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Closing the loop: nonlinear Taylor vortex flow
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We present an optimization-based method to efficiently calculate accurate nonlinear
models of Taylor vortex flow. Through the resolvent formulation of McKeon & Sharma
(J. Fluid Mech., vol. 658, 2010, pp. 336–382), we model these Taylor vortex solutions
by treating the nonlinearity not as an inherent part of the governing equations but rather
as a triadic constraint which must be satisfied by the model solution. We exploit the
low-rank linear dynamics to calculate an efficient basis, the coefficients of which are
calculated through an optimization problem to minimize the triadic consistency of the
solution with itself as well as the input mean flow. Our approach constitutes, what is to
our knowledge, the first fully nonlinear and self-sustaining, resolvent-based model in the
literature. Our results compare favourably with the direct numerical simulation (DNS) of
Taylor–Couette flow at up to five times the critical Reynolds number. Additionally, we
find that as the Reynolds number increases, the flow undergoes a fundamental transition
from a classical weakly nonlinear regime, where the forcing cascade is strictly down
scale, to a fully nonlinear regime characterized by the emergence of an inverse (up
scale) forcing cascade. Triadic contributions from the inverse and traditional cascade
destructively interfere implying that the accurate modelling of a certain Fourier mode
requires knowledge of its immediate harmonic and sub-harmonic. We show analytically
that this is a direct consequence of the structure of the quadratic nonlinearity of the
Navier–Stokes equations formulated in Fourier space. Finally, using our model as an initial
condition to a higher Reynolds number DNS significantly reduces the time to convergence.
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1. Introduction

Taylor–Couette flow (TCF), the flow between two concentric and independently rotating
cylinders, is one of the canonical problems in fluid mechanics, and a paradigm for the
study of linear stability, pattern formation and rotationally driven turbulence. From the
original investigations of Taylor (1923) to the pioneering experiments of Coles (1965),
recent theoretical analyses (Jones 1981; Gebhardt & Grossmann 1993; Maretzke, Hof
& Avila 2014), high-Reynolds-number simulations (Ostilla et al. 2013; Ostilla-Mónico
et al. 2014; Grossmann, Lohse & Sun 2016; Sacco, Verzicco & Ostilla-Mónico 2019),
and experimental investigation (van Gils et al. 2011, 2012; Huisman et al. 2014), TCF has
remained a problem of interest for most of the last century. Perhaps the most well-known
characteristic of TCF is the incredibly rich array of stable flow states that exist over a
range of geometries and relative rotation rates of the inner and outer cylinders (Coles 1965;
Andereck, Liu & Swinney 1986). We consider the case of pure inner cylinder rotation, for
which the problem is parametrized by the ratio of the inner and outer radii, η ≡ ri/ro, and
a single Reynolds number, R. In this case the laminar velocity profile becomes linearly
unstable at a critical Reynolds number, Rc ∼ O(102). A centrifugal instability leads to the
formation of a periodic array of toroidal vortex structures known as Taylor vortices or
Taylor rolls. For a given geometry, these steady, axisymmetric Taylor vortices are stable
and exist for some range of Reynolds number in what is known as the Taylor vortex
flow (TVF) regime. As the rotation rate of the inner cylinder is increased further, the
Taylor vortices experience a secondary instability giving rise to azimuthally travelling
waves whose phase speed is determined by the geometry but whose azimuthal periodicity
is not unique (Coles 1965). This regime is known as wavy vortex flow (WVF) and is
characterized by being time periodic in a stationary reference frame but steady in a frame
corotating with the travelling wave (Marcus 1984). WVF is again stable for some range of
Reynolds numbers before the travelling waves themselves become unstable, and a second
temporal frequency arises causing the travelling waves to become modulated in space and
time in what is known as modulated wavy vortex flow (MWVF). As the driving of the inner
cylinder is increased further still, the flow becomes disordered and begins to transition
to turbulence. However, while the main sequence of transitions from laminar flow to
the bifurcation to TVF at Rc ≈ 100, to WVF, to MWVF, and finally on to turbulence
at R ≈ 1000 occurs over a relatively narrow range of Reynolds numbers, the large-scale
Taylor vortices are present up to R ∼ O(105) (Grossmann et al. 2016).

