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Abstract

Oscillatory systems of interacting Hawkes processes with Erlang memory kernels were
introduced by Ditlevsen and Locherbach (Stoch. Process. Appl., 2017). They are piece-
wise deterministic Markov processes (PDMP) and can be approximated by a stochastic
diffusion. In this paper, first, a strong error bound between the PDMP and the diffu-
sion is proved. Second, moment bounds for the resulting diffusion are derived. Third,
approximation schemes for the diffusion, based on the numerical splitting approach,
are proposed. These schemes are proved to converge with mean-square order 1 and
to preserve the properties of the diffusion, in particular the hypoellipticity, the ergod-
icity, and the moment bounds. Finally, the PDMP and the diffusion are compared
through numerical experiments, where the PDMP is simulated with an adapted thinning
procedure.
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Introduction

Fast and accurate simulation of a biological neuronal network is one of the most exten-
sively studied problems in computational neuroscience. The general goal is to understand how
information is processed and transmitted in the brain. One of the widely used approaches is
to assume that the spike occurrences in a network are described by a point process. Poisson
processes, as ‘memoryless’ Markovian processes, can account for neither a refractory period
between two consecutive spikes nor the interaction between neurons, and are thus no proper
candidates. Therefore, it is common to model the neuronal activity with nonlinear Hawkes
processes, which are self-interacting point processes with a memory [10, 11, 21, 36, 39]. The
price to pay for using Hawkes processes to model spiking activity is that their investigation is
more difficult, since the Markovian theory cannot be directly applied.

However, for a certain class of memory kernels, the so-called Erlang kernels, the dynamics
of the point process can be described by a piecewise deterministic Markov process (PDMP),
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whose dimension is determined by the ‘memory length’ of the underlying Hawkes process
[15]. This PDMP, also called a ‘Markovian cascade of successive memory terms’ in the liter-
ature, is a convenient framework to study the long-time behaviour of the particle system. In
particular, it has been proved that it is positive Harris recurrent and converges to its unique
invariant measure exponentially fast in Wasserstein distance [16, Theorems 1 and 2].

This Markovian cascade and its associated point process can be simulated thanks to the
thinning procedure [35], which is a common way to simulate general point processes even
without any Markovian assumption. This procedure yields an exact simulation algorithm but
is costly to compute, especially when the number of neurons is large. This results from the fact
that the computation time scales linearly with the number of neurons.

In the brain, neurons are clustered in populations with similar behaviours (excitatory,
inhibitory, etc.). For instance, this has been observed in the visual cortex of mammals [8]. When
the network size grows, but the proportion of neurons in each population remains constant, the
PDMP can be approximated by a stochastic differential equation (SDE). In other words, the
diffusion approximation theory makes it possible to replace the stochastic term, described by
jumps in the PDMP, by a multidimensional Brownian motion. Passing from a Hawkes pro-
cess to a diffusion process substantially simplifies the analysis of the system behaviour. First
of all, the SDE framework allows one to study the limit behaviour, the large deviations, and
the influence of the memory order, and to determine the conditions in which the phase transi-
tion occurs [15, 27]. Moreover, in this manuscript, precise first and second moment bounds of
the process are derived, based on the SDE formulation. Also, the simulation of the diffusion
process is much less computationally expensive than that of the PDMP, especially when the
number of neurons is large. This results from the fact that the execution time for the SDE does
not depend on the number of neurons. However, the SDE cannot be solved explicitly, and thus
the construction of a reliable approximation scheme is required.

Note that the main difficulty does not lie in the construction of convergent numerical
schemes. For example, standard methods such as the Euler-Maruyama or Milstein schemes
converge in the mean-square sense when the time discretization step tends to zero. In practice,
however, the solution is approximated with a strictly positive time step. As a consequence,
even if the discrete solution is known to converge to the continuous process as the time step
tends to zero, it does not follow that both processes share the same properties for a fixed dis-
cretization step. Thus, the approximation scheme should not be used to study the behaviour of
the original model without further analysis of its qualitative properties. Constructing approxi-
mation schemes, which are not only convergent, but also preserve the properties of the model,
constitutes the main difficulty.

In our case, the first challenge is that the diffusion term of the SDE is degenerate and that
frequently applied numerical schemes, such as the Euler—Maruyama method, do not preserve
the ‘propagation-of-noise property’ (formally known as hypoellipticity). Second, standard inte-
grators may also fail to preserve second moment properties (see [30]), especially when the
equation describes oscillatory dynamics, which is the case here. For example, in [20] it is
proved that the Euler-Maruyama method does not preserve the second moment of linear
stochastic oscillators. It is expected that this and similar negative results also extend to higher-
dimensional and nonlinear stochastic oscillators; see, e.g., [3]. Even if higher-order Taylor
approximation schemes may solve the problem of degenerate noise structure, they have two
major drawbacks. They depend heavily on the dimension of the system (which is determined
by a parameter in our model), and they commonly fail to preserve ergodic properties.

To overcome these problems, we construct numerical schemes based on the so-called split-
ting approach. This approach was first developed for ordinary differential equations (ODEs).
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We refer to [4, 31] for an exhaustive discussion. For an extension to SDEs, see, e.g., [2, 3,
5, 24, 25, 33, 34, 37, 40]. The main idea of the numerical splitting approach is to decom-
pose the system into explicitly solvable subequations and to find a proper composition of
the derived explicit solutions. Such methods usually preserve the properties of the underlying
model through the explicitly solved subparts.

The main contributions of this work can be divided into three steps. First, a strong error
bound between the PDMP and the stochastic diffusion is proved. This complements the results
presented in [15, 27]. Second, moment bounds of order one and two for the stochastic diffusion
are derived. Third, simulation algorithms for the diffusion and the PDMP are provided. For the
diffusion, two splitting schemes, based on the Lie-Trotter and the Strang approach [31, 41],
are proposed. They are proved to converge with order one in the mean-square sense. Moreover,
they are proved to preserve the ergodic property of the continuous process and to accurately
reconstruct the moment bounds obtained in the second step. The simulation method for the
PDMP is exact and based on the thinning procedure. In order to apply this method, global and
local upper bounds are obtained. Their performances, with respect to the parameters of the
model, are discussed.

This paper is organized as follows. In Section 1, the finite particle system, the corresponding
PDMP, and the main notation are introduced. Section 2 is devoted to the stochastic diffusion
and its properties. Section 3 presents the approximation schemes for the stochastic diffusion.
Section 4 describes the simulation algorithm for the PDMP. Finally, Section 5 provides a
numerical study illustrating the theoretical results.

1. Model and notation

The system considered in this paper consists of several populations of neurons, each of
them representing a different functional group of neurons (layers in the visual cortex, pools of
excitatory and inhibitory neurons in a network, etc.). This system is described by a multivariate
counting process, which counts the spike occurrences. In a certain setting, it can be approxi-
mated by a stochastic diffusion in the large-population limit [15]. The resulting diffusion is the
subject of study in Section 2.

1.1. Finite particle system

Let us consider a network consisting of K large populations of neurons, where the num-
ber of neurons in the kth population is denoted by N; and the total number of neurons in
the network is N =N + - - - + Ng. Let Zf’" represent the number of spikes of the nth neuron
belonging to the kth population during the time interval [0, ¢]. The family of (simple) count-
ing processes {(Zf"”)tio, 1 <k <K, 1 <n <Ny} is characterized by the intensity processes
(Ak’”(t))tzo, which are defined through the relation

P(Z" has a jump in (¢, 1 + df]| F;) = 25" (1),

where F; contains the information about the processes (Zf’"),zo up to time ¢. The interested
reader is referred to [14] for the existence and formal definition of these processes. The mean-
field framework considered here corresponds to intensities A*"(¢) given by

K
1
Ak’”=§—§fh—dzl’m, 1
() =Jk 2.y, o Kt — $)dZg (1)

1<m<N;
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where {hy; : Ry — R} is a family of synaptic weight functions, which model the influence of
population / on population k. When hy; is positive, the influence is excitatory. Conversely,
when hy; is negative, the influence is inhibitory. The function f; : R — R is the spiking rate
function of population k. The expression ‘mean-field framework’ refers to the fact that the
intensity A¥"(r) depends on the whole system only through the ‘mean-field” behaviour of each
population, namely Nil > <m<N, dZé*m. Furthermore, letting N — oo (while keeping K fixed),
we assume that Ny /N — py > 0 for all &.
Throughout the paper we assume that the functions f; satisfy the following conditions:

(A) The spiking rate functions f; are strictly positive, Lipschitz-continuous, non-decreasing,
and such that 0 < fy <f"* fork=1, ..., K, where f;"** is a finite constant.

In this paper, Erlang-type memory kernels and a cyclic feedback system of interactions are
considered. This means that for each &, population k is influenced only by population k + 1,
where we identify K 4+ 1 with 1. In this case, all the memory kernels are null except the ones

given by
- 11k
hige1 (1) = cre™ ™' —, 2
Nk:
where ¢, = £1. This constant determines whether the population has an inhibitory (cy = —1)

or excitatory (cx = +1) effect. The parameter nx > 1 is an integer determining the memory
order for the interaction function from population k 4 1 to population k.

The parameters 1, and v determine, intuitively, the typical delay of interaction and its time
width. The delay of the influence of population £ + 1 on population & attains its maximum
Nk+1/Vk+1 units back in time, and its mean is (ng+1 + 1)/vi41. The larger this ratio is, the
more important ‘old” events are. When the ratio is fixed (equal to t), but both n; and v; tend
to infinity, /g1 tends to a Dirac mass in t. This means that only one specific moment in time
is important. The interested reader is referred to [15] and [27] for more details.

In this paper we are interested in the processes {()_(f’l),zo, 1 <k <K}, which are the
arguments of the function f in Equation (1) and are defined by

. 1
X'l=— 3 f higey1(t — )dZEH 3)
Niet1 1<m=Niq1 ©.n

When the memory kernels are given in the fqrm (2), the processes defined in (3) can be obtained
as marginals of the process ()_(,),20 = {()_(f’/),zo, 1 <k<K,1<j<n+ 1} which solves the
following system of dimension x = Y"f_, (¢ + 1):

dx* = [—ka(,k’f' +)‘(§"-"+1] dr forj=1,...,n

dXE =y X6 g 4 dZE (4)

)_(() =x0€RK,

where
Ni+1
1 +

Yz

n=1

Zk+1 =
Ni+1
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with each Zf tln jumping at rate f()_(kfl’l); see [15] for more insight. This type of equation is

sometimes called a Markovian cascade in the literature [15]. Throughout the paper we refer to
the solution of (4) as the PDMP.

