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Abstract
Rapid population ageing in China has urged the need to understand health transitions of older Chinese
to assist the development of social security programmes and financial products aimed at funding long-
term care. In this paper, we develop a new flexible approach to modelling health transitions in a multi-
state Markov model that allows for age effects, time trends and age-time interactions. The model is
implemented in the generalised linear modelling framework. We apply the model to evaluate health
transitions of Chinese elderly using individual-level panel data from the Chinese Longitudinal Healthy
Longevity Survey for the period 1998–2012. Our results confirm that time trends and age–time
interactions are important factors explaining health transitions in addition to the more commonly used
age effects. We document that differences in disability and mortality rates continue to persist between
urban and rural older Chinese. We also compute life expectancies and healthy life expectancies based on
the proposed model as inputs for the development of aged care and financial services for older Chinese.
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1. Introduction

As one of the most populous countries in the world, China is rapidly ageing due to improvements
in life expectancy and low fertility rates in past decades. In 2015, one in five older persons aged
65+ globally lived in China, while in 2050 one in four elderly – over 370 million people – will be
Chinese. China’s old age dependency ratio was 15% in 2015, but will rise to 50% by mid-century
(United Nations, 2015). The need for health care, aged care and financial services for the elderly in
China is already large and will keep growing in the future.

Traditionally, older Chinese were cared for by family members, but the availability of family care-
givers is declining due to demographic changes, the weakening of traditional values, greater geo-
graphic mobility and improved gender equality (see, e.g. Lu et al., 2015; Zhu, 2015). In China, the

*Correspondence to: Han Li, Department of Actuarial Studies and Business Analytics, Macquarie University,
Sydney, Australia. Tel: +61 (2) 9850 6460. E-mail: han.li@mq.edu.au

145

https://doi.org/10.1017/S1748499518000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000167
mailto:han.li@mq.edu.au
https://doi.org/10.1017/S1748499518000167


current social security programmes for older people provide basic medical insurance and a low
pension income. However, they do not cover the full cost of residential-aged care facilities and also
do not fund community-based services (Yang et al., 2013). The resulting unmet aged care needs have
a measurable impact on the mortality risk of older Chinese (Zhen et al., 2015). Hence, there is a need
for social security programmes specialising in the provision of aged care (Zhen et al., 2015) and the
development of private market solutions such as long-term care insurance or specialised home equity
release products.

These challenges motivate our study on health transitions of older Chinese. There is a large and
growing actuarial literature on multi-state health transition models (see, e.g. Pitacco, 1995;
Renshaw & Haberman, 1995; Ferri & Olivieri, 2000; Rickayzen & Walsh, 2002; Fong et al.,
2015), but these studies focus on the mortality and morbidity experience of developed countries
such as the United Kingdom and United States. As far as we know, there is a lack of specific
studies on China on this topic. Since the demographic changes in China are happening at a very
fast speed, it is important to consider time effects in health transitions in order to develop more
accurate projections. Several studies have developed different approaches to consider time effects
in multi-state health transition models. Important early contributions include Renshaw &
Haberman (2000) and Rickayzen & Walsh (2002) based on UK data. Majer et al. (2013)
modelled health transition probabilities in the Netherlands based on the Lee–Carter framework
with stochastic time trends. Li et al. (2017) adopted a multi-state model with latent factors to
capture systematic time trends in US health transition intensities. Aro et al. (2015) developed a
semi-Markov model with stochastic period effects using disability claims data from Sweden.
Their model was extended by Djehiche & Lofdahl (2018) to a hidden Markov model with a
stochastic time trend.

In this paper, we develop a generalised linear model (GLM) that incorporates age effects, time trends
and age–time interactions in the transition rates in a Markov model with three health states (healthy,
functionally disabled and dead). Our model extends existing literature by allowing for time trends
and age–time interactions. Another strength of our approach is the ability to tailor different func-
tional forms for each transition intensity in different subpopulations. This provides greater flexibility
in the model structure. We apply this new model to provide first evidence on the health transitions of
older Chinese males and females in urban and rural areas.

