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Let H
s→ G mean that every s-colouring of E(H) produces a monochromatic copy of G in

some colour class. Let the s-colour degree Ramsey number of a graph G, written RΔ(G; s),

be min{Δ(H) : H
s→ G}. If T is a tree in which one vertex has degree at most k and all

others have degree at most �k/2�, then RΔ(T ; s) = s(k − 1) + ε, where ε = 1 when k is odd

and ε = 0 when k is even. For general trees, RΔ(T ; s) � 2s(Δ(T ) − 1).

To study sharpness of the upper bound, consider the double-star Sa,b, the tree whose two

non-leaf vertices have degrees a and b. If a � b, then RΔ(Sa,b; 2) is 2b − 2 when a < b and b

is even; it is 2b − 1 otherwise. If s is fixed and at least 3, then RΔ(Sb,b; s) = f(s)(b − 1) − o(b),

where f(s) = 2s − 3.5 − O(s−1).

We prove several results about edge-colourings of bounded-degree graphs that are related

to degree Ramsey numbers of paths. Finally, for cycles we show that RΔ(C2k+1; s) � 2s + 1,

that RΔ(C2k; s) � 2s, and that RΔ(C4; 2) = 5. For the latter we prove the stronger statement

that every graph with maximum degree at most 4 has a 2-edge-colouring such that the

subgraph in each colour class has girth at least 5.

1. Introduction

Given a target graph G classical graph Ramsey theory seeks a graph H such that every

2-edge-colouring of H produces a monochromatic copy of G. Such a graph H is a Ramsey

host for G; we then write H → G and say that H arrows or forces G. More generally,

we write H
s→ G when every s-edge-colouring of E(H) produces a monochromatic copy

of G.
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Students’.
‡ Research supported by NSA grant H98230-10-1-0363.
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The classical Ramsey number of a graph G, written R(G; s) in the general s-colour setting,

is the least n such that Kn
s→ G, guaranteed to exist by Ramsey’s Theorem [23]. Note that

R(G; s) = min{|V (H)| : H
s→ G}. More generally, for any monotone graph parameter ρ,

the ρ-Ramsey number of G, written Rρ(G; s), is min{ρ(H) : H
s→ G}.

The general study of parameter Ramsey numbers was initiated by Burr, Erdős and

Lovász [8]. The notion has been studied with ρ(G) being the clique number [14, 21],

the chromatic number [8, 27, 28], the number of edges (called the size Ramsey number)

[3, 4, 10, 12, 15, 24], and the maximum degree [8]. Parameter Ramsey numbers are more

difficult than ordinary Ramsey numbers in the sense that one may need to consider many

more potential host graphs to determine whether Rρ(G) � k.

In this paper, we study the degree Ramsey number, RΔ(G; s), where Δ(G) denotes the

maximum degree of G. Burr, Erdős and Lovász [8] began its study (for s = 2), showing

that RΔ(Kn; s) = R(Kn; s) − 1 and computing RΔ(K1,m; 2). In Theorem 2.2 we extend that

computation to the s-colour setting, showing that RΔ(K1,m; s) is s(m − 1) + 1 when m is

odd and s(m − 1) when m is even. The computation for stars proves sharpness of an

upper bound that holds for a large family of trees. In particular, RΔ(T ; s) � RΔ(K1,m; s)

whenever T is a tree with one vertex of degree at most m, whose other vertices all have

degree at most �m/2� (Theorem 2.4). Letting m be 2Δ(T ) gives the general upper bound

RΔ(T ; s) � 2sΔ(T ) − s + 1, which can be improved to 2s(Δ(T ) − 1).

For general trees and large s, the upper bound is not far from sharp. To obtain

a lower bound for trees having adjacent vertices of high degree, consider the double-

star Sa,b, the tree having adjacent vertices of degrees a and b and no other non-leaf

vertices. For fixed s at least 3, we prove in Section 3 that RΔ(Sb,b; s) = f(s)(b − 1) − o(b),

where f(s) = 2s − 3.5 − O(s−1). The lower-bound argument colours any graph with smaller

maximum degree probabilistically, so that with positive probability the resulting colouring

has no monochromatic Sb,b. The situation is simpler when s = 2; we prove that RΔ(Sa,b; 2)

is 2b − 2 when a < b and b is even, and otherwise it is 2b − 1 when a � b.

In Section 4, we study edge-colourings of bounded-degree graphs in relation to RΔ(Pn; s).

A short argument by Alon, Ding, Oporowski and Vertigan [2] involving counting

arguments and girth proves RΔ(Pn; s) � 2s for all n. They used a probabilistic construction

to prove that equality holds when n is sufficiently large (for fixed s), showing the existence

of an edge-colouring of any graph with maximum degree at most 2s − 1 that has no large

monochromatic connected subgraph. With a more detailed look at the upper bound, we

prove for fixed n that H
s→ Pn for almost all graphs H with maximum degree at most

2s. For the case s = 2, Thomassen [25] showed that the edges of any 3-regular graph can

be 2-coloured so that every monochromatic connected subgraph is contained in P6. This

yields RΔ(Pn; 2) = 4 for n � 7. Thomassen’s proof was long; we give a short combinatorial

proof of a weaker result implying that RΔ(Pn; 2) = 4 for n > 15. Although RΔ(Pn; 2) = 3

for n ∈ {4, 5}, it remains open whether RΔ(P6; 2) is 3 or 4. For short paths, an old result

of Egawa, Urabe, Fukuda and Nagoya [11] yields RΔ(P4; s) � 2s − 3 for s � 4, and we

show that always RΔ(P4; s) � s + 1.

Section 5 concerns cycles. The values for C3 follow from RΔ(Kn; s) = R(Kn; s) − 1, as

noted earlier. Using Brooks’ Theorem [7] and the fact that every 2s-chromatic graph

decomposes into s bipartite subgraphs, we obtain RΔ(C2k+1; s) � 2s + 1 for all odd cycles.
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For even cycles we obtain only RΔ(C2k; s) � 2s (Proposition 5.3); no better general lower

bounds are known for even cycles.

In Theorem 5.5, we prove that RΔ(C4; 2) � 5; equality holds from the result of Beineke

and Schwenk [5] that K5,5 → C4. To obtain the lower bound, we prove the stronger

statement that every graph with maximum degree at most 4 has a 2-edge-colouring

such that the subgraph in each colour class has girth at least 5. The strongest known

general upper bounds for s = 2 are RΔ(C2k; 2) � 96 and RΔ(C2k+1; 2) � 3458 (see [17]). In

addition to RΔ(C3; 2) = RΔ(C4; 2) = 5, the only other degree Ramsey number for cycles

that is known exactly is RΔ(C3; 3) = 16, which follows from R(C3; 3) = 17.

The results of [17] show in addition that the 2-colour degree Ramsey number of any

graph with maximum degree 2 is bounded by 3458. It is natural to ask whether in

general the 2-colour (or s-colour) degree Ramsey number is bounded by a function of the

maximum degree.

2. Trees

We begin with the computation of RΔ(K1,m; s), applying classical results of graph theory.

One upper bound uses a variation of a result of Bollobás, Saito and Wormald [6]. They

proved the existence of r-regular graphs without k-factors (for odd k); we will need such

graphs with large girth. A k-factor of a graph G is a k-regular spanning subgraph of G.

The girth of a graph G is the length of a shortest cycle in G. We use the result of Erdős

and Sachs [13] that for each k and g there exist k-regular graphs with girth at least g.

Lemma 2.1. If r > k with k odd, and g � 3, then there exists a graph that is r-regular, has

girth at least g, and has no k-factor.

Proof. First consider even r. Let G be an r-regular graph with girth at least g + 1. If

|V (G)| is odd, then G has no k-factor. Otherwise, fix v ∈ V (G). Since G is triangle-free, no

neighbours of v are adjacent. Remove v and add a matching on its neighbours to create

an r-regular graph G′ with an odd number of vertices. A cycle C in G′ that was not in G

uses at least one new edge. If C uses only one new edge, then replacing it with two edges

at v yields a cycle in G. If C uses at least two new edges, then C contains a path in G

from one such edge to the next one, joining two neighbours of v, making C at least as

long as a cycle in G. Hence every cycle in G′ has length at least g.

Now consider odd r. We use a construction like that in [6] (for their case λ = 1). Let J

be a graph in which all vertices have degree r except for one vertex x having degree r − 1.