The process (X;);>0 summarizes and averages the influence of the past events. This process,
along with the firing rate functions fi, determines the dynamics of (Zf "™)=0, described by its
intensity (1).

From a modelling point of view, the process ()_(f )1 )i=0 can be roughly regarded as the voltage
membrane potential of any neuron in population k. Then, the probability that a neuron will emit
a spike is given as a function of its membrane potential. To summarize, the processes with
coordinates (k, 1) defined by (3) describe the membrane potential in each population, whereas
the other coordinates represent higher levels of memory for the process.

Note that the model presented so far starts with empty memory. The right-hand side of (1)
is equal to f;(0) at time 7 = 0 or equivalently xo = O,.. However, one could easily generalize this
to any initial condition xo in R¥, as is done in the rest of the paper. Moreover, the interested
reader is referred to [16], where a more general model is studied numerically and theoretically
for K = 1 population.

1.2. Notation

Now we focus on the case of two interacting populations of neurons (K = 2), consisting of
N; and N> neurons, respectively. Taking K =2 allows for an investigation of the interactions
between populations of different sizes while avoiding heavy notation. Throughout the paper the
following notation is used: O, x,, denotes an (n x m)-dimensional zero matrix, and 0, denotes
an n-dimensional zero vector. It is convenient to rewrite the system (4) in the matrix—vector
form

dX, = AX,dt + T dZ,, Xo =x0 € R¥, (5)
with

o A € R“*¥ defined as

A Oy +1 1
A= ( V] (m+Dx(m+ )) , 6)
Ot+ixam+1)  An

where A, is an (nx + 1) x (nx + 1) tri-diagonal matrix with lower diagonal equal to 0,
diagonal equal to (—vg, ..., —vi) and upper diagonal equal to (1, ..., 1),

o [ cR¥*2 having zero coefficients everywhere, except for I'y, 112 =c1 and ', 1 =2,
5 51 5T
e andZ, = (2}, 7})".
Throughout the paper the following convention is made. The coordinates of a generic vec-
tor x in R¥ are denoted by either (x;)i=1.. . or (Xk’/)kzl,Z;j:l,..-Jlk"l‘l, with the relations
i=jif k=1 and i=n; +1+j if k=2. The second notation is usually preferred since
each population is easily identified by the index k. For some generic function g : R — R,
the upper indices are used as follows: (g(x))*/. Moreover, it is sometimes more natural
to consider some generic R“-valued process x; population-wise. Thus, it is split into two

11 141 2.1 2,m0+1
components x} = (x;", . .. ,x; Mty e RmH! and =0, ,xHy e RmHL uch that
x,:(xtl,xtz)TeR".
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2. The limiting stochastic diffusion

In [15] it is proved that the limit behaviour of (5) can be approximated by the stochastic
diffusion process X = (X', X?)T € R¥, which is obtained as the unique strong solution of the
SDE

1
dX; = (AX; + B(Xy))dt + ﬁd(xt)sz, Xo = xo, (7
where W = (W!, W?)T is a two-dimensional Brownian motion, and xo € R¥ is a deterministic
initial condition. The nonlinear part of the drift term B : R“ — R* is given by

B(X) = (B'(Xx?), B2 (x")T, (8)
where B! : R+ s R+l gnd B2 . RM+! 5 RM+1 read as
B'X)=(0,...,0,cipX*"),  B*XH=(0,...,0, cafi(x"h).

The diffusion component o : R — R**? is given by

o L(X?)
oX)={ , .| )
o (X")

where o1 : R+ 5 RHADX2 gpd o2 . Rm+1 5 RO2+DX2 peaq ag

0 0 0 0

ol (xH = . oixh=

In other words, the jump term I’ dZ, which determines the dynamics of the PDMP given in (5),
is replaced by the sum of a nonlinear drift and a diffusion term.
As N goes to infinity, the diffusion term in (7) vanishes and the SDE transforms into an
ODE of the form
dU; = (AU; 4+ B(Uy))dt, Uo = xo. (10)

The focus of this paper lies in the theoretical and numerical relations between the PDMP and
its stochastic diffusion approximation. Thus, we do not address the properties of the ODE (10)
in this work; we refer to [15] for related qualitative features and convergence results.

The rest of this section is organized as follows. First, we investigate how accurately the
stochastic diffusion approximates the dynamics of the point process, proving a strong error
bound between the PDMP (5) and the solution of the SDE (7). We then study the properties of
the SDE (7), focusing on moment bounds.

2.1. Strong error bound between the limiting stochastic diffusion and the PDMP

Any error bound of the diffusion approximation is determined by two facts, namely the
approximation of a compensated Poisson process by a Brownian motion and the approxima-
tion of N by prN. We get rid of the second approximation by considering the SDE (7) with
pr = Ni/N and denote the solution of this equation by Y. By choosing different notation we
stress the fact that, in contrast to X, the solution Y depends on the exact number of neurons
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Ny and not on its proportion, obtained in the mean-field limit. The same convention is used in
[15], where the following weak error bound is proved.

Theorem 1. ([15], Theorem 4.) Grant Assumption (A), and suppose that all spiking functions
Ji belong to the space CZ of bounded functions having bounded derivatives up to order 5. Then
there exists a constant C, depending only on f1, fo and the bounds on their derivatives, such
that for all ¢ € C}(R*, R) and t > 0,

- ll@ll4,00
sup |Exp (X)) — Exgp(Y0)] = Cr—r3—=, (11)

xeRK

where E, denotes the conditional expectation given that Xo=Yy=nx

In the following, we strengthen the above result, allowing for a comparison of trajectories
of the PDMP and the stochastic diffusion.

Theorem 2. (Strong error bound.) _Gram‘ Assumption (A), and let || - ||co denote the sup norm
on R*. For all N > 0, a solution X of (5) and a solution Y of (7) (with px = Nx/N) can be
constructed on the same probability space, such that there exists a constant C > 0 such that,
forall T >0,
_ log (N

sup % = ;oo < Oy 22D

t<T N
almost surely, where Oy is a random variable with exponential moments whose distribution
does not depend on N. In particular,

12)

_ 1 N
E [sup IX; — Y,noo} < cocro8 ™). (13)
t<T N

The proof of Theorem 2 is mainly inspired by [23] and relies on two main ingredients, a
strong coupling between the standard Poisson process and the Brownian motion and a sharp
result on the modulus of continuity for the Brownian motion. All the material is postponed to
Appendix A.1.

When comparing (11) and (13), one notices that there is an exchange between the expec-
tation sign and the absolute value. There are two prices to pay for such an exchange: first,
a slower convergence rate with respect to N; second, a faster divergence rate with respect to
t (the exponential term comes from a Gronwall-type argument). In the following remark we
make precise the bound on the error which is caused by directly using the parameter py instead
of Ni/N.

Remark 1. Let Y denote a solution of (7) (with parameter p; equal to Ni/N), and let X denote
a solution of (7) with fixed values px. Following the proof of Theorem 2, one can show that

log (N) 1
sup || X; — Y| <© eCT<—+max{—(1—~/ NN)}),
ISIT)” t 2l N N 2 \/pk—N PN /Ny

so that the strong error bound stated in the theorem also holds for the non-modified SDE if
PN /Ny — 1 is of order N~1/2 or of faster order.

Fortunately, for any fixed N, setting N| = |p1N] and N, = [p2N] ensures that «/piN/Ni — 1
is of order N~! < N=1/2 which grants that Theorem 2 holds for the SDE (7).

Since the SDE (7) transforms into the ODE (10) as N goes to infinity, the strong error bound
can be used to prove the convergence of the PDMP to the solution of the ODE. However, this
is beyond the scope of this paper.
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2.2. Properties of the stochastic diffusion

The solution process (X;);>0 of SDE (7) is positive Harris recurrent with invariant measure
which is of full support (see [27]). This means that the trajectories visit all sets in the support of
the invariant measure infinitely often almost surely. More precisely, for any initial condition xp
and measurable set A such that 7 (A) > 0, lim sup,_, | o, 14a(X;) = 1 almost surely. Furthermore,
by following the arguments in [30], the technical results proven in [27] can be used to prove
geometric ergodicity of (X;);>¢ as stated in Proposition 1 below.

In order to state the geometric ergodicity of (X;);>0, let us first specify the Lyapunov
function G : R¥ — R introduced in [15]:

K i+l

Go=>"3" %J(x"’f), (14)

k=1 j=1 Yk

where J is some smooth approximation of the absolute value. In particular, J(x) = |x| for all
|x| > 1, and max{|J'(x)|, |J"(x)|} < J. for all x, for some finite constant J.

Proposition 1. (Geometric ergodicity.) Grant Assumption (A). Then the solution of the SDE
(7) has a unique invariant measure 7w on R*. For all initial conditions xy and all m > 1, there
exist C = C(m) > 0 and » = M(m) > 0 such that, for all measurable functions g : R“ — R such
that |g] < G",

[Eg(X,) — 7(g)| < CG(xp)"e ™™ Vi =0.

Proof. The proof closely follows that of Theorem 3.2 in [30] and is based on Lyapunov and
minorization conditions (the latter are implied by the existence of a smooth transition density
and the irreducibility of the space).

(i) First we use the fact that G is a Lyapunov function for X [15, Proposition 5], i.e., that
there exist «, § > 0 such that

AXG(x) < —aGx) + B,

where AXG(x) is the infinitesimal generator of (7).

(i) Then we note that, from any initial condition x¢, for any time 7" > 0 and any open set O,
the probability that X7 belongs to O is positive. This is ensured by the controllability of
the system (7) (see Theorem 4 in [27]).

(iii) Finally, we note that the process (X;);>0 possesses a smooth transition density. Its exis-
tence is ensured by verifying the Hormander condition, which is done in Proposition 7
of [15].

The rest of the proof follows that of [30, Theorem 3.2]: apply [30, Theorem 2.5] to some
discrete-time sampling of the process and conclude by interpolation. O

Also note that the rank of the diffusion matrix oo’ is smaller than the dimension of the sys-

tem (7). This means that the system is not elliptic. However, the specific cascade structure of
the drift ensures that the noise is propagated through the whole system via the drift term, so
that the diffusion is hypoelliptic in the sense of stochastic calculus of variations [13, 28]. We
also note that the SDE (7) is semi-linear, with a linear term given by the matrix (6). Thus,
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its solution can be written in the form of a convolution equation (see, among others, [29,
Section 3]).

