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The Allison–Faulkner construction of E8

Victor Petrov and Simon W. Rigby

Abstract. We show that the Tits index E133
8,1 cannot be obtained by means of the Tits construction

over a field with no odd degree extensions. The proof uses a general method coming from the theory
of symmetric spaces. We construct two cohomological invariants, in degrees 6 and 8, of the Tits
construction and the more symmetric Allison–Faulkner construction of Lie algebras of type E8 and
show that these invariants can be used to detect the isotropy rank.

Tits in [24] proposed a general construction of exceptional Lie algebras over an
arbitrary field of characteristic not 2 or 3, now called the Tits construction. The inputs
are an alternative algebra and a Jordan algebra, and the result is a simple Lie algebra of
type F4, E6, E7, or E8, depending on the dimensions of the algebras. The construction
produces, say, all real forms of the exceptional Lie algebras, and a natural question is if
all Tits indices can be obtained this way. Garibaldi and Petersson in [12] showed that
it is not the case for type E6, namely that Lie algebras of Tits index 2E35

6,1 do not appear
as a result of the Tits construction. We show a similar result for type E8, namely that
Lie algebras of Tits index E133

8,1 cannot be obtained by means of the Tits construction,
provided that the base field has no odd degree extensions. The proof uses the theory
of symmetric spaces and the first author’s result with Semenov and Garibaldi about
isotropy of groups of type E7 in terms of the Rost invariant [13].

We prefer to use a more symmetric version of Tits construction due to Allison and
Faulkner. Here, the input is a so-called structurable algebra with an involution (say,
the tensor product of two octonion algebras) and three constants. The Lie algebra
is given by some Chevalley-like relations. The Tits construction and the Allison–
Faulkner construction have a large overlap but, strictly speaking, neither one is more
general than the other. The Tits construction is capable of producing Lie algebras of
type E8 whose Rost invariant has a nonzero three-torsion part (necessarily using a
Jordan division algebra as input), but the Allison–Faulkner construction of E8 cannot
do this—at least when the input is a form of the tensor product of two octonion
algebras, because these can always be split by a two-extension of the base field. On the
other hand, the Allison–Faulkner construction is capable of producing Lie algebras of
type E8 with the property that the two-torsion part of their Rost invariant has symbol
length 3, and this is impossible for the Tits construction (see [8, 11.6]). An E8 with this
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The Allison–Faulkner construction of E8 687

property would necessarily come from what we call an indecomposable bi-octonion
algebra, and these are related to some unusual examples of 14-dimensional quadratic
forms discovered by Izhboldin and Karpenko [16].

We produce two new cohomological invariants, one in degree 6 and one in degree
8, and show that these invariants can be used to detect the isotropy rank of either the
Tits or the Allison–Faulkner construction (but unlike the results of [12] for groups
of type E6, we give necessary conditions only). The main tool for constructing these
invariants is a calculation of the Killing form of an Allison–Faulkner construction
which, under a mild condition on the base field, is near to an eight-Pfister form (a
so-called Pfister neighbour).

We are grateful to the referee for many comments on the exposition, especially for
stating Lemma 3.2.

1 Preliminaries

Let K be a field of characteristic not 2 or 3. If q is a quadratic form, we write q(x , y) =
q(x + y) − q(x) − q(y) for the associated symmetric bilinear form. Conversely, if b
is a symmetric bilinear form, then q(x) = 1

2 b(x , x) is the associated quadratic form.
This convention agrees with [22] but differs from, say, [17, Section VII.6]. If A is an
algebra and a ∈ A, we denote by La , Ra ∈ End(A) the left- and right-multiplication
operators, respectively.

1.1 Bi-octonion algebras

A K-algebra with involution (A,−) is called a decomposable bi-octonion algebra if
it has two octonion subalgebras C1 and C2 that are stabilised by the involution,
such that A = C1 ⊗K C2. A bi-octonion algebra is an algebra with involution (A,−)
that becomes isomorphic to a decomposable bi-octonion algebra over some field
extension. These are important examples of central simple structurable algebras, as
defined by Allison in [1], and they are instrumental in constructing Lie algebras of
type E8 (see Section 1.5).

Any bi-octonion algebra (A,−) is either decomposable or it decomposes over a
unique quadratic field extension E/K. In the latter case, there exists an octonion
algebra C over E, unique up to K-isomorphism, from which (A,−) can be recon-
structed as follows. Let ι be the nonidentity automorphism of E/K, and let ι C be a
copy of C as a K-algebra, but with a different E-algebra structure given by e ⋅ z = ι(e)z.
Then (A,−) is precisely the fixed point set of ι C ⊗E C under the K-automorphism
x ⊗ y ↦ y ⊗ x, with the involution being the restriction of the tensor product of
the canonical involutions on ι C and C [2, Theorem 2.1]. We denote this algebra by
(A,−) = NE/K(C).

To unify the description of both decomposable and nondecomposable bi-octonion
algebras, if we consider C = C1 × C2 as an octonion algebra over the split quadratic
étale extension K × K, then NK×K/K(C) as defined above is just isomorphic to
C1 ⊗K C2.
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1.2 Additive and multiplicative transfer of quadratic forms

Let E/K be a quadratic étale extension and (q, V) an n-dimensional quadratic space
over E. The additive transfer of (q, V) (also known as the trace or Scharlau transfer)
is the 2n-dimensional K-quadratic space (trE/K(q), V) defined by trE/K(q)(v) =
trE/K(q(v)) for all v ∈ V .

Rost defined a multiplicative transfer for quadratic forms, and it has been studied
by him and his students (e.g., in [18, 26]) and used before to define cohomological
invariants. The multiplicative transfer also appeared (independently, it seems) in an
old paper of Tignol [23].