Construct a graph G by taking r copies of J and adding a new vertex y adjacent to all

r copies of x. Suppose that G has a k-factor, H . Since r is odd and r − 1 is even, |V (J)|
is odd; thus J has no k-factor. Since a k-factor has degree k at every vertex, in H all r

copies of J receive an edge from y, which contradicts dH (y) = k. Thus G has no k-factor.

To complete the proof, it suffices to show that such a graph J exists with girth at least g

(no cycles are added through y). Let F be an r-regular graph with girth at least g + 1, and

fix v ∈ V (F). Again the neighbours of v form an independent set. Form J by removing v
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and adding a matching of size (r − 1)/2 on the neighbours of v. By the argument in the

first paragraph, J has girth at least g, and the vertex degrees are as desired.

We will use Lemma 2.1 to determine RΔ(K1,m; s), but we do not yet need its full power;

for the upper bound on RΔ(K1,m; s) we will not need large girth. The other results we need

are Vizing’s Theorem [26], which states that the edge-chromatic number of a graph G is

at most Δ(G) + 1, and Petersen’s Theorem [22], which states that every regular graph of

even degree decomposes into 2-factors.

Theorem 2.2. If s � 2, then

RΔ(K1,m; s) =

{
s(m − 1) m even,

s(m − 1) + 1 m odd.

Proof. For the upper bound, the pigeonhole principle yields K1,s(m−1)+1
s→ K1,m. When m

is even, we can improve the upper bound. By Lemma 2.1, there is an (s(m − 1))-regular

graph H having no (m − 1)-factor; H
s→ K1,m, since an s-edge-colouring of G with no

monochromatic K1,m would be a decomposition of H into (m − 1)-factors.

For the lower bound, let H be a graph with Δ(H) < s(m − 1). By Vizing’s Theorem, H

is s(m − 1)-edge-colourable, so E(H) is the disjoint union of s(m − 1) matchings. Taking

each colour class to be the union of m − 1 of these matchings yields an s-edge-colouring

of H with no monochromatic K1,m. When m is odd, we can improve the lower bound. For

any graph H with maximum degree s(m − 1), let H ′ be an s(m − 1)-regular supergraph of

H . By Petersen’s Theorem, H ′ decomposes into 2-factors. Taking each of s colour classes

to be the union of (m − 1)/2 of these 2-factors yields an s-edge-colouring of H ′ with

degree m − 1 in each colour at each vertex.

Alon, Ding, Oporowski and Vertigan [2] showed that RΔ(Pn; s) = 2s for sufficiently

large n. Thus Theorem 2.2 shows that it is ‘harder’ to force stars than paths. Tao

Jiang (unpublished) generalized the upper bound argument to show for any tree T that

RΔ(T ) � 2s(Δ(T ) − 1). For trees with only one vertex of large degree (including all those

having exactly one vertex with degree exceeding 2), Jiang’s argument can be improved.

The upper bound meets the lower bound from stars and hence computes the exact value

for these trees, since G ⊆ G′ implies RΔ(G; s) � RΔ(G′; s). The lemma we need is a variation

on a well-known fact.

Lemma 2.3. Fix r, q ∈ N with q � 2(r − 1). If a graph H has average degree more than

q, then H contains a subgraph with minimum degree at least r and average degree more

than q.

Proof. Let H be a smallest counterexample; let n = |V (H)|. If H has a vertex x with

degree at most r − 1, then H − x has more than 1
2
nq − (r − 1) edges and hence has average

degree more than q. Hence H − x contains the desired subgraph.
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Theorem 2.4. If T is a tree in which one vertex has degree at most k and all others have

degree at most �k/2�, then

RΔ(T ; s) �
{
s(k − 1) k even,

s(k − 1) + 1 k odd.

Proof. Let ε = 1 if k is odd and ε = 0 if k is even. Let H be a regular graph having degree

s(k − 1) + ε and girth more than |V (T )|; by Lemma 2.1, we may also require H to have no

(k − 1)-factor when k is even. Given an s-edge-colouring of H , we seek a monochromatic

subgraph H ′ that has a vertex x of degree at least k and has minimum degree at least

r, where r = �k/2�. In such a graph H ′, we can ‘grow’ T from x by successively adding

children. When we want to grow from a current leaf, it has r − 1 neighbours in H ′ that

(by the girth condition) are not already in the tree.

To obtain H ′, first consider odd k, so r = (k + 1)/2. Since ε = 1, in any s-edge-colouring

of H some colour class forms a spanning subgraph C with average degree more than

k − 1. Since k − 1 = 2(r − 1), by Lemma 2.3 C has a subgraph H ′ with minimum degree

at least r and average degree more than k − 1. By the condition on average degree, H ′

has a vertex of degree at least k.

Now consider even k, with H as specified; note that 2(r − 1) = k − 2. Since ε = 0, some

colour class yields a spanning subgraph C with average degree at least k − 1. Since H

has no (k − 1)-factor, C has a vertex of degree at least k. If it also has minimum degree

at least k/2, then it is the desired monochromatic subgraph H ′. Otherwise, delete a vertex

x with degree in C at most k/2 − 1 (less than (k − 1)/2). The average degree in C − x is

more than k − 1. Now Lemma 2.3 yields a monochromatic subgraph H ′ with minimum

degree at least r and average degree more than k − 1. Again H ′ has a vertex of degree at

least k.

As noted previously, the bound in Theorem 2.4 holds with equality when T also satisfies

Δ(T ) = k. We stated it for k as an upper bound on Δ(T ) in order to obtain a general

upper bound for trees. For any tree T , setting k = 2Δ(T ) − 1 in Theorem 2.4 yields

RΔ(T ; s) � 2s(Δ(T ) − 1) + 1. Jiang’s earlier unpublished observation, by an argument like

that of Theorem 2.4, improves this general bound by 1.

Theorem 2.5 (T. Jiang). If T is a tree, then RΔ(T ; s) � 2s(Δ(T ) − 1).

Proof. Let r = Δ(T ), and let H be a 2s(r − 1)-regular graph with girth more than |V (T )|
(which exists by the result of Erdős and Sachs [13]). Consider an s-edge-colouring of H .

By the pigeonhole principle, some colour class yields a monochromatic spanning subgraph

C with average degree at least 2(r − 1). By Lemma 2.3 (the proof is essentially the same

when ‘more than’ is changed to ‘at least’ twice in Lemma 2.3), C has a monochromatic

subgraph H ′ with minimum degree at least r. Now T can be grown inside H ′ from any

vertex, as in the proof of Theorem 2.4.
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The result of [2] that RΔ(Pn; s) = 2s shows that Theorem 2.5 is sharp when T is a path.

For large s, in the next section we will use trees with exactly two non-leaf vertices to show

that the coefficient 2s in Theorem 2.5 is almost sharp when s and Δ(T ) are large.

3. Double-stars

The double-star Sa,b is the tree having two adjacent vertices of degrees a and b and no

other non-leaf vertices. The double-star Sa,b contains the star K1,b. Surprisingly, when

s = 2 and a � b always RΔ(Sa,b; s) = RΔ(K1,b; s), except when a = b and b is even. This

behaviour fails for larger s, so we begin with the exact results for s = 2. Given graphs

G and H , we say that an edge-colouring of H avoids G if no monochromatic copy of G

appears in it.

Theorem 3.1. If a � b, then

RΔ(Sa,b; 2) =

{
2b − 2 if a < b and b is even,

2b − 1 otherwise.

Proof. Theorem 2.2 with s = 2 yields the lower bound except when a = b and b is even.

In that case, let H be any connected graph with Δ(H) � 2b − 2, and let H ′ be a (2b − 2)-

regular connected graph that contains H . Starting with a vertex v, follow an Eulerian

circuit C in H ′, colouring the edges by alternating red and blue along C . Each vertex of

H ′ other than v receives an edge of each colour with each passage through it, totalling

b − 1 edges of each colour (this holds also for v if and only if |E(H ′)| is even). Since every

vertex other than v has degree at most b − 1 in each colour, it follows that H ′ 	→ Sb,b.

For the upper bound, we first prove RΔ(Sa,b) � 2b − 1 by showing that H → Sb,b
whenever H is a triangle-free (2b − 1)-regular graph. Consider a red/blue edge-colouring

of H that avoids Sb,b. Call a vertex red when the majority (at least b) of its incident edges

are red; otherwise it is blue. Without loss of generality, at least half the vertices are red.