Proposition 2. The unique solution of (7) satisfies
1 1 1
X, = e*xo + / AIBX)ds + — / A0 (X )dWs. (15)
t 0 N \/N 0 N s

Proof. Consider the process Y; = e A’X;. By Itd’s formula one obtains

e—At

JN

d (e_A’Xt) - (—Ae_A’Xt e (AX, + B(Xt))) di + S —o (X,)dw,

e—At

JN

= e AB(X)dr +

U(X[)th
Integrating both parts yields
At LA 1 LA
e X, =xo+/ e SB(X)ds—i——/ e Mo (Xy)dWs.
t 0 N W 0 N s

Multiplying the expression by €A’ gives the result. (|

Note that from this form, it is straightforward to see that the diffusion term is of full rank.
Intuitively, this ensures the hypoellipticity. Systems of type (15) are called stochastic Volterra
equations [1].

Now we focus on first and second moment bounds. The following results are needed, in
particular, to ensure the accuracy of the approximation scheme in Section 3. In the following
remark we provide some purely computational results in order to ease the further analysis.

Remark 2. Because of the block structure of the matrix A introduced in (6), its matrix
exponential ¢4’ can be computed as

A,
e O +1)x(m+1)

A,
Oy + Dx(m+1) et

where e/, k=1, 2, is an (nk + 1) x (nk + 1) upper-triangular matrix given by
2
1t 5 %
k!
O 1 t e W
eAUkl:efl)kt E ._‘ ._' ..‘ E . (16)
o 0 o0 ... 1

In further computations we will often use the vectors eX,. The elements of eA'X, are given
by the formula
nk+1

k’j
(eAth) = Z

m=j

M= .
- Xs’m. (17)
(m =\
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Theorem 3. (First moment bounds of the diffusion process.) Grant Assumption (A). The
following bounds hold for the components of E[X;]:

Ty SEIX) < Tk,

‘min

where

1-j ]
) kj Ni+1—=j (tv )] ¢ fmax
k.j _ t L,k k - k+1
Imin = (eA xo) +|1-e Z ! min 1 0, v(ﬂk+2—j) ’
=0 k
_ o -
' kj nk+1—j (tv )] Ckfmax
k.j _ t L,k k k+1
Tooax = (eA xo) +|1—e Z o max 4 0, 7}) 2 [
=0 k

Proof of Theorem 3. From Proposition 2 and Remark 2, it follows that the convolution-based
representation of the kth population is given by

t 1 t
XF = (AMxo)k + / eAvk<f*S>Bk(x§+1)ds+J—N f M=ok (xk N aw.
0 0

Consequently, the jth components are given by

k.j ar \M ' kg, € 1—j
X, = (e fxo) + / ckfir1(Xgh — (1 — )" ds
0 (i +1 =)
=T(t) =T(t)
L[ NP e MY SR
+—= | — VX ) (=) T dWT
VN Jo /P Jet1 (s (e +1=))! *
=T3()

Note that E[T(f)] = T1(¢) and E[T3(z)] = 0. It remains to consider T>(¢). The fact that the

intensity function is bounded by 0 < fi+1 < £} implies that

max max
by k+1 J; k+1

LK < BT ()] < max{0, ¢} ——HL K
e+ 1 =))! M+ 1= )

min{0, cx}

9

where

t
15 :/ e VK= — gymF =g,
0

Now, let us consider the integral I%/:

[

P ; ! t=s [(T—S§ A1
eI — syt g = ¢t / e T < p > ds.
0
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Setting z = =+ yields

1 nk+1—j !
t’?k+2—j e—vuzzr/kH—/d (77" +1 _J)' 1 — ¢ WKt Z (k1)
0 (ﬂk+2—/) il
Yk =0
This gives the result. O

Remark 3. Recalling (17) and using that

nk+1—j
()’

lim e " E — =0,
1—00 il
=0

it follows from Theorem 3 that

max max
min {0 kfk“ } < lim E[X; ] < max :0 kfk“ } .

C 2= —> 00 C 2=
k k

The derived moment bounds give some intuition on how the system behaves in the long run.
Remarkably, depending on whether ¢y is positive or negative, the trajectories of (X{‘),Zo are on
average bounded by 0 from below or above, respectively. This is in agreement with the fact that
the sign of ¢ defines whether the corresponding neural population is excitatory (cx = +1) or
inhibitory (cy = —1). Moreover, we may immediately see the effect of increasing the memory
order 7y, depending on the constant v,. When v =1, the bounds for all j components are
determined entirely by ¢ and the bounds of the intensity functions. When v < 1 and ny — o0,
the first components, presenting the current state of the process, tend to infinity. Similarly, for
v > 1, the trajectories are attracted to 0. Finally, note that the first moment bounds do not
depend on the number of neurons in the system.

Theorem 4. (Second moment bounds of the diffusion process.) Grant Assumption (A). The
following bounds hold for E[(Xf’/)2]:

B0 < ((eAtxO>k-j> oy xo)’“-" max {0, % 1 ()}

2
2 k.j
max Ck max 7k.J 12 Q)
P — [ t s
e <(77k+ [ —j)!) Tt O

where I,];’j(t), u=1,2, are defined as

'
[/u@./(t) ;:/ e k=9 p _ gyutmt1=D g
0

u(met+1-))

IS ) PR S

T (up)nA1=p+L

(utvk)l
I

1=0
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FIGURE 1. First (left panel) and second (right panel) moment bounds with respective trajectories of the
inhibitory population k = 1. The rate function f; is given in Section 5. The parameters are ) =3, v; =2,
N =20, and p, =1/2.

The proof of Theorem 4 is similar to that of Theorem 3 and is postponed to Appendix A.2.

Remark 4. Theorem 4 gives the following asymptotic bounds:

Ck 2 k. cy?
lim B[(X max ( Ck max ki J 2
im B[] < 8 ((nk+1—j)!> s Vo

(u(ne+1—=7)!
(uvk)u(nk‘i’l —)+1°

where

kj._ 1: k,j _
i/ = lim 1) =

Note that for N — oo, the bound obtained in Theorem 4 equals the square of the bound for
the first moment, derived in Theorem 3. This is in agreement with the fact that the stochastic
system (7) transforms into an ODE as N increases [15]. In other words, its diffusion coefficient
tends to O, x2 as N tends to infinity.

In Figure 1, the first and second moment bounds, derived in Theorem 3 and Theorem 4,
respectively, are illustrated. In the left panel, we plot four sample trajectories (solid lines) of an
inhibitory population X! and their lower first moment bounds (dashed lines). The main variable
X' and its lower moment bound are depicted in black. The remaining three trajectories X'/,
j =2, 3,4, are auxiliary variables. They (and their corresponding bounds) are depicted in dif-
ferent shades of grey. We see that the trajectories can exceed the theoretical bounds, especially
when the effect of noise is large. On average, the trajectories stay within the bounds. In the
right panel, we plot the square of the first three components of X! (and their second moment
bounds), omitting the fourth in order to stay within an easily interpretable scale. We conclude
that the bounds are fairly precise for the parameter setting under consideration.

3. Numerical splitting schemes for the stochastic diffusion

The solution of the system (7) cannot be written in an explicit form, and thus a numerical
approximation is required. Let [0,7] with T > 0 be the time interval of interest, and consider the
discretization (#;)i=0,... i, given by t; = iA, where A =T /imax. In the following, f(,,. denotes a
numerical realization of the diffusion process, evaluated at the discrete time points.
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We derive and investigate two numerical schemes based on the splitting approach. The goal
of this method is to divide the equation into explicitly solvable subequations and to compose
the obtained explicit solutions in a proper way. Usually, the choice of the subsystems is not
unique. Here, because of the specific structure of the SDE (7), we split it into the subsystems

dxM = axMar, (18)

1
dx' = B(x*ar + T (X2 aw,. (19)

Both subsystems are explicitly solvable. The first one is a linear ODE whose flow is given by
w,[l] : x > ¢A'x. For the second one, recall that B and o are given by (8) and (9), respectively. It
is easy to see that all components of X[?!, except for two (X12-1:m+1 and x121.2.n2+1) ‘haye null
derivative. Moreover, the drift and diffusion coefficients of X12:1:11+1 depend only on X121
and those of X[212m+1 depend only on X?11-1. Hence, the respective explicit (stochastic)
flows are given by

1
Yl = e,

v ) = x+ 1B + %a(x)é,

where £ = (¢!, £2)7 is a two-dimensional standard normal vector. Then, the Lie—Trotter and
the Strang compositions of flows [31, 41] are given by

) ) R .
T = (vl oy ld) (RfT) = (xgu ABX,") + ﬁaoq?)si . Q0
< 1 2 1 ot
X5 = <¢[%1 oyldlo [%]) (%57)
- - A -
=M 4 AM B RST) + £eA%a(eA%X£T).§,-, @1

VN

respectively, with 5({)] =)?3T =xp and (&;)i=1.....i,., independent and identically distributed.
The two splitting schemes (20) and (21) define numerical solutions of the SDE (7). Note that
by setting o (x) = Oy «2, both schemes can be used for simulating the ODE (10).

For the sake of simplicity, we focus on the Lie-Trotter splitting (20) in the subsequent
analysis, since its representation is more intuitive. Thus, throughout Section 3 we set X = X7
However, similar results can also be obtained for the more evolved Strang approach (21).

Remark 5. Note that thanks to the matrix exponential entering the diffusion terms in (20) and
(21), the noise propagates through all components of the system at each time step. In other
words, the conditional variance matrix ¥ is of full rank and is given by

.. A - - T
> [XIH-] |Xli] = NEAAU(XH)O—T(XU) (@AA)
This can be regarded as a discrete analogue of the hypoellipticity of the continuous process, a

property that the approximation methods based on the It6—Taylor expansion of the infinitesimal
generator of (7) (see [22]) do not preserve.
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3.1. Strong convergence in the mean-square sense

We now focus on the convergence in the mean-square sense and show that the numerical
solutions obtained via the splitting approach converge to the process as the time step A — 0
with order 1. The frequently applied Euler—Maruyama scheme usually converges with mean-
square order 1/2 if the noise is multiplicative [22, 33], as is the case for the system (7). In
the following result, thanks to the specific structure of the noise component, we show that the
Euler—-Maruyama scheme coincides with the Milstein scheme, which is known to converge
with mean-square order 1. This result is then used to establish the convergence order of the
splitting scheme.

