fi , i = 1, . . . , n is a directly indecomposable ki -bilinear mapping for some
algebraically closed field ki of characteristic zero and f0 is an identically degenerate
Q-bilinear map.

Corollary 3.10. Assumef is an�-stable bilinear map of divisible abelian groups.
Then it decomposes into

f = f1 ⊕ · · · ⊕ fn ⊕ f0,
where each fi , i = 1, . . . , n is a directly indecomposable ki -bilinear mapping for some
algebraically closed field ki of characteristic zero and f0 is an identically degenerate
bilinear map of divisible abelian groups.

Proof. Clear from Propositions 3.7 and 3.9. �
Before analyzing the bounded case we need to state a classical result on the
structure of local complete rings due to I. S. Cohen. We say that a local ring P with
the unique maximal ideal J is equicharacteristic if char(P) = char(P/J ). We say
that such a ring P, admits a field of representatives if P contains a subfield L that
maps onto P/J under the canonical homomorphism P → P/J .
Theorem 3.11 (I. S. Cohen (See [22], Theorem 27, Page 304)). A complete local
equicharacteristic ring admits a field of representatives.

Lemma 3.12. Assume P is a local ring whose maximal ideal J is nilpotent. If
char(P) = 0 or char(P) �= 0 and P is equicharacteristic then P admits a field of
representatives.

Proof. Firstly we prove that regardless of the characteristic of P, it is isomorphic
to its J -adic completion P̂J and therefore it is complete in its J -adic topology.
Recall that given the sequence of ideals (J i)i∈N, elements of P̂J are sequences
(xi + J i)i∈N ∈ ∏i∈N P/J

i , where xi − xj ∈ J i for all j ≥ i . If J is nilpotent, say
Jn = 0 for some n, each such sequence is completely determined by xn ∈ P. So the
diagonal injection � : P → P̂J , x �→ (x + J i) is indeed a surjection.
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Therefore char(P) �= 0 case already follows fromTheorem3.11 sinceP is assumed
to be equicharacteristic. So assume char(P) = 0. We need to show that P is
equicharacteristic. Consider the copy of the ring of integers Z ·1P in P also denoted
by Z. Note that Z ∩ J = 0, otherwise Jn �= 0 for any n ∈ N+. This means that Z
embeds into the field P/J and so P is equicharacteristic. �
Proposition 3.13. Assume f : MB ×MB → NB is an �-stable bilinear map of
abelian groups of bounded exponent. Then the full nondegenerate bilinear mapping
fF :MB/C (f)×MB/C (f)→ im(f) induced by f decomposes into

fF = fF1 ⊕ · · · ⊕ fFn ,
where each fFi , i = 1, . . . , m is a directly indecomposable bilinear mapping over a
ring Pi . Each ring Pi is a local ring with a maximal nilpotent ideal Ji and the field
Fi = Pi/Ji is either algebraically closed of positive characteristic or finite. In case
that Pi is equicharacteristic, Pi contains fields of representatives and therefore fFi is
an Fi -bilinear map.
Proof. Firstly note that C (f) is definable in f. So indeed f′ : MB/C (fB) ×
MB/C (f) → N is interpretable in f and so �-stable. So to simplify the notation
of this proof we assume that f : M × M → N is an �-stable nondegenerate
bilinear map of abelian groups of bounded exponent. In particular, P(f) is an
�-stable scalar ring. So by Theorem 2.3, P = P(f) admits a unique decomposition
P = P1×· · ·×Pn into indecomposable ideals (each of which is a ring with a unit ei ).
Each Pi is a local ring with the nilpotent maximal ideal Ji and the field Fi = Pi/Ji
is algebraically closed or finite. Here sinceM is assumed to be of bounded order all
fields have to be of finite characteristic.
Define Mi = eiM = PiM and let fi be the restriction of f toMi ×Mi . Note
that by definition P has a well-defined action on im(f) even though im(f) might
not be definable in N . If we set Ni = im(fi) then im(f) = N1 ⊕ · · · ⊕ Nm and
fFi :Mi ×Mi → Ni is Pi -bilinear. Therefore for fF :M ×M → im(f) we have,

fF ∼= fF1 ⊕ · · · ⊕ fFm,
where P(fi) = P((fF )i) = Pi . Moreover by Lemma 3.12 if char(Ai) = char(Fi)
then Pi contains a field of representatives of Fi . Hence, in that case fFi will be an
Fi -bilinear map. Otherwise in general fFi is just Pi -bilinear. �
3.5. Bilinear maps of finite Morley rank. Here we discuss bilinear maps of finite
Morley rank. Our plan follows the �-stable case. Again regarding the subscripts B,
C ,D, T , andQ for abelian groups and bilinear maps we observe the convention we
made at the beginning of Section 3.4.
As a direct corollary of Proposition 3.5 we get:
Corollary 3.14. Let f : M ×M → N be a bilinear mapping of finite Morley
rank. Then f = fD +fC where bothfD andfC are definable in f and consequently
they are both of finite Morley rank.
A full bilinear map f : M ×M → N is said to have finite width if there is a
natural number s so that for every z ∈ N , there are (xi , yi) ∈M ×M , i = 1, . . . , s
such that

z =
s∑
i=1

f(xi , yi).
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Corollary 3.15. If the bilinear map f : M ×M → N is of finite width then
im(f) is definable in f.