We use individual-level panel data from the Chinese Longitudinal Healthy Longevity Survey
(CLHLS) for ages 65–105 over the period 1998–2012. CLHLS is the largest longitudinal survey
of the “oldest old” (aged 80 + ) internationally (Zeng, 2012). Mortality and morbidity data in the
CLHLS have been found to be of good quality (Zeng, 2012) and have been used in many studies
analysing health patterns of older Chinese (e.g. Peng et al., 2010; Peng & Wu, 2015; Fong &
Feng, 2016). With a sample size of over 128,000 exposure years we are able to estimate separate
models for male and female residents in both urban and rural areas. This distinction is important
as large economic and demographic differences continue to exist between urban and rural
areas in China (Wang & Yu, 2016). We classify individuals’ health status based on the Activities
of Daily Living (ADL) information collected by CLHLS. ADL limitations are widely used
internationally to measure an individual’s functional status and long-term care needs for insur-
ance purposes, including a recent long-term care insurance pilot programme in the city of
Qingdao in Eastern China (Yang et al., 2016). Six basic ADLs are considered in our
study including bathing, dressing, eating, using the toilet, continence, and transferring in and
out of bed.
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The empirical results confirm that age and time effects are important factors for modelling health
transitions at higher ages. Many of the selected models for the health transition rates of the different
subpopulation also include age–time interactions which capture time trends that differ by age. Our
results suggest that the recent improvements in the mortality rates of older Chinese are largely driven
by the decline in the mortality rates for functionally disabled older persons rather than by the
mortality rates of the non-disabled population. Using the estimated health transition models, we also
provide new estimates for life expectancies and healthy life expectancies at different ages for 1998,
2011 and 2020.

The remainder of the paper is organised as follows. Section 2 introduces the new model consisting of
the three-state Markov process and the GLM framework. Section 3 describes the CLHLS data used
in this study. Section 4 presents and discusses the results. Section 5 concludes.

2. A Multi-State Health Transition Model With Time Trends

2.1. A three-state time-inhomogeneous Markov process

Following previous literature (see, e.g. Olivieri & Pitacco, 2001; Rickayzen & Walsh, 2002; Fong
et al., 2015; Shao et al., 2017), we assume that individuals’ health transitions can be modelled as a
multi-state Markov process, where the conditional probability distribution of future states of the
process (conditional on both past and present values) only depends on the state presently occupied
and is independent of the process history. We define a three-state Markov process as in Figure 1. The
process has two transient states, “N” (non-disabled) and “F” (functionally disabled), and one
absorbing state, “D” (dead). It allows for three transitions1,2:

∙ σ: N→F, the intensity to become functionally disabled.

∙ μ: N→D, the mortality intensity for a healthy person.

∙ ν: F→D, the mortality intensity for a disabled person.

Figure 1. Three-state Markov process.

1 In the CLHLS data, we observed very few recovery transitions from functionally disabled to non-disabled
(only 4% of all health transitions are recoveries). Therefore, we do not consider recovery from functionally
disabled to healthy in this study due to the insufficient number of transitions for each age/gender/region group.
We argue that this small number of recoveries would have a negligible impact on the main results.

2 In practice, disability duration can impact both the recovery and the mortality rates of the disabled, so that
the disabled state could be modeled as semi-Markov. However, the information on sickness duration is not
reported in the data set we used and the time intervals between survey waves are too long to estimate sickness
duration. Semi-Markov extensions of our model can be developed when data on sickness duration becomes
available for China. We acknowledge that the missing information on sickness duration may have an impact on
our result.

Modelling multi-state health transitions in China

147

https://doi.org/10.1017/S1748499518000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000167


We assume that health transitions follow a time-inhomogeneous Markov process, where the tran-
sition probability depends on the time at which the transition takes place:

Pi;jðx; t; hÞ=PrðSðx + h; t + hÞ=j j Sðx; tÞ=iÞ (1)

αi;jðx; tÞ= lim
h!0 +

Pi;jðx; t; hÞ = h (2)

where x represents age, t the time with h≥0. S(x,t) denotes the stochastic health status of an
individual at age x and time t, and i,j∈ {N,F,D}. Pi,j(x,t,h) denotes the transition probability from
state i at age x and time t to state j at age x +h and time t +h. αi,j(x,t) denotes the corresponding
transition intensity at age x and time t.

2.2. Model specification

Following earlier works of Renshaw & Haberman (1995) and Fong et al. (2015), we model the
transition intensities using a GLM approach. Separate GLMs are estimated for each of the three
transition intensities σ, μ and ν. The models are specified by three components: the link function, the
linear predictor and the probability distribution.

Link function: We adopt a log link function g(⋅):
gðαi;jðx; tÞÞ=lnðαi;jðx; tÞÞ=ηx;t (3)

where αi,j(x,t) are the respective transition intensities σx,t, μx,t or νx,t for age x at time t. ηx,t is a linear
predictor of regressors.

Linear predictor: As our primary interest is to explore time trends in health transitions, we introduce
time effects as additional covariates besides the age factors considered in Fong et al. (2015) and allow
for age–time interactions3. The linear predictor is given by:

ηx;t=β0 + β1x + β2x
2 + β3t + β4tx + β5tx

2 (4)

where x represents age, t the time and the βj are unknown coefficients that need to be estimated.
The model allows for some of the values of βj to be 0, allowing for flexibility in the
functional form.