Theorem 5. (Mean-square convergence of the splitting scheme.) Grant Assumption (A). Let
Xt denote the numerical method defined by (20) at time point t; and starting from xo. Then X,,
is mean-square convergent with order 1; i.e., there exists a constant C > 0 such that

(E [Hx,,. -, ;12])% <CA

for all time points ti, i=1, ..., imax, Where | - || denotes the Euclidean norm.

Proof of Theorem 5. Let us denote by XM a numerical solution of the SDE (7) obtained via
the Euler—Maruyama method; that is,

XM =X 4+ A (AXPM + BAGM) + %o(iﬁM ). (22)
First, we show that the Euler-Maruyama method, when applied to the system (7), coincides
with the Milstein scheme, which is known to converge with mean-square order 1. To do so,
we define the vector x by x = (xl, ..., X9, where k = n; + n2 + 2. Further, we recall that the
jth component, j=1, ..., x, of the Milstein scheme differs from the jth component of the
Euler—-Maruyama scheme (22) only by the following additional term:

> Yot

my,mpy=1 [=1

]m2

—1(mi, m2),

where o/ denotes the value of the element at the jth row and the mth column of the diffusion

matrix o at time ¢;, and
lit1 52 " "
I(my, mp) = / / AW dW?2.
t 1

Now note that the term acrj’"”/axl is different from O only forj=n1 + 1, mo=1,1=n1 +2
and for j=n1 +n2 4+ 2, m; =2, [=1. However, olm equals O for those values of I. Thus,
the above double sum equals 0 and the Euler-Maruyama method coincides with the Milstein
scheme. This implies that

I1X;, — X2 < €A, (23)

where | - [|;2 1= (E[H . ||2])1/2 denotes the L? norm and C is some generic constant. For the
second part, we provide a proof similar to the one presented in [32]. Applying the triangle
inequality yields that

v vEM vEM 3
”Xti _Xti||L2 < ”Xti _Xt,' ||L2 + ”Xfi _Xti||L2~
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XM
i+1
the Euler—Maruyama and splitting scheme, respectively. For instance,

(x, t;) and 5(,1. 1 (%, ;) the one-step approximation of
KEM
- it
by Equation (22) with XfM replaced by x. By the definition of the matrix exponent, i.e.

AL =T+ AA+ A{Az + O(A?), and by recalling (20), we obtain that

Given X;, := x, let us denote by

(x, t;) is given

. . VA
XPM(x, 1) = Xy (3, 1) = x+ AAx + AB(x) + ﬁama

— AP (x + AB(x) + %o@)&)

va

VN

A
—x—AB(x) - %U(x)gi

— AAx — A’AB(x) —

=x+ AAx+ AB(x) + o(x)§;

Al
N

3
= —AAB(x) — %A o0& + R,

Ao(x)& +R

where R is a corresponding stochastic remainder. Consequently, we get that

[E[%E 0 1) = Ko, 10] | = 0,

iyl

Recalling (23), the result follows from the fundamental theorem on the mean-square order of
convergence; see Theorem 1.1. in [33]. O

lit1

XEM(x, 1)) — X, (x, n))

—0(A?).
L2

Theorem 5 states that as A — 0, the approximated solution (f(ti)izo ,,,,, imae CONverges to the
true process (X;);>0 in the mean-square sense. In practice, however, fixed time steps A > 0 are
required. Thus, there is not yet any guarantee that the constructed numerical solutions share the
same properties as the true solution of (7). For these reasons, we additionally study the ability
of (5(,!.),':0 to preserve the derived first and second moment bounds and the geometric
ergodicity of the SDE (7).

Note also that, unlike the case of ODE systems [19], for stochastic equations the theoretical
order of convergence usually cannot be increased by using the Strang composition instead
of the Lie-Trotter approach. In practice, however, the Strang splitting often performs bet-
ter than the Lie-Trotter method; see e.g. [3, 7]. This is also confirmed by our numerical
experiments in Section 5.

3.2. Moment bounds of the approximated process

We are now interested in studying the qualitative properties of the splitting schemes for
fixed time steps A > 0. We start by illustrating that the constructed splitting schemes preserve
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the convolution-based structure of the model derived in Proposition 2. Using the one-step
approximation (20) and performing back iteration yields

xd
X, = f‘"xo+AZeA”B(X,, D+ — ZeAflo(X,, i1 24)
=1

Note that the first term on the right side of (15) is preserved exactly. Moreover, the sums in
(24) correspond to approximations of the integrals in (15) using the left-point rectangle rule.
The expression (24) allows one to derive moment bounds for the numerical process in a similar
fashion to that presented for the continuous process in the previous section.

Theorem 6. (First moment bounds of the approz&imated process.) Grant Assumption (A). The
Sfollowing bounds hold for the components of E[X;,]:

k,

k
Ivl <EX] < T,

where

fkj ( A\ A Xl: vty MeH1=j {0 ¢ lgralx }
o= (e ’xo) + e Kt min T ( »
min e (i +1 = )!

k.j k.j i 1 kil
- ; : (i + 1= )!

Proof of Theorem 6. From Remark 2 and (24), it follows that

—(eAt’xo)k—FA Z Aukan Xg—i-ll Z A”ktldk(XkJ'_l)E,’_l-
=1

Consequently, the jth components are given by

i

Sk At \kj 1 K11\ oty k1—j
X, =("x0)" + ————F—A cfir1(X e kY,
i —— 1)) ,ZI: i
=1 _

= fQ([)

1
T T VN & U

kLT vty it L gkt 1
Jir1 (X, Iy & -

=T5(t)

Note that E[T(t;)] = T (¢;) and E[T3(t)] = 0. The fact that the intensity function is bounded by

0 <fir1 <fi) implies the result. O

Note that the bounds obtained in Theorem 6 equal those derived in Theorem 3, up to replacing
the integrals (calculated in the proof of Theorem 3) by left Riemann sums. The accuracy of this
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FIGURE 2. First (left panel) and second (right panel) moment bounds of the excitatory population k£ =2
for different values of v,. The moment bounds for the diffusion are in solid lines and the moment bounds
for the splitting scheme are in dashed lines. The bound of the rate function is fixed to f"** = 1. The
parameters are 172 = 3, N = 100, p; = 1/2, and the time step A = 0.1 is used.

approximation depends on the step size A. Under reasonably small choices of A, the bounds

are preserved accurately for all #. This is illustrated in the left panel of Figure 2, where we

plot the first moment bound of the process (main variable of an excitatory population) and

that of the approximated process, derived in Theorem 3 and Theorem 6, respectively. Different

choices of v, are compared, and A = 0.1 is used for the bound of the approximated process.
The following corollary gives intuition for the long-time behaviour of the bounds.

Corollary 1.

(i) The following bounds hold for the components ofIE[f(ti] as i — oo (with A fixed):

max
ki, . _ . ek . oy
A¥ +1Ll_Kk,j (e ”kA) min {0, L2 < im IE[X;‘.”]
Kk i—00 !
max
kigl, . _ Stk
< A +1Ll,,(k,_,~ (e ”kA) max {0, k+kl. },
KR!

where k¥ := n; +1—j, and Li_ (e’”kA) is a polylogarithm function, which can be
written as

N ki ) 1 +1
Ll'f,ck,j (efukA) = (_1)K J41 Z [ S(Kksl +1,1+1) <17va) i
—e
=0

with S(®/ + 1, [ + 1) denoting the Stirling numbers of the second kind [38].
(ii) The following bounds hold for the components ofIE[f(ti] asi— ooand A — 0:

it k. e
min {0, —L b < lim lim E[X,/] <max {0, —-

UKk’]'H A—0 i—00 ! ka’/'H

k k
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Proof. (1) The zero bound is trivial. Considering

| vt VLA (A
i 3 = i 3

=0 =0

i
. k.j _ k.j kj . —
= lim A* E e VAT — A Li_,j (e ”kA)

i—00
=0

gives the result. The explicit form of the function is given in [43].
(ii) Let us rewrite once again the expression included in the limit:

kj .
(= im —
A—0 ]’:H-l k.jy

kj Kk 1
A) +1 —1 m+
WA T E m! S* + 1, m+1) (7)
e—VkA

| SR+ 1, kM 1k WA\
= lim = _
A=0 v,’(‘ I ki) 1 —e %

(SR LR D! wa ik R
- it ke [—ewa) TOBDI
Vk K

. kA
Iim [ —— ) =1.
A—0 \ 1 — e A

P ES

Note that

This implies that in the limit 1/v;, is the only remaining term, since the rest converges to 0
as A — 0. This gives the result. O

In the first part of Corollary 1, the sums in Theorem 6 are calculated explicitly as i — oo.
This limit is described by polylogarithm functions. Note that the zero bounds derived in
Remark 3, i.e. the upper bounds for the inhibitory population (¢, = —1) and the lower bounds
for the excitatory population (cx = +1), are preserved exactly by the splitting scheme for all
times ¢; and for all choices of A > 0. Moreover, the lower bounds for the inhibitory population
and the upper bounds for the excitatory population are preserved accurately as i — 0o, pro-
vided that A is reasonably small. Indeed, as i — oo and A — 0 (second part of Corollary 1),
the bounds coincide with the ones obtained in Remark 3.

Theorem 7. (Second moment bounds of the approximated process.) Grant Assumption (A).
Each component of E[(Xf)z] is bounded by

k.j ki) kj o/ 7.
E[(Xt /)2] < <<€At )C()) > +2 (e )C()) max {0 m /(t)}

2
2 7k.j
max Ck max 7K.j I, (1)
S S— I« —2 1,
i <(77k+1—j)!> U R
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where 7,];’j(t), u=1,2, are defined as

@ = A Z et O,
=0
Proof of Theorem 7. The proof repeats the proof of Theorem 4, up to replacing integrals
1,7 (1) by sums I, (1), 0

As before, the second moment bounds obtained for the splitting scheme equal those derived
for the true process in Theorem 4, except that the integrals are replaced by the corresponding
Riemann sums. Using the same arguments as in the proof of Corollary 1, we conclude that the
second moment bounds are also preserved accurately by the splitting scheme for reasonable
choices of the time step A. A comparison of the theoretical and discrete second moment bounds
is provided in the right panel of Figure 2.