If (q, V) is an n-dimensional quadratic space over a quadratic étale extension E/K,
one defines the quadratic space (ι q, ι V) where ι is the nontrivial automorphism of
E/K, ι V is a copy of V as a K-vector space but with the action of E modified by ι, and
ι q(v) = ι(q(v)). The multiplicative transfer NE/K(q) of q is the n2-dimensional K-
quadratic form obtained by restricting ι q ⊗E q to the K-subspace of tensors in ι V ⊗E
V fixed by the switch map x ⊗ y ↦ y ⊗ x.

In the case of a split quadratic étale extension, a quadratic form over K × K is just
a pair (q1 , q2) where q1 , q2 are quadratic forms over K of the same dimension, and
we have trE/K(q1 , q2) = q1 ⊥ q2 and NK×K/K(q1 , q2) = q1 ⊗ q2.

Lemma 1.1 Let (A,−) = NE/K(C) for an octonion algebra C over a quadratic étale
extension E/K, and let n be the norm of C. Then NE/K(n) equals the normalised trace
form (x , y) ↦ 1

64 tr(Lx ȳ+yx̄).

Proof Both NE/K(n) and the normalised trace form are invariant symmetric
bilinear forms on (A,−) in the sense that Allison defined (see [1, Theorem 17] and
[2, Proposition 2.2]). By a theorem of Schafer [19], a central simple structurable
algebra has at most one such bilinear form, up to a scalar multiple. (As discussed
in [19, pp. 116–117], these facts are valid in characteristic 0 or p ≥ 5, despite some of
the original references being limited to characteristic 0.) ∎

1.3 Lie-related triples

Let (A,−) be a central simple structurable algebra over K. A Lie related triple (in the
sense of [4, Section 3]) is a triple T = (T1 , T2 , T3) where Ti ∈ End(A) and

Ti( x y ) = Tj(x)y + xTk(t)

for all x , y ∈ A and all (i j k) that are cyclic permutations of (1 2 3). Define T to be
the Lie subalgebra of gl(A) × gl(A) × gl(A) spanned by the set of related triples.

For a, b ∈ A and 1 ≤ i ≤ 3, define
T i

a ,b = (T1 , T2 , T3),

where (taking indices mod 3):
Ti = Lb̄ La − L ā Lb ,

Ti+1 = Rb̄ Ra − R ā Rb ,
Ti+2 = R āb−b̄a + Lb L ā − La Lb̄ .

https://doi.org/10.4153/S0008439521000813 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000813


The Allison–Faulkner construction of E8 689

Let TI be the subspace of End(A)3 spanned by {T i
a ,b ∣ a, b ∈ A, 1 ≤ i ≤ 3}. Since

(A,−) is structurable, TI is a Lie subalgebra of T[4, Lemma 5.4]. Finally, denote by
Skew(A,−) ⊂ A the (−1)-eigenspace of the involution, and let T′ be the subspace of
End(A)3 spanned by triples of the form

(D, D, D) + (Ls2 − Rs3 , Ls3 − Rs1 , Ls1 − Rs2),(1.1)

where D ∈ Der(A,−) and s i ∈ Skew(A,−) with s1 + s2 + s3 = 0.

Example 1.2 Let (C ,−) be an octonion algebra with norm n. The principle of local
triality holds in TI in the sense that each of the projectionsTI → gl(C), (T1 , T2 , T3) ↦
Ti , for 1 ≤ i ≤ 3, is injective [22, Theorem 3.5.5]. The Lie algebra TI is isomorphic to
so(n) [22, Lemma 3.5.2]. The (i + 2)th entry of the triple T i

a ,b is R āb−b̄a + Lb L ā −
La Lb̄ , and by [22, pp. 51, 54] this is the map C → C that sends

x ↦ 2n(x , a)b − 2n(x , b)a.(1.2)

Proposition 1.3 If (A,−) is a bi-octonion algebra of the form (A,−) = NE/K(C) for
some quadratic étale extension E/K and some octonion algebra C over E, thenTI = T0 =
T′ ≃ Lie(RE/K(Spin(n))), where n is the norm of C.

Proof We have thatTI ⊂ T ⊂ T′ and dimT′ = dim Der(A,−) + 2 dim Skew(A,−) =
28 + 28 = 56 by [4, Corollary 3.5]. On the other hand, TI (as an E-module) is precisely
Lie(Spin(n)) [22, Theorem 3.5.5] and so TI (as a K-vector space) is 56-dimensional
and isomorphic to Lie(RE/K(Spin(n))). ∎

1.4 Local triality

In the context of Proposition 1.3, the Lie algebra TI is of type D4 + D4. Local triality
holds here too: the projections TI → gl(A), (T1 , T2 , T3) ↦ Ti are injective for any 1 ≤
i ≤ 3, and the symmetric group S3 acts on TI by E-automorphisms, where E is the
centroid of TI (compare with [22, Section 3.5]).

1.5 The Allison–Faulkner construction [4, Section 4]

Let (A,−) be a central simple structurable algebra and let γ = (γ1 , γ2 , γ3) ∈ K× × K× ×
K×. For 1 ≤ i , j ≤ 3 and i ≠ j, define A[i j] = {a[i j] ∣ a ∈ A} to be a copy of A, and
identify A[i j] with A[ ji] by setting a[i j] = −γ i γ−1

j a[ ji]. Define the vector space

K(A,−, γ) = TI ⊕ A[12] ⊕ A[23] ⊕ A[31]

and equip it with an algebra structure defined by the multiplication:

[a[i j], b[ jk]] = −[b[ jk], a[i j]] = ab[ik],
[T , a[i j]] = −[a[i j], T] = Tk(a)[i j]

[a[i j], b[i j]] = γ i γ−1
j T i

a ,b
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for all a, b ∈ A, T = (T1 , T2 , T3) ∈ TI , and (i j k) a cyclic permutation of (1 2 3). Then
K(A,−, γ) is clearly a Z/2Z ×Z/2Z-graded algebra, and it is in fact a central simple
Lie algebra [4, Theorems 4.1, 4.3, 4.4, and 5.5].