Since H is triangle-free, any red edge with red endpoints yields a red Sb,b, so each red

edge has at least one blue endpoint. Since a red vertex lies on at least b red edges and a

blue vertex lies on at most b − 1 red edges, H has more blue vertices than red vertices, a

contradiction.

We improve the upper bound by 1 when a < b and b is even by showing that H → Sa,b
for a particular (2b − 2)-regular graph H . Form H using five disjoint vertex sets S0, . . . , S4

of size b − 1, making the neighbourhood of each vertex in Si consist of Si−1 ∪ Si+1 (indices

taken modulo 5). (The graph H is often called the (b − 1)-blowup of a 5-cycle.)

Consider a red/blue edge-colouring of H that avoids Sa,b. Each vertex is red (at least b

incident red edges), blue (at least b incident blue edges), or tied (b − 1 incident edges of

each colour). Not all are tied, since that would yield a regular subgraph with odd degree

and odd order (since b is even). Without loss of generality, assume that S0 contains a red

vertex u.

Since H has no triangles and a < b, a red edge joining a red vertex to a red or tied

vertex yields a red copy of Sa,b. Therefore, the neighbours of a red vertex along red edges
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are blue; similarly, neighbours of a blue vertex along blue edges are red. Since each

Si has size b − 1, and coloured vertices have at least b incident edges in their colour,

when Si contains a coloured vertex it follows that some vertex of Si+1 has the opposite

colour. Starting from our red vertex u in S0, we alternate finding blue and red vertices in

successive sets to obtain a blue vertex v in S0. Now in S1 ∪ S4, the vertices adjacent to u

along red edges are blue, and those adjacent to v along blue edges are red. This requires

|S1 ∪ S4| � 2b, but |S1 ∪ S4| = 2b − 2.

For s > 2, determining RΔ(Sa,b; s) is more difficult. The proof of Theorem 3.1 does not

extend, because it is no longer necessary for more than half of the vertices in the graph

being coloured to have high degree in the same colour. Nevertheless, Theorem 2.4 and

Theorem 2.2 together compute RΔ(Sa,b; s) when b � 2a − 1; the value is s(b − 1) + 1 or

s(b − 1), depending on the parity of b. Hence we focus our attention on RΔ(Sb,b; s). The

additional motivation for doing so is that this small tree shows that the general upper

bound for trees in Theorem 2.5 is nearly sharp.

Definition. Given an s-edge-colouring of a graph H , we say that a vertex v is major in

some colour if it lies on at least b edges of that colour and minor otherwise. A minor

edge is an edge whose colour is minor at both endpoints. Note that when the degree of a

vertex exceeds s(b − 1), the vertex must be major in at least one colour. Let d∗(v) be the

number of edges incident to v whose colours are minor at v.

Lemma 3.2. Let H be a triangle-free graph. If an edge-colouring of H that has r minor

edges avoids Sb,b, then

|E(H)| + r =
∑
v

d∗(v).

Proof. To avoid Sb,b, the colour on each edge must be minor for at least one endpoint

of the edge. Grouping the edges by the endpoints at which their colours are minor yields

the sum on the right. Exactly r edges are counted twice.

This lemma yields a slight improvement for Sb,b of the general upper bound for trees.

Corollary 3.3. If s � 2, then RΔ(Sb,b; s) � 2(s − 1)(b − 1) + 1.

Proof. Let H be a k-regular triangle-free graph, and consider an s-edge-colouring that

avoids Sb,b. If k > s(b − 1), then each vertex is minor in at most s − 1 colours. From

Lemma 3.2, we then obtain nk
2

� nk
2

+ r � n(s − 1)(b − 1), which simplifies to k � 2(s −
1)(b − 1).

We next improve Corollary 3.3 asymptotically, for fixed s with s � 3. For clarity, we

split the proof into several lemmas. The proof of the first closely mirrors that of a lemma

by Alon [1], which he used to prove the existence of graphs having no ‘large’ bipartite
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subgraphs. We bound the number of edges in a k-partite subgraph of a d-regular graph

in terms of the sizes of the parts.

Definition. Let G be an n-vertex graph, and let x1, . . . , xk be nonnegative real numbers

summing to 1. An (x1, . . . , xk)-subgraph of G is a k-partite subgraph having partite sets of

sizes nx1, . . . , nxk .

A standard result in linear algebra states that the smallest eigenvalue of a real symmetric

matrix A of order n is infz∈Rn
〈Az,z〉
〈z,z〉 , where 〈x, y〉 denotes the inner product of x and y.

Lemma 3.4. Let G be a d-regular graph with n vertices and m edges, and let λ be its smallest

eigenvalue. If x1, . . . , xk are nonnegative real numbers summing to 1, then no (x1, . . . , xk)-

subgraph of G has more than (m − λn/2)
∑

i xi(1 − xi) edges.

Proof. Let A be the adjacency matrix of G. As remarked above, for every n-dimensional

vector ϕ we have λ〈ϕ,ϕ〉 � 〈Aϕ,ϕ〉. Consider any partition of V (G) into X1, . . . , Xk , where

|Xi| = nxi, and let F be the (x1, . . . , xk)-subgraph of G with partite sets X1, . . . , Xk that

includes all edges with endpoints in different parts. For 1 � i � k, define the vector ϕ(i)

by setting ϕ(i)
v = 1 − xi when v ∈ Xi and ϕ(i)

v = −xi when v 	∈ Xi. Now

〈Aϕ(i), ϕ(i)〉 = 2
∑

uv∈E(G)

ϕ(i)
u ϕ

(i)
v = d

∑
v∈V (G)

(ϕ(i)
v )2 −

∑
uv∈E(G)

(
ϕ(i)
u − ϕ(i)

v

)2

= d〈ϕ(i), ϕ(i)〉 − |[Xi, V (G) − Xi]|,

where [X,Y ] denotes the set of edges joining X and Y . Summing over i now yields

λ
∑

〈ϕ(i), ϕ(i)〉 �
∑

〈Aϕ(i), ϕ(i)〉 = d
∑

〈ϕ(i), ϕ(i)〉 − 2|E(F)|.

Thus

|E(F)| � 1

2
(d − λ)

∑
〈ϕ(i), ϕ(i)〉.

Since

〈ϕ(i), ϕ(i)〉 = |Xi|(1 − xi)
2 + (n − |Xi|)x2

i = nxi(1 − xi)
2 + n(1 − xi)x

2
i = nxi(1 − xi),

we have

|E(F)| � 1

2
(d − λ)n

∑
xi(1 − xi),

which simplifies to the claimed bound on |E(F)|.

To apply this lemma, we need regular graphs whose smallest eigenvalues are large.

Lubotzky, Phillips and Sarnak [18] defined a Ramanujan graph to be a regular graph

whose smallest eigenvalue is at least −2
√
p − 1, where p is the vertex degree. They

constructed p-regular Ramanujan graphs for all primes p congruent to 1 modulo 4.

Morgenstern [19] later constructed for each prime power p an infinite family of p-regular
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Ramanujan graphs G having girth at least 2
3
logp |V (G)|. Morgenstern’s constructions and

Lemma 3.4 together yield the following result.

Proposition 3.5. Let p be a prime power, and let x1, . . . , xk be nonnegative real numbers

summing to 1. For infinitely many n, there is a p-regular triangle-free n-vertex graph G

having no (x1, . . . , xk)-subgraph F with more than
(∑

i xi(1 − xi)
)
(m + n

√
p − 1) edges, where

m = np/2 = |E(G)|.

Lemma 3.2 and Proposition 3.5 together yield an asymptotic upper bound on RΔ(Sb,b; s).

Lemma 3.6. For fixed integer s, let U be the set of nonnegative s-tuples summing to 1. If

s � 3, then RΔ(Sb,b; s) � 2(M + o(1))(b − 1), where

M = max
y∈U

∑s
i=1(s − i)yi

2 −
∑s

i=1 yi

[
1 − yi

(si)

] .

Proof. Let H be a d-regular triangle-free n-vertex Ramanujan graph with m edges.

Suppose that H has an s-edge-colouring avoiding Sb,b. We will show that d � 2(M +

o(1))(b − 1). Taking y1 = 1 and y2 = · · · = ys = 0 yields M � s/2, so the bound already

holds unless d > s(b − 1). Thus each vertex is major in at least one colour.

