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1. Introduction

In this work we investigate the celebrated Lane–Emden equation (see (1.1) below).
We restrict ourselves to the case in which the domain is a strip: given integers n � 2
and k � 1, we set

Ω = R
n−k × ω, where ω ⊂ R

k is a smoothly bounded domain.

For p > 1, we consider the equation

−∆u = |u|p−1u in Ω,
u = 0 on ∂Ω.

}
(1.1)

The case of a homogeneous Neumann boundary condition

∂u

∂n
= 0 on ∂Ω (1.2)

will also be considered. Strips provide an interesting example of unbounded domains
where, as we shall see, rather sharp classification results can be obtained. Let us
begin by observing that the symmetries of the domain allow solutions of the form1

u(x′, x′′) = u(x′′) for x = (x′, x′′) ∈ Ω (1.3)

1 With a standard abuse of notation, we have used the same letter u to denote distinct functions.
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and, more generally,

u(x′, x′′) = u(ρ, x′′) for x = (x′, x′′) ∈ Ω, ρ = |x′|. (1.4)

Solutions of the form (1.3) are simply solutions in the bounded domain ω ⊂ R
k. As

can be read in any introductory book on partial differential equations (PDEs), in
the simplest situation, for example, when ω is strictly star shaped, such solutions
with Dirichlet boundary condition exist if and only if 1 < p < pS(k), where pS(k)
is the classical Sobolev exponent in dimension k. Similarly, if n − k � 2, solutions
of the form (1.4) can be constructed when 1 < p < pS(n) by applying the mountain
pass lemma in the space H of functions u ∈ H1

0 (Ω) having cylindrical symmetry,
i.e. such that (1.4) holds almost everywhere (a.e.); see Esteban [4]. The case in
which p � pS(n) seems rather unexplored for strips. To gain further insight into the
problem, we observe that the aforementioned solutions have very distinct stability
properties. Recall that a solution of (1.1) is said to be stable in an open subset
Ω′ ⊂ Ω if ∫

Ω′
|∇ϕ|2 dx − p

∫
Ω′

|u|p−1ϕ2 dx � 0 for every ϕ ∈ C1
c (Ω′). (1.5)

We prove the following proposition.

Proposition 1.1. Every solution of the form (1.3) is unstable outside every com-
pact set, while if n − k � 2, the mountain pass solution in the space H of H1

functions with symmetry (1.4) is stable outside a compact set.

Remark 1.2. The first part of the proposition is essentially due to Farina (see [5,
example 1]).

Remark 1.3. For quite general nonlinearities, in the n − k � 2 case, Dancer [2]
proved that every bounded stable solution is, after rotation in the x′ variable, a
function of x1, x′′ only, is monotone in the x1 direction, and the limits of u(x1, x

′′)
as x1 → ±∞ are stable solutions of the problem on ω with the same energy.

The above results suggest that in the supercritical case the class of stable solutions
might also be relevant. We obtain the following result, also valid for nodal solutions.

Theorem 1.4. Assume that p > 1. The Dirichlet problem (1.1) has no non-trivial
stable solution u ∈ C2(Ω). More generally, for p � pS(n), there is no non-trivial
solution that is stable outside a compact set.

Remark 1.5. Farina [5, theorem 7] proved the above result in the special case in
which u is stable and 1 < p < pc(n − k), where pc(n − k) is the Joseph–Lundgren
stability exponent in dimension n−k; see, for example, [3] for the definition. Farina
also observed that the exponent pc(n) is sharp when Ω = R

n. Our result shows
that this exponent is irrelevant when Ω is a strip. This also corroborates a recent
result of Chen et al . [1], who proved, in the case of the half-space Ω = R

n
+, that

given any p > 1 there is no positive solution to (1.1). Note that in this case, every
positive solution is known to be stable.

Remark 1.6. Recall that for 1 < p < pS(n) there exists a positive solution of the
form (1.4) and so, according to proposition 1.1, theorem 1.4 is sharp.
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We turn now to the case of homogeneous Neumann boundary conditions. Here,
stability in Ω means that (1.5) holds for every ϕ ∈ H1(Ω).