We include age factors up to the quadratic effect in agreement with the findings of Fong et al. (2015).
This is also in line with common practice in mortality modelling (see, e.g. Cairns et al., 2009). Since
the CLHLS data only allow us to compute at most five transition intensities per individual, we focus
on a linear time trend in this study. The inclusion of age–time interaction effects has been an
important feature in recent developments in mortality modelling (Cairns et al., 2006; Li et al., 2016;
Plat, 2009). It ensures that the improvement in mortality has a non-trivial correlation structure
across different age groups. Moreover, several studies have recognised the benefits of including
quadratic age–time effects for model fitting and forecasting (Cairns et al., 2009; Dowd et al., 2010).
Therefore, to build on recent developments in mortality and health transition modelling, and to keep
the model parsimonious and interpretable, we consider the aforementioned age, time and age–time
factors in this study.

3 Renshaw & Haberman (1995) included sickness duration as a covariate in their model. We do not include
sickness duration because (i) sickness onset is not reported in the CLHLS data set and (ii) the survey intervals are
too widely spaced to compute sickness duration (see Li et al., 2017, for a discussion).
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Probability distribution: The Poisson distribution has been widely used in the actuarial literature to
model the number of deaths (see, e.g. Brouhns et al., 2002; Cairns et al., 2006; Haberman &
Renshaw, 2009). In this paper, assuming that each transition intensity described in section 2.1 is
constant for each 1-year age group in a given time interval, we assume that the number of health
transitions follows an independent Poisson distribution between survey waves. For illustrative
purpose, we use the mortality rate μx,t from the healthy state as an example in the following. Let nx,t
be the number of transitions from state N to D at age x and time t:

nx;t � Poisson ðeHx;tμx;tÞ8x; t (5)

where eHx;t is the central exposure to risk in healthy state at age x and time t.

The Poisson assumption implies that the dispersion parameter equals 1, which means that the mean
and variance of transition counts should be the same. However, several recent mortality studies have
found that death data has an “overdispersed” feature in many countries (see, e.g. Cairns et al., 2009;
Li et al., 2015), implying that the variance of the number of deaths is much larger than the mean.
Heterogeneity is often considered as a key reason for overdispersion in insurance data. Moreover,
strong dependence in the observed sample can also lead to overdispersion. Therefore, we test the
dispersion parameter in each of the transition counts before estimating the GLMs. We found that in
most of the cases the dispersion parameter is close to 14. Only for cases where the dispersion parameter
is significantly different from one, we relax the restriction on the value of the dispersion parameter and
estimate this parameter based on the underlying data. However, the estimates for parameters in the
model will remain unchanged upon the introduction of an dispersion parameter in the Poisson
distribution (for discussions, see Hinde & Demetrio, 1998; McCullagh & Nelder, 1989).

2.3. Estimation and model selection

Maximum likelihood estimation (MLE) is used to obtain estimates of the proposed GLM models.
We define Φ as the parameter set. Using the mortality rates of healthy individuals again as an
example, the log-likelihood function is given by:

lðΦ ; n; eÞ=
X
x

X
t

nx;tln½eHx;t μx;tðΦÞ��eHx;t μx;tðΦÞ�lnðnx;t ! Þ
n o

(6)

We select the model specification for each transition intensity by comparing the Bayesian informa-
tion criterion (BIC) for all possible combinations of the six terms in equation (4). That is, we do not
impose a single model structure for all health transition rates. Our modelling approach is data-driven
and more flexible than relevant earlier works (e.g. Haberman & Renshaw, 2009; Fong et al., 2015).
For each type of transition, we tailor the model design to only include those age, time and age–time
effects that are important and relevant.

We choose the BIC for model selection because it is widely used in statistics and is proven to be
consistent (Schwarz, 1978). The BIC penalises the number of parameters estimated in the model as
follows:

BIC=�2lðΦ̂Þ + k lnðNÞ (7)

where l(Φ̂ ) is the log-likelihood based on the MLE estimators, N the total number of observations
and k the number of parameters in the model. The model with the smallest BIC value is selected as

4 Detailed results for the dispersion analysis are available upon request.
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the preferred model. We also provide the results of a stepwise comparison of several nested model
variants based on the BIC in section 4.2.

3. Data

3.1. CLHLS survey

We use longitudinal data from the CLHLS, which provides information on the health status and
quality of life of the elderly in 22 provinces of China over the period 1998–2011. The survey
contains detailed information on health, socioeconomic characteristics, family, lifestyle and other
demographic variables. It has been conducted by the Center for Healthy Aging and Family Studies at
the National School of Development at Peking University.