3.3. Geometric ergodicity of the approximated process

Finally, our aim is to prove that the splitting scheme preserves the ergodic property of the
underlying process, in the spirit of [3, 30], providing a discrete analogue of Proposition 1.
The main step is to establish a discrete Lyapunov condition for the approximated solution
(5(,1.)[:0,__,, imae- This 18 granted by the following lemma.

Lemma 1. (Lyapunov condition for the approximated process.) Grant Assumption (A). The

functional G given by
2 e+l

~ J .
6w=3 3 Lo
k=1 j=1 Vi

is a Lyapunov function for X; i.e., there exist constants o € [0, 1) and B > 0 such that
E[G(X,, )% | = aG(X,) + B,
Proof. We bound the approximated solution obtained via (20) from above by a sum of three

terms, thanks to the triangle inequality:

G(Xy,)) = ( APX, + ALPBX) + %ef‘%(x,l)s,)

<G (MK, ) +AG (M4B(K,)) + Mo(X,)g) -

T, ) T

JA .
Wl

Note that the term 75, as well as the expectation of T3, is bounded by a constant depending
on fi"™, so that E[T2]X;,] + E[T3|X;,] < B, and B > 0 since we consider the absolute value.
Further, using the formulas (16)—(17), we can expand 77 as follows:

6 (%) = ZZ LIS 2
=t

< - —vank+1 o AT

_;e Zw— Z(m J)"“ |
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2 [+1
:Z VA Z L ‘X ) - ‘X f,mﬁrl‘
pa = Vi "" el 17
[+ ni+1
N J Jj—1 (U749 LU S P
= | 2 i e aw o e B e
i V;( Nkl v
Note that, since v; > 0, for all m > 1 it holds that
nk+1 .
m + ~ -~ [
¥ <5 L w6 (x).
v
Thus, we have
A% : A (A <k
G (M%) =Y (e = G (%)
; J! !
k=1 j=0
Let
A
oc—max e ”kAZ(Uk y
j=0
Since 7y is finite, we get o < 1, which implies the result. O

Note that the statement of Lemma 1 holds without any assumption on the time step A. Also,
the Lyapunov function is the same as for the continuous process up to smoothing the absolute
value (see (14)). With a discrete Lyapunov condition established, the ergodicity is conditioned
on two further technical steps. First, the transition probability of two (or more) consecutive
steps, given by the recursive relation (20), must have a smooth transition density. This fact is
granted by the hypoellipticity of the scheme (see Remark 5).

Second, the irreducibility condition must hold. This means that any point y € R can be
reached from any starting point x € R* in a fixed number of steps. In other words, we need a
discrete-time analogue of Theorem 4 in [27], granting the controllability of the SDE (7). This
is provided by the following lemma, which is proved in Appendix A.3.

Lemma 2. (Irreducibility condition.) Grant Assumption (A). Let n* = maxy{ni}. Then, for all
x,y € R, there exists some sequence of two-dimensional vectors (§;)i=1,... y++1 Such that

y=(Valépsi1lo- - oPaléll) (),

7+l

.....

where ra denotes one step of the scheme defined by (20), and the notation [ - | is introduced
to stress the dependency on the vectors (§;)i=1,....p*+1-

Lemmas 1 and 2, combined with the hypoellipticity of the scheme, gives the following
result, which is analogous to Theorem 7.3 in [30].

Theorem 8. (Geometric ergodicity.) Grant Assumption (A). Then the process (i(t,-)i=0 ,,,,, imax
has a unique invariant measure 72 on RX. For all initial conditions xo and all m > 1, there
exist C = C(m, A) > 0and . = A(m, A) > 0 such that, for all measurable functions g : R — R
such that |g| < G",

Vi=0,... . ima,  |Ee(X) —72(g)| < CGlxo) e M
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4. Thinning procedure for the simulation of the PDMP

In this section we explain the simulation method for the multidimensional point process
characterized by the intensities (1). This part is motivated by the fact that the simulation of
the PDMP, unlike that of the stochastic diffusion, can be exact. By that, we mean that the
result of the simulation is a realization of ()_(,),20. In comparison, the result of the simulation
of the diffusion (X;);>¢ is in fact the discrete-time process (5(,!.),' 0,....imax- Lhis allows us to
compare the PDMP (5) with the stochastic diffusion defined through (7), which we treat via
the property-preserving splitting scheme introduced in the previous section.

We choose the thinning procedure which dates back to [25] and [26]. It is based on the rejec-
tion principle and relies on the following fact. In order to simulate a point process Z according
to the stochastic intensity A,, it is sufficient to simulate some (dominating) point process Z with
(dominating) predictable piecewise constant intensity X such that A, < A,. During the simula-
tlon of Z, each new simulated spiking time 7 for Z is kept as a point of Z with probability

/A (independently from every other point). Otherwise, T is discarded. The efficiency of
the thinning procedure is highly related to the sharpness of the upper bound A. The sharper the
bound, the fewer rejections are made and the more efficient the procedure is.

Note that the case 1 = 0 corresponds to the exponential kernel. The simulation of Hawkes
processes with an exponential kernel has been widely studied, and there exist several imple-
mented packages, e.g. for the software R. Apart from the thinning procedure, other exact
simulation algorithms are available; see, in particular, [12]. To the best of our knowledge, the
only reference for the case when n; > 1 is [16]. The aim of the current section is to generalize
the algorithm presented in the above-mentioned work to the case of multiple populations and
to provide a more efficient upper bound A. In particular, our approach allows for an efficient
handling of rapidly increasing intensity functions.

4.1. Choice of an upper bound for the intensity
IfZ =0, i.e.in the gbsence of any spike, it follows from (5) that X evolves as a linear ODE
with matrix A, so that X; = ¢*'xg. In particular, for all neuronsn =1, ..., N, it follows that

M = i @Mxo)th). (25)

One possible choice for the dominating intensity A in the thinning procedure is to provide an
upper bound of (25) which holds for all # > 0. A straightforward candidate for such a bound is
provided in the following lemma.

Lemma 3. For any x € R¥, let ®¢(x) = sup,~ (ex)%1. Then
. Y
Dp(x) < Op(x) = lmax 1 0, —¢.

Proof. The explicit expression for (eA’x)k*1 is given in (17); that is,

11k
(eAlx)k,l — e—Vkl <xk,1 + txk,Z R _'x](,r}k-‘rl) .
Nk:
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Setting y; = X5 /(uey =1, one gets

_ (tvg) _
(eA’)c)k’1 = M (yl +tvey2 +-- -+ T)’r/kﬂ < m]flx{O, yile Y g(1).

The result follows from the fact that g(r) = 1 + tvg + - - - + (tve) ™ /i) < e, [l

Remark 6. Another possible choice of a uniform bound, similar to the one given in Lemma 3,
is provided in [16]. Their method, adapted to our case, gives

@ (x) < emax {1, <ﬂ)nk} max{xk’j},
J

evk

which is larger, and thus less efficient, than the bound proposed in Lemma 3.
Since the functions f; are non-decreasing, the upper bound of (¢A'x)*! given in Lemma 3
provides the bound

Fex) =fi(Dr(x)) (26)

on the intensity. However, there is no guarantee that this bound is sharp. In most practical cases
(especially when the functions f; are increasing fast), the procedure rejects a vast majority of
the simulated points. Hence, a more efficient approach, based on the computation of the critical
points of the function ()bl s proposed. Furthermore, instead of considering a bound for
any ¢ > 0, we choose a fixed time step A > 0 (such that one spike is likely to occur in the
interval [0, A]) and compute CDkA(x) = SUPy_,< i (e“”x)k’l instead of ®(x). This choice has no
impact on the precision of the simulation. It only influences the sharpness of the bound used in
the method and thus its computational efficiency.

Lemma 4. For any x € R", it holds that

cbzé(x): max {xk’l, (eAtcx)kJ’ (eAAx)k,l} 7
O<te<A

)k,l

where the maximum is taken over the critical points t. of t — (e*'x)*!, which are the solutions

of the equation
(1)~
(e — D!

+ (— oty ((t’;])(_zl: =0

Proof. The result follows from the computation of the time derivative of (eAx)kl, [l

(—vkxk’l +xk’2) 4t (—kak’nk +xk,nk+1)

The critical points in Lemma 4 are given by polynomial roots, which can be accurately com-
puted numerically. In most practical cases, the computational cost of the polynomial roots
is compensated by the efficiency gained in the rejection method. Finally, let us define the
upper-bound intensity function by

TR0 = fi( @2 ). 27)

Note that when the population is inhibitory (¢ = —1), the naive upper bound fi is constant with
respect to time, because all the coordinates of X I are always negative and the bound given by
Lemma 3 is 0. Thus, fx =fx(0). Of course, such a bound is not sharp in general. However, it is

interesting to see how the two upper bounds fk and ka behave for a particular realization of the
intensity process for excitatory populations. Figure 3 gives a comparison of the paths of f> and
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FIGURE 3. Intensity and intensity bounds for the second population (excitatory), ¢ € [20, 100]. Red solid
line: true intensity Alz. Black dashed line: fZA (X;). Grey dashed line: ‘)7'2()_(,). Intensity functions f] and f>
are given in (28); vy = v, =0.9, N| = N, = 50.

sz for the excitatory population (with A = 1). We observe that both bounds are fairly precise
when the potential )_(12 (or, respectively, the intensity process) is decreasing. On these intervals
the differences between the three trajectories are negligible. However, the accuracy offz drops
drastically on the intervals where the intensity grows. In general, the higher the amplitude of
the oscillations, the poorer the performance of the naive bound. This is particularly visible
when illustrated on systems with high memory order (17x =3 or 6). For n;y =1 both bounds
perform well; however, ka is clearly closer to the true process. The influence of the bound

0 orsz) on the execution time is discussed in Section 5.