In recent years there has been renewed interest (Dessup et al. 2018; Sacco et al. 2019) in
the dynamics of TVF and WVF as a model system to study the self-sustaining process
(SSP) proposed by Waleffe (1997). The SSP consists of streamwise rolls that advect
the mean shear giving rise to streaks of streamwise velocity, which become unstable to
wave-like disturbances, which in turn nonlinearly interact to sustain the rolls (Hamilton,
Kim & Waleffe 1995; Waleffe 1997). Dessup et al. (2018) performed direct numerical
simulations (DNSs) to show that the mechanism of transition from TVF to WVF follows
the same path as described in the SSP: the travelling waves of WVF arise from an
instability of the streamwise velocity component (streaks) of TVF with the cross-stream
velocity (rolls) playing a negligible role in the instability mechanism. Sacco et al. (2019)
extended this line of study to higher Reynolds numbers and showed that despite their origin
as a centrifugal instability, turbulent Taylor vortices are preserved in the limit of vanishing
curvature and are thus not dependent on rotational effects, but rather are sustained through
a nonlinear feedback loop between the rolls and streaks.

The SSP is believed to be one of the building blocks of turbulence and thus the study of
self-sustaining solutions of the Navier–Stokes equations (NSEs), known as exact coherent
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Resolvent analysis of Taylor vortex flow

states (ECSs), has been of great interest to researchers since they were first discovered by
Nagata (1990). The field has grown immensely in the intervening years and we make no
attempt to summarize it all here. Of primary interest is the observation that many of these
solutions resemble streamwise elongated vortices and streaks, and thus resemble structures
observed in experiments and simulations of turbulent flows (Beaume et al. 2015). This has
led to the idea that ECSs make up the phase space skeleton of turbulence, and that the
observation of these structures indicates the turbulent trajectory passing by one of these
ECS solutions.

Due to the significant mathematical simplification, it is useful to model these elongated
structures as being infinitely long in their streamwise extent. Illingworth (2020) studied the
linear amplification mechanism of such streamwise invariant structures to identify the most
amplified spanwise length scales in both channel and plane Couette flow (PCF), and found
that the latter was far more efficient in amplifying these structures. However, no structures
actually observed in channel or plane Couette flow are truly invariant in the streamwise
direction. Additionally, ECSs are generally unstable; while the turbulent trajectory may
visit these states, they do not actually persist in nature. TVF is thus a valuable test case to
study the nonlinear dynamics sustaining ECSs in general since it is in fact a stable solution
observed in experiment and due to the cylindrical geometry is exactly streamwise constant.

We aim to help bridge the gap between linear stability theory, which accurately
predicts the genesis of Taylor vortices, and higher Reynolds numbers where Taylor
vortices are sustained by fully nonlinear mechanisms as shown by Sacco et al. (2019).
The resolvent formulation of the NSE, which interprets the nonlinear term in the NSE
as a forcing to the linear dynamics, offers a natural path from linear to nonlinear
analysis and as such will form the basis of our modelling efforts. Resolvent analysis
has historically been successful in exploiting the linear dynamics to identify structures
in turbulence, which is by nature a nonlinear phenomenon (McKeon & Sharma 2010).
However, recent attempts have been made to explicitly characterize and quantify the
influence of nonlinear dynamics within the resolvent framework. For example, Moarref
et al. (2014) and McMullen, Rosenberg & McKeon (2020) used convex optimization to
compute reduced-order representations of turbulent statistics and Rigas, Sipp & Colonius
(2021) studied solutions of the harmonic-balanced NSEs to identify optimal nonlinear
mechanisms leading to boundary layer transition. Additionally Morra et al. (2021) and
Nogueira et al. (2021) have directly computed the nonlinear forcing statistics for minimal
channel and Couette flow respectively, and analysed the efficacy of low-rank resolvent
reconstructions in capturing the relevant dynamics.

In this work we use optimization-based methods not only to capture statistics, but
to explicitly model the self-sustaining nonlinear system. To the best of these authors’
knowledge this work is the first example in the literature of ‘closing the resolvent loop’
where the feedback loop formulation of the NSE introduced by McKeon & Sharma (2010)
is used to generate solutions to the fully nonlinear NSE.

In § 2 we outline the resolvent formulation of the NSE and our optimization-based
model. In § 3 we present the results of our model, compare them with DNS and present a
detailed analysis of the nonlinear dynamics. We discuss applications of our results to DNS
of turbulent TCF in § 4 and conclude with some final remarks in § 5.