Proposition 3.16. Assume f : MD ×MD → ND is a bilinear map of divisible
abelian groups. Then the following are equivalent:

1. f is of finite Morley rank.
2. f = fQ ⊕f0 where fQ :MQ ×MQ → NQ is a foundation of f andQ-bilinear,
and f0 is an addition of f. Both maps fQ and f0 have finite Morley rank.

Proof. Proof of (1)⇒ (2) is similar to the proof of part (1) of Proposition 3.7,
except the statement regarding the Morley rank of fQ and f0, the proof of which
will be rather indirect. Still similar to the proof of Proposition 3.7 P(f) and its
action onMQ are interpretable inM =MD . So P = P(f) has finite Morley rank.
SinceMQ is a Q-vector space, P(f) is a Q-algebra. So by Theorem 2.4 it admits a
decomposition

P = P1 × · · · × Pn,
where each Pi , i = 1, . . . , n, is an indecomposable Noetherian local ring with
maximal ideal Ji where ki = Pi/Ji is an algebraically closed field. Since P is a Q-
algebra ki is of characteristic zero. So by Lemma 3.12 andNoetherity of thePi , each
of them is a finite dimensional ki -algebra. This immediately proves thatfQ which is
P(f)-bilinear is a bilinear map of finite width and therefore im(f) = im(fQ) ≤ ND
is definable in f (or indeed in ND where ND inherits all the f-definable structure
it could from f). This proves that fQ is interpretable in f and so of finite Morley
rank. Moreover any complement N 0 of the divisible subgroup im(f) of ND is
interpretable in f, and so f0 : C (f) × C (f) → N 0 is interpretable in f and has
finite Morley rank too.
(2) ⇒ (1) is straightforward. Just recall that every bilinear map of torsion-
divisible abelian groups is identically degenerate (See Equation (3.3) in the proof of
Proposition 3.5 for instance.). �
Corollary 3.17. Assume f :M ×M → N is a full nondegenerate bilinear map.
Then the following statements are equivalent.

1. f has finite Morley rank.
2. f = fQ ⊕ fC where both fQ and fC have finite Morley rank.

Proof. Proof (1.)⇒ (2.) is similar to the proof of Corollary 3.8. (2.)⇒ (1.) simply
follows from the fact that direct sum of two structures of finitely Morley rank has
finite Morley rank. �
Proposition 3.18 ([15], Theorem 5.4). Assume f : MQ ×MQ → NQ is a bilin-
ear map of torsion-free divisible abelian groups. Then the following statements are
equivalent.

1. f has finite Morley rank.
2. f decomposes into f = f1 ⊕ · · · ⊕ fn ⊕ f0. Each factor is definable in f
and has finite Morley rank. Each fi , i = 1, . . . , n is a directly indecomposable
ki -bilinear mapping of finite dimensional ki -spaces for some algebraically closed
field ki of characteristic zero andf0 is an identically degenerateQ-bilinear map.
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The following statement is an immediate corollary of propositions 3.16 and 3.18.

Corollary 3.19. Assume f : MD ×MD → ND is a bilinear map of divisible
abelian groups. Then the following are equivalent:

1. f is of finite Morley rank.
2. f decomposes into f = f1 ⊕ · · · ⊕ fn ⊕ f0. Each factor is definable in f
and has finite Morley rank. Each fi , i = 1, . . . , n is a directly indecomposable
ki -bilinear mapping of finite dimensional ki -spaces for some algebraically closed
field ki of characteristic zero and f0 is an identically degenerate bilinear map of
divisible abelian groups.

Definition 3.20. Assume v(x1, . . . , xm) is a term (word) of the languageof rings.
The verbal ideal, v(Ā), of a ring A defined by v(x̄) is the ideal ofA generated by all
elements v(ā), a1, . . . , am ∈ A. i.e.,

α ∈ v(Ā)⇔ ∃n ∈ N α =
n∑
i=1

v(ai).

For example if I is an ideal of a ring A, then I 2 is the verbal ideal defined by the
term v(x, y) = x · y. A verbal ideal v(Ā) defined by v(x̄) is said to have finite width
if there is a number n ∈ N so that every element α of v(Ā) can be written as a sum
of no more than n elements of the form v(ai), i = 1, . . . , n, ai1 ∈ A, . . . , aim ∈ A.
Now assumeA is a commutative associative unitaryNoetherian local ring, whose
maximal ideal J is nilpotent, say Jn = 0, and the field of residues A/J is k. Then
we get a sequence of ideals

A = J 0 > J > J 2 > · · · > Jn = 0,
where each quotient J i/J i+1 is a k-vector space. The Noetherity condition implies
that the dimension dimk(J i/J i+1) of J i/J i+1 over k is finite. Define

rk(A) =
n∑
i=1

dimk(J i/J i+1).

In general ifM is an A-module for a ring A as above we define

rk(M ) =
n∑
i=1

dimk(J i−1M/JiM ).

Lemma 3.21. Let A be a local algebra whose unique maximal ideal J is nilpotent
and the field k = A/J is algebraically closed. Consider the two-sorted structure
MA = 〈M,A, s〉, where s is the predicate describing the action of A onM . IfMA is
of finite Morley rank, then rk(M ) ≤ RM (M ), where RM (M ) is the Morley rank of
M ,M inheriting all the definable structure it possibly could fromMA. In particular,
A is Noetherian andM is a finitely generated module over A.