Theorem 1.7. Assume that 1 < p < pc(n−k). Then the Neumann problem has no
non-trivial stable solution u ∈ C2(Ω). More generally, if pS(n−k) < p < pc(n−k),
there is no non-trivial solution that is stable outside a compact set. Finally, if
p = pS(n − k), any solution that is stable outside a compact set is a function
of x′ only and it has finite energy∫

Ω

|∇u|2 =
∫

Ω

|u|p+1 < ∞.

Remark 1.8. We do not know whether the second statement of theorem 1.7 re-
mains true in the case in which 1 < p < pS(n − k). But the theorem is sharp in
the p � pS(n − k) case. Indeed, there exists a (radial) stable solution of the Lane–
Emden equation in R

n−k whenever p � pc(n − k), which is also clearly2 a stable
solution of the Neumann problem of the form (1.4). Similarly, when p = pS(n − k),
the standard bubble in R

n−k is a solution of Morse index 1 in R
n−k. As such, it is

stable outside a compact set of R
n−k and so it is also stable outside a compact set

of Ω.

Notation. Without further notice, we shall use the following notation. A point
x ∈ R

n is written x = (x′, x′′) ∈ R
n−k × R

k. The same applies to the operators
∇ = (∇′,∇′′) and ∆ = ∆′ + ∆′′. Polar coordinates in the x′ variable are written
x′ = ρθ, where ρ = |x′| and θ = x′/|x′| whenever x′ �= 0. In particular, ∂ρ = ∇·x′/ρ
differentiates functions in the ρ-variable, and ∆′ = ρ1+k−n∂ρ(ρn−k−1∂ρ) + ρ−2∆θ,
where ∆θ is the Laplace–Beltrami operator on the unit sphere Sn−k−1 of R

n−k.

2. Proof of proposition 1.1

As mentioned in the introduction, the fact that solutions of the form (1.3) are
unstable outside any compact set is an obvious generalization of [5, example 1], so
we skip it.

Turning to mountain pass solutions in the space H of functions in H1
0 (Ω) having

the cylindrical symmetry (1.4), we recall that, thanks to Solimini’s work [8], they
have Morse index 1 in H. In particular, there exists a function φ ∈ H such that
Qu(φ) < 0, where the second variation of the energy is defined as usual by

Qu(φ) =
∫

Ω

|∇φ|2 dx − p

∫
Ω

|u|p−1φ2 dx.

Without loss of generality, we may assume in addition that φ ∈ C∞
c (Ω). Fix R > 0

large enough so that φ is supported in B′(0, R) × ω. We claim that u is stable
outside B′(0, R) × ω. To see this, assume by contradiction that a function ϕ ∈
C∞

c (Ω \ B′(0, R) × ω) satisfies Qu(ϕ) < 0. Let

χ(ρ, x′′) =
[

1
|Sn−k−1|

∫
Sn−k−1

ϕ2(ρθ, x′′) dσ(θ)
]1/2

2 The stability in Ω is a direct consequence of the stability in R
n−k and Fubini’s theorem.
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denote the quadratic average of ϕ on the unit sphere of R
n−k, and let φ0(x′, x′′) =

χ(|x′|, x′′). Clearly, φ0 ∈ H has disjoint support from φ. We are going to prove that
Qu(φ0) < 0, so that u would have Morse index in H at least equal to 2, which is a
contradiction. Note that ∫

Ω

|u|p−1ϕ2 =
∫

Ω

|u|p−1φ2
0. (2.1)

For ε > 0, let

χε(ρ, x′′) = [χ2(ρ, x′′) + ε]1/2 and φε = χε(|x′|, x′′).

Clearly, χε is differentiable in [0; +∞[×ω,

∂χε

∂ρ
(ρ; x′′) =

1
χε

(
1

|Sn−k−1|

∫
Sn−k−1

ϕ
∂ϕ

∂ρ
(ρθ, x′′) dσ(θ)

)
,

and

∂χε

∂xj
(ρ, x′′) =

1
χε

(
1

|Sn−k−1|

∫
Sn−k−1

ϕ
∂ϕ

∂xj
(ρθ, x′′) dσ(θ)

)
, n − k + 1 � j � n.