1.6 Relation to the Tits–Kantor–Koecher construction

If the quadratic form ⟨γ1 , γ2 , γ3⟩ is isotropic then K(A,−, γ) ≃ K(A,−) where

K(A,−) = Skew(A) ⊕ A⊕ VA,A ⊕ A⊕ Skew(A)(1.3)

is the Tits–Kantor–Koecher construction [3, Corollary 4.7]. An isomorphism and its
inverse are determined explicitly in [3, Theorem 2.2] in the case where −γ1γ−1

2 is a
square. More generally, if ⟨γ1 , γ2 , γ3⟩ and ⟨γ′1 , γ′2 , γ′3⟩ are similar quadratic forms, then
K(A,−, γ) ≃ K(A,−, γ′) [3, Proposition 4.1]. In particular, if (A,−) is a bi-octonion
algebra, then K(A,−, γ) is a central simple Lie algebra of type E8.

The range of Lie algebras of type E8 that are of the form K(A,−) includes those
with Tits index E91

8 , E66
8 , E28

8 , or E0
8 , and only those. We formulate a statement to this

effect:

Proposition 1.4 Let L be a Lie algebra of type E8 corresponding to a class ε ∈
H1(K , E8). Then L ≃ K(A,−) for some bi-octonion algebra (A,−) if and only if ε is
in the image of H1(K , Spin14) → H1(K , E8).

Proof Let L = ⊕2
i=−2 L i be the split E8 Lie algebra with the Z-grading indicated by

(1.3). The subalgebra L0 is reductive of type D7; it is generated by a Cartan subalgebra
and the root spaces of roots with α1-coordinate equal to zero (the dimensions of the
components in the Z-grading preclude anything else). If (A,−) is an arbitrary bi-
octonion algebra, then K(A,−) has the same Z-grading as L so it must have been
twisted by a cocycle coming from H1(K , Spin14). This proves the “only if ” part of the
statement.

For the “if ” part of the statement, we prefer to make an argument using the Levi
subgroup H ⊂ E8 whose Lie algebra is L0, rather than its semisimple subgroup Spin14.
Nothing is gained or lost this way, because H1(K , H) and H1(K , Spin14) have the
same image in H1(K , E8); see [25, p. 657]. Specifically, H is the group generated by
a maximal torus of E8 and the root groups Uβ where β has α1-coordinate equal to
zero. It acts faithfully on L by graded automorphisms, its representation on L1 has a
unique open orbit, and this orbit contains 1 (the identity in the split bi-octonions);
see [10, p. 547]. The stabilizer of 1 is the automorphism group G of the split bi-
octonion algebra [5, Corollary 8.6]. The map H1(K , G) → H1(K , H) is surjective by
the open orbit theorem from [9, pp. 28–29]. Consequently, any cocycle in the image of
H1(K , H) → H1(K , E8) is also in the image of the map H1(K , G) → H1(K , E8) that
sends the class of (A,−) to the class of K(A,−). ∎

1.7 Relation to the Tits construction

Tits in [24] defined the following construction of Lie algebras. Let C be an alternative
algebra and J be a Jordan algebra. Denote by C○ and J○ the subspaces of elements of
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generic trace zero and define operations ○ and bilinear forms (−,−) on C○ and J○ by
the formula

ab = a ○ b + (a, b)1.

Two elements a, b in J and C define an inner derivation ⟨a, b⟩ of the respective algebra,
namely:

⟨a, b⟩(x) = 1
4 [[a, b], x] − 3

4 [a, b, x].

Then there is a Lie algebra structure on the vector space Der(J) ⊕ J○ ⊗ C○ ⊕Der(C)
defined by the formulas

[Der(J), Der(C)] = 0;
[B + D, a ⊗ c] = B(a) ⊗ c + a ⊗ D(c);
[a ⊗ c, a′ ⊗ c′] = (c, c′)⟨a, a′⟩ + (a ○ a′) ⊗ (c ○ c′) + (a, a′)⟨c, c′⟩

for all B ∈ Der(J), D ∈ Der(C), a, a′ ∈ J○, and c, c′ ∈ C○. If (A,−) = C1 ⊗ C2 is a
decomposable bi-octonion algebra, then K(A,−, γ) is isomorphic to the Lie algebra
obtained via the Tits construction from the composition algebra C1 and the reduced
Albert algebra H3(C2 , γ) [3, Remark 1.9 (c)].

Proposition 1.5 Let (A,−) = C1 ⊗ C2 be a decomposable bi-octonion algebra. Then

TI ⊕ A[i j] ≃ so(⟨γ i⟩n1 ⊥ ⟨−γ−1
j ⟩n2),

where n� is the norm of C�.

Proof Consider the quadratic form Q = ⟨γ i⟩n1 ⊥ ⟨−γ−1
j ⟩n2 on the vector space

C1 ⊕ C2. The Lie algebra so(Q) can be embedded into the Clifford algebra C(Q) as
the subspace spanned by elements of the form

[u, v]c , u, v ∈ C1 ⊕ C2 ,

where [−,−]c denotes the commutator in the Clifford algebra (to avoid confusion with
the commutators in C1 and C2). These generators satisfy the relations [17, p. 232 (30)]:

[[u, v]c , [u′ , v′]c]c = − 2Q(u, u′)[v , v′]c + 2Q(u, v′)[v , u′]c
+ 2Q(v , u′)[u, v′]c − 2Q(v , v′)[u, u′]c .