Let C be the set of colours used. For A ⊆ C , let XA be the set of vertices for which the

set of major colours is A (note that X∅ = ∅). For 1 � i � s, let Yi =
⋃

{XA : |A| = i}. Let

yi = |Yi|/n. Let F be the maximal (spanning) subgraph of H in which each XA for A ⊆ C

is an independent set.

Let r be the number of minor edges in the given edge-colouring of H . Every edge

joining two vertices that are major in exactly the same colours must be minor, since

otherwise it would be the central edge of a monochromatic Sb,b. Thus r � m − |E(F)|.
Also, each vertex in Yi lies on at most (s − i)(b − 1) minor edges. With Lemma 3.2, we

obtain

2m − |E(F)| � m + r =
∑

v∈V (H)

d∗(v) � n(b − 1)
∑
i

(s − i)yi. (∗)

To obtain an upper bound on m and hence on d, we need an upper bound on

|E(F)|. When y1, . . . , ys are fixed, the upper bound in Proposition 3.5 is maximized when

|XA|/n = y|A|/
(

s
|A|

)
for each A ⊆ C . Thus, |E(F)| �

∑
i yi[1 − yi/

(
s
i

)
](m + n

√
d − 1). Since∑

yi = 1, we have
∑

i yi(1 − yi/
(
s
i

)
) � 1. Hence |E(F)| � m(

∑
i yi[1 − yi/

(
s
i

)
]) + n

√
d − 1;

this simplification will not change the asymptotics. Substituting into (∗) yields

m

(
2 −

∑
i

yi

[
1 − yi(

s
i

)])
− n

√
d − 1 � 2m − |E(F)| � n(b − 1)

∑
i

(s − i)yi.

Since m = nd/2, this further simplifies to

d

(
2 −

∑
i

yi

[
1 − yi(

s
i

)]
− 2

√
d − 1

d

)
� 2(b − 1)

∑
i

(s − i)yi.
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Thus

d � 2(b − 1)

∑
i(s − i)yi

2 −
∑

i yi[1 − yi/
(
s
i

)
] − o(1)

,

where the o(1) term tends to 0 as b tends to infinity (since d > s(b − 1)). Since
∑

i(s − i)yi
and 2 −

∑
i yi[1 − yi/

(
s
i

)
] are bounded, we may rewrite this as

d � 2(b − 1)

( ∑
i(s − i)yi

2 −
∑

i yi[1 − yi/
(
s
i

)
]

+ o(1)

)
� 2(M + o(1))(b − 1).

Finally, it suffices to show that there exists a d-regular Ramanujan graph when d is

just a bit larger than this bound, which we call M ′. Fix ε > 0. For sufficiently large b,

it follows from Proposition 3.5 and the prime number theorem that there exist d-regular

Ramanujan graphs with M ′ < d < (1 + ε)M ′.

We next show how to compute the value M in the statement of Lemma 3.6. The key

insight is that the maximum is attained when all but at most two of the variables are

zero.

Lemma 3.7. For s � 3, with U being the set of nonnegative s-tuples summing to 1,

M = max
y∈U

∑s
i=1(s − i)yi

2 −
∑s

i=1 yi

[
1 − yi

(si)

] =
s − 1

2

s +
√

s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
,

attained when yk = 0 for k � 3 and y1 = 2 − s +
√
s2 − 3s + 6 − 8/(s + 1).

Proof. For notational convenience, let f(y1, . . . , ys) =
∑

i(s − i)yi and

g(y1, . . . , ys) = 2 −
∑
i

yi

(
1 − yi/

(
s

i

))
.

Suppose that the claim is false, and let y1, . . . , ys be real numbers maximizing f/g subject

to y ∈ U.

We first claim that yj = 0 when j � 3. If yj > 0, then define y′
1, . . . , y

′
s by y′

j = 0 and

y′
1 = y1 + yj , with y′

i = yi for i /∈ {1, j}. Now f(y′
1, . . . , y

′
s) = f(y1, . . . , ys) + (j − 1)yj and

g(y′
1, . . . , y

′
s) = g(y1, . . . , ys) + y1

(
1 − y1

s

)
+ yj

(
1 − yj(

s
j

))
− (y1 + yj)

(
1 − y1 + yj

s

)

= g(y1, . . . , ys) −
y2
j(
s
j

) +
2y1yj + y2

j

s
.

We claim that f(y′
1, . . . , y

′
s)/g(y

′
1, . . . , y

′
s) > f(y1, . . . , ys)/g(y1, . . . , ys). For positive real num-

bers a, b, c, d, the inequality a/b < (a + c)/(b + d) holds if and only if a/b < c/d. Letting

a = f(y1, . . . , ys), b = g(y1, . . . , ys), c = (j − 1)yj , and

d =
2y1yj + y2

j

s
−

y2
j(
s
j

) ,
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it suffices to show that

f(y1, . . . , ys)

g(y1, . . . , ys)
<

(j − 1)yj
2y1yj+y2

j

s
− y2

j

(sj)

.

We compute

(j − 1)yj
2y1yj+y2

j

s
− y2

j

(sj)

=
j − 1

2y1+yj
s

− yj

(sj)

>
s(j − 1)

2y1 + yj
>

s(j − 1)

2
� s,

but f(y1, . . . , ys)/g(y1, . . . , ys) � s − 1, since the numerator is at most s − 1 and the denom-

inator is at least 1.

Thus yi = 0 for i � 3; consequently, y2 = 1 − y1. It remains to choose y ∈ [0, 1] to

maximize

f(y, 1 − y, 0, . . . , 0)

g(y, 1 − y, 0, . . . , 0)
,

which simplifies to s(s − 1)h(y), where

h(y) =
s − 2 + y

s(s − 1) + (s − 1)y2 + 2(1 − y)2
.

Note that h(1) = 1/(s + 1) and h(0) < 1/(s + 1). Setting h′(y) = 0 yields a quadratic

equation for y whose solution ŷ is 2 − s +
√
s2 − 3s + 6 − 8/(s + 1). This value is 1

when s = 3 (hence the requirement s � 3) and declines slowly toward 1/2 as s increases,

so it lies in [0, 1]. Rationalizing the denominator in the expression for h(ŷ) yields

h(ŷ) =
1

2

√
s4 − s3 + s2 + s − 2 + s(s − 1)

s3 + s − 2
.

Dividing the denominator by s(s − 1) and extracting a factor of s − 1 from the numerator

yields the claimed expression for M.

Theorem 3.8. For s � 3,

RΔ(Sb,b; s) �
(

(s − 1)
s +

√
s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
+ o(1)

)
(b − 1),

where the o(1) term tends to 0 as b tends to infinity.

Proof. Using the formula in Lemma 3.7 as the value of M, this becomes simply the

statement of Lemma 3.6.

Our lower bound for RΔ(Sb,b; s) asymptotically matches this upper bound. The value of

ŷ given in Lemma 3.6 will guide the construction.
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Theorem 3.9. For s � 3,

RΔ(Sb,b; s) �
(

(s − 1)
s +

√
s2 + s + 2 + 4/(s − 1)

s + 1 + 2/s
− o(1)

)
(b − 1),

where the o(1) term tends to 0 as b tends to infinity.

Proof. Given a graph H with Δ(H) � d, we construct a random s-colouring of E(H)

that avoids Sb,b with positive probability when d is suitably chosen. We may assume that

H is d-regular. Let C be a set of s colours.

We will assign each v ∈ V (H) a set c(v) of one or two colours in C , wanting only

colours in c(v) to be major for v. We try to match the bound from Lemma 3.7 by having

the expected fractions of vertices that are major in one colour or two colours be ŷ and

1 − ŷ, respectively.

To this end, let p = 2 − s +
√

s2 − 3s + 6 − 8/(s + 1). For each vertex v of H , let ε(v) = 1

with probability p and ε(v) = 2 otherwise. Next choose c(v) uniformly at random from

among all subsets of C with size ε(v). Given the resulting colouring of the vertices with

colour sets of size at most 2, we produce a colouring of E(H), again probabilistically.