Proof. This is really a restatement of Theorem 3.2 from [8]. The proof of the
referred theorem will go through without any substantial changes. �
Proposition 3.22. Assumef :MB×MB → NB is a bilinear map of finiteMorley
rank of bounded abelian groups. Then:
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1. The foundation

fF :MB/C (f)×MB/C (f)→ im(f)
of f decomposes into

fF = fF1 ⊕ · · · ⊕ fFm.
Each fFi , i = 1, . . . , m is a directly indecomposable Pi -bilinear mapping, where
each ring Pi is an indecomposable ring of finite Morley rank.

2. The components fFi where ki = Pi/Ji is algebraically closed are Pi -bilinear
maps of finitely generated Pi -modules where Pi is Noetherian. In particular,
those components are definable in fF .

Proof. The first statement is similar to the �-stable case (Proposition 3.13).
First part of statement (2) follows form (1) and Lemma 3.21. For the components
referred in (2), im(fFi ) is also finitely generated over the corresponding scalar ring
Pi and so it is a bilinear map of finite width. The statement follows now. �
The following corollary will be useful in our analysis of algebras of finite Morley
rank.

Corollary 3.23. Let f : M ×M → N be a bilinear map of finite Morley rank,
where all the residue fields ki = Pi/Ji of components Pi of P(f) are algebraically
closed. Then the image im(f) of f is definable in f.

Proof. It should be clear from Proposition 3.18 and Proposition 3.22 that each
component fi is of finite width. Therefore their direct sum is of finite width. This
proves that f :M ×M → im(f) is a full bilinear map of finite width. This implies
that im(f) is definable in f. �

§4. �-stable algebras. This section contains a rather complete analysis of the
structure of �-stable rings (of finite Morley rank). Again similar to bilinear maps
we do not give a single structure theorem but rather a collection of statements. We
emphasis that rings (algebras) are not assumed to be associative, commutative or
unitary (for example Lie algebras).We use the term “algebra” interchangeably with
“ring” for these arbitrary rings. However the scalar rings are always assumed to be
commutative, associative and unitary.

4.1. Some preliminary facts on algebras. Consider an arbitrary ring R. Define
the two-sided annihilator ideal (center) of R by

Ann(R) = {x ∈ R : xy = yx = 0,∀y ∈ R}.
LetR2 be the ideal ofR generated by all products x ·y (or xy for short) of elements
of R.

4.1.1. Foundations and additions. Consider a scalar ring A. An A-algebra R is
called regular ifAnn(R) ≤ R2. Amaximal regularA-subalgebraRF ofR containing
R2 is called a foundation of R and an addition R0 of R is a direct complement (if it
exists) of the A-submodule R2 ∩Ann(R) in Ann(R).
Proposition 4.1 ([14], Proposition 6). For a k-algebra R, where k is a field, the
following hold.
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1. One can always construct a foundationRF for R.
2. A proper subalgebra RF and a submodule R0 ≤ Ann(R) are a foundation and
an addition of R respectively if and only if R = RF ×R0.

3. Different foundations ofR are pairwise isomorphic, and so are different additions
of R.

In general if R is not a k-algebra over a field k the situation is not as nice as
above. In particular, an addition R0 may not exist. Even if an addition exists it may
not split from R. We provide some examples below.

Example 4.2. In the following ( , ) denotes the Lie bracket. So consider the
nilpotent Lie ring R with presentation:

R = 〈s, t, u : (s, u) = (t, u) = 0, (s, t) = 2u〉.
It is not hard to see that Ann(R) = 〈u〉 ∼= Z, while R2 ∩ Ann(R) = 〈2u〉 ∼= Z does
not split from Ann(R), and therefore R0 does not exist.
Next consider the Lie ring S with the following presentation in the variety of
nilpotent Lie rings of class 2:

S = 〈s, t, u, v : (s, v) = (t, v) = (u, v) = 0, (3u, s) = (3u, t) = 0, (s, t) = v〉.
Again it is not hard to see that Ann(S) = 〈3u, v〉, S2 = 〈v〉, and S0 = 〈3u〉. Clearly
S does not split over S0.

4.1.2. Largest ring of scalars A(R). Let R be an A-algebra where A is a scalar
ring. Here we only consider those algebras which are faithful with respect to the
action of their rings of scalars. Let � : A→ A1 be an inclusion of rings. We say that
an A-algebra R has an A1-enrichment with respect to � if R is an A1-algebra and
αr = �(α)r, r ∈ R, α ∈ A.
Assume R is an A-algebra, where A is an associative commutative unitary ring.
Denote by A(R) the largest, in the sense defined just above, commutative subring
of EndA(R/Ann(R)) that satisfies the following conditions:

1. R/Ann(R) and R2 are faithfulA(R)-modules.
2. The full nondegenerate bilinear mapping fF : R/Ann(R)×R/Ann(R)→ R2
induced by the product in R is A(R)-bilinear.

3. The canonical homomorphism � : R2 → R/Ann(R) is A(R)-linear.
Proposition 4.3 ([14], Proposition 8). For any algebra R the ring A(R) is
definable, it is unique, and does not depend on the choice of the initial ring of scalars.