If z, z′ ∈ C1 and w , w′ ∈ C2, this becomes

[[z, w]c , [z′ , w′]c]c = −2γ i n1(z, z′)[w , w′]c + 2γ−1
j n2(w , w′)[z, z′]c .(1.4)

This implies that the 64-dimensional subspace spanned by

[z, w]c , z ∈ C1 , w ∈ C2
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generates the Lie algebra so(Q). Now define a linear bijection θ ∶ so(Q) → TI ⊕ A[i j]
by

[z, z′]c ↦ γ i T i
z ,z′ ,

[w , w′]c ↦ −γ−1
j T i

w ,w′ ,
[z, w]c ↦ zw[i j]

for all z, z′ ∈ C1 and w , w′ ∈ C2. By [17, p. 232 (31)] and (1.2), the restriction of θ to the
subalgebra [C1 , C1]c ⊕ [C2 , C2]c ≃ so(⟨γ i⟩n1) × so(⟨−γ−1

j ⟩n2) is a homomorphism.
Now we calculate using (1.4) that

θ([[z, w]c , [z′ , w′]c]c) = θ(−2γ i n1(z, z′)[w , w′]c + 2γ−1
j n2(w , w′)[z, z′]c)

= −2γ i n1(z, z′)θ([w , w′]c) + 2γ−1
j n2(w , w′)θ([z, z′]c)

= 2γ i γ−1
j (n1(z, z′)T i

w ,w′ + n2(w , w′)T i
z ,z′).(1.5)

Meanwhile, we have

[θ([z, w]c), θ([z′ , w′]c)] = [zw[i j], z′w′[i j]] = γ i γ−1
j T i

zw ,z′w′ .(1.6)

To complete the proof that θ is an isomorphism, we show that the triples (1.5) and (1.6)
are equal. It suffices to compare the ith entries of each triple (by §1.4). After recalling
that

Lx Lx′ + Lx′Lx = Lx Lx′ + Lx′Lx = n i(x , x′) id

for all x ∈ C� [22, Lemma 1.3.3 (iii)], the ith entry of (1.5) is

2γ i γ−1
j (n1(z, z′)(Lw′Lw − Lw Lw′) + n2(w , w′)(Lz′Lz − Lz Lz′))

= 2γ i γ−1
j ((Lz Lz′ + Lz′Lz)(Lw′Lw − Lw Lw′) + (Lw Lw′ + Lw′Lw)(Lz′Lz − Lz Lz′))

= 2γ i γ−1
j (2Lz′Lz Lw′Lw − 2Lz Lz′Lw Lw′) = 4γ i γ−1

j (Lz′Lz Lw′Lw − Lz Lz′Lw Lw′).

In the last line, we have used (multiple times) the fact that C1 and C2 commute and
associate with each other in A. Using this fact a few more times, the ith entry of (1.6)
is just

4γ i γ−1
j (Lz′w′Lzw − Lzw Lz′w′) = 4γ i γ−1

j (Lz′Lz Lw′Lw − Lz Lz′Lw Lw′). ∎

2 The Killing form of K(A,−, γ)

By our convention, the Killing form (as a quadratic form) on a Lie algebra L is the form
x ↦ 1

2 tr(adx
2). For any quadratic form q = ⟨x1 , . . . , xn⟩, the Killing form of so(q) is

⟨2 − n⟩λ2(q),(2.1)

where λ2(q) = ⊥i< j ⟨x i x j⟩ [9, Exercise 19.2].

Lemma 2.1 Let A = NE/K(C) as before, and let ρ i j ∶ RE/K(Spin(n)) → GL(A[i j])
be the representation lifted from the representation of TI in A[i j]. Every quadratic
form q on A invariant under this action of RE/K(Spin(n)) is a scalar multiple of
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the multiplicative transfer NE/K(n) (equivalently, a scalar multiple of the trace form
(x , y) ↦ tr(Lx ȳ+yx̄)).

Proof We can extend scalars from K to E, and then qE is a quadratic form on AE =
C ⊗E

ι C which is invariant under the action of RE/K(Spin(n)) ×K E = Spin(n) ×
Spin(ι n). Then clearly qE decomposes as q1 ⊗ q2 for some Spin(n)-invariant form
q1 on C and some Spin(ι n)-invariant form q2 on ι C. This implies q1 ≃ ⟨λ1⟩n and
q2 ≃ ⟨λ2⟩ι n for certain scalars λ i ∈ E×, and therefore, qE = ⟨λ1 λ2⟩n ⊗ ι n. However,
since (qE , AE) is extended from (q, A) and n ⊗ ι n(1⊗ 1) = 1, we have λ1 λ2 ∈ K×.
Therefore, q = qE ∣A = ⟨λ1 λ2⟩NE/K(n). ∎

We can now calculate the Killing form of K(A,−, γ) in the case where (A,−) is a
bi-octonion algebra.

Proposition 2.2 If (A,−) = NE/K(C), then the Killing form on K(A,−, γ) is

⟨−30⟩( trE/K(λ2(n)) ⊥ ⟨γ1γ−1
2 , γ2γ−1

3 , γ3γ−1
1 ⟩NE/K(n)).(2.2)

Proof Letκ be the Killing form of K(A,−, γ). If x , y ∈ K(A,−, γ) are from different
homogeneous components in the Z/2Z ×Z/2Z-grading, then adx ady shifts the
grading and consequently κ(x , y) = tr(adx ady) = 0.