Fix uv ∈ E(H). First consider |c(u)| = |c(v)| = 1. If c(u) = c(v), then colour uv with a

random colour from C − c(u). If c(u) 	= c(v), then give uv the colour in c(u) or c(v), each

with probability 1/2. Next suppose |c(u)| = 1 but |c(v)| = 2. If c(u) ⊂ c(v), then give uv

the colour in c(v) − c(u). If instead c(u) ∩ c(v) = ∅, then give uv the colour in c(u) with

probability q and one of the colours in c(v) with probability (1 − q)/2 each, where q

will be specified later. Finally, suppose |c(u)| = |c(v)| = 2. If c(u) = c(v), then colour uv

randomly from C − c(u). If |c(u) ∩ c(v)| = 1, then give uv a colour from the symmetric

difference, each with probability 1/2. Finally, if c(u) ∩ c(v) = ∅, then colour uv at random

from c(u) ∪ c(v).

We claim that with positive probability every vertex v is major only in the colours in

c(v), when d and q are suitably chosen. It then holds by construction that no edge has a

colour that is major at both endpoints, so the colouring avoids Sb,b.

Fix a vertex v and a colour c′ not in c(v). Let X be a random variable denoting the

number of edges of colour c′ incident to v. Let the neighbours of v be v1, . . . , vd. Now

X = Y1 + · · · + Yd, where Yi is the indicator variable for the event that vvi has colour c′.

If |c(v)| = 1, then Yi = 1 can occur in four ways: c(vi) = c(v), c(vi) = {c′}, c(v) ⊂ c(vi), and

|c(vi)| = 2 with c(v) 	⊂ c(vi). Using conditional probability in each case,

P
[
Yi = 1

∣∣ ε(v) = 1
]

=
1

s − 1
· p
s

+
1

2
· p
s

+ 1 · 2(1 − p)

s(s − 1)
+

1 − q

2
· (s − 2)

2(1 − p)

s(s − 1)
.

Similarly, if |c(v)| = 2, then the cases in which vvi can receive colour c′ are c(vi) = {c′},
c(vi) = c(v), and |c(vi)| = 2 with |c(vi) ∩ c(v)| being 1 or 0. Thus

P
[
Yi = 1

∣∣ ε(v) = 2
]

= q · p
s

+

(
1

s − 2
+ 1 +

s − 3

4

)
· 2(1 − p)

s(s − 1)
.

Let p1 and p2 denote these two conditional probabilities. Since assigning colour c′ to vvi
is dangerous, we want to choose q to minimize max{p1, p2}. As q increases, p2 increases
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and p1 decreases, so we choose q to produce p1 = p2, which requires

q =
(s − 2)(s + 1) − 2s(1 − p)

2(s − 2)(s − 2 + p)
.

We observed in Lemma 3.7 that p > 1/2, which easily implies q > 0, and comparing the

numerator and denominator yields q < 1. Henceforth let p̂ denote the common value of p1

and p2 when q is so chosen. Since p1 = p2, we now have P[Yi = 1] = p̂. With p̂ = P[Yi = 1]

and H being d-regular, we have E[X] = E[
∑

i Yi] = dp̂.

Now let d = �(1 − b−1/3)(b − 1)/p̂�, so E[X] � (1 − b−1/3)(b − 1). Since b − 1 � (1 +

δ)E[X], where δ = 1/(b1/3 − 1), the Chernoff Bound yields

P[X > b − 1] � P[X > (1 + δ)E[X]] < e− δ2

3 (1−b−1/3)(b−1).

Note that δ2(1 − b−1/3)(b − 1) = b1/3 + 1 + b−1/3. Let Bv be the event that v is major in a

colour outside c(v). By the Union Bound,

P[Bv] < (s − 1)e− 1
3 (b1/3+1+b−1/3).

The occurrence of Bv is determined by the colour sets chosen at v and its neighbours and

some choices made for edges incident to v. If v and w have a common neighbour, then Bv

and Bw both make use of the colour set chosen at that common neighbour. Nevertheless,

Bv is mutually independent of the set of all Bu such that the distance between u and v is

at least 3. Thus Bv is mutually independent of a set of all but at most d2 other events. The

symmetric version of the Lovász Local Lemma now states that P
[⋂

v Bv

]
> 0 so long as

e · (s − 1)e− 1
3 (b1/3+1+b−1/3) · (d2 + 1) < 1.

Since d is bounded by a polynomial in b divided by a constant (p̂ depends only on s), the

inequality holds for sufficiently large b.

We have now shown that for some outcome of the vertex colouring (when b is sufficiently

large), there is an outcome of the edge-colouring process that avoids Sb,b. It remains only

to show that the degree for which we produced this colouring is (2M − o(1))(b − 1). Since

d = (1 − o(1))(b − 1)/p̂, to complete the proof it suffices to prove that p̂ = 1/(2M).

We show that s(s − 1)( 1
2M

− p̂) = 0. Since ŷ = p, we have

s(s − 1)

2M
=

1

2h(ŷ)
=

s(s − 1) + (s − 1)p2 + 2(1 − p)2

2(s − 2 + p)
.

Since h′(ŷ) = 0 yields

s(s − 1) + (s − 1)p2 + 2(1 − p)2 = (s − 2 + p)[2p(s − 1) − 4(1 − p)], (∗)

we obtain s(s−1)
2M

= p(s − 1) − 2(1 − p). Using the formula for p2, we have

s(s − 1)p̂ = qp(s − 1) +

(
1

s − 2
+ 1 +

s − 3

4

)
2(1 − p).

Now

s(s − 1)

(
1

2M
− p̂

)
= (1 − q)p(s − 1) −

(
1

s − 2
+ 2 +

s − 3

4

)
2(1 − p).

https://doi.org/10.1017/S0963548311000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000617


242 W. B. Kinnersley, K. G. Milans and D. B. West

Multiply by 2(s − 2)(s − 2 + p), the denominator in the formula for q; this does not change

whether the value on both sides is 0. For the right side, we compute

[2(s − 2)(s − 2 + p) − (s − 2)(s + 1) + 2s(1 − p)]p(s − 1) − (s2 + 3s − 6)(1 − p)(s − 2 + p)

= (s − 2)[(s + 1)p2 + 2(s + 1)(s − 2)p − (s2 + 3s − 6)] = 0,

since having the last quadratic factor equal to 0 is equivalent to (*).

Note that p = 1 when s = 3, so in this case the colouring for the lower bound makes

every vertex major in exactly one colour. For large s, the leading terms of the numerator

and denominator in the expression we obtained for RΔ(Sb,b; s) suggest that the value

asymptotically equals the bound 2(s − 1)(b − 1) obtained in Corollary 3.3. However, the

coefficient on b − 1 is actually smaller; we need the two leading terms when multiplying

by s − 1.

Corollary 3.10. For fixed s (with s � 3) and large b, we have RΔ(Sb,b; s) = (cs + o(1))(b − 1),

where c3 = 3, c4 = 2 + 2
11

(1 +
√

210) ≈ 4.8166, and in general cs = 2s − 3.5 + O(s−1).

Proof. Divide the numerator and denominator of the expression for 2M by s. Then take

the two leading terms of the series expansions for the square root and for the reciprocal

of the denominator. This yields

2M = (s − 1)
1 +

√
1 + s−1 + 2s−2 + 4s−2(s − 1)−1

1 + s−1 + 2s−2

= (s − 1)(1 + 1 +
1

2
s−1 + O(s−2))(1 − s−1 + O(s−2)) = 2s − 3.5 + O(s−1).

4. Paths

For the path Pm, the degree Ramsey number RΔ(Pm; s) is bounded, independent of m.

Alon, Ding, Oporowski and Vertigan [2] proved that RΔ(Pm; s) = 2s when m is sufficiently

large (for fixed s). The upper bound holds for all m; the argument is a special case of that

given in Theorem 2.5. In fact, the main result of this section is that H
s→ Pm for almost

every graph H with maximum degree at most 2s.

Given an edge-coloured graph G, we call a maximal monochromatic connected subgraph

a slice of G. For the lower bound, it was proved in [2] that, for each s, there is a constant

c such that every graph with maximum degree less than 2s has an s-edge-colouring in

which every slice has fewer than c edges. Thus RΔ(Pm; s) � 2s for m > c.

In [2], the authors did not give a sharp analysis of this value c. When s = 2, more

precise results are known. Thomassen [25] showed that if Δ(H) � 3, then there is a 2-

edge-colouring of H in which every slice is a subgraph of P6. Consequently, RΔ(Pm; 2) = 4

when m � 7. The other exact values are easy except for P6.