Therefore, φε ∈ C1(Ω) and, by Hölder’s inequality, we have

|∇φε(x′, x′′)|2 � 1
|Sn−k−1|

∫
Sn−k−1

|∇ϕ(ρθ, x′′)|2 dσ(θ),

which also implies that ∫
Ω

|∇φε|2 �
∫

Ω

|∇ϕ|2.

So, (φε) is bounded in H1 and converges weakly in H1 and a.e. to φ0 as ε converges
to 0. In particular, φ0 ∈ H1(Ω) and∫

Ω

|∇φ0|2 �
∫

Ω

|∇ϕ|2.

So, Qu(φ0) < 0, and we obtain the desired contradiction.

3. Proof of theorem 1.4

Step 1 (capacitary estimate). The following estimate is due to Farina (see [5,
proposition 6]). Let u denote a solution that is stable outside a compact set. For
every γ ∈ [1, 2p + 2

√
p(p − 1) − 1), there exist constants C1, C2 > 0 such that, for

every R > 0,∫
B′

R×ω

(|∇|u|(γ−1)/2u|2 + |u|p+γ) dx � C1 + C2R
(n−k)−2(p+γ)/(p−1). (3.1)

Step 2. In fact, if u is stable, one can choose C1 = 0. As in Farina’s work, we
readily deduce, by letting R → +∞, that there is no non-trivial stable solution of
(1.1) in the special case in which 1 < p < pc(n − k).
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Step 3. If 1 < p � ps(n − k) and u is a solution of (1.1) that is stable outside a
compact set, then in view of (3.1), we obtain∫

Ω

|∇u|2 + |u|p+1 < ∞. (3.2)

By dominated convergence, it follows from (3.2) that if AR = {R < |x′| < 2R},
then ∫

AR×ω

|∇u|2 + |u|p+1 = o(1) as R → ∞. (3.3)

Consider a test function φR(x) = φ(|x′|/R), where φ ∈ C2
c ([0;∞[) is a standard

cut-off function satisfying φ(t) = 1 if 0 � t � 1, and φ(t) = 0 if t � 2. Multiplying
equation (1.1) by uφR and integrating by parts over B′

2R × ω, we get∫
B′

2R×ω

|∇u|2φR −
∫

B′
2R×ω

|u|p+1φR = 1
2

∫
B′

2R×ω

u2∆φR.

Using Hölder’s inequality and (3.3), we conclude that∫
B′

2R×ω

|∇u|2φR −
∫

B′
2R×ω

|u|p+1φR = o(1) as R → ∞.

Hence, letting R → ∞, we get∫
Ω

|∇u|2 =
∫

Ω

|u|p+1. (3.4)

To complete the proof of theorem 1.4 for ps(n) � p � ps(n − k), we need the
following Pohozaev identity.

Proposition 3.1. Let u be a solution of (1.1) that is stable outside a compact set
and let z = (0, z) ∈ R

n−k × ω. Then, if 1 < p � ps(n − k), we have(
1 − 2n

(n − 2)(p + 1)

) ∫
Ω

|u|p+1 = − 1
n − 2

∫
Rn−k×∂ω

|∇′′u|2(x − z)′′ · ν′′, (3.5)

where ν denotes the outward unit vector normal on B′
2R × ∂ω.