The baseline survey was carried out in 1998 in a randomly selected half of the counties and cities
in 22 provinces of China. The survey areas contained about 85% of China’s total population in
1998. The data was collected through face-to-face home-based interviews and basic physical
capacity tests. The survey team tried to interview all centenarians who agreed to participate in
the study in the sample counties and cities5. For each centenarian interviewee, one octogenarian
(aged 80–89) living nearby, one nearby nonagenarian (aged 90–99) and one nearby
younger elder aged 65–79 of predesignated age and sex were also interviewed. Follow-up
surveys with replacement for deceased elders were conducted in 2000, 2002, 2005, 2008 and
20116. In 2002, a sub-sample of adult children of survey participants was included in the survey.
More details about the survey design can be found, for example, in Yi et al. (2001) and
Zeng (2012).

The sample size of CLHLS is sufficiently large even at higher ages and allows us to estimate models
using 1-year age groups for the age range 65–105. We consider males and females separately and
distinguish between urban and rural residency, which is important in the context of China. We use
residency status as reported in CLHLS: urban (city and town) and rural. About 5% of the sample
lives in a nursing home which is consistent with the low number of nursing homes reported for China
(see, e.g. Lu et al., 2017).

In this study, information on ADL limitations is used as a measure of health status. Six ADL
items were consistently evaluated in all waves of CLHLS: bathing, dressing, eating, using the
toilet, continence, and transferring in and out of bed. Individuals reported their ability to per-
form these activities in three categories (1= do not need help, 2= need partial assistance, 3= need
full assistance). We classify an individual as able to perform an ADL only if she/he does not need
help. We define individuals as functionally disabled if they have difficulty with two or more
(i.e. 2 + ) ADLs, which is consistent with the main analysis presented in Fong et al. (2015) based
on data from the US Health and Retirement Study. In addition, this disability definition is in line
with the trigger of benefit payments for many existing long-term care insurance policies in the US
market.

5 The interview refusal rate was very low: only about 2% of centenarians who were not too sick to participate
with proxy assistance refused to participate (Zeng, 2012).

6 In some waves, a small proportion of the data was collected in the following calendar year. We account for
the exact interview date when computing the central exposure to risk as described below.
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3.2. Descriptive statistics

We analyse health transitions between waves of data collection7. To fully utilise the available
information, we use an unbalanced panel design which includes all individuals with at least two
consecutive observations. Every individual can have up to five health transitions between the six
CLHLS waves 1998, 2000, 2002, 2005, 2008 and 2011. The numbers of transition counts are given
in Table 1. We observe in total 27,659 health transitions, of which 16% are disability transitions,
59% are deaths of healthy individuals and 26% are deaths of disabled individuals.

To calculate the central exposure to risk of the sample population in both healthy and functionally
disabled states, we use the exact interview, birth and death date from the survey or the 15th of the
reported month in case the exact day was missing. We assume that disability happened at the mid-
point between survey waves. Table 2 gives the number of exposure years. The total number of
exposure years is 128,206. The sample split is 42%:58% between urban and rural areas; and
43%:57% between males and females, which allows us to estimate separate models for these four
populations.

Table 1. Number of transition counts.

σ: N→F μ: N→D ν: F→D

Males Females Males Females Males Females

Time Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural

1998–2000 99 153 175 292 277 604 362 793 141 240 284 649
2000–2002 191 131 376 256 572 416 642 520 202 143 498 350
2002–2005 168 134 257 278 720 1,020 860 1,333 248 275 608 728
2005–2008 105 109 193 207 686 1,013 824 1,324 196 180 463 537
2008–2011 214 229 306 443 620 1,229 757 1,682 145 192 368 642
Total 777 756 1,307 1,476 2,875 4,282 3,445 5,652 932 1,030 2,221 2,906

Table 2. Number of exposure years.

State N State F

Males Females Males Females

Time Urban Rural Urban Rural Urban Rural Urban Rural Total

1998–2000 1,763 2937 2,189 3,971 369 519 797 1,537 14,082
2000–2002 3,240 1,997 3,652 2,568 571 347 1,258 819 14,451
2002–2005 5,570 7,516 6,474 8,801 793 742 1,661 1,926 33,482
2005–2008 5,215 7,552 5,917 9,182 614 544 1,385 1,573 31,980
2008–2011 4,946 8,627 5,609 10,249 662 762 1,379 1,979 34,211
Total 20,733 28,628 23,840 34,770 3,008 2,914 6,480 7,834 128,206

7 The Poisson assumption allows multiple transitions per time period. However, we assume that for each
individual in the survey there is only one possible transition between states as we only have information on the
health status of the individual at the time of data collection. Due to the long-term nature of many ADLs, we argue
that this assumption is reasonable and does not have a material impact on our results.
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We calculate crude transition intensities as the number of health transitions divided by the corre-
sponding central exposure to risk for a given age and time. Figures 2–4 show the crude transition
intensities on a log scale. Blank areas in the graphs indicate missing data for younger age groups in
the first waves 1998 and 2000 of CLHLS. Darker colours indicate lower rates. There are age patterns
in most of the graphs and some also show time trends. In particular, the mortality rates ν from the
functionally disabled state “F” decrease over time (see Figure 4). The model estimates presented in
the following section will show which age and time factors are statistically significant drivers of the
different health transitions.