4.2. Simulation algorithm

Now let us detail the recursive procedure, which is summarized in Algorithm 1. We
choose a discrete time step A and a stopping time #max, and we fix the initial values 7o =0
and Xo = xo € R¢. Let us assume that the procedure’s current step is i, with current time
t; and potential value X;. Let us explain how #;.1 and )_(H_ 1 are obtained. One simulates
two independent exponential variables 71 and 1 with respective parameters Nkka (x) (one
for each population). They represent the waiting times to the next spikes of the dominant
process Z for each respective population. Then two cases may occur:

1. If min{tq, o} > A, no spike occurs in the interval [#;, t; + A]. We update ;41 =t + A
and )_(iJrl = eAA)_(i.
2. If T =min{ry, 12} < A, then the dominating point process Z emits a spike at time

t* =t;+ t. Let us denote by k* the population with the smallest waiting time; that
is, T = t+. It remains to decide whether * is also a spiking time for the process Z.
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Algorithm 1: Simulation of model (1) with K = 2 populations.

Input: intensity functions f; and fo; integers N1, Na, 11, and 72; real numbers
c1, 2, v1, v, A, and tmay; real vector zy € R”.
and intensity processes ()\k)k:m.
Initialization: t «— 0, T «— xg;
while ¢t < t,,,, do
A — ka(w) for k=1,2;
draw 75 ~ S(N;C;\k) for k=1,2;
T «— ming 7, and k* < arg ming 7x;
if 7 > A then
(1) t<—t+Aandx<—eAAx;
else
tet+7, 20— eAx, Apr — fr-(2);
draw U ~ U([0, 1]);
if U < \g-/M\p- then
2 draw n ~U({1,..., Nj-}) and add ¢ to the list Z* ",
r—ax+T1(k%);
add z to the list X and A\, = fi(z) to the list A\* for k = 1,2;

else

(3) do nothing;

If not, this point is discarded. We draw a uniform variable U on [0,1] and define the
threshold R:
i (¢"7Xi) Y |
R:= T; R € [0, 1] by the definition of f;~ (x).
fk* (X3)
o If U>R, then_ t* is disca_rded, i.e., no spike occurs in the interval [t;, r*]. We update
tiy1 =t and X1 = eATX,'.

e If U <R, then * is kept, i.e., we add r* to the list of_ one neuron of population k*
chosen uniformly at random. We update #; | = r* and X; | = A7 X; 4+ ' (k*), where
L(k*) = (Mgt Lpe) T

Finally, the execution is stopped once #; > fmax, i.€. once the time horizon of interest is reached.
As output the algorithm returns a list of the spiking times of each neuron and the values of the
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processes X and A at the spiking times. At this stage it is clear why it is important to have a
sharp upper bound. The closer the threshold R is to 1, the fewer points are rejected.

Algorithm 1 is most efficient when every iteration of the while loop enters the condition
(2). Of course, that ideal case does not occur in practice. When lowering the value of A, the
number of loops satisfying the condition (3) decreases, because the dominating intensity A is
getting smaller. On the other hand, the number of loops fulfilling the condition (1) increases,
because the exponentially distributed times have greater chances of being larger than A. The
calibration of A is a difficult problem which is not addressed here. In practice, it is observed
that the execution time is not very sensitive to the value of A. The main bottleneck of the
thinning algorithm is the sharpness of the intensity bound. When the intensity functions are
exponential, the execution time is more than halved with the bound of Lemma 4 compared to
the bound of Lemma 3. This is illustrated in the right panel of Figure 8.

5. Numerical experiments

We now describe a simulation study illustrating the theoretical results discussed in the previ-
ous sections. It consists of two steps. First, we study the performance of the proposed splitting
schemes. More precisely, we compare the Lie-Trotter (20) and Strang (21) splitting schemes
with the Euler—Maruyama approximation. We report sample paths and empirical densities and
comment also on the first and second moments. This step follows the numerical study in [3],
and shows that the Strang splitting performs best. Second, we compare the diffusion process
(simulated with the property-preserving Strang splitting scheme) to the PDMP, varying the
number of neurons N. In particular, when comparing the long-time behaviour of the processes
(see Figure 10), we show that the diffusion approximation is less and less accurate as t — +o0.
This confirms the results obtained in Theorems 1 and 2.

Following the work of [15], throughout this section we use the following intensity functions:

10e* if x <10g20), e if x <1og(20),

fi)= 400 _ fx)= 40 , (28)
W if x > 10g(20), W if x > 10g(20)

Further, we fix the parameters c; = —1, ¢ = 1 and consider N1 = N;. Unless stated differently,

throughout this section the initial condition is fixed to xo = 0,.. The parameter py is then defined
as Ni/N. The fact that c1c2 < 0 ensures that the population shows an oscillatory behaviour, for
certain parameters v and i (see [15] for further details).

5.1. Comparison of the Euler-Maruyama method and the splitting schemes

In this section we are interested in comparing the performance of the splitting schemes
with that of the frequently applied Euler—-Maruyama method, for varying time steps A. The
parameter values vy = v = 1, n1 =3, 72 =2, Ny = N = 50 are used, and the dimension of the
system is thus « = 7. Except for the density and mean-square convergence plots, we consider
the time interval [0,100]. Unless stated otherwise, we plot the variables Xf’l fork=1,2 in
black and the remaining 1 + 72 auxiliary memory variables in grey.

5.1.1 Illustration of the mean-square convergence order. We start our study by comparing the
convergence rates of the Euler—-Maruyama method and the Lie—Trotter (20) and Strang (21)
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FIGURE 4. Mean-square order of convergence. The reference solution is obtained with the Euler—
Maruyama method and the small time step A =1075. The numerical solutions are calculated for
=107%,1073, 1072, 107", The time * is 1, and M = 10°.

splitting schemes. The root-mean-square error (RMSE), approximating the left side of the
equation in Theorem 5, is defined as

1/2
RMSE(A)::( an(l)—x“) ) ,

where Xﬁ*l) and 5([(? denote the values at a fixed time ¢* of the /th simulated trajectory of the true
process and its numerical approximation, respectively. The integer M is the total number of
simulated differences. The value of the true process Xt(i) is obtained from the Euler—-Maruyama
scheme, using the small time step A = 107>. The number of simulations is fixed to M = 103
and r* = 1.

We report the RMSE in Figure 4, where the x-axis corresponds to the logarithm (base 10)
of the time step A and the y-axis corresponds to the logarithm (base 10) of the RMSE. The
theoretical rate of convergence obtained in Theorem 5 (all considered schemes converge with
order 1) is confirmed empirically. While the Lie—Trotter splitting and the Euler—Maruyama
scheme show a similar RMSE for varying A, the RMSE obtained for the Strang splitting
method is significantly smaller for all A under consideration, implying higher efficiency for
that scheme. We stress, however, that from the fact that the rate of convergence is the same, it
does not follow that they share the same qualitative properties when the step size A is fixed.

5.1.2 Illustration of the qualitative properties of the splitting schemes. We now illustrate how
the proposed splitting schemes preserve the structure (e.g. the moments and the underlying
invariant distribution) of the process, even for large values of A, while the Euler-Maruyama
method may fail to do so. We start by studying sample trajectories (see Figure 5). All three
methods yield comparable performance when A =0.01. For A =0.5, the Euler-Maruyama
scheme preserves the oscillations, but does not preserve the amplitude. The behaviour of the
inhibitory population is less accurately approximated than that of the excitatory one. This prob-
lem worsens as A increases further to 0.7. An interesting observation is that, for time steps A
that are not ‘small enough’, the Euler—-Maruyama scheme may not preserve the mean of the
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FIGURE 5. Sample trajectories of the system, simulated with the Euler-Maruyama scheme (top), the
Lie—Trotter splitting scheme (middle), and the Strang splitting scheme (bottom), for varying A.

process (see also Figure 7). Indeed, it has been observed that the Euler—Maruyama method pre-
serves the first but not the second moment (see e.g. [3, 20]). In other words, the amplitude of the
oscillations grows, but the mean is unchanged. In our case, however, since the trajectories are
bounded by 0 from below or above (depending on the sign of c¢i), the increased amplitude also
introduces a bias in the first moment. Thus, the Euler—Maruyama approximation of the system
(7) preserves neither the first nor the second moment. In contrast, the Lie-Trotter and Strang
splitting schemes show comparably good performance. However, the Lie—Trotter splitting is
less accurate in reproducing the delay between the current state of the process (black line) and
the memory variables (grey lines) in the beginning of the interval, where the amplitude of the
oscillations is large (see also Figure 7).

The difference between the schemes becomes clearer as we look at the phase portrait
of the system (Figure 6). We observe again that both splitting schemes yield satisfactory
approximations (for all A under consideration), the Strang approach slightly outperforming
the Lie—Trotter method. In contrast, the phase portrait obtained with the Euler-Maruyama
approximation fails to reproduce the behaviour of the process for A =0.5 or A =0.7.

Similar conclusions can be drawn from Figure 7, where we visualize the marginal densities
of the process. Each visualized density is estimated with a standard kernel density estimator,
based on a simulated long-time trajectory (T = 10°) of each variable of the process. We observe
again that the Euler—-Maruyama method may not preserve the mean of the process (red dashed
vertical lines). Moreover, the Euler—Maruyama scheme may even suggest a transition from a
unimodal to a bimodal density as A increases.

5.2. Comparison of the PDMP and the diffusion

Now we are interested in comparing the PDMP process X, simulated with the thin-
ning algorithm detailed in Section 4, and the stochastic diffusion X, simulated with the
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FIGURE 6. Phase portrait of the main variables, simulated with the Euler-Maruyama scheme (top),
the Lie—Trotter splitting scheme (middle), and the Strang splitting scheme (bottom), for varying A and
x0=1(0,0,-3.5,—-4,0, 1.3, 1.1).

property-preserving Strang splitting scheme introduced in Section 3. We simulate the trajec-
tories of the stochastic diffusion process with the Strang splitting scheme, since it showed the
best performance in the previous section.

5.2.1 Execution time. As a first step we consider the execution time. We compare the numer-
ical cost of the simulation of the process X with two different intensity bounds (based on
Lemmas 3 and 4) to that of the simulation of the diffusion X with the Strang splitting scheme.

We set tmax = 100 and vary the total number of neurons, taking N = 20, 50, 100, 150, 200
and N1 = N;. In the case of the diffusion simulation, the parameter N does not influence the
computational cost. Thus, we report the execution time for the diffusion simulation only for
N =200, taking A =0.1, and report it as a reference value. The time step A for the thinning
procedure is defined in an adaptive way within the while loop of Algorithm 1. In each step
we use the last computed value of the intensities A and set A equal to (N1A1 + Nz)»z)_l. This
choice takes into account the scaling with respect to the number of neurons and the dynamics of
the intensities. For instance, X>! roughly belongs to [0, 2] (see Figure 10), so that the intensity
of population roughly belongs to [1, 7] (with the intensity functions defined in (28)).