Proposition 4.4 ([14], Proposition 9). Let k be a field andR a regular k-algebra.
Then R ∼= R1 × · · · ×Rn for k-subalgebrasRi if and only if A(R) ∼= A1 × · · · × An ,
where Ai ∼= A(Ri), i = 1, . . . , n.
Proposition 4.5 ([14], Proposition 10). Let R be a k-algebra for a field k. Then
any foundation of R is an L-algebra for any ring L, k ≤ L ≤ A(R).

4.2. �-stable algebras: The characteristic zero case. Again we remind that a ring
R has characteristic zero if its additive group R+ is torsion-free.
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Lemma 4.6. Let R be an �-stable ring of characteristic zero. Then:

1) R is a Q-algebra.
2) The two sorted structure 〈A(R), R, s〉 where s describes the action of A(R) on
R is absolutely interpretable in the pure ring R.

Proof. Firstly, note thatR is aQ-algebra by Theorem 2.1. Therefore the product
in R induces a Q-bilinear mapping

f : R ×R→ R, f(x, y) = xy, ∀x, y ∈ R.
Let f′ : R/Ann(R) × R/Ann(R) → R, be the nondegenerate bilinear map
induced byf.f is absolutely interpretable inA, hence isf′. Sof′ is�-stable. Recall
the construction ofZ(f′) (Equation (3.1)) and its subringsZn(f′) (Equation (3.2))
associated to f′ from Section 3.1. By proof of ([15], Proposition 5.1) Zn(f′) ≤
Z(f′) ≤ Symf′ (R/Ann(R)) are all absolutely definable in f′ for every n since f′

is �-stable. Indeed all these rings are interpretable in R. Now let
− : R→ R/Ann(R)

be the canonical projection. By definition each element α ∈ Zn(f′) has a well
defined action on any element z =

∑n
i=1 f

′(xi , yi) =
∑n
i=1 f(xi , yi) of R

2 by
setting

α · z =
n∑
i=1

f′(αxi , yi).

Now, for each n consider the subalgebra Ln of Zn(f′) consisting of those α in
Zn(f′) where

α

(
n∑
i=1

f(xi , yi)

)
=

(
α

n∑
i=1

f(xi , yi )

)
.

For each n, Ln is definable in Zn(f′), hence Ln is definable in Z(f′). Note that

A(R) = ∩∞
i=1Ln.

AsZ(f′) is�-stable as a group interpretable inR and theLn are definable inZ(f′),
by the descending chain condition

A(R) = ∩∞
i=1Ln = ∩ti=1Lt = Lt

for some finite t. This proves that A(R) which is commutative associative unitary
ring is interpretable in R. �
Proof of Theorem 1.1. By Lemma 4.6 the commutative associate unitary ring
A(R) is interpretable in R. Therefore A(R) is an �-stable commutative associa-
tive unitary ring of characteristic zero and therefore by Theorem 2.3 it admits a
decomposition

A(R) ∼= A1 × · · · × An,
where each Ai is a local ring whose maximal ideal Ji is nilpotent and the field
of residues ki = Ai/Ji is a characteristic zero algebraically closed field. By
Proposition 4.4, any foundationRF of R admits a decomposition

RF = R1 × · · · ×Rn
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with A(Ri) = Ai . Since R is a Q-algebra we have R = RF × R0 where R0 is an
addition of R which is a Q-algebra with zero multiplication.
As noted before, Ai contains copies of ki = Ai/Ji called fields of representatives
of ki and so by Proposition 4.5 each Ri is a ki -algebra. �
4.3. �-stable algebras: The general case. We call a ringR anA-quasi algebra for a
scalar ringA ifR/Ann(R) andR2 areA-algebras and the canonical homomorphism
� : R2 → R/Ann(R) isA-linear.Weneed to introduce this notion since in the general
case additions and therefore foundations may not exist. Even when they exit there
are examples whereR/Ann(R) andR2 carry compatibleA-algebra structures butR
itself does not admit any A-algebra structure compatible with those of R/Ann(R)
and R2 (See [18], Proposition 3.2.5).
We say that R is a central product of subrings R1, . . . , Rn if R = R1 + · · · + Rn ,
and RiRj = RjRi = 0, if i �= j. We denote a central product by R = R1 ∗ · · · ∗Rn .
Clearly in a central product as above Ri ∩Rj ≤ Ann(R) if i �= j.
We say that a ring R is a divisible ring if its additive group R+ is a divisible
abelian group. Similarly we say thatR is bounded if it is additive groupR+ has finite
exponent.

Proposition 4.7. An �-stable ring R decomposes into R = RD ∗ RC where both
RD andRC are absolutely definable inR,RD is a divisible subring andRC is a bounded
subring.

Proof. By Macintyre’s Theorem 2.1, there are subgroups RD and RC of the
additive group R+ of R with the given properties. We recall that R+D = mR

+ and
R+C = {x ∈ R : mx = 0} where m is the exponent of R+C . This also clearly shows
that both RD and RC are closed under the ring multiplication and so both are
subrings ofR. Also if x ∈ RD and y ∈ RC there exists x′ ∈ RD such thatmx′ = x.
Therefore xy = x′(my) = 0 = (my)x′ = yx, which means they annihilate each
other and clearly RD ∩RC ≤ Ann(R). BothRD andRC are�-stable since both are
definable in R. �
Proposition 4.8. Assume R is a divisible �-stable ring. Then Ann(R) is divisible
and bothR/Ann(R) andR2are torsion-free divisible.Moreover there exists an addition
R0 of R and a corresponding foundation RF such that R = RF × R0 and RF is a
Q-algebra.