Proposition 4.1. RΔ(Pm; 2) = m − 1 for m � 3, and RΔ(Pm; 2) = 3 for m ∈ {4, 5}.
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Figure 1. A 2-edge-colouring of the Heawood graph.

Proof. For P2 use an edge, for P3 an odd cycle. For m ∈ {4, 5}, we have RΔ(Pm) � 3

because paths and cycles can be 2-edge-coloured without three consecutive edges of the

same colour.

To show RΔ(Pm) � 3 for n ∈ {4, 5}, we prove that H → P5 when H is the Petersen graph.

Consider a red/blue edge-colouring of H . Since H contains odd cycles, we may assume a

red P3. If there is no red P4, then the four edges incident to the endpoints of this P3 are

all blue. Furthermore, the edges incident to the endpoints of these blue copies of P3 must

all be red, but this set of red edges contains P4.

Hence we may assume a red P4. If there is no red P5, then the four edges incident to

the endpoints of this P4 are all blue, but these four edges form P5.

It remains open whether RΔ(P6; 2) is 3 or 4. It is easy to colour the Petersen graph

avoiding P6; colour a perfect matching blue, and the remaining edges form two disjoint

red 5-cycles. Also the Heawood graph (the 3-regular 14-vertex (3, 6)-cage, also known

as the incidence graph of the Fano plane) has a 2-edge-colouring that avoids P6, as in

Figure 1. (The graph in the bold colour is 2P5 + P3; the graph in the solid colour is

2P5 + K1,3.)

Conjecture 4.2. RΔ(P6; 2) = 4.

Thomassen’s proof that graphs with maximum degree 3 have 2-edge-colourings with

every slice contained in P6 is long. We give a short proof of the weaker result that there

is a 2-edge-colouring in which every slice has at most 25 vertices, and more importantly

every monochromatic path has at most 15 vertices; this yields RΔ(Pm; 2) = 4 for m > 15.

In the bipartite case, it is easy to prove a result similar to Thomassen’s.

Lemma 4.3. Let P ′
7 be the tree obtained from P7 by adding a leaf adjacent to the central

vertex. If G is a bipartite graph with Δ(G) � 3, then G has a 2-edge-colouring in which all

slices are subgraphs of P ′
7.
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Proof. It suffices to prove the claim when G is 3-regular, in which case G has a perfect

matching M. Let X and Y be the partite sets of G, and let H = G − M. Since H is

2-regular, it consists of disjoint even cycles.

First colour E(H). When the length of a component of H is an even multiple of 2,

alternate two red edges and two blue edges so that the centre of each monochromatic

3-vertex path is in X. When the length is an odd multiple of 2, do the same, except that

one of the monochromatic paths has length 4. All leaves of all monochromatic paths in

H lie in Y .

It remains to colour M. A vertex x ∈ X is an internal vertex of some monochromatic

path in H; give the edge of M incident to x the opposite colour. Monochromatic subgraphs

of H grow only by adding edges of M at vertices of Y ; a monochromatic copy of P3 can

only grow to a monochromatic copy of P4 or P5, and a monochromatic copy of P5 can

grow to as large as P ′
7 if it grows at each of its vertices in Y .

Theorem 4.4. If Δ(G) � 3, then G has a 2-edge-colouring in which each slice has at most

25 vertices and each monochromatic path has at most 15 vertices.

Proof. We may assume that G is connected and that G 	= K4, so Brooks’ Theorem yields

χ(G) � 3. By Lemma 4.3, we may assume that χ(G) = 3.

Let {V1, V2, V3} be a proper 3-colouring of G with each vertex of V3 having neighbours

in both V1 and V2. For u ∈ V3, choose neighbours u1 ∈ V1 and u2 ∈ V2. Let H be the

graph on V1 ∪ V2 obtained from G − V3 by adding the edge u1u2 for each u ∈ V3 such

that u1u2 /∈ E(G). Since Δ(H) � 3, Lemma 4.3 yields a 2-edge-colouring f of H whose

slices are subgraphs of P ′
7.

Colour E(G) as follows. Edges joining V1 and V2 keep the colour they have under f.

Each remaining edge is incident to a vertex u ∈ V3. Colour uu1 and uu2 in G with the

colour that u1u2 has under f, and use the opposite colour on a third edge incident to u,

if it exists.

In progressing from H to G, monochromatic connected subgraphs can grow via edges

incident to vertices in V3. Two edges incident to u ∈ V3 receive the same colour only

if their other endpoints form an edge of that colour in H . Therefore, monochromatic

connected subgraphs in H can grow only by adding leaves to monochromatic trees in H

or by adding a common neighbour to vertices already adjacent in H . In particular, no

two connected subgraphs of H having the same colour can combine by adding edges of

that colour to V3.

Because Δ(H) � 3 and each slice F of H is a tree with k vertices, where k � 8, at most

3k − 2(k − 1) edges can join F to vertices of V3 in G in addition to the k − 1 vertices of

V3 that can produce elements of E(H) − E(G). Hence F grows by adding at most 2k + 1

vertices to the original k vertices, so slices in the edge-colouring of G have at most 25

vertices.

Consider also monochromatic paths. Again they arise from connected subgraphs of H

that are monochromatic under f. Such a path can have one edge at each end incident

to V3. Other edges incident to V3 occur only by visiting u ∈ V3 between u1 and u2. This

may occur for each edge of a monochromatic path in H , since those edges need not exist

https://doi.org/10.1017/S0963548311000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548311000617


Degree Ramsey Numbers of Graphs 245

in G. Since the maximum number of vertices in a monochromatic path under f is 7,

we thus obtain 15 as the maximum number of vertices in a monochromatic path in the

edge-colouring of G.

For fixed s, we have RΔ(Pm; s) = 2s when m is sufficiently large. In addition to finding

the least m where equality holds, it would also be interesting to know the s-colour degree

Ramsey numbers for small paths. Since P3 = K1,2, Theorem 2.2 yields RΔ(P3; s) = s, so

the first nontrivial problem is for P4. When H is bipartite, an s-edge-colouring that avoids

P4 is simply a decomposition of H into star-forests (forests in which each component is a

star). The minimum number of star-forests needed to decompose H is the star-arboricity

of H . The star-arboricity was determined for regular complete bipartite graphs by Egawa,

Urabe, Fukuda and Nagoya [11].

Lemma 4.5 ([11]). When s � 4, the star arboricity is s + 1 for both K2s−3,2s−3 and K2s−2,2s−2.

Although [11] claims this result only for s � 5, in fact their elegant counting argument

to show that K2s−3,2s−3 does not decompose into s star-forests is valid also for s = 4.

Theorem 4.6. If s � 1, then RΔ(P4; s) � s + 1, with equality when s � 4. If s � 4, then

RΔ(P4; s) � 2s − 3.

Proof. If RΔ(P4; s) � s, then among the graphs with maximum degree s whose s-edge-

colourings all have a monochromatic copy of P4, choose H with fewest vertices. For

v ∈ V (H), there is an s-edge-colouring f of H − v having no monochromatic copy of P4.

Since Δ(H) � s, each neighbour w of v in H has degree at most s − 1 in H − v, and hence

some colour does not yet appear at w. Extend f to H by choosing such a colour for the

edge vw. All monochromatic subgraphs containing v are stars, and without v there is no

monochromatic copy of P4, so H in fact does not force P4.

The general upper bound is immediate from Lemma 4.5 when s � 4. Since the star-

arboricity of K2s−3,2s−3 is s + 1, every s-edge-colouring of K2s−3,2s−3 fails to decompose it

into star-forests and hence has a monochromatic P4.

The upper bound s + 1 is trivial for s = 1, since P4 ⊆ K2,2. For s = 2, a 2-edge-colouring

of K3,3 has five edges in some colour. A bipartite graph avoiding P4 is a forest of stars,

but the largest forest of stars in K3,3 has four edges.

For s = 3, consider a 3-edge-colouring of K4,4. There are 16 edges, so some colour (say

red) is used on at least six edges. A forest of stars with six edges on eight vertices has

only two components and hence must be 2K1,3. Now the subgraph in the remaining two

colours contains K3,3, which forces P4 as shown above.

Lemma 4.5 states that K2s−4,2s−4 has an s-edge-colouring with no monochromatic P4

(the proof is an explicit construction of such a colouring for K2s−2,2s−4). That is, the

s-colour bipartite Ramsey number of P4 is 2s − 3. Although we proved only s + 1 as a

general lower bound, it may be that equality holds in RΔ(P4; s) � 2s − 3 for s � 4.
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Problem 4.7. Determine RΔ(P4; s).