Proof of proposition 3.1. Multiplying equation (1.1) by ∇u ·(x−z)φR(x′) and inte-
grating over B′

2R × ω, we obtain∫
B′

2R×ω

−∆u∇u · (x − z)φR =
∫

B′
2R×ω

|u|p−1u∇u · (x − z)φR. (3.6)

For the left-hand side of (3.6), integrating by parts yields

I1(R) :=
∫

B′
2R×ω

−∆u∇u · (x − z)φR

= 1
2

∫
B′

2R×ω

∇(|∇u|2) · (x − z)φR +
∫

B′
2R×ω

|∇u|2φR

+
∫

B′
2R×ω

(∇u · ∇φR)(∇u · (x − z)) −
∫

B′
2R×∂ω

(∇u · ν)(∇u · (x − z))φR.
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Integrating again by parts the first term of the last equality, we get

I1(R) =
2 − n

2

∫
B′

2R×ω

|∇u|2φR + 1
2

∫
B′

2R×∂ω

|∇u|2(x − z) · νφR

−
∫

B′
2R×∂ω

(∇u · ν)(∇u · (x − z))φR + o(1), (3.7)

where, in view of (3.3) and the definition of φR,

o(1) =
∫

B′
2R×ω

(∇u · ∇φR)(∇u · (x − z)) + 1
2

∫
B′

2R×ω

|∇u|2∇φR · (x − z)

as R → ∞.

Taking into account that ν = (0, ν′′), and u = 0 on R
n−k × ∂ω, at any point

x ∈ R
n−k × ∂ω where ∇′′u �= 0, we have ν′′ = ε(∇′′u/|∇′′u|), where ε ∈ {−1, 1}.

Therefore, (3.7) becomes

I1(R) =
2 − n

2

∫
B′

2R×ω

|∇u|2φR − 1
2

∫
B′

2R×∂ω

|∇u|2(x − z) · νφR + o(1).

Now, integrate by parts the right-hand side of (3.6) to obtain

I2(R) :=
∫

B′
2R×ω

|u|p−1u∇u.(x − z)φR

= − n

p + 1

∫
B′

2R×ω

|u|p+1φR − 1
p + 1

∫
B′

2R×ω

|u|p+1∇φR · (x − z)

= − n

p + 1

∫
B′

2R×ω

|u|p+1φR + o(1). (3.8)

Since I1(R) = I2(R), combining (3.7), (3.8), and letting R → ∞, from (3.6) we get

n − 2
2

∫
Ω

|∇u|2 − n

p + 1

∫
Ω

|u|p+1 = −1
2

∫
Rn−k×∂ω

|∇′′u|2(x − z)′′ · ν′′.

From (3.4), we derive the desired result.

As a consequence of proposition 3.1, if ω is strictly star shaped with respect to z,
it holds that (x−z)′′·ν′′ > 0 on R

n−k×∂ω, and so u ≡ 0 when ps(n) < p � ps(n−k).
The p = ps(n) case requires more analysis. In fact, from (3.5) one has ∂u/∂ν = 0

on ∂Ω. In addition, applying (3.1) with γ = p and recalling that

n − k − 2
2p

p − 1
< n − k − 2

p + 1
p − 1

< 0

for p = ps(n), we find that∫
Ω

|u|2p < ∞, i.e. |u|p−1u ∈ L2(Ω).

Recall that Poincaré’s inequality holds in H1
0 (Ω). By Lp-elliptic theory, we deduce

that u ∈ H2 ⊂ L2N/(N−4), and by a standard boot-strap argument, one has u ∈
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W 2,r with r > n/2; then u ∈ L∞(Ω). Therefore, (1.1) becomes ∆u+ qu = 0, where
q = |u|p−1 ∈ L∞(Ω) with u ∈ H2(Ω) satisfying u = ∂u/∂ν = 0 on ∂Ω. By the
unique continuation principle for Cauchy data (see [6]), it follows that u ≡ 0.

Step 4. We derive a variant of a monotonicity formula due to Pacard [7]; see also
Wang [9]. For λ > 0, define uλ by

uλ(x) = λ2/(p−1)u(λx′, x′′) for all x = (x′, x′′) ∈ R
n−k × ω

and

E(u; λ) =
∫

B′
1×ω

(
1
2 [|∇′uλ|2 + λ2|∇′′uλ|2] − 1

p + 1
|uλ|p+1

)
dx

+
1

p − 1

∫
∂B′

1×ω

|uλ|2 dσ.