For the model estimation, we define the year 1998 as t= 0 and set the data points in the model to
t= (1, 3, 5.5, 8.5, 11.5) to reflect the fact that the transition intensities refer to the middle of the time
intervals between survey waves and to account for the different interval lengths between survey
waves. We define the age variable as x= age− 65, with a range of [0,40]. These definitions ensure
that both covariates have similar magnitudes.

4. Empirical Results

4.1. Selected models: estimation results

We estimated the GLM described in section 2.2 separately for the three transition intensities σ, μ and
ν for each sub-population in our sample. Table 3 gives the estimation results of the selected linear
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Figure 2. Crude log disability intensities (σ: N→F). (a) Males, urban, (b) males, rural, (c) female,
urban, (d) females, rural.
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predictor for each case based on a comparison of all possible model variants as described in section
2.2. The selected models all have highly significant parameters and the results are interpretable.

The selected models for the disability rate σx,t in each subpopulation all include a positive linear and
a negative quadratic age terms, implying that disability rates increase with age, but at a decreasing
rate. Moreover, the negative age–time interaction effects in all four subpopulations except for urban
males show that there has been an overall improvement in disability rates over time. It also shows
that the rate of improvement in disability rates over time differs across age groups.

For all subpopulations, the mortality rates for healthy individuals μx,t increase with age but again
there is a deceleration for higher age groups. We note that there are no significant time effects or age–
time interaction effects in any of the four sub-populations. This agrees with the fact that the plots of
μx,t show fairly stables pattern throughout the sample period (see Figure 3).

The models for the mortality rates of the disabled νx,t all include positive linear age effects and
negative time/age–time effects. For urban and rural males and urban females, a linear negative
mortality trend is found for all age groups. The speed of mortality decline over time is similar in these
three sub-populations. The model for rural females includes a negative quadratic age–time effect,
indicating that mortality decline for this subpopulation is more rapid for older age groups.

Overall, these results show that both age and time effects are important factors explaining patterns in
health transitions at higher ages in China. In addition, several of the models rely on age–time
interactions which capture time trends that differ by age. Our results also suggest that the
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Figure 3. Crude log mortality rates for healthy individuals (μ: N→D). (a) Males, urban, (b)
males, rural, (c) female, urban, (d) females, rural.

Modelling multi-state health transitions in China

153

https://doi.org/10.1017/S1748499518000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000167


improvements in mortality rates of older Chinese aged 65 + are largely driven by the decline of
mortality rates of functionally disabled elderly, rather than by the mortality rates of healthy indi-
viduals. China has experienced rapid economic growth since the beginning of its market reforms in
1978. Over our sample period 1998–2012, the average annual disposable income increased 3.5 times
for urban households and 2.6 times for rural households (National Bureau of Statistics of China,
2013). This economic development allowed households to afford higher living standards and better
medical care. Furthermore, several policy reforms have improved people’s access to health services
and increased health insurance coverage in China (Meng et al., 2012). As a result, China has seen
major changes in the causes of death (Zhou et al., 2016) and in the survival and disability of the
elderly (Zeng et al., 2017). We argue that these factors can explain our results.

Figures A.1–A.3 in the Appendix show the residuals for the 12 selectedmodels, computed as the difference
between the crude and estimated transition rates. The errors fluctuate around 0 and show no systematic
patterns. We conclude that the selected models effectively capture age and time patterns in the data.

4.2. Stepwise model selection

The previous section discussed the selected model specifications for each transition intensity and each
subpopulation that were identified by comparing all possible model variants. It is interesting to
compare these results with those from a stepwise model selection process where additional terms are
added in each step. Table 4 gives the BIC values for six nested model variants and compares these
with the BIC values for the selected models identified in Table 3.
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Figure 4. Crude log mortality rates for disabled individuals (ν: F→D). (a) Males, urban, (b)
males, rural, (c) female, urban, (d) females, rural.

Katja Hanewald et al.

154

https://doi.org/10.1017/S1748499518000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000167


Table 3. Selected model: parameter estimates.