In Figure 8, two different sets of intensity functions, ‘truncated linear’ ones and ‘expo-
nential’ ones, are studied. The plots show, in seconds, the mean execution times (over 100
realizations) required to simulate the process on the interval [0, fmax], using the bounds f(x)
andf‘A (x) (defined in (26) and (27), respectively).

Note that there is almost no difference in the performance of the algorithm with differ-
ent bounds in the linear case (left panel of Figure 8). That means that the bound obtained in
Lemma 3 is sharp enough. Note also that since f;"** = 10, there occur only a few spikes and
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panel: fi and f> are given by Equation (28). The rest of the parameters are given in the beginning of
Section 5.
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f1(x) =f2(x) = min{a + €, 40}, where the parameter a varies between 0.02 and 1 with a step of 0.02. The
rest of the parameters are given in the beginning of Section 5; Ny = N, =25.

the process is simulated very fast. However, in the case of an exponential intensity (right panel
of Figure 8), the execution time drastically increases. The process is simulated at least twice
as fast with the local bound. The main reason is that the local bound ka(x) rejects around

2% of spikes, while the bound fk(x) rejects around 90%. In general, we can conclude that the
execution time depends linearly on the number of neurons for both the local and the general
bound. Disregarding the bound chosen, neither algorithm can compete with the time required
for simulating the diffusion. For A = 0.1 and T = 100, the average running time with the expo-
nential firing rate function is equal to 0.598s (with standard deviation 0.12s). For the linear
one it is 0.597s (with standard deviation 0.15s). Thus, the execution time for the diffusion
approximation does not depend on the firing rates.

Obviously, the execution time of the thinning algorithm depends on the number of
spikes of the system per time unit, which is well approximated by the temporal mean
intensity (formally defined by 7! fOT A’S‘*"ds). Hence, for a fixed number of neurons N,
a modification of the intensity functions f; changes the execution time. In Figure 9, we
report the mean execution time over 100 repetitions of the experiment, plotted against the
temporal mean value of the inhibitory population for a fixed number of neurons Nj =
N> =25. For simplicity, we take the same intensity function for both populations, but
we add a baseline intensity parameter a in order to control the temporal mean inten-
sity: more precisely, f1(x) = f2(x) = min{a + x1~¢], 40} for the truncated linear case, and
f1(x) =f2(x) = min{a + ¢*, 40} for the truncated exponential case. As a increases, the tem-
poral mean intensity increases and so does the execution time: the latter even increases
linearly with respect to the mean intensity, whatever bound method is used for the algo-
rithm. Comparing the two plots in Figure 9, it appears that the truncated exponential case
is computationally more expensive (the values and the slopes are larger for both bounds).
Once again, this comes from the fact that the proportion of rejected spikes is larger in the
truncated exponential case. In both cases, the dependency on the temporal mean value is
linear (which further confirms the results presented in Figure 8). Finally, notice that the
execution time for the stochastic diffusion approximation does not depend on the mean
intensity.
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FIGURE 10. Sample trajectories of the PDMP and the diffusion for varying N (excitatory population).
Solid line: main variable of X. Dashed line: main variable of X (simulated with the Strang splitting
scheme, using A =0.01).

A summary of the performances of both frameworks (stochastic diffusion and PDMP), with
respect to the parameters of the model, is given below.

e In both cases, the execution time increases as the dimension of the system grows, i.e. as
Ny increases.

e For the stochastic diffusion, the execution time depends, in a linear manner, on the step
size A.

e For the PDMP, the execution time mainly depends, in a linear manner, on the temporal
mean intensities of the two populations. They in turn depend linearly on the number N

of neurons. They also depend, in a complex nonlinear manner, on the parameters v, 1k,
and f.

e The computational cost of the simulation of the stochastic diffusion does not depend on
the number of neurons N or the temporal mean intensity. Hence, it should be preferred
to the simulation of the PDMP unless the number of neurons N or the temporal mean
intensity is small.

5.2.2 Qualitative properties. It remains to determine whether the stochastic diffusion can
really capture the behaviour of the underlying PDMP. To get an intuitive idea of how different
processes behave when the number of neurons changes, we look at some sample trajectories.
We take one realization of the PDMP and the stochastic diffusion process on a time interval
of length 7'=300 and plot them in Figure 10, cutting the short interval of time in the very
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beginning in order to observe the process in its oscillatory regime. For simplicity, we focus
only on the second (excitatory) population. The trajectories in the top panel are simulated with
N> = 10, those in the middle panel with N, = 50, and those in the bottom panel with N, = 100.

Let us mention that Figure 10 is not an illustration of Theorem 2. Indeed, the trajectories
are not coupled in such a way that (12) is satisfied. To our knowledge, there is no such result in
the literature, and the coupling involved in the proof of Theorem 2 is not explicit. However, the
figure illustrates the fact that the fluctuations of both trajectories vanish as N goes to infinity
and that both converge to the solution of the ODE (10).

As a final step, we are interested in the long-time behaviour of the processes. We simulate
both processes (X and X) on a long-time interval, taking 7 = 107, and report the respective
marginal empirical densities in Figure 11. The densities of the PDMP are plotted with solid
lines and those of the diffusion with dashed lines. Even for small N, the difference between
the densities is negligible and their means are almost overlapping. As the number of neurons
N increases, we observe that the empirical densities converge to some compactly supported
distribution. Note that the mean-field limit is given by the ODE (10) as illustrated in Figure 10.
Thus we expect that the support of the limit distribution is given by the amplitude of the
solution of the ODE.

Conclusions

This work is thought to complement the papers [15] and [16]. First, we bridge the gap
between the PDMP (5) and the solution of the SDE (7) by proving a strong error bound on the
distance between the two. Second, moment bounds of the diffusion process are derived.

Furthermore, since the SDE (7) cannot be solved explicitly, two approximation schemes,
based on the Lie—Trotter and the Strang splitting approaches, are proposed. They are proved to
converge with mean-square order 1 and to preserve the properties of the model. In particular,
the advantage of the proposed approximation methods is that they make full use of the matrix
exponential e, which describes the flow of the PDMP (5). Thanks to this we are able to
propagate the noise through all components of the system, thus preserving its hypoellipticity.
Moreover, we show that the splitting schemes accurately reproduce the derived first and second
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moment bounds and that they preserve the ergodicity of the continuous process, even for large
values of the discretization step A.

These properties are particularly important when embedding the numerical scheme, for
instance, into a statistical inference procedure. For example, maximum likelihood estima-
tion techniques require the existence of a non-degenerate covariance matrix of the discretized
process. For simulation-based inference methods (see [7]), the performance of the Euler—
Maruyama method may be acceptable for ‘small enough’ time steps. However, the use of
smaller time steps drastically increases the computational cost, making inference based on the
Euler—-Maruyama method computationally infeasible. Moreover, even for arbitrarily small time
steps there is no guarantee that the Euler—Maruyama scheme preserves the model properties.

In addition, an exact simulation procedure for the PDMP is proposed. A sharp upper bound
is provided, in order to yield an efficient procedure, and its performance is compared to that
of the procedure given in [16]. When the number of neurons increases, the computational cost
required for the PDMP simulation rises rapidly and cannot compete with the simulation of the
stochastic diffusion (especially for the simulation via the splitting scheme).

The PDMP and the stochastic diffusion show similar behaviour. In particular, they pos-
sess matching empirical densities. Thus, we conclude that the stochastic diffusion describes
the behaviour of the original neuronal model with very good precision and at negligible
computational cost, compared to the PDMP.

To conclude, let us point out possible extensions of the presented work. First, it would be
interesting to generalize the approach to the system with a non-cyclic feedback. Note that, if
the coordinates directly perturbed by a Brownian motion exclusively depend on non-directly
perturbed components, then the generalization of the proposed numerical schemes, based on
the subsystems (18)—(19), is straightforward. But the formal proofs would involve more tedious
computations. Second, to be as general as possible, it would be interesting to study the system
behaviour in the case of unbounded intensity functions. In this case, there is no guarantee that
the PDMP converges to the solution of the SDE in a mean-field limit. Even if this limit exists,
proving the ergodic property and the moment bounds of the resulting process would require
very different tools of stochastic and numerical analysis.
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Appendix A. Proofs

A.1 Proof of Theorem 2

The proof of Theorem 2 is mainly based on two lemmas, which are stated before the proof.
The first lemma concerns the coupling between a Poisson process and a Brownian motion. Its
proof can be found in [17, Section 5.5] (the exponential moments can be deduced from the
proof of Corollary 5.5.5).
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Lemma 5. A standard Poisson process (Il;);~0 and a standard one-dimensional Brownian
motion (By)r=0 can be constructed on the same probability space, such that

ITl; —t — By
sup ————————
=0 log(2Vvi)

]

<E<oo

almost surely, where B is a random variable having exponential moments.

The second lemma concerns the modulus of continuity for the Brownian motion. It is stated
in [23] without a proof. Hence, for the sake of completeness, we provide a proof which is an
adaptation of the arguments presented in the appendix of [18].

Lemma 6. Let B be a standard Brownian motion and T a positive time. Then

|B; — Bs|
M := sup
ts<1 /1t — s|(1 +T1og (T/[t — s|))

is a finite random variable such that M? has finite exponential moments.

Proof. Thanks to the scaling properties of Brownian motion, it is sufficient to prove the
statement for 7= 1. In accordance with [18], let ¢ > 1 and define two increasing functions W
and u by

W) =e¢"2—1 and p(x)=+/cx,
for all x > 0. Now let & be the random variable defined by

[ (e

The Garsia—Rodemich—Rumsey inequality [42, Theorem 2.1.3] implies that

lr=s] A
|B — Bs| < 8/0 w! (x_2) W (x)dx,

with W1 (y) = «/2Tog (T + y) and 1/(x) = (/c/2)x~ /2. Yet, for 0 <x < 1,

w! (i—f) = fz\/log (4€ +x2) 4 2log (1/x) < v/2\/log (4€ + 1) +2,/log (1/x).