Let τ be the Killing form of TI . The Killing form of Lie(Spin(n)) is ⟨−6⟩λ2(n); see
(2.1). Since TI ≃ Lie(RE/K(Spin(n)) by Proposition 1.3, we have

τ = trE/K(⟨−6⟩λ2(n)) = ⟨−6⟩ trE/K(λ2(n)).

There is an automorphism of K(A,−, γ) ⊗K Kalg that swaps the two simple sub-
algebras of TI ⊗K Kalg, and this implies κ∣TI is a scalar multiple of τ; say κ∣TI =
⟨ϕ0⟩⟨−6⟩ trE/K(λ2(n)) for some ϕ0 ∈ K×.

Let us determine ϕ0. The grading on K(A,−, γ)makes it a sum of fourTI-modules.
For T , S ∈ TI and a ∈ A,

[T , [S , a[i j]]] = Tk(Sk(a))[i j].

Therefore,

κ(T , S) = tr(adT adS) = τ(T , S) + tr(T1S1) + tr(T2S2) + tr(T3S3).

The trace forms of the irreducible representations TI → gl(A), T ↦ T� for 1 ≤ � ≤ 3
are all equal (despite them being inequivalent representations) and so tr(T1S1) =
tr(T2S2) = tr(T3S3) for all T , S ∈ TI . Moreover, tr(T1S1) is a scalar multiple of
τ(T , S).

To determine the ratio between tr(T1S1) and τ(T , S), we can assume A =
C1 ⊗ C2 is decomposable, and consider the subalgebra so(n1) ⊂ so(n1) × so(n2) ≃
Lie(RE/K(Spin(n)), where n� is the norm on C�. It is well-known that the Killing
form κ1 on so(n1) is 6 (= 8 − 2) times the trace form of its vector representation
so(n1) → gl(C1), while the trace form of the representation so(n1) → gl(C1 ⊗ C2)
is clearly eight times the trace form of the vector representation. But κ1 is equal to
the restriction of the Killing form τ on so(n1) × so(n2), so this means that (if T ∈ TI
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belongs to the so(n1) subalgebra) we have tr(T2
1 ) = 8 tr(T1∣C1

2) = 8
6κ1(T) = 8

6 τ(T).
In conclusion, ϕ0 = 5, so κ∣TI = ⟨−30⟩ trE/K(λ2(n)).

The restriction κ∣A[i j] is an invariant form under the action of RE/K(Spin(n)),
which means it is proportional to NE/K(n), by Lemma 2.1. Sayκ∣A[i j] = ⟨ϕ i j⟩NE/K(n).
To determine the ϕ i j , it suffices to calculate κ(1[i j]), since κ(1[i j]) = ϕ i j NE/K(n)
(1) = ϕ i j . By definition κ(1[i j]) is half the trace of ad1[i j]

2. The graded components
of K(A,−, γ) are invariant under ad1[i j]

2, so we work out the trace separately for each
of these components.

For all b ∈ A, we have

[1[i j], [1[i j], b[ jk]]] = [1[i j], b[ik]] = −γ i γ−1
j [1[ ji], b[ik]] = −γ i γ−1

j b[ jk],

so ad1[i j]
2∣A[ jk] = −γ i γ−1

j id, and tr(ad1[i j]
2∣A[ jk]) = −64γ i γ−1

j . Similarly, for all b ∈ A,

[1[i j], [1[i j], b[ki]]] = (−γ i γ−1
j )(−γkγ−1

i )[1[i j], [1[ ji], b̄[ik]]]

= (−γ i γ−1
j )(−γkγ−1

i )[1[i j], b̄[ jk]]

= (−γ i γ−1
j )(−γkγ−1

i )[b̄[ik]] = (−γ i γ−1
j )(−γkγ−1

i )(−γ i γ−1
k )b[ki]

= −γ i γ−1
j b[ki],

so ad1[i j]
2∣A[ki] = −γ i γ−1

j id, and tr(ad1[i j]
2∣A[ki]) = −64γ i γ−1

j . In contrast, for all
b ∈ A,

[1[i j], [1[i j], b[i j]]] = [1[i j], γ i γ−1
j T i

1,b] = −γ i γ−1
j (T i

1,b)k(1)

= −γ i γ−1
j (Rb−b̄ + Lb − Lb̄)(1) = −2γ i γ−1

j (b − b̄).

Therefore, ad1[i j]
2∣A[i j] has a 50-dimensional kernel {a[i j] ∣ ā = a} and a 14-

dimensional eigenspace {a[i j] ∣ ā = −a} with eigenvalue −4γ i γ−1
j . This proves that

tr(ad1[i j]
2∣A[i j]) = −56γ i γ−1

j .
Now if T = (T1 , T2 , T3) ∈ TI , then

[1[i j], [1[i j], T]] = [1[i j],−Tk(1)[i j]] = −γ i γ−1
j T i

1,Tk(1) .

We can use (1.1) to write T = (D, D, D) + (Ls2 − Rs3 , Ls3 − Rs1 , Ls1 − Rs2) for some
unique D ∈ Der(A,−) and s i ∈ Skew(A,−) such that s1 + s2 + s3 = 0. Note that the kth
entry of T is Ls i − Rs j . Then Tk(1) = D(1) + Ls i (1) − Rs j(1) = s i − s j , so ad1[i j]

2(T) =
−γ i γ−1

j T i
1,Tk(1) is the triple whose kth entry is

−γ i γ−1
j (R1Tk(1)−Tk(1)1

+ LTk(1)L1 − L1LTk(1)
) = −γ i γ−1

j (R2(s i−s j) + L2(s i−s j))

= −2γ i γ−1
j ((Ls i − Rs j) − (Ls j − Rs i )).