σ: N→ F μ: N→D ν: F→D

Males Females Males Females Males Females

Coefficient Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural

β0 − 5.376** − 5.719** −6.346** −5.969** − 4.237** − 4.292** −4.684** − 4.414** − 2.267** − 2.186** − 2.619** − 2.618**
β1 0.122** 0.127** 0.217** 0.169** 0.119*** 0.140** 0.137** 0.123*** 0.046** 0.047** 0.053** 0.053**
β2(×10

2) − 0.111* − 0.09* −0.259*** −0.178** − 0.081** − 0.132*** −0.110** − 0.090**
β3 − 0.027** − 0.029** − 0.026**
β4(×10

2) −0.154** −0.158**
β5(×10

5) − 5.125** − 1.622**
BIC 832.77 824.56 977.70 1,107.56 943.25 1,071.52 940.41 1,023.65 691.81 715.48 754.76 746.89

Note: The functional form of the linear predictor is ηx,t= β0 + β1x + β2x
2 + β3t+ β4tx+ β5tx

2.
BIC=Bayesian information criterion.
*p<0.05; **p<0.01; ***p<0.001.

Table 4. Stepwise model selection: goodness-of-fit of nested models.

σ: N→F μ: N→D ν: F→D

Male Female Male Female Male Female

Model Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural Urban Rural

β0 1,176.30 1,204.82 1,669.90 1,847.75 2,420.65 3,351.47 2,750.72 3,881.06 815.71 879.98 1,029.73 1,010.66
β0 + β1x 835.19 841.60 1,051.16 1,177.64 952.23 1,125.28 962.91 1,049.64 695.25 722.67 766.29 757.31
β0 + β1x + β2x

2 832.77 838.42 1,003.63 1,151.12 943.25 1,071.52 940.41 1,023.65 700.42 726.66 771.08 760.13
β0 + β1x + β2x

2 + β3t 836.67 830.03 981.31 1,115.79 947.06 1,076.22 945.66 1,028.62 696.90 719.82 759.17 753.77
β0 + β1x + β2x

2 + β3t+ β4tx 834.73 826.80 982.48 1,107.56 951.23 1,081.46 943.95 1,032.07 697.19 724.97 763.42 755.31
β0 + β1x + β2x

2 + β3t+ β4tx+ β5tx
2 838.92 826.91 983.26 1,114.76 955.86 1,085.82 945.62 1,035.60 697.61 730.12 767.54 759.46

Selected model 832.77 824.56 977.70 1,107.56 943.25 1,071.52 940.41 1,023.65 691.81 715.48 754.76 746.89

Note 1: The table gives the Bayesian information criterion (BIC) for several nested model variants.
Note 2: Bold font indicates minimum BIC values. Selected model refers to the model identified in Table 3.
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We note that in six of the 12 cases the stepwise model selection identifies models with higher BIC
values (representing a worse model fit) than the models selected in section 4.1. This is the case for all
four models for the mortality rate from functionally disabled state νx,t, and for two of the models for
the disability rate σx,t. The limitations of stepwise model selection algorithm are widely recognised in
statistics (Hurvich & Tsai, 1990; Grafen et al., 2002; Whittingham et al., 2006). One of the
weaknesses of this method is the fact that model selection is very sensitive to factors such as the order
of parameter entry and whether we choose to use forward selection algorithm or backward elim-
ination algorithm (Derksen & Keselman, 1992). Therefore, to avoid these limitations, in this paper
we have considered all possible model designs for the three health transition models. The preferred
models turn out to be parsimonious and have good fitting performances.

Nevertheless, the detailed analysis of the stepwise model comparison confirms that including time
effects and age–time interaction terms improves the model fit for most health transition models
except for the mortality rates μx,t of the non-disabled.

4.3. Likelihood ratio tests (LRTs)

In order to further verify the significance of the time effects in the three transition intensities, we
conduct the LRT on the selected models given in Table 3. For cases where time effects are included in
the selected models, we drop these effects to construct the null model and then perform the LRT. For
cases where the selected model does not contain time effects, we construct an alternative model with
all the selected age terms and at least one time effect. We select the alternative model using the BIC.
The test statistic based on the deviance D is defined as:

ΔD=Dnull�Dalternative=�2 ´ logðLnull =LalternativeÞ (8)

with

Dnull=�2 ´ logðLnull =LsaturatedÞ (9)

Dalternative=�2 ´ logðLalternative =LsaturatedÞ (10)

where Lnull represents the likelihood of the null (simpler) model and Lalternative the likelihood of the
alternative (larger) model. The saturated model has the same number of parameters as the sample
size and Lsaturated is the corresponding likelihood.