2. Mathematical description

We study the flow of an incompressible Newtonian fluid with kinematic viscosity ν

between two concentric cylinders using the NSE in cylindrical coordinates,
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∂ũ
∂t

+ ũ · ∇ũ − 1
R

∇2ũ − ∇p̃ = 0, (2.1)

∇ · ũ = 0, (2.2)

on the domain r ∈ [ri, ro], θ ∈ [0, 2π], z ∈ [−Lz/2, Lz/2]. We will consider the case where
the outer cylinder is held fixed while the inner cylinder rotates with a prescribed azimuthal
speed Ui. The equations are non-dimensionalized using the gap width d ≡ ro − ri and the
azimuthal velocity of the inner cylinder Ui. The Reynolds number is defined as R ≡ Uid/ν.
In these non-dimensional variables the limits of the radial domain are given as a function
of the radius ratio η by ri = η/(1 − η) and ro = 1/(1 − η). Throughout this work we fix
η = 0.714, for which the critical Reynolds number Rc = 81. This η was chosen to allow
for comparison to past studies, such as those of Ostilla et al. (2013), and since it allows for
a larger range of Reynolds numbers for which TVF is a stable solution of (2.1).

We decompose the state [ũ, p̃] = [ũr, ũθ , ũz, p] into a mean and fluctuating component,

[ũ(r, z, θ, t), p̃(r, z, θ, t)] = [Ū(r), P̄(r)] + [u(r, z, θ, t), p(r, z, θ, t)], (2.3)

with

¯(·) ≡ lim
T,L→∞

1
2πTL

∫ T

0

∫ 2π

0

∫ L

0
(·) dz dθ dt, (2.4)

which upon substitution into (2.1), and averaging over z, θ and t results in the mean
momentum equation

Ū · ∇Ū − 1
R

∇2Ū − ∇P̄ = −u · ∇u, (2.5)

∇ · Ū = 0. (2.6)

Subtracting (2.5) from the full NSE then results in a governing equation for the
fluctuations, where we have grouped those terms which are nonlinear in the fluctuations
on the right-hand side in anticipation of the following analysis:

∂u
∂t

+ Ū · ∇u + u · ∇Ū − 1
R

∇2u − ∇p = −(u · ∇u − u · ∇u), (2.7)

∇ · u = 0 (2.8)

Ū |ri = êθ , Ū |ro = u|ri = u|ro = 0. (2.9a,b)

2.1. Direct numerical simulation
In order to validate our model solution we perform DNS of TCF for a range of Reynolds
number, 100 < R < 2000, for a radius ratio η = 0.714 and an aspect ratio Lz/d = 12.
However, our analysis is focused primarily on the cases R = 100, 200 and 400. The details
of the numerical method can be found in the papers by Verzicco & Orlandi (1996), van
der Poel et al. (2015) and Zhu et al. (2018), and the details of the simulations performed in
this work are summarized in table 1.

2.2. Resolvent analysis
Our model solution will be based on the resolvent formulation of McKeon & Sharma
(2010), which assumes that the one-dimensional mean velocity profile Ū(r) is known.
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Resolvent analysis of Taylor vortex flow

R Nr Nθ Nz DOF (Nr × Nθ × Nz)

100 101 768 512 39 714 816
200 101 768 512 39 714 816
400 129 768 512 50 724 864
650 129 768 512 50 724 864
1000 193 1024 640 126 484 480
2000 193 1024 640 126 484 480

Table 1. Numerical details of DNS. Note: DOF, degrees of freedom.

This allows us to write (2.7) and (2.8) as a balance between the linear dynamics and the
nonlinear term which we group into a forcing term denoted by f :

Lu = N (u, u) ≡ f . (2.10)

For notational simplicity we define the state u to include both the three components
of velocity, [ur, uθ , uz] as well as the pressure p. We then Fourier transform the state
u(r, z, θ, t) and the nonlinear forcing f (r, z, θ, t) in time as well as in the homogeneous
spatial directions, z and θ . For a function q(r, z, θ, t) the Fourier transform is defined as

q̂(r, k, n, ω) ≡
∫ ∞

−∞

∫ ∞

∞

∫ 2π

0
q(r, z, θ, t) e−i(kzz+nθ−ωt) dθ dz dt. (2.11)

This results in a system of coupled ordinary differential equations (ODEs) for the Fourier
modes ûk(r) and f̂ k(r) parametrized by the wavenumber triplet k ≡ [kz, n, ω]. The
domain is periodic in the azimuthal direction and we formally consider the case Lz = ∞,
so we have n ∈ Z and kz, ω ∈ R:

(Lk − iωM)ûk = f̂ k. (2.12)

The explicit expressions for the Fourier transformed linear operator Lk and the weight
matrix M are given in Appendix A. If we then invert the linear operator on the left-hand
side of (2.12), we arrive at the characteristic input-output representation of the NSE of
McKeon & Sharma (2010) where the linear dynamics represents a transfer function from
the nonlinearity, which is interpreted as a forcing, and the velocity:

ûk = (Lk − iωM)−1f̂ k. (2.13)

A singular value decomposition (SVD) of this transfer function, which we call the
resolvent and denote by H, provides an orthonormal basis for the velocity as well as the
forcing, where superscript H denotes the conjugate transpose:

Hk ≡ (Lk − iωM)−1 = ΨkΣkΦH
k . (2.14)

The columns of Ψk and Φk, denoted by ψk,j and φk,j, are referred to as the resolvent
response and forcing modes respectively and are ordered by their singular values σk,j such
that σk,1 ≥ σk,2 ≥ · · · ≥ σk,j ≥ σk,j+1. Thus ψk,1 represents the most linearly amplified
structure at that wavenumber. Note that these modes are vector fields over r which are

924 A9-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

62
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.623


B. Barthel, X. Zhu and B. McKeon

orthonormal with respect to an L2 inner product over the three velocity components

〈a, b〉 ≡
∫ ro

ri

a∗
m(r)bm(r)r dr, (2.15)

with associated norm
‖a‖ ≡ 〈a, a〉1/2, (2.16)

where summation over m is implied, such that

〈ψk,i,ψk,j〉 = 〈φk,i,φk,j〉 = δij. (2.17)

In this resolvent basis, each Fourier mode of the velocity and forcing may be written as

ûk =
∞∑

j=1

σk,jχk,jψk,j, (2.18)

f̂ k =
∞∑

j=1

χk,jφk,j, (2.19)

where χk,j ≡ 〈φk,j, f̂ k〉 represents the projection of the (unknown) forcing onto the forcing
modes.

2.3. Symmetries of Taylor vortex flow
The various flow states observed in TCF (TVF, WVF and MWVF) may be defined
by their spatiotemporal symmetries (Rand 1982). We define TVF, the focus of this
study, as a solution to (2.1) which is steady, axisymmetric and axially periodic with
fundamental wavenumber βz, meaning we restrict ourselves to wavenumber vectors of
the form k = [kz, n, ω] = [kβz, 0, 0] where k ∈ Z. This fundamental wavenumber βz is
related to the axial height of the Taylor vortices and is generally constrained by the
experimental apparatus or computational box since the domain must contain an integer
number of vortices. The resolvent formulation assumes an infinite axial domain so the
choice of βz is not immediately obvious. However, we found that the results shown in this
work are robust to changes in βz as long as π/2 � βz � 4π/3. Therefore, we choose the
axial periodicity of our model to match that observed in our DNS, allowing for a direct
comparison between our model and the DNS. The specific values of βz are listed in table 2.
Given these symmetries, our model solution will consist of an expansion in Fourier modes:

u(r, z) =
Nk∑

k=1

ûk(r) eikβzz + c.c., (2.20)

where each Fourier mode ûk is itself an expansion in resolvent modes given by (2.18) and
c.c. denotes the complex conjugate. We truncate the model at Nk Fourier modes each of
which is expanded in Nk

SVD resolvent modes such that the final form of the TVF solution
is given by

u(r, z) =
Nk∑

k=1

Nk
SVD∑

j=1

σk,jχk,jψk,j(r) eikβzz + c.c. (2.21)
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Resolvent analysis of Taylor vortex flow

R 100 200 400

βz 3.67 3.67 2.62
Nk 4 8 9
Nk

SVD 12 ∀ k 12(k ≤ 4), 8(k > 4) 22(k ≤ 4), 10(k > 4)

N 48 80 138
g∗ 2.3 × 10−3 3.5 × 10−3 5.5 × 10−3

edns 2.5 × 10−3 4.8 × 10−3 1.5 × 10−2

e0 1.8 × 10−3 1.3 × 10−3 6.0 × 10−3

ense 1.2 × 10−3 2.7 × 10−3 1.5 × 10−3

Table 2. Reynolds numbers; fundamental wavenumber βz; truncation values; degrees of freedom, N; final
residuals, g∗; and error metrics defined by (2.33), (3.2) and (3.4) for the three model solutions presented.

2.4. Treatment of the nonlinearity

At any given wavenumber, the forcing f̂ k is given by a convolution sum of the interactions
of all triadically compatible velocity modes:

f̂ k = −
∑

m /= 0

∑
n /= 0

(ûm · ∇ûn)δm+n,k. (2.22)

Here δa,b is the Kronecker delta which implies that the forcing at a given wavenumber
k contains only interactions between Fourier modes whose wavenumbers sum to k.
Throughout this work we use the terminology ‘k1 = k2 + k3’ to refer to a single (resonant)
triad involving the nonlinear interaction between Fourier modes with wavenumbers k2 and
k3 forcing the Fourier mode with wavenumber k1.