Finally, we return to the s-colour setting to show that H
s→ Pm for almost every graph

with maximum degree at most 2s. Let [n] = {1, . . . , n}.

Theorem 4.8. Fix m, s ∈ N. Let Gn be the family of graphs with vertex set [n] and maximum

degree at most 2s. With Fn = {H ∈ Gn : H
s

� Pm}, we have limn→∞
|Fn|
|Gn| = 0.

Proof. We first obtain a lower bound on |Gn|. For each 2s-tuple (M1, . . . ,M2s) of perfect

matchings on [n], form a graph H by letting E(H) =
⋃
Mi, and give each edge uv the

colour that is the set {j : uv ∈ Mj}. The number of ways to do this is z2s, where z is the

number of perfect matchings on [n]. Since

z =

n/2∏
j=1

(2j − 1) =
n!

2n/2(n/2)!
,

Stirling’s Formula yields z ∼
√

2
(
n
e

)n/2
. Dropping the

√
2, we observe that z2s > esn ln(n/e)

for sufficiently large n. The resulting structures consist of a graph in Gn with each edge

coloured by a subset of [2s], and there are at most ns edges. Hence

|Gn| > esn ln(n/e)

4s
2n

� esn ln(n/e)−(s2 ln 4)n � esn ln n−αn,

where α is a constant.

Now we obtain an upper bound on |Fn|. Let c be the maximum number of vertices in

a graph with maximum degree at most 2s and diameter less than m − 1. For each graph

H ∈ Fn, some s-edge-colouring of H witnesses H
s

� Pm. Every slice in this colouring has

at most c vertices, since otherwise there is a monochromatic Pm. With H we associate this

edge-colouring as a code; it is a decomposition of H into spanning subgraphs (H1, . . . , Hs)

such that E(Hi) is the set of edges with colour i. As we have noted, each component of

each Hi has at most c vertices. Also, distinct graphs in Fn have distinct codes.

We bound |Fn| by bounding the number of codes that can be formed. Let Q be the set

of all graphs having vertex set [n], maximum degree at most 2s, and components with at

most c vertices. We have |Fn| � |Q|s.
We bound |Q| by building such a graph H ′ in three steps. First we specify a composition

of n to record the numbers of vertices in the components of H ′. That is, we specify positive

integers n1, . . . , nk with sum n such that ni is the number of vertices in the component of

H ′ containing the least vertex of [n] that is not in the components indexed earlier. It is

well known that there are 2n−1 compositions of n. We use only those whose parts are at

most c, so there are at least n/c parts.

Next we record the distribution of vertices to components. To describe a graph with

k components, we form a word of length n − k from the characters in [k], using ni − 1

copies of i for each i ∈ [k]. For i from 1 to k, the vertices in the ith component are

the least vertex not yet distributed plus the ni − 1 vertices among the remainder whose

relative position in the remaining word contains the character i. We only use words such
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that each character appears fewer than c times, but in any case there are at most nn−n/c

such words, totalled over all choices of k. We write the bound as e(1−1/c)n ln n.

Finally, we record adjacencies within components. For each vertex v, we list its

neighbours by recording a 2s-tuple (u1, . . . , u2s), where each uj is a neighbour of v or

is a dummy symbol 0. Many 2s-tuples designate the same set of neighbours, but in any

case there are at most c2s possible 2s-tuples for each vertex once the vertices have been

distributed to components.

Multiplying all choices for the three steps, we have

|Q| � 2n−1 · e(1−1/c)n ln n · c2sn � e(n−1) ln 2+(1−1/c)n ln n+2sn ln c.

Now |Fn| � e(1−1/c)sn ln n+βn, where β is a constant. Thus

|Fn|
|Gn| � e−(s/c)n ln n+(α+β)n → 0.

5. Cycles

Since C3 = K3, the value of RΔ(C3; s) follows from the result of Burr, Erdős and

Lovász [8] that Rχ(G; s) = R(Hom(G); s), where Hom(G) is the family of homomorphic

images of G. If H
s→ G, then χ(H) � Δ(H) + 1, so RΔ(G; s) � Rχ(G; s) − 1. Since every

homomorphic image of Kn contains Kn, it follows that Rχ(Kn; s) = R(Kn; s), and hence

RΔ(Kn; s) � R(Kn; s) − 1. Since KR(Kn;s)
s→ Kn, equality holds. In particular, RΔ(C3; 2) = 5

and RΔ(C3; 3) = 16.

It appears that RΔ(Cn; s) behaves quite differently for odd and even n. The following

Lemma is well known; Harary, Hsu and Miller [16] noted the special case k = 2.

Lemma 5.1. If χ(H) � ks, then H decomposes into s graphs that are k-colourable.

Proof. In a proper colouring f of H , encode the colours as k-ary s-tuples. Assign the

edges of H to subgraphs H1, . . . , Hs by putting uv in some Hi such that the colours of u

and v differ in coordinate i. Each Hi is now properly coloured by the values in the ith

coordinate of f.

Proposition 5.2. If s � 2 and k � 1, then RΔ(C2k+1; s) � 2s + 1.

Proof. If 2 < Δ(H) � 2s and H does not contain K2s+1, then H is 2s-colourable (using

Brooks’ Theorem when Δ(H) = 2s). Hence H decomposes into s bipartite subgraphs, by

Lemma 5.1. Therefore, H
s

� C2k+1.

It remains to consider H = K2s+1. For s = 2, the edges of K5 can be 2-coloured to avoid

any monochromatic fixed odd cycle. For s > 2, we proceed by induction on s. Partition

the vertex set of K2s+1 into two cliques, one of size 2s−1 + 1 and one of size 2s−1. Colour

all edges between the cliques red. Use the other s − 1 colours to colour the edges within

the cliques inductively while avoiding C2k+1.
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A result in bipartite Ramsey theory combines with Proposition 5.2 to show a qual-

itative difference between C4 and odd cycles. Carnielli and Monte Carmelo [9] proved

lims→∞
B(C4;s)

s2
= 1, where B(G; s) = min{d : Kd,d

s→ G}. Thus B(C4; s) grows quadratically

in s. Since RΔ(G; s) � B(G; s), it follows that RΔ(C4; s) grows at most quadratically in s. In

contrast, Theorem 5.2 shows that the s-colour degree Ramsey number of any odd cycle

grows at least exponentially in s.

Lower bounds for even cycles are weaker. The technique involving chromatic numbers

does not help, because large complete bipartite graphs are 2-chromatic but force long

even cycles, by the bipartite Ramsey theorem. The easiest way to avoid monochromatic

long even cycles in a decomposition is to avoid all cycles. The arboricity of a graph G,

denoted Υ(G), is the minimum number of forests in a decomposition of G.

Proposition 5.3. If k � 1, then RΔ(C2k; s) � 2s.

Proof. Let G be a graph with Δ(G) � 2s − 1. By a famous result of Nash-Williams [20],

Υ(G) = max
H⊆G

⌈
|E(H)|

|V (H)| − 1

⌉
� max

H⊆G

⌈ 1
2
(2s − 1)|V (H)|
|V (H)| − 1

⌉
� s

so G decomposes into s forests. The resulting s-edge-colouring yields RΔ(C2k; s) � 2s.

For s = 2, we have RΔ(C4; s) � 4. Beineke and Schwenk [5] showed that K5,5 → C4,

so RΔ(C4; 2) � 5. We will show that equality holds. It suffices to prove RΔ(C4; 2) > 4.

We will prove the stronger statement that for any graph G with Δ(G) � 4, some 2-edge-

colouring of G avoids both C3 and C4. We will reach a contradiction by studying a

smallest counterexample G. We show that such a graph G cannot contain various induced

subgraphs, ultimately showing that G contains no triangle and no induced subgraph

containing a 4-cycle.

Before proceeding, we need a lemma. We use H · e to denote the graph obtained from

a graph H by contracting edge e.

Lemma 5.4 (Contraction Lemma). Let H be a graph with Δ(H) � 4. Let uv be an edge

of H in no triangle, such that d(u) + d(v) � 6. If H · uv has a 2-edge-colouring avoiding C3

and C4, then choosing either colour for uv yields a 2-edge-colouring of H that avoids C3

and C4.