This shows ker(ad1[i j]
2∣TI) is the 42-dimensional subspace of TI whose kth projec-

tion is

{D + Ls − Rs ∣ D ∈ Der(A,−), s ∈ Skew(A,−)}.
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And the subspace of TI whose kth projection is

{Ls + Rs ∣ s ∈ Skew(A,−)}

is a 14-dimensional eigenspace of ad1[i j]
2∣TI with eigenvalue −4γ i γ−1

j . This proves that
tr(ad1[i j]

2∣TI) = −56γ i γ−1
j . Therefore,

ϕ i j =κ(1[i j]) = 1
2 tr(ad1[i j]

2) = −32γ i γ−1
j − 32γ i γ−1

j − 28γ i γ−1
j − 28γ i γ−1

j = − 120γ i γ−1
j ,

and we can simplify to get (2.2) because 30 is in the same square class as 120. ∎

If char(K) = 5, then the Killing form on E8 is zero. However, if (A,−) = NE/K(C)
then the symmetric bilinear form on K(A,−, γ) associated to

trE/K(λ2(n)) ⊥ ⟨γ1γ−1
2 , γ2γ−1

3 , γ3γ−1
1 ⟩NE/K(n)(2.3)

is nondegenerate and Lie invariant. This can be proved in at least two ways: one can
factor out ⟨−30⟩ in the Killing form of the Chevalley Lie algebra of type E8 defined
over Z, extend the new bilinear form to the split E8 over K, and then twist it to get the
form (2.3) on K(A,−, γ). This form is clearly invariant and nondegenerate (its radical
is a nonzero ideal and E8 is a simple Lie algebra in all characteristics). Alternatively,
one use the hint from [11, Exercise 27.21 (2)]: lift the Killing form of K(A,−, γ) to the
ring of Witt vectors, divide by −30 up there, and reduce modulo 5 to get (2.3).

Lemma 2.3 Let (A,−) = NE/K(C), and let κ′ be a nondegenerate Lie invariant
bilinear form on K(A,−, γ). If −1 is a sum of two squares in K, then κ′ ∈ I6(K) and
there is a unique 64-dimensional form q ∈ I6(K) such that q + κ′ ∈ I8(K).

Proof Since κ′ is unique up to a scalar multiple, we can assume without loss of
generality that

κ′ = trE/K(λ2(n)) ⊥ ⟨γ1γ−1
2 , γ2γ−1

3 , γ3γ−1
1 ⟩NE/K(n).

The assumption that −1 is a sum of two squares is equivalent to the identity 4 = 0
in the Witt ring W(K). This assumption implies that trE/K(λ2(n)) = 0 [9, Lemma
19.8] and also that NE/K(n) ∈ I6(K) [18, 26, Satz 2.16 (ii)], hence κ′ ∈ I6(K). Setting
q = NE/K(n) yields

q + κ′ = ⟨1, γ1γ−1
2 , γ2γ−1

3 , γ3γ−1
1 ⟩NE/K(n) = ⟨⟨−γ1γ−1

2 ,−γ2γ−1
3 ⟩⟩NE/K(n) ∈ I8(K).

The uniqueness of q follows from the Arason–Pfister Hauptsatz. ∎

Let Q(∗) ⊂ R(∗) ⊂ H1(∗, E8) be the functors Fields/K → Sets such that for all
fields F/K:
(1) Q(F) is the set of isomorphism classes of Lie algebras of type E8 that are

isomorphic to K(A,−, γ) for some bi-octonion algebra (A,−) over F and
some γ = (γ1 , γ2 , γ3) ∈ (K×)3; i.e.Q(F) is the image of the Allison–Faulkner
construction

H1(F , (G2 ×G2 ⋊Z/2Z) × (Z/2Z)3) → H1(F , E8).
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(2) R(F) is the set of isomorphism classes of Lie algebras L of type E8 such that the
class of L is contained in Q(F′) for some odd-degree extension F′/F.

Recall from 1.7 that Q(∗) contains all Lie algebras of type E8 that are obtainable
using the Tits construction from a reduced Albert algebra and an octonion algebra.
Whereas, R(∗) strictly contains all Lie algebras of type E8 that are obtainable using the
Tits construction from an Albert algebra (even a division algebra) and an octonion
algebra. Any cohomological invariant Q(∗) → ⊕i≥0 H i(∗,Z/2Z) can be extended
uniquely to a cohomological invariant R(∗) → ⊕i≥0 H i(∗,Z/2Z) [9, Section 7].

By applying the quadratic form invariants en ∶ In(∗) → Hn(∗,Z/2Z) for n = 6
and 8, we obtain cohomological invariants of the Tits construction and the Allison–
Faulkner construction.

Corollary 2.4 If −1 is a sum of two squares in K, then there exist nontrivial cohomo-
logical invariants

h6 ∶ R(∗) → H6(∗,Z/2Z),
h8 ∶ R(∗) → H8(∗,Z/2Z),

such that if (A,−) = NE/F(C), then
h6(K(A,−, γ)) = e6(NE/F(n)),
h8(K(A,−, γ)) = (−γ1γ−1

2 ) ∪ (−γ2γ−1
3 ) ∪ e6(NE/F(n)).