Proof. The proof of the first part is completely similar to the first part of the
proof of Proposition 3.7 from bilinear maps. So we omit it and proceed to the proof
of “Moreover” part.
Firstly, we show that R2 ∩ Ann(R) splits from Ann(R). Since in Ann(R) the
multiplication is trivial it is enough to prove that Ann(R) splits over R2 ∩ Ann(R)
as an abelian group. For that purposewe show thatΔ(R) = Ann(R)∩R2 is divisible.
Assume z =

∑
xiyi ∈ Δ(R). Given any arbitrary non-zero integer m the exists x′i

such that mx′i = xi . We claim z
′ =

∑
x′i yi ∈ Δ(R) while clearly mz′ = z. All

we need to show is that z′ ∈ Ann(R) which was established in a similar situation
in bilinear maps (See the proof of Proposition 3.7). So Δ(R) is a divisible group.
Therefore Ann(R) splits over Δ(R) = Ann(R) ∩R2.
So let R0 be an addition of R, i.e., a subgroup ofAnn(R) such thatR0 ⊕Δ(R) =
Ann(R). we claim that R0 is divisible. Indeed pick x ∈ R0 and any nonzero integer
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m and choose x′ ∈ Ann(R) such thatmx′ = x. Therefore there are unique x′1 ∈ R0
and x′2 ∈ Δ(R) such that x′ = x′1 + x′2. So mx′1 + mx′2 = x. This shows that
mx′2 ∈ Δ(R) ∩R0 = 0. Since Δ(R) ≤ R2 is torsion-free we have proved that x′2 = 0
and so x′ ∈ R0. On the other hand, since R2 is divisible there is a subgroup C of
R+ such that R+ = C ⊕R2. Since R+ s divisible, C ∼= R+/R2 is divisible too.
Assume now that T denotes the maximal torsion subgroup ofR+. Next we show
that T ≤ Ann(R). Pick x ∈ T and y ∈ R. Since x is a torsion element there is a
nonzero integerm such thatmx = 0. Let y′ be an element such thatmy′ = y. Then

xy = x(my′) = (mx)y′ = 0 = y′(mx) = (my′)x = yx

implying that x ∈ Ann(R). Since R2 is torsion-free we need to have T ≤ R0
for any choice of R0. Since R0 is divisible and T is its maximal torsion subgroup
there is a divisible torsion-free subgroup S of R0 such that R0 = S ⊕ T . Finally
by the same argument there is a divisible torsion-free subgroup Q of C such that
C = Q⊕R0 = Q⊕S ⊕T . Now defineRF as the subring ofR generated by Q and
R2. The ring RF is clearly a foundation ofR and aQ-algebra as an extension of the
Q-vector space R2 by the Q-vector space Q. �
Proposition 4.9. AssumeR is an�-stable bounded ring. Then there are local rings
Ai with maximal ideal Ji such that the field Fi = Ai/Ji is either algebraically closed
of positive characteristic or finite and R is a central product

R = R1 ∗ · · · ∗Rn
of Ai -quasi algebras Ri .

Proof. Similar to the proof of Lemma 4.6 the action of scalar ring A(R) on
R/Ann(R) is interpretable in R. Hence A = A(R) is �-stable. So A has a Cherlin–
Reineke decomposition A = A1× · · · ×An as in Theorem 2.3. In this case since R+
has bounded exponent the F +i will have bounded exponent so the Fi have positive
characteristic. By definition A has well-defined action on R/Ann(R) and R2 and
the canonical map � : R2 → R/Ann(R) is A-linear. So indeed R is an A-quasi
algebra. Now consider R̄i = Ai(R/Ann(R)) and let Ri be inverse image of R̄i
under the canonical map ¯ : R → R/Ann(R). Clearly R is a central product of
the Ri . Moreover if x ∈ Ann(Ri ) then x ∈ Ann(R) since Ri annihilates every Rj ,
i �= j. So Ann(Ri) = Ann(R). Therefore by construction Ri/Ann(Ri) and R2i are
Ai -algebras and the canonical map �i : R2i → Ri/Ann(Ri) is Ai -linear. so each Ri
is an Ai -quasi algebra. This finishes the proof. �
4.4. Algebras of finite Morley rank.

Proposition 4.10. Assume R is a ring. Then R has finite Morley rank if and only
if R = RD ∗ RC where RD and RC are both absolutely definable in R, RD is a
divisible ring of finite Morley rank, RC is a bounded ring of finite Morley rank and
|RD ∩RC | <∞.
Proof. Most of the proof of the only if direction is included in the proof of
Proposition 4.7. We just need to check |RD ∩RC | <∞. By definition RC = mR+,
wherem is the exponent ofRC . SinceR+D is divisible abelian of finite Morley rank it
follows fromTheorem 2.1 thatR+D = (