Under the null hypothesis that the simpler model is preferred, ΔD follows a χ2 distribution with
degrees of freedom equal to the difference in the number of parameters between the null model and
the alternative model. We conduct the LRT at the 5% level of significance. The test results given in
Table 5 show that for all selected models which include time effect, adding these time effects
significantly improves the model fit. The results also show that adding time effects does not sig-
nificantly improve the fit for the selected models without time effect. The only exception is the model
for the mortality rate μ of healthy urban females, where the LRT indicates that including time effects
would improve the model fit. We note this result but decide to keep the more parsimonious model
that was selected in Table 3 based on the BIC. Apart from this exception, the results of the LRTs
confirm our model choices based on the BIC.
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4.4. Life expectancy and healthy life expectancy

We use the models identified in section 4.1 to compute estimates for life expectancy and healthy life
expectancy. Table 6 shows the estimated life expectancies at age 65 and 75 conditional on the initial
health status, where “healthy” is defined as having at most one ADL limitation (see section 3.1). We
provide estimates for the first and last time point of the investigation period (1998 and 2011) and
out-of-sample forecasts for 2020. A death time dispersion measure for each subgroup, which is
calculated as the standard deviation of death time distributions, is also shown in Table 6. This
dispersion measure captures idiosyncratic mortality risk. As death time distribution for older age
groups can be very different from a normal distribution, this standard deviation-based measure is an
approximate indicator of the death time dispersions around life expectancy.

The estimated life expectancies vary in plausible ways: life expectancies of urban residents are higher
than those of rural residents, females have higher life expectancies than males and healthy individuals
have higher life expectancies than disabled ones. Our models include time trends in three of the four
models for disability rate and in all models for the disabled mortality rates. These trends are reflected
in the life expectancies which increase over time for all population subgroups and show the largest
improvements for disabled individuals. When comparing the computed life expectancies in Table 6
with several related studies, we find consistencies in the results. For example, Luo et al. (2016) report
for the age group 65–69 in 2011 a remaining life expectancy of 15.0 years for males and 18.7 years
for females (Luo et al., 2016, Table 2). From Table 6, we can also see that death time dispersions for
the disabled subgroups increase over time, a trend which is potentially driven by the mortality
improvement of the disabled individuals. On the other hand, the death time dispersions of the
healthy subgroups are generally stable over time.

Table 7 gives the estimated healthy life expectancies at age 65 and 758. Female urban residents
have the highest healthy life expectancy and male rural residents have the lowest healthy life

Table 5. Results of the likelihood ratio test.

Male Females

Urban Rural Urban Rural

Model D ΔD p-value D ΔD p-value D ΔD p-value D ΔD p-value

σ: N→F
Null 312.67 307.33 437.90 548.62
Alternative 311.33 1.35 0.246 288.23 19.10 0.000 406.75 31.15 0.000 489.33 59.30 0.000

μ: N→D
Null 176.52 225.95 179.80 178.13
Alternative 175.08 1.44 0.230 225.39 0.55 0.458 172.17 7.63 0.022 177.86 0.28 0.600

ν: F→D
Null 180.80 189.11 208.80 158.95
Alternative 172.19 8.61 0.003 179.68 9.43 0.002 192.09 16.71 0.000 143.35 15.60 0.000

Note: D denotes the deviance and ΔD is the test statistic defined in section 4.3.

8 We only consider healthy life expectancy for individuals who are initially healthy, as the healthy life
expectancy for disabled individuals will simply be 0 based on our model specification.
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expectancy. Healthy life expectancies of females improve faster over time than those of males. We
find that the ratios of healthy life expectancy to life expectancy are quite stable over the period
1998–2020, indicating a dynamic equilibrium where both life expectancy and healthy life expec-
tancy shift to the right – a finding which agrees with the results of several related studies on China
(see, e.g. Liu et al., 2009; Guo, 2017).

Overall, our results show persistent health differences between urban and rural China. For life
expectancy, we find that the existing urban–rural gaps increase over time for healthy males and for
healthy and disabled females. For disabled males, the gap seems to be slowly decreasing (see
Table 6). For healthy life expectancy, our results suggest convergence between urban and rural
males, but divergence for females.

Table 6. Life expectancy and death time dispersion conditional on health status at age 65 and 75.

Male Female

Urban Rural Urban Rural

Year Healthy Disabled Healthy Disabled Healthy Disabled Healthy Disabled

Life expectancy at 65
1998 16.18 7.29 15.75 6.81 18.24 9.18 17.45 9.17
2011 16.52 9.51 16.05 9.08 18.80 11.60 17.70 9.29
2020 16.81 11.33 16.25 10.97 19.10 13.52 17.83 9.39

Life expectancy at 75
1998 9.81 5.03 9.19 4.65 10.98 6.17 10.66 6.16
2011 10.10 6.69 9.45 6.33 11.54 7.98 10.93 6.41
2020 10.35 8.08 9.62 7.76 11.83 9.45 11.06 6.61

Death time dispersion at 65
1998 8.53 5.79 8.04 5.45 8.73 6.78 8.82 6.77
2011 8.56 7.18 8.08 6.90 8.81 8.10 8.86 6.97
2020 8.58 8.23 8.09 7.99 8.83 9.06 8.87 7.13

Death time dispersion at 75
1998 6.52 4.23 6.11 3.94 6.93 4.92 6.88 4.92
2011 6.56 5.39 6.15 5.13 7.01 6.06 6.92 5.21
2020 6.58 6.29 6.17 6.06 7.03 6.90 6.94 5.45

Table 7. Healthy life expectancy at age 65 and 75.