2.1 Comparison with invariants of G2 × F4

Since R(K) contains the image of the Tits construction H1(K , G2 × F4) → H1(K , E8),
there are unique cohomological invariants

h∗i ∶ H1(∗, G2 × F4) → H i(∗,Z/2Z) i = 6, 8,

such that h∗i (C , J) = h i(L) where L is the Lie algebra of type E8 constructed from
the octonion algebra C and Albert algebra J. The cohomological invariants of G2 and
F4 are classified [11]. The unique nontrivial invariant e3 of G2 assigns an octonion
algebra C to the class e3(C) = (α1) ∪ (α2) ∪ (α3), where ⟨⟨α1 , α2 , α3⟩⟩ is the norm of
C. The unique nontrivial mod 2 invariants f3 , f5 of F4 assign a reduced Jordan alge-
bra H3(C , γ) to the classes f3(H3(C , γ)) = e3(C) and f5(H3(C , γ)) = (−γ1γ−1

2 ) ∪
(−γ2γ−1

3 ) ∪ e3(C), respectively (see [11, Section 22] and [22, p. 118]). Comparing with
Corollary 2.4 and using the fact that e6(NK×K/K(n1 , n2)) = e6(n1 ⊗ n2) = e3(n1) ∪
e3(n2) yields

h∗i (C1 ,H3(C2 , γ)) = h i(K(C1 ⊗ C2 ,−, γ)) = e3(C1) ∪ f i−3(H3(C2 , γ))

for all pairs of octonion algebras C1 , C2 and scalars γ1 , γ2 , γ3. If two invariants with
values in H i(∗,Z/2Z) agree up to odd-degree extensions, then they are equal, so it
follows that

h∗6(C , J) = e3(C) ∪ f3(J),
h∗8 (C , J) = e3(C) ∪ f5(J)

for all octonion algebras C and Albert algebras J.
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3 Isotropy of Tits construction

In this section, we continue to assume that the base field K is of characteristic not 2
or 3.

3.1 Generalities on symmetric spaces

We use the basics of the theory of symmetric spaces over arbitrary fields; we refer to
[15] for the generalities.

Let G be a (connected) split reductive algebraic group over a field K and σ be an
involution on G (that is an automorphism of order 2). Then the fixed point subgroup
H = Gσ has a reductive connected component H○; in the case when σ is from G(K)
and the commutator subgroup of G is simply connected, H is connected and has the
same rank as G (see [14, Théorème 3.1.5]). We state some facts about its normalizer in
the lemma below.

Lemma 3.1 (1) NG(H) = NG(H○);
(2) g ∈ G belongs to NG(H) if and only if σ(g)g−1 belongs to the center of G;
(3) If σ is from G(K) and T is a σ-stable split maximal torus in G, then the map

NH(T)/T → H/H○

is surjective.

Proof The first two items are from [15, Corollary 1.3], and the third is [14,
Lemme 3.1.4]. Note that T as above always exists by [15, Proposition 2.3]. ∎

A torus S in G (not necessary maximal) is called σ-split if σ(t) = t−1 for all
t ∈ S. In the particular case S = Gm , S defines two opposite parabolic subgroups in
G; they are also called σ-split and are characterized by the fact that σ sends a σ-
split parabolic subgroup to an opposite parabolic subgroup. Possible types of σ-split
maximal parabolic subgroups correspond to the white vertices on the Satake diagram
of (G , σ), see [21, Lemma 2.9 and 2.11].

The quotient variety G/H is called a symmetric space. It is known to be spherical,
that is for any parabolic subgroup P in G, H acts on G/P with a finite number of orbits.
In particular, there is an open orbit; it consists of all σ-split parabolic subgroups of the
same type as P (provided they exist).

Let us state a general lemma that will be applied to the case of E8 below.

Lemma 3.2 Let G be a split adjoint semisimple group over an infinite field K of
characteristic not 2, H = Gσ be the fixed point subgroup of an involution σ on G, P
be a parabolic subgroup of G, C be the stabilizer of a point from the open orbit of the
action of H on G/P, [ξ] be an element from H1(K , G). Assume that the twisted form
ξG contains (over the base field K) a parabolic subgroup P′ of the same type as P and a
subgroup H′ that is conjugate to H over a separable closure of K. Then [ξ] comes from
some [ζ] ∈ H1(K , C) such that ζ H is isomorphic to H′.
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Proof By Lemma 3.1 (ii) NG(H) = H, since the center of G is trivial. Note that H′
corresponds to a rational point on ξ(G/H), and by [20, Proposition 37] [ξ] comes
from some [ξ′] ∈ H1(K , NG(H)) with ξ′H = H′.

Now ξ(G/P) is a smooth compactification of its open subvariety U = ξ′(H/C) and
by the assumption has a rational point. The unipotent radical of a parabolic subgroup
opposite to P′ defines an open subvariety in ξ(G/P) isomorphic to the affine space
A

N for some N. Since the base field is infinite, there is a rational point in A
N ∩U .

Applying [20, Proposition 37] to ξ′(H/C) we obtain the claim. ∎

3.2 E8/P8 as a compactification of D8/N(A7)

Let G be the split group of type E8 over K and σ be the involution whose fixed point
subgroup is D8 obtained by erasing vertex 1 from the extended Dynkin diagram:

●1 ●3 ●4 ●5 ●6 ●7 ●8 ��� ●0

●2

More precisely, σ is the inner automorphism defined by ω∨1 (−1), where α i are the
fundamental roots and ω∨j are coweights defined by ω∨j (α i) = δ i j .

All vertices of the Satake diagram for the symmetric space E8/D8 are white; in
particular, there is a parabolic subgroup P of type P8 such that σ(P) is opposite to P. It
is not difficult to construct such a parabolic subgroup directly: it is defined by S = Gm
which is the image of α∨1 in the maximal torus T (note that α∨1 is Weyl-conjugate to
ω∨8 and so it has type P8 indeed).

Lemma 3.3 The stabilizer of a point from the open orbit of the action of D8 on E8/P8
is N(A7), the normalizer of the maximal subgroup of type A7 in the simply connected
group of type E7.