We claim that E is a non-decreasing function of λ. Furthermore, E is differentiable
and

dE

dλ
= λ

[ ∫
∂B′

1×ω

|∂λuλ|2 dσ +
∫

B′
1×ω

|∇′′uλ|2 dx

]

To prove our claim, we note that uλ solves

−∆′uλ − λ2∆′′uλ = |uλ|p−1uλ in R
n−k × ω, (3.9)

that

E(u; λ) = E(uλ; 1), (3.10)

and that

λ∂λuλ =
2

p − 1
uλ + ρ∂ρu

λ for x ∈ Ω, λ > 0, (3.11)

where we recall that ρ = |x′| and ∂ρ = ∇ · (x′/ρ). So, if

E1 =
∫

B′
1×ω

(
1
2 |∇′uλ|2 − 1

p + 1
|uλ|p+1

)
dx, (3.12)

then
dE1

dλ
=

∫
B′

1×ω

(∇′uλ · ∇′∂λuλ − |uλ|p−1uλ∂λuλ) dx.

Integrating by parts and using (3.9), we have

dE1

dλ
= λ2

∫
B′

1×ω

∆′′uλ∂λuλ +
∫

∂B′
1×ω

∂ρu
λ∂λuλ.
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Integrating by parts again and using the boundary condition, the first addend is
equal to

λ2
∫

B′
1×ω

∆′′uλ∂λuλ = −λ2
∫

B′
1×ω

∇′′uλ · ∇′′∂λuλ

= −λ2

2
d
dλ

∫
B′

1×ω

|∇′′uλ|2

= − d
dλ

[
λ2

2

∫
B′

1×ω

|∇′′uλ|2
]

+ λ

∫
B′

1×ω

|∇′′uλ|2.

Thanks to (3.11), the second addend is equal to∫
∂B′

1×ω

∂ρu
λ∂λuλ =

∫
∂B′

1×ω

(
λ∂λuλ − 2

p − 1
uλ

)
∂λuλ

= λ

∫
∂B′

1×ω

|∂λuλ|2 − 1
p − 1

d
dλ

∫
∂B′

1×ω

|uλ|2

and the result follows.

Step 5 (blow-down analysis for stable solutions). From step 1 (applied to u on a
ball of radius λR), we know that, given R > 0,∫

B′
R×ω

(|∇′uλ|2 + λ2|∇′′uλ|2 + |uλ|p+1) dx � CR(n−k)−2(p+1)/(p−1). (3.13)

So, (uλ)λ�1 is uniformly bounded in H1∩Lp+1(B′
R×ω) for any R > 0. In particular,

a sequence (uλn) converges weakly to some function u∞ in H1 ∩ Lp+1(B′
R × ω) for

every R > 0 as λn → +∞. Note also that uλ satisfies the following PDE:

−∆′′uλ = λ−2(∆′uλ + |uλ|p−1uλ). (3.14)

Taking limits in the sense of distributions, it follows that

−∆′′u∞ = 0 in D′(Rn−k × ω).

The maximum principle applied for almost every x′ ∈ R
n−k to the function u∞(x′, ·)

implies that u∞ ≡ 0.
Actually, the full family (uλ) converges strongly to u∞ = 0 in Lp+1(B′

R × ω).
Indeed, by Rellich’s theorem, (uλ) is compact in L2(B′

R × ω), while it remains
bounded in Lp+γ(B′

R ×ω) for some γ > 1, thanks to step 1. By Hölder’s inequality,
(uλ) is compact in Lp+1(B′

R × ω); u∞ = 0 being its only cluster point, the claim
follows.

Now, multiply (1.1) by puζ2, where ζ ∈ C1
c (Ω) is a cut-off function to be specified

soon.3 We find that

p

∫
Ω

∇u · ∇(uζ2) = p

∫
Ω

|u|p+1ζ2.