Combining the last two equations, one gets, for all 4,

h h
sup IBI—BS|§4x/2_c‘/log(4§+l)/ d—\/{—kS\/E/ \/log(l/x)d—\/x_. (29)
0 X 0 X

|t=s|<h
The second term can be bounded thanks to

/ \/log(l/x ( log (1/x)

1 dx
\/71 oe (/0 ) T g (/m v

<2/hlog (1/h) + 4/,
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using (when h > e~1) the fact that

h 1 h 1
/671 dezfel 2&de52\/£(1 — Jlog (1/h)).

Going back to Equation (29), for some constant C which does not depend on ¢, one has that

sup 1B, — Byl = C/e (Viog (46 + D)+ 1) /(1 +log (1/h)).

|1—s|<h

Note that the random variable M defined in the statement of the lemma satisfies

M= su |<c¢z(,/1og(4s+1)+1),

0<h<1 ~h(I+log(1/h)) —

Supy,s<p |Br — Bs

so that
E [eaM2] <E I:eZach(log (4g+1)+1)] < 2acC’y [(45 T 1)2acC2] .

To conclude, we refer to the control of the moments of & given in the appendix of [18]. This
states in particular that E[(4& + 1)2"‘CC2] is finite as soon as 2acC? < ¢, which is granted if we
take o small enough. O

Before going through the proof of the Theorem, let us give an alternative representation of
Equation (5) and a sketch of the proof. Thanks to the time-change property of point processes
(see [6, Section II.6], for instance), there exist two independent standard (i.e. with rate equal
to one) Poisson processes I1! and 1% such that Z¥ :N,;1 H’/‘_\k, where A¥ is the integrated

t

intensity of Zf , that is,
1
A =N, / SieXEH N ds,
0

This time-change property is an analogous martingale property to the time-change property for
diffusions. The integrated form of (5) is then given by

Nk

_ t _ _ t _ 1 Al
X,=x0+f AXSds+CZ,=/ AXds + ¢ : ! (30)

0 0 , 3,

13

In a similar way, the SDE can be written with respect to two time-changed Brownian motions.
The general idea of the proof is then to couple the standard Poisson processes IT¥ with the
Brownian motions.

Proof of Theorem 2. It is more convenient to first prescribe the Brownian motions and
then couple them with Poisson processes. That is exactly how we proceed below. Let Y be
the solution of (7) with respect to some two-dimensional Brownian motion W = (W', W2)T.
Thanks to the time-change property of the Brownian motion (see [17, Theorem 2.12], for
instance), we let BX be the Brownian motion defined by

' I0) 1 .
Bz :/ \% Nkfk(ys’ )dWS,
0
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where (1) is the stopping time satisfying
(1)

t=Ni fi(YEDyds,
0

Then Y can be written as follows:

—1pl
f2( 21) Nl B 1
Yz—xo—i-/AYds—i—/ 1 . N ) (31)
1(xh Ny B3,
t
where

t
AR=N, / fiu(Y&Dyds,
0

We are now in a position to use the coupling with Poisson processes. Let IT¢ be the Poisson
process given by Lemma 5 with associated random variable E. Let X be defined as in (30).

Then
(el NFIBIA1+R3
X,_xo+fAde+/ (/ “) » 2’ aE (32)
XL N, 'BL, 4 R;
where |
k Ak k
R¢ = Nk(n —A,—BM).

Thanks to Lemma 5,

|R’<|<iw loc2Vv AN <E
t —Nk“k g 1) = Sk

— (logN logt 1
<C B N +T+N , (33)

log N, logt 1
logNi  logt 1
Nk Ny — Ng

for some constant C, where we used that A < Nitf{"** and N /Ny is bounded for N and Ny
large enough.

Let us write GV (1) = sup,.; N | Xy — Y;|; here and below, || - || denotes the sup norm on
R¥. Combining (31) and (32), as well as using the Lipschitz continuity of f; (with respect to
constant L), we have

t t
I1X: — Yill 5/ IA(Xs — Ys)llds + max{|ci]La2, ICzILl}/ X5 — Ysllds
0 0

+m3x{|ck (N | -

)

Then, since the operator norm ||A|| corresponding to the sup norm is finite, Gronwall’s lemma

yields
4 } e (34)

for two deterministic constants C; and Cp which depend on neither N nor T. Hence, it
only remains to estimate the Brownian increments. This can be done via the modulus of

t<T

GMN(T) < ¢ max {sup B
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continuity of Brownian motion. Indeed, for t < T, /_\ﬂ‘ and Aﬂ‘ are bounded by NTj ,:”“x, SO
Lemma 6 gives

B = B| = Muy/ [ A = AF| 1+ log Nt/ 1 A - A,

where M) is some random variable defined in the lemma. For all a > 0, the function x
Jx(1 4 log (a/x)) is increasing for 0 < x < a, and Lipschitz continuity of f; gives

t t
A — AF =N V SHiXED — fr(YEds| < C/ GN(s)ds < CTGN(T),
0 0

so that

‘B’;-\f ~ By = Mk\/ CTGN(T)(1 + log (N /CGN(T))).

On the event where GN(T) < 1, (12) holds. If GN(T) > 1, then the equation above implies

[BY, — B, | = M /TGN ()1 + log (Nf /),

and so coming back to (34) one has

GV < (M\/CT(l + log (Nf™@x/ C))y/GN(T) + N max sup IR |) T
t<T

with f™* = max{f]"*, f;"*'} and M = max{My, M>}. The inequality above is of order 2 with

respect to x = /GN(T). Yet the positive values of x such that p(x) = x> 4 bx + ¢ is negative are
such that x? < b* — ¢. Hence,

GNTy<cC (MZT(l + log (Nf™* / C)) + N max sup IR |> 26T,
t<T

Finally, (12) follows from the control of |Rf | given by (33). 0

A.2 Proof of Theorem 4

Recall that the components of the process XX are given by

kj Ary \oI ! g, e Mot 1—j
X = (%0) T | erfrnn () (g — sy T
0 (e +1-=)!
| e hrg, e i) 1= okt
+— Vet X5 )t = )" AW
VN Jo Pis Y1 =) ’

Squaring the above expression yields
i\ 2
(XI)? = Ta(0) + Tat) + T30) + Talt) + T5(0) + To (1),
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where

N2
T = ((emxo)k” ) .

! k41,1 hes) 1 ?
T, = (/ kfir1 (X{TH ) ——————= (@ — s)™* _/ds) ,
0 * (e +1—=))!
2
[ L e HI=9) 1—j 1
Tz = (— Vi X5 (¢t — sy gkt ) ,
VN Jo /Pir1 (i + 1= )! g
. t e—Vk(t—S) .
Ty = 2(eMxo)" f erfert XN = (¢ — sy s,
0 e+ 1=
t L1 e—Vk(t—S) i
T5=2/ cfir1 Xy ) —————=( — )"k ds
0 * (i +1—))!
I [o ki e 1= okt
Jp— fk+1( ) . (t_s)nk+ VA% + ,
VN Jo /Pir1 (mk+1—))! :

N I R N Y KPR o
’ fo./— T C

First, we note that E[T¢(r)] =0 and that E[T(f)] = T1(¢). Since the intensity function is

bounded by 0 < fi4+1 < f,:"ﬁ‘, we have that

max t
E[T4(5)] < max {0, 7kfk+l 2 x| eI — gymHT g,
0 + 1 =))! 0
Furthermore, applying It6’s isometry gives
2 t
_ Ck k1,087 ,—2v(t—5) 4 o\200+1—1)
B0 = e, e O e 0

max

Using again the fact that fii.1 <\ results in

LG .
E[T3(1)] <~~~ cH - / ¢~ 2W9) ¢ _ 201 g,
NPk+1 ((k +1—=7NH

Moreover, since fy+1 is bounded, we have that (T2(1))? is also bounded, and thus it follows
from the proof of Theorem 3 that

G N[ (t—s) t1=n 1)
EIT . M+l —vkt=8)cp _ ut1=) g )
[2(t)]§<(nk+l ,)!> (fo D) _ ) s)

Applying the Cauchy—Schwarz inequality gives
E[Ts()] <2 (E[T2(0)IE[T3()])'/2.

Combining the above results and using that
2(ne+1-))
25 _ sp2ntt=igg . CUIRF =D WE " vy
0 T Qup)2mA =L — /!

proves the statement.
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A.3. Proof of Lemma 2

In order to rely on a linear control problem, we decouple the two populations and treat the
nonlinear interactions in a second step, as is done in [27] for the continuous-time framework.
Let us rewrite the numerical scheme (20) as given by the one-step mapping ¥ defined by

JA YalEl)
— AA AB ] =
valEl =e G+ (”+¢N“”% (WMH@)

where
VA '
YalE1@r = e A + | Acgfip R + 2= ,__ﬁﬂwﬂhﬁ“bb
N
with .
Al A1
by =20, ..., 0, 1)T=<_,7,._.,1> c R+
! (e — D!

Now let us study the following discrete dynamical systems: x*(0) = x*, and for all r € N,
K+ 1) =M AF) + b+ 1), (35)

where (uk(t))teN* is a sequence of real numbers that will be specified below. This system is
controllable as soon as by, eA”kAbk, e, e""A”kAbk are linearly independent (see Theorem 6.D1
in [9]). Forallj =0, ..., nt, we have

. ; _ T
A, — <((1+ DAYE (G + DAy 1)
m! T (=D
Yet {1, X, ..., X" /n!} is a basis of the vector space of polynomials with degree at most

Nk, which ensures linear independence. The controllability of the system means that for
all x*, yk e Rt there exists some sequence of real numbers (uk(t))tzl ,,,,, n*+1 such that
X" + 1) = y¥, where x¥ is inductively defined by (35). In the following, we use the notation
x(0) = (L), ¥2()T. Now, let x and y be as in the statement of Lemma 2, and let x = (!, BT
and y= (yl, yz)T According to the first step of the proof, let (u (#))i=1,...,p*+1 be such that
X*(* + 1) =y* and define, forallr=1, ..., n* + 1,

Mm—mﬂmwwm
f mvfk(xk l(t

g =

in such a way that

ki, VA
R Vi

Substituting uk(t + 1) in (29) and writing & = &(¢) yields xk(t + 1) = Y al&+11(x(®))k, and thus

k(1) = fikL(e)ER@).

y=x(+ 1) = (Yalgirilo---oyalél]) (),

n*+1

which proves the result.
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