Male Female

Year Urban Rural Urban Rural

Healthy life expectancy at 65
1998 15.16 15.03 16.85 16.26
2011 15.16 15.17 17.36 16.68
2020 15.16 15.25 17.66 16.93

Healthy life expectancy at 75
1998 8.96 8.58 9.64 9.56
2011 8.96 8.76 10.21 10.04
2020 8.96 8.86 10.54 10.31
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5. Conclusions

In this article, we develop a new flexible approach to modelling health transitions at higher ages
based on the GLM framework. Our model extends existing modelling approaches by allowing for
time trends and age–time interactions in the linear predictor in addition to the commonly used age
effects. We apply the model to health transitions of older Chinese aged 65–105 and consider males
and females in urban and rural areas separately.

We identify important factors explaining the health transition intensities σ, μ and ν in each sub-
population using the BIC model selection algorithm. Different functional forms are selected for the
different health transitions in each subpopulation. The selected models all include age effects which
have been included in previous studies including Renshaw & Haberman (1995) and Fong et al.
(2015). The models for the disability rates and the disabled mortality rates also include time trends
and age–time interactions, which confirms that these factors should be considered when modelling
health transitions at higher ages.

Using the selected models for each group, we compute estimates of life expectancies and healthy life
expectancies. The results are largely consistent with the results of previous studies on health expec-
tancies in China (Liu et al., 2009; Luo et al., 2016; Guo, 2017).We also confirm that health differences
continue to persist between urban and rural China, which agrees with recent findings by Wang & Yu
(2016). In addition, our study adds new findings on the life expectancy and healthy life expectancy for
urban and rural populations over a longer time horizon, and conditioning on initially health status.

We developed this model as an input for further research on population ageing and retirement
financial planning in China. Our model can be used, for example, to estimate the demand for long-
term care insurances based on the disability rate and life expectancy of disabled individuals produced
by the model. The outputs of the model can also be used to assist the design and pricing of new
retirement financial products for the Chinese market including reverse mortgages and other home
equity release products (see, e.g. Alai et al., 2014; Shao et al., 2015). Moreover, in this paper we have
used an ADL limitation-based definition of disability. The approach developed here can be easily
adjusted to capture other dimensions of health such as chronic diseases or cognitive impairment.

We adopted the GLM framework in this study due to the limited amount and length of data
available for the estimation. Once more data becomes available for China, the model can be
extended to consider, for example, stochastic volatilities in the time effects as well as smoothness in
the age dimension. Potentially, we can modify our model to have a similar model structure as the
Lee–Carter model.
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Appendix

Figures A.1–A.3
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Figure A.1. Estimated errors for the disability rates (σ: N→F). (a) Males, urban, (b) males, rural,
(c) female, urban, (d) females, rural. The model estimates are in Table 3.
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Figure A.2. Estimated errors for the mortality rates of healthy individuals (μ: N→D). (a) Males,
urban, (b) males, rural, (c) female, urban, (d) females, rural. The model estimates are in Table 3.

Katja Hanewald et al.

164

https://doi.org/10.1017/S1748499518000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000167


98-00 00-02 02-05 05-08 08-11

Time

98-00 00-02 02-05 05-08 08-11

Time

98-00 00-02 02-05 05-08 08-11

Time

98-00 00-02 02-05 05-08 08-11

Time

65

70

75

80

85

90

95

100

105
A

g
e

65

70

75

80

85

90

95

100

105

A
g

e

65

70

75

80

85

90

95

100

105

A
g

e

(a) (b)

(c) (d)

A
g

e

-0.1

-0.05

0

0.05

0.2

-0.2

0.15

-0.15

0.1

-0.1

-0.05

0.05

0

0.1

0.15

-0.15
-0.1

-0.05

0.05

0

0.1

-0.1

-0.15

-0.05

0.05

0

0.1

0.15

65

70

75

80

85

90

95

100

105

Figure A.3. Estimated errors for the mortality rates of disabled individuals (ν: F→D). (a) Males,
urban, (b) males, rural, (c) female, urban, (d) females, rural. The model estimates are in Table 3.
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