⊕
I Q
+)⊕(⊕p(

⊕
Ip
Z(p∞))) wherep ranges

over all primes and for each p the index set Ip is finite. This means the set of elements
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of exponentm inRD is finite. In particular, |RD ∩RC | <∞. For the other direction
note thatRD ∗RC ∼= (RD ×RC )/I where I = {(a,−a) : a ∈ RD ∩RC}. The ideal
I is definable in the productRD ×RC since |RD ∩RC | <∞. The productRD ×RC
is of finite Morley rank, so is RD ∗RC , since it is interpretable in RD ×RC . �
Lemma 4.11. Let R be a divisible ring of finite Morley rank. Then the ideal R2 is
definable in R.
Proof. The natural nondegenerate bilinear map f : R/Ann(R)×R/Ann(R)→
R associated to R is interpretable in R so it is a bilinear map of finite Morley rank.
By Proposition 4.8 R/Ann(R) is torsion-free. Note that R2 = im(f) where the
latter is definable in f since f satisfies hypothesis of Corollary 3.23 now. Therefore
R2 is definable in R. �
Proof of Theorem 1.2. Most of the proof of the only if direction is already
included in the proof of Theorem 1.1. However in this case A(R) satisfies the
hypothesis of Theorem 2.4. Therefore A(R) is decomposed into a finite direct sum

A(R) = A1 × · · · × An
of Noetherian local rings Ai , where the maximal ideal of Ai is nilpotent and the
field of residues is a characteristic zero algebraically closed field. Similar to proof of
Theorem 1.1 we find that R can be decomposed into a finite direct sum

R ∼= R1 × · · · ×Rn ×R0,
where each Ri , i �= 0, is an indecomposable ki -algebra, ki is a characteristic
zero algebraically closed field, and R0 is a central (and in particular with zero
multiplication) Q-subalgebra of R.
The only part left in this direction is to prove that Ri is a finite dimensional
ki -algebra, i = 1, . . . , n. Firstly, Ai is a Noetherian ki -algebra and therefore a
finite-dimensional ki -algebra. Since Ri = eiRF , where ei is the unit of Ai , is
a central extension of ei(Ann(R) ∩ R2) by ei(R/Ann(R)) it is enough to prove
that each of these ki -vector spaces are finite dimensional over ki . Note that
R̄A =def 〈R/Ann(R), A(R), s〉, where s is the predicate describing the action of
A(R) onR/Ann(R), is interpretable in R so it has finite Morley rank. Furthermore
〈ei (R/Ann(R)), Ai , si〉 is definable in R̄A using the constant ei , so the former is also
of finite Morley rank. So by Lemma 3.21, ei (R/Ann(R)) is a finite-dimensional
vector space over ki . For ei(R2 ∩ Ann(R)) the argument is similar but we need to
use Lemma 4.11 to show that R2 ∩ Ann(R) is definable in R.
Let us prove the sufficiency of the conditions above. It is enough to show that each
direct summand has finite Morley rank. Each of the algebras Ri is interpretable in
the corresponding algebraically closed field ki using some fixed structural constants.
So each Ri has finite Morley rank. The Q-algebra R0 is assumed to have zero
multiplication so its definable structure is no richer than that of a vector space over
the field of rationals Q, so it is of finite Morley rank. This finishes the proof. �
Proposition 4.12. For a divisible ringR the following statements are equivalent.
1. R has finite Morley rank.
2. R admits the decomposition R = RF × R0 where RF is a characteristic zero
regular ring of finite Morley rank and R0 is divisible algebra of finite Morley
rank with zero multiplication.
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Proof. Statement (2) clearly implies (1). Most of the other direction is
already included in proof of Proposition 4.8. Remains to prove the statements
regarding Morley rank of the components. The addition R0 is isomorphic to
Ann(R)/(Ann(R) ∩ R2). The latter is interpretable in R since both Ann(R) and
R2 are definable in R. So R0 has finite Morley rank. Similar to the proof of
Theorem 1.2 the scalar ringA(R) has characteristic zero sinceR/Ann(R) is torsion-
free. The ring A(R) is interpretable in R, hence has finite Morley rank and makes
RF an A(R)-algebra. Again by a similar argument as in the proof of Theorem 1.2,

RF = R1 × · · · ×Rn,
where each component is a finite-dimensional ki -algebra for an algebraically closed
field ki of characteristic zero. So indeed eachRi is interpretable in a ki with the help
of a finite number of fixed structure constants. Hence each Ri has finite Morley
rank. Therefore RF has finite Morley rank. �
Proposition 4.13. Assume R is a bounded ring of finite Morley rank. Then there
are local rings Ai with maximal ideal Ji such that the field Fi = Ai/Ji is either
algebraically closed of positive characteristic or finite and R is a central product

R = R1 ∗ · · · ∗Rn
of Ai -quasi algebras Ri . If Fi is algebraically closed then Ai is Noetherian and both
Ri/Ann(Ri) and R2i are finitely generated Ai -modules.

Proof. Again most of the statement is a corollary of Proposition 4.9. The
statement regarding Noetherity of the Ai and finite generation of Ai -module
Ri/Ann(Ri), where Fi is algebraically closed follows from Lemma 3.21. Subse-
quently the statement regarding R2i follows. In addition for these Ri , R

2
i is of finite

width and definable. If Fi is just finite no such statement can be made. �
4.5. Uncountably categorical algebras. Wecannowprove a criterion for uncount-
able categoricity of a characteristic zero algebra.Webegin by discussing someknown
facts and fixing some notation. So assume thatR is a directly indecomposable finite-
dimensional k-algebras without zero multiplication. Now the ring A(R) is a finite
dimensional k-algebra and we are in the set up of Lemma 3.21 and its proof. Let’s
call the series

R > JR > · · · > JmR = 0,
a J -series forR and a k-basis ū = (u1, . . . , ud ) adapted to this series a special k-basis
forR, and set k(R) =def A/J . Pick a field of representatives L of k(R) in A(R) and
consider the subfield k0 of L generated by the structure constants associated to ū.
Set U0 to be the k0 hull of ū in R. Then:

Theorem 4.14 ([14], Theorem 8). Any model S of the complete theory of the
directly-indecomposable k-algebraR has the form U0 ⊗k0 k(S) where k(S) ≡ k(R).
Theorem 4.15. AssumeR is a characteristic zero ring without zero multiplication.
ThenR isℵ1-categorical if and only if it is a directly indecomposablek-algebrawithout
zero multiplication, where k is an uncountable characteristic zero algebraically closed
field.