Proof To check the claim we may pass to the algebraic closure of K. The stabilizer of
the point corresponding to P is Lσ , where L = P ∩ σ(P). It contains the A7 subgroup
generated by root subgroups corresponding to ±α2, ±α4 , . . . ,±α8 and ±α0 (where
α0 stands for the negative maximal root). Since A7 is maximal in the commutator
subgroup E7 of L and L is an almost direct product of E7 and the σ-split torus S, we
see that the connected component of Lσ is A7.

It is known (and can be deduced from Lemma 3.1) that A7 has index 2 in N(A7),
so it remains to present an element from Lσ not lying in A7. Consider any lifting w̃0 of
the longest element in the Weyl group of E7. Note that w̃0 normalizes A7 but cannot
belong to Lσ , otherwise the fixed point subgroup Eσ

7 would be not connected. Lemma
3.1 implies that σ(w̃0) = w̃0α∨1 (−1), for the second factor is the only nontrivial element
in the center of E7. Now w̃0α∨1 (i), where i is a square root of −1, is an element from
Lσ ∩ N(A7) not belonging to A7. ∎

One can show that N(A7) is an extension of Z/2Z by SL8 /μ2, which is split if and
only if −1 is a square in K.
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Lemma 3.4 Let [ξ] ∈ H1(K , PGO2n) be in the image of H1(K , GLn /μ2 ⋊Z/2Z).
Then there exists a quadratic field extension E/K such that the orthogonal involution
corresponding to ξE is hyperbolic.

Proof Consider the following short exact sequence:

H1(K , GLn /μ2) → H1(K , GLn /μ2 ⋊Z/2Z) → H1(K ,Z/2Z),

and take E/K corresponding to the image in H1(K ,Z/2Z) of [ζ] in H1(K , GLn /μ2 ⋊
Z/2Z) whose image in H1(K , PGO2n) is [ξ]. Passing to E we see that [ξE] comes
from H1(E , GLn /μ2) and so produces a hyperbolic involution. ∎

Theorem 3.5 Let K be a two-special (that is with no odd degree extensions) field of
characteristic not 2 and 3, L be a Lie algebra of type E8 over K obtained via the Tits
construction. Then the group corresponding to L is not of Tits index E133

8,1 .

Proof Assume the contrary. Obviously the base field is infinite, for there are only
split groups of type E8 over finite fields. Let L be obtained via the Tits construction
from C1 and H3(C2 , γ) for some octonion algebras C1 and C2, i.e., is K(A,−, γ)
for (A,−) = C1 ⊗ C2. Denote by [ξ] the class corresponding to L in H1(K , E8). By
Proposition 1.5 L contains a Lie subalgebra of type D8, namely so(⟨γ i⟩n1 ⊥ ⟨−γ−1

j ⟩n2),
and so the corresponding group contains a subgroup H′ of type D8 with the same Lie
algebra (see [7, Exposé XXII, Corollaire 5.3.4]), that is corresponding to the quadratic
form ⟨γ i⟩n1 ⊥ ⟨−γ−1

j ⟩n2.
Applying Lemma 3.2 to the case G = E8, H = D8 and H′ as above, we see that [ξ]

comes from some [ζ] ∈ H1(K , N(A7)) such that H′ is isomorphic to ζ D8. Now the
image of N(A7) in PGO+16 normalizes SL8 /μ2 and so is contained in GL8 /μ2 ⋊Z/2Z.
Applying Lemma 3.4, we see that the quadratic form ⟨γ i⟩n1 ⊥ ⟨−γ−1

j ⟩n2 becomes
hyperbolic over a quadratic field extension E/K. It follows that e3(n1) + e3(n2) is
trivial over E, hence n1 − n2 belongs to I4 and so is hyperbolic over E. Now n1 − n2
is divisible by the discriminant of E and so e3(n1) + e3(n2) is a sum of two symbols
with a common slot. But the Rost invariant of the anisotropic kernel of type E7 is
e3(n1) + e3(n2), and applying [13, Theorem 10.18] we see that this group must be
isotropic, a contradiction. ∎

Note that [9, Appendix A] provides an example of a strongly inner group of type
E7 over a two-special field, hence an example of a group of Tits index E133

8,1 over such
a field, which is not obtained via the Tits construction.

Corollary 3.6 Suppose K is a field such that −1 is a sum of two squares, and let L be a
Lie algebra over K of type E8 obtained via the Tits construction.
(1) If h8(L) ≠ 0 then L is anisotropic.
(2) If −1 is a square in K and h6(L) ≠ 0 then L has K-rank ≤ 1.

Proof It suffices to prove both items in case K is two-special.
(i) Suppose L is isotropic. We can assume that L does not have Tits index E133

8,1 by
Theorem 3.5. Using [6, Table 10] we see that L corresponds to a class in the image of
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H1(K , Spin14) → H1(K , E8), which implies by Proposition 1.4 that it is isomorphic to
K(A,−) ≃ K(A,−, (1,−1, 1)) for some bi-octonion algebra A. Then clearly h8(L) = 0.

(ii) Suppose L has K-rank ≥ 2. Then L corresponds to a class in the image of
H1(K , Spin12) → H1(K , E8). Its anisotropic kernel is a subgroup of Spin(q) for some
12-dimensional form q belonging to I3(K), and by a well-known theorem of Pfister
(see [9, Theorem 17.13]) q is similar to n1 − n2 for a pair of three-Pfister forms n i with
a common slot, say n i = ⟨⟨x , y i , z i⟩⟩. If C i is the octonion algebra corresponding to n i
then we have L ≃ K(C1 ⊗ C2 ,−), and since −1 is a square,

h6(L) = e6(⟨⟨x , y1 , z1 , x , y2 , z2⟩⟩) = (−1) ∪ (x) ∪ (y1) ∪ (y2) ∪ (z1) ∪ (z2) = 0. ∎
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