3 Such test functions can indeed be used in the stability inequality, thanks to the Dirichlet
boundary condition; see [5, remark 5].
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The left-hand side is equal to

p

∫
Ω

|∇(uζ)|2 − u2|∇ζ|2,

while the right-hand side is bounded above by
∫

Ω
|∇(uζ)|2, since u is stable. It

follows that
(p − 1)

∫
Ω

|∇(uζ)|2 � p

∫
u2|∇ζ|2. (3.15)

Now choose ζ(x) = ζ0(x′/λ), where ζ0 ≡ 1 in B′
1 and ζ0 ≡ 0 outside B′

2. Then,∫
B′

λ×ω

|∇u|2 � Cλ−2
∫

B′
2λ×ω

u2.

Going back to uλ, we arrive at∫
B′

1×ω

|∇′uλ|2 + λ2|∇′′uλ|2 � C

∫
B′

2×ω

|uλ|2.

Recalling that (uλ) converges to zero in Lp+1(B′
R ×ω), and thus also in L2(B′

2 ×ω),
we conclude that

lim
λ→+∞

E2(u; λ) = lim
λ→+∞

E2(uλ; 1) = 0,

where E2 is given by

E2(uλ; 1) =
∫

B1×ω

[
1
2 (|∇′uλ|2 + λ2|∇′′uλ|2) − 1

p + 1
|uλ|p+1

]
dx.

We claim that the same holds true for E. To see this, simply observe that since E
is non-decreasing,

E(uλ, 1) = E(u, λ)

� 1
λ

∫ 2λ

λ

E(u, t) dt

=
1
λ

∫ 2λ

λ

E2(u, t) dt +
1

p − 1
λ−1

∫ 2λ

λ

tn−k−1−4/(p−1)
∫

∂B′
t×ω

|u|2

� sup
t�λ

E2(u, t) + C

∫
B′

2×ω

|uλ|2. (3.16)

Thanks to this, we deduce that

lim
λ→+∞

E(u, λ) = lim
λ→+∞

E(uλ, 1) = 0.

In addition, since u is C2, one easily verifies that

E(u, 0) = 0.

Then E(u, λ) ≡ 0, since E is non-decreasing, and so dE/dλ = 0, which means that
u is homogeneous and independent of x′′. Thanks to the boundary condition, we
readily deduce that u ≡ 0.
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Step 6 (blow-down analysis for solutions that are stable outside a compact set).
We assume that p > pS(n − k). As before, by step 1, (uλ) is uniformly bounded
in Lp+γ(B′

R × ω) for some γ > 1. In addition, |∇′uλ|2 + λ2|∇′′uλ|2 is bounded in
L1(B′

R × ω), for any R > 0. As in step 5, this is enough to conclude that (uλ)
converges strongly to u∞ ≡ 0 in Lp+1(B′

R × ω). In addition, E2(uλ; 1) remains
bounded. This time, however, (3.15) remains valid only for cut-off functions ζ ∈
C1

c (Ω \BR0 ×ω), for R0 sufficiently large. So, choose ζ(x) = ζ0(x′/λ), where ζ0 ≡ 0
in B′

ε/2, ζ0 ≡ 1 in B′
1 \ B′

ε and ζ0 ≡ 0 outside B′
2. Then, for λ > R0/ε,∫

B′
λ\B′

ελ×ω

|∇u|2 � Cλ−2
∫

B′
2λ×ω

u2.

Going back to uλ yields∫
B′

1\B′
ε×ω

|∇′uλ|2 + λ2|∇′′uλ|2 � C

∫
B′

2×ω

|uλ|2,

and so

E2(uλ; 1) =
∫

B′
1×ω

(
1
2 [|∇′uλ|2 + λ2|∇′′uλ|2] − 1

p + 1
|uλ|p+1

)
dx

=
∫

B′
ε×ω

+
∫

B′
1\B′

ε×ω

= εn−k−2(p+1)/(p−1)E2(u; λε) +
∫

B′
1\B′

ε×ω

� C

(
εn−k−2(p+1)/(p−1) +

∫
B′

2×ω

|uλ|2
)

.

Letting λ → +∞ and then ε → 0, we deduce that limλ→+∞ E2(u; λ) = 0. The
remaining part of the proof of step 5 can be used unchanged.

4. Proof of theorem 1.7

We indicate here how to adapt the proof of theorem 1.4 to this case.