Proof. The proof is standard but we provide some detail here. For the only if
direction note that uncountable categoricity implies finiteMorley rank. SoR admits
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a decomposition as in Theorem 1.2. Now assumeR has uncountable cardinality say
�. So at least one componentRi for some 1 ≤ i ≤ n orR0 has to have cardinality �.
If there is more than one component other than the one we already picked one can
replace it by amodel of cardinality� < � contradicting the categoricity assumption.
Since the algebra is assumed to be without zero multiplication R is equal to Ri ,
i �= 0.
For the if direction by Theorem 4.14, R ∼= U0 ⊗k0 k(R). The field k(R) is a finite
extension of the algebraically closed field k so indeed k = k(R). Now assume R
has uncountable cardinality �. If S ≡ R and they have the same cardinality � then
k(S) ≡ k(R) ≡ k and they have to have cardinality � since k0 is a countable field
by construction. The result follows from uncountable categoricity of algebraically
closed fields. �
Remark 4.16. As mentioned in the introduction this theorem is due to B. Zilber
[24] for nilpotent Lie algebras. Our result seems to be new in this generality to the
best of our knowledge.

§5. Bi-interpretability of k-groups and nilpotent Lie k-algebras.
5.1. Mal’cev correspondence between k-groups and nilpotent Lie k-algebras. Here
we briefly discuss the notion of a nilpotent group admitting exponents in a char-
acteristic zero field k or a k-group for short. The details may be found in either of
[9,21].

Definition 5.1. A group G admitting exponents in a characteristic zero field k
or a k-group for short is a nilpotent group G together with a function:

G × k → G, (x, a) �→ xa,
satisfying the following axioms:

1. x1 = x, xaxb = x(a+b), (xa)b = x(ab), for all x ∈ G and a, b ∈ R.
2. (y−1xy)a = y−1xay for all x, y ∈ G and a ∈ R.
3. xa1 x

a
2 · · ·xan = (x1x2 · · ·xn)a	2(x̄)(

a
2) · · · 	c(x̄)(

a
c), for all x1, . . . , xn in G , a ∈

R, where 	i come from Hall–Petresco formula and c is the nilpotency class
of G .

Now we can define a homomorphism of k-groups.

Definition 5.2. Let G and H be two k-groups. A map φ : G → H is a
homomorphism of k-groups if

• φ is a homomorphism of groups,
• φ(xa) = (φ(x))a for all x ∈ G and a ∈ k.
The following theoremwas proved first in the casewherek = Q,R byA.I.Mal’cev
in the finite dimensional case. Later it was noticed byM. Lazard (in an unpublished
paper) that finite-dimensionality condition canbe removed.D.Quillen [17] extended
these results to the pro-nilpotent case using the theory of complete Hopf-algebras.
Finally, R. B. Warfield [21] sketched, using Quillen’s approach, a generalization to
the case of arbitrary k-groups, where k is a field of characteristic zero.
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Just a note regarding notation. We will write L1 ⊕ L2 for the direct sum (or
product) of Lie algebras L1 and L2 and we reserve G1 × G2 for direct product of
groups G1 and G2.

Theorem 5.3. Let k be a field of characteristic zero, G be the category of k-groups
andL be the category of nilpotent Lie k-algebras. Then there is a category equivalence

� : L → G,
such that for any L ∈ L and G = �(L), there are maps

exp : L→ G, log : G → L,
satisfying
1. exp(log(x)) = x for any x ∈ �(L) and log(exp(x)) = x for any x ∈ L,
2. if (x, y) denotes the Lie bracket in L then exp satisfies the Campbell–Baker–
Hausdorff formula:

exp x · exp y = exp(x + y + 1
2
(x, y) + · · · ),

where · · · is a linear combination of Lie brackets of weight greater than 2 with
rational coefficients,

3. moreover
[g1, g2, . . . , gn] = exp((l1, . . . , ln) + · · · )

where gi = exp(li) and · · · is a finite linear combination of Lie brackets of weight
greater than n with rational coefficients, and

[x1, . . . , xn] = 1⇔ (l1, . . . , ln) = 0.
Proof. Statement (1) is Theorem 12.11 from [21], Section 12. For (2) we refer to
the first paragraph of [21], Section 12 again. Statement (3) appears in [5] last line of
Page 49 (the discussion following Theorem 4.4). Even though in [5] the statement is
for the case k = Q the whole argument carries over to any characteristic zero field
k as far as a suitable notion of a k-group is available (We refer to the first few lines
of [21], Section 12). �
Wecollected a fewmoreor less direct consequences of the theorem in the following
lemma.