Proof. We need only consider monochromatic triangles and 4-cycles through uv. There

are none of the former, since uv lies on no triangles. With either colour on uv, there are

none of the latter, since they would contract to monochromatic triangles in H · uv.

The subgraph of G induced by a vertex set S is denoted G[S].

Theorem 5.5. RΔ(C4; 2) = 5.
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Figure 2. (a) G is K4-free. (b) G is 4-regular.

(a)

v

u

x

w

(b)

v

y

u

w zx

(c)

Figure 3. (a) G is K1,2,2-free. (b, c) G is K−
4 -free.

Proof. As mentioned earlier, it suffices to prove that every graph with maximum degree

at most 4 has a 2-edge-colouring that avoids both C3 and C4. Let G be a smallest

counterexample. We reach a contradiction by excluding various induced subgraphs from G.

In Figures 2–6, the colours for the edges are solid and bold; dashed edges may have

either of these colours. Vertices joined by dotted lines are nonadjacent. Every graph with

fewer vertices than G has a solid/bold edge-colouring with no monochromatic C3 or C4;

call this a good colouring. Often we will obtain a good colouring of G by ‘extending’ a

good colouring of an induced subgraph G − S or a graph H that is not a subgraph of

G; in the latter case, edges of H that are not in G are dropped. The proof of validity of

the extension is always that every monochromatic cycle in the resulting edge-colouring of

G is at least as long as some monochromatic cycle in the good colouring of the smaller

graph, which is easily checked.

Step 1: G is K4 -free. Let S induce K4. Extend a good colouring of G − S by decomposing

G[S] into a solid P4 and a bold P4 and giving the edge leaving S at each vertex (if such

an edge exists) the colour of the copy of P4 having it as a leaf (see Figure 2).

Step 2: G is 4-regular . If d(v) � 2, then a good colouring of G − v extends by using each

colour on at most one edge at v. If d(v) = 3, then v has nonadjacent neighbours x and y,

since G is K4-free. Obtain H by adding xy to G − v. Extend a good colouring of H by
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Figure 4. G is triangle-free.

giving vx and vy the colour of xy in H and giving the third edge at v the opposite colour

(see Figure 2).

Step 3: G is K1 ,2 ,2 -free. If G contains K1,2,2 with vertex set S , then G[S] = K1,2,2, since G

is K4-free. Extend a good colouring of G − S by decomposing G[S] into two copies of P5

and giving to each edge leaving S the colour of the copy of P5 ending there (Figure 3).

Step 4: G is K−
4 -free, where K−

4 is the graph obtained from K4 by deleting one edge. Such

a subgraph must be induced, since G is K4-free; let S be a vertex set such that G[S] = K−
4 .

Let x and v be the nonadjacent vertices in S , with {u, w} = S − {x, y}.
If u and v have no common neighbours outside S , and w and x have no common

neighbours outside S (see Figure 3(b)), then let H = (G · uv) · wx, and let e be the edge

that G[S] contracts into. Extend a good colouring of H by giving the path through

x, u, w, v the same colour as e and giving the edges uv and wx the opposite colour.

If neither reduction of this type is available, then we may assume by symmetry (and

maximum degree 4) that u and v have a common neighbour y, and v and w have a

common neighbour z (see Figure 3(c)). Let S = {u, v, w, x, y, z}. The graph G[S] contains

no additional edges, since G is K1,2,2-free. Extend a good colouring of G − {u, v, w} by

using one colour on {yu, uw, wx, vz} and the opposite colour on the rest. Note that each

monochromatic path in G[S] joining two vertices of {x, y, z} has length at least 3.

Step 5: G is C3 -free. Suppose that G[S] = C3, where S = {w, x, y}. Since G is K−
4 -free, no

two vertices of S have another common neighbour. Let u and v be the neighbours of w

outside S . We consider two cases, depending on whether uv ∈ E(G).

If uv ∈ E(G), then let H = (G − w) · xy. Extend a good colouring of H by giving xy the

opposite colour from uv (valid by the Contraction Lemma), then giving wx and wy the

colour of uv and giving wu and wv the colour of xy (see Figure 4(a)). Monochromatic

cycles through x, w, y are long enough for the usual reason; monochromatic cycles through

u, w, v are long enough because u and v have no other common neighbour, since G is

K−
4 -free.

If uv /∈ E(G), then let H = (G + uv − w) · xy. Extend a good colouring of H by giving

{uw, wv, xy} the same colour as uv and giving wx and wy the opposite colour (see

Figure 4(b)). Again the Contraction Lemma allows us to colour xy arbitrarily, and for

cycles through the other edges we have the usual reason.
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Figure 5. G is K2,3-free.

Step 6: G is K2 ,3 -free. Suppose that G[S] = K2,3; let X and Y be the partite sets of G[S],

with X = {x, y} and Y = {u, v, w}. Since G is C3-free, vertices of S having a common

neighbour outside S must both lie in X or both in Y . We consider cases depending on

whether two vertices of Y have a common neighbour outside S . Let xz and yz′ be the

edges leaving S from X; possibly z = z′.

If u and v have no common neighbour outside S , then let H = (G − X) · wb, where

a and b are the neighbours of w outside S . Extend a good colouring of H by giving

{ux, vx, yz′, wb} the same colour as wa and giving the opposite colour to the remaining

edges incident to X (see Figure 5(a)). The Contraction Lemma allows us to colour wb

as specified, and then all monochromatic cycles containing an edge incident to X must

pass through u and v; these are long enough because u and v have no common neighbour

outside S . The possibility of z = z′ is irrelevant in this case.

Therefore, we may assume that every two vertices in Y have a common neighbour.

Possibly some vertex outside S is adjacent to all of Y . If there are two such vertices z

and z′, then let S ′ = S ∪ {z, z′}; now G[S ′] = K4,3. In this case, extend a good colouring

of G − S ′ by decomposing G[S ′] into two copies of P7 and colouring the edges leaving S ′

with the colour of the P7 whose endpoint they are adjacent to (see Figure 5(b)). It does

not matter whether the vertices in S ′ − Y have common neighbours outside S ′.

If only one vertex outside S is adjacent to all of Y , call it z and let S ′ = S ∪ {z}; now

G[S ′] = K3,3 (see Figure 5(c)). Each vertex of S ′ has one neighbour outside S ′. Since G

is now K4,3-free, we may assume that no pair in Y except possibly {u, w} and no pair

in {x, y, z} except possibly {x, z} has a common neighbour outside S ′. Now extend a

good colouring of G − S ′ by making the edges leaving S ′ from Y and the path through

u, z, v, x, w bold and making the edges leaving S ′ from {x, y, z} and the remaining edges

of G[S ′] solid.

The final possibility is that each pair in Y has a common neighbour outside S , but no

vertex outside S is adjacent to all of Y . Extend a good colouring of G − S by decomposing

the set of edges incident to S into two copies of K2 + T , where T is the 7-vertex tree

obtained by subdividing each edge of K1,3 (see Figure 5(d)).
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Figure 6. G is C4-free.

Step 7: G does not contain C4 . Since G is K4-free and K−
4 -free, any 4-cycle is an induced

subgraph. If G[S] = C4 for some S , then let the vertices be u, v, w, x in cyclic order. Since

G is C3-free and K2,3-free, no two vertices of S have a common neighbour outside S . Let

v′ and v′′ be the neighbours of v outside S , and let w′ and w′′ be the neighbours of w

outside S .

Obtain H from G − {v, w} by adding the edges v′v′′ and w′w′′ and contracting the edge

ux. Note that v′v′′, w′w′′ /∈ E(G), since G is C3-free. By the Contraction Lemma, when

extending a good colouring of H we may give ux whichever colour we want. We give vv′

and vv′′ the colour of v′v′′, and we give ww′ and ww′′ the colour of w′w′′.

For the remaining edges, we consider two cases. If v′v′′ and w′w′′ have the same colour

in H , then give that colour to ux and give the opposite colour to the rest of G[S] (see

Figure 6(a)). If v′v′′ and w′w′′ have opposite colours in H , then give the colour of v′v′′

to vw and xw, and give the colour of w′w′′ to xu and vu (see Figure 6(b)). By the usual

arguments, the resulting monochromatic cycles are long enough, using the fact that no

two vertices of S have a common neighbour outside S .

Since G has neither a 3-cycle nor a 4-cycle, every 2-edge-colouring avoids both.
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