Case 1 (p > pS(n − k)). Here the only difference comes from the classification of
the blow-down limit u∞. In fact, multiplying (3.9) by u∞φR(x′), we see easily that∫

B′
2R×ω

(∇′′uλj · ∇′′u∞)φR

converges to 0 as j → ∞. Since (uλj ) converges weakly to u∞ in H1(B′
2R × ω), we

deduce that ∫
B′

2R×ω

|∇′′u∞|2φR = 0 ∀R > 0.

In other words, u∞ is a function of x′ only. But integrating (3.9) in the x′′ variable
and passing again to the weak limit then implies that u∞ = (1/|ω|)

∫
ω

u∞ dx′′ is
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an energy solution of

−∆′u∞ = |u∞|p−1u∞ in R
n−k.

In addition, since u is stable outside a compact set, u∞ is stable outside the origin. If
n−k � 2, points have zero Newtonian capacity and so u∞ is stable in all of R

n−k. By
Farina’s theorem 1 of [5], which still holds for energy solutions, u∞ ≡ 0. If n−k = 1,
then u∞ is stable only outside the compact set {0}. But pS(n−k) = pc(n−k) = +∞,
so we can apply, for example, [5, theorem 2] to arrive at the same conclusion.

Case 2 (p = pS(n − k)). First we need the following version of Pohozaev’s identity.

Proposition 4.1. Let u be a solution of (1.1) that is stable outside a compact set.
Then we have(

1 − 2(n − k)
(p + 1)(n − k − 2)

) ∫
Ω

|u|p+1 = − 2
n − k − 2

∫
Ω

|∇′′u|2.

Proof of proposition 4.1. Note that (3.2)–(3.4) hold for (1.2). As in the proof of
proposition 3.1, multiplying (1.2) by ∇′u · (x − z)′φR(|x′|) and integrating over
B′

2R × ω, we get∫
B′

2R×ω

−∆u∇′u · (x − z)φR =
∫

B′
2R×ω

|u|p−1u∇′u · (x − z)φR. (4.1)

For the left-hand side of (4.1), integrating by parts, we obtain

J1(R) :=
∫

B′
2R×ω

−∆u∇′u · (x − z)′φR

= 1
2

∫
B′

2R×ω

∇′(|∇u|2) · (x − z)′φR +
∫

B′
2R×ω

|∇′u|2φR + o(1).

Integrating again by parts the first term of the last equality, we get

J1(R) =
k − n

2

∫
B′

2R×ω

|∇u|2φR +
∫

B′
2R×ω

|∇′u|2φR + o(1)

= −n − k − 2
2

∫
B′

2R×ω

|∇u|2φR −
∫

B′
2R×ω

|∇′′u|2φR + o(1). (4.2)

Now, integrating by parts the right-hand side of (4.1) to obtain

J2(R) :=
∫

B′
2R×ω

|u|p−1u∇′u · (x − z)′φR = −n − k

p + 1

∫
B′

2R×ω

|u|p+1φR + o(1). (4.3)

Since J1(R) = J2(R), combining (4.2) and (4.3), and letting R → ∞, from (4.1) we
obtain

n − k − 2
2

∫
Ω

|∇u|2 − n − k

p + 1

∫
Ω

|u|p+1 = −
∫

Ω

|∇′′u|2. (4.4)

Therefore, (4.4) becomes∫
Ω

|∇u|2 − 2(n − k)
(p + 1)(n − k − 2)

∫
Ω

|u|p+1 = − 2
n − k − 2

∫
Ω

|∇′′u|2.
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From (3.4), we derive that(
1 − 2(n − k)

(p + 1)(n − k − 2)

) ∫
Ω

|u|p+1 = − 2
n − k − 2

∫
Ω

|∇′′u|2. (4.5)

If p = ps(n − k), from (4.5) one has∫
Ω

|∇′′u|2 = 0.

This gives the following classification: u(x′, x′′) = u(x′) in Ω and u satisfies

−∆′u = |u|p−1u in R
n−k, with p = ps(n − k). �
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