Lemma 5.4. Assume G is a k-group and L = log(G) is the corresponding Lie
algebra. Then the following hold.
1. L is interpretable inG as a pure group andG is interpretable inL as a pure (Lie)
ring. Moreover

2. Gi = exp(Li ) where Gi (resp. Li) denotes the i-th term of the lower central
series of G (resp. L).

3. exp(Ann(L)) = Z(G).
4. The groupG is directly decomposable intoG = G1×G2 if and only ifL = L1⊕L2
where Li = log(Gi ).

Proof. All the statements are well known. For proofs of (1)–(3) refer to
Lemma 2.3 in [20]. The proofs in the said reference rely on results from [19]. Using
(2) and (3) of Theorem 5.3 one can check that subgroups and subalgebras corre-
spond to each other. So to prove (4) assume G = G1 × G2. Then (L1, L2) = 0
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by (3) of Theorem 5.3 since [G1, G2] = 1. The other direction is checked
similarly. �

§6. Nilpotent groups.
6.1. �-stable nilpotent groups. In this section we prove Theorems 1.4 and 1.9.
The proofs are really just easy applications of the results obtained in the previous
sections.

Lemma 6.1. A torsion-free�-stable nilpotent group is a Q-group.

Proof. Note that for any element g ∈ G the centralizer CG(g) = {x ∈ G :
xg = gx} is definable in G . Then the center Z(CG (g)) of CG(g) is a nonempty
torsion-free abelian group which is definable in G . So Z(Cg (g)) is a torsion-free
�-stable abelian group, which by Theorem 2.1 and structure theory of divisible
abelian groups is a Q-vector space. In particular, all rational powers of g exist and
are uniquely defined. Now the fact thatG satisfies axioms (1)–(3) of Definition 5.1
follows easily from the existence and uniqueness of roots and the fact that torsion-
free nilpotent groups are Z-groups (See [21], Section 6) and in particular satisfy
Hall–Petresco formula. �
Let G be a k-group. Then any direct complement G0 of G ′ ∩ Z(G) in Z(G) is
called an additionofG . SinceG is ak-group thenone can actuallywriteG = Gf×G0
for some k-subgroup Gf ∼= G/G0 of G , called a foundation of G .
Proof of Theroem 1.4. By Lemma 6.1, G is a Q-group. By Lemma 5.4, the Lie

Q-algebra L = log(G) is interpretable in G . Hence L is �-stable. By Theorem 1.1,
L can be decomposed into a finite direct sum

L ∼= L1 ⊕ · · · ⊕ Ln ⊕ L0,
where each Li , i �= 0, is an indecomposable ki -algebra, ki is a characteristic zero
algebraically closed field, andL0 is an addition of L, which is aQ-algebra with zero
multiplication. By parts (2), (3), and (4) of Lemma 5.4, G can be decomposed into
a finite direct product:

G ∼= G1 × · · · ×Gn ×G0,
whereGi = exp(Li ), i = 1, . . . , n, andG0 = exp(L0). SinceLi carries a ki structure,
Gi is a ki -group and G0 is an addition of G and a Q-vector space. �
Proof of Theorem 1.9. The statement is a direct corollary of Theorems 1.4, 1.6,
and 1.8.We would just like to remark that now the additionD0 is a direct product of
an abelian Q-group and a divisible torsion abelian group (which is a direct product
of all Prüfer p-groups, Z(p∞)). �
6.2. Nilpotent groups of finite Morley rank. Here we provide proofs of
Theorems 1.5, 1.10, and 1.11. Again the hard work is already done.

Proof of Theorem 1.5. The if direction is clear. The proof of the only if direction
follows the same plan as the proof of Theorem 1.4, we just need to use the only if
part of Theorem 1.2 instead. �
Proof of Theorem 1.10. (1) ⇒ (2) is similar to that of Theorem 1.9, just use
Theorems 1.5 and 1.7 instead of Theorems 1.4 and 1.6. Note that the addition
D0 is a divisible abelian group so it contains an abelian Q-subgroup Q so that
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D0 = T × Q, where T is the torsion part of D. The subgroup T has finite Morley
rank by Theorem 1.8. The subgroup Q is just a Q-vector space so of finite Morley
rank. (2)⇒ (1) follows from Theorem 1.7. �
Proof of Corollary 1.11. Just note that the subgroup N coincides with a
product

N = D1 × · · · ×Dn ×Q,
where each Di is a unipotent algebraic group over an algebraically closed field of
characteristic zero and Q is an abelian Q-group. Since each component of N has
finite Morley rank, hence does N . �
The following two theorems follow as corollaries of our results. For Theorem 6.2
just pick the algebraically closed field k whose cardinality is maximal among those
of theki andG0, from the decomposition given in Theorem 1.5. The additionG0 will
have a 1-dimensional representation over k, while the unipotent components have
unitriangular representations over k by Theorem 11.7 of [21], or by Ado–Iwaswa
Theorem and theMal’cev correspondence. Theorem 6.3 follows fromTheorem 4.15
and the Mal’cev correspondence.

Theorem 6.2 ([20], Theorem 1). A torsion-free nilpotent group of finite Morley
rank has a faithful finite-dimensional representation over a field of characteristic zero.

Theorem 6.3 ([24]). A torsion-free nonabelian nilpotent group is ℵ1-categorical
if and only if it is an indecomposable finite dimensional k-group, where k is a
characteristic zero algebraically closed field.
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