Equating the two expressions for the forcing mode given by (2.19) and (2.22) and
substituting (2.18) for the velocity modes gives

∞∑
j=1

χk,jφk,j =
∑

m /= 0

∑
n /= 0

∞∑
p=1

∞∑
q=1

−χm,pχn,qσm,pσn,q(ψm,p · ∇ψn,q)δm+n,k. (2.23)

Projecting both sides of (2.23) onto each forcing φk,i and dropping the summation symbols
for simplicity gives

χk,i = χm,pχn,qNkmn,ipq, (2.24)

where the Nkmn,ipq are called the interaction coefficients and are given by

Nkmn,ipq ≡ −σm,pσn,q〈φk,i, (ψm,p · ∇ψn,q)〉δm+n,k, (2.25)

which, critically, can be computed solely from knowledge of the linear operator H.
Nonlinear interactions between the velocity fluctuations also appear in the divergence

of the Reynolds stress on the right-hand side of (2.5). This term is referred to as the ‘mean
forcing’ and is given by the sum of nonlinear interactions of all the ûk and their complex
conjugates û−k, which can be directly interpreted as (2.22) evaluated at k = 0:

u · ∇u =
∑
k /= 0

(ûk · ∇û−k + û−k · ∇ûk). (2.26)

At this point we would like to reiterate that the mean velocity profile is assumed to
be known a priori. Thus the left-hand side of (2.5), and therefore the Reynolds stress
divergence on the left-hand side of (2.26), is also known.
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We have thus reduced the NSE (under the assumption of a known mean velocity) to the
infinite system of coupled polynomial equations (2.24) for the complex coefficients χk,j
with the auxiliary condition that (2.26) is satisfied. While deriving an exact (non-trivial)
solution to (2.24) may be a daunting task, we will demonstrate that approximate solutions
can be efficiently computed by minimizing the residuals associated with (2.24) and (2.26).

2.5. Optimization problem
We have recast the NSE in the language of resolvent analysis as

χk,j − χm,pχn,qNkmn,jpq = 0, ∀ k, j (2.27)

u · ∇u − f 0,k′,pqχk′,pχ
∗
k′,q = 0, (2.28)

f 0,k,pq ≡ σk,pσk,q(ψ̂k,p · ∇ψ̂∗
k,q + ψ̂∗

k,q · ∇ψ̂k,p), (2.29)

where we have expanded the velocity Fourier modes in their resolvent basis according to
(2.18), and summation over m, n and k′ is implied. We truncate the expansion at some
number of harmonics, Nk, of the fundamental wavenumber, and at each retained harmonic
we truncate the singular mode expansion at Nk

SVD such that the total number of retained
modes is N = ∑Nk

k=1 Nk
SVD. We seek to minimize the residuals (in the sense of the L2 norm)

associated with (2.27) and (2.28), and thus formulate the following optimization problem:

min
χk,j

g2(χk,j) = ag2
0(χk,j) + (1 − a)g2

triad(χk,j). (2.30)

The first and second terms on the right-hand side in (2.30) are defined as the mean
constraint,

g0(χk,j) ≡
‖u · ∇u − f 0,k′,pqχk′,pχ

∗
k′,q‖

‖u · ∇u‖ (2.31)

and the triadic constraint,

gtriad(χk,j) ≡ |χk,j − χm,pχn,qNkmn,jpq|. (2.32)

The former represents the residual in the mean momentum equation (2.5), while the
latter represents the residual in the equation for the fluctuations (2.7). The user-defined
weighting parameter a ∈ (0, 1) determines the relative penalization of each of these two
constraints in the residual.

At this point we would like to highlight several important aspects of problem (2.30).
First, we reiterate that the left-hand term in the mean constraint equation (2.31) is a known
function since the mean velocity profile is assumed to be known a priori. Second, we
emphasize that we have assumed no closure model and made no modelling assumptions
regarding the form of the nonlinear forcing in the derivation of (2.30). Lastly, while
in general the amplitudes χk,j ∈ C, for the special case of steady, axially periodic and
axisymmetric solutions considered here, evaluating (2.12) and (A1) for ±k reveals that
χk,j ∈ R ∀ j, k meaning the optimization need only be carried out over a real valued
domain. Note that if this method were applied to non-axially periodic solutions one would
have to consider complex coefficients.

Finally, we note that while the reformulation of the NSE (2.7) in the resolvent framework
(2.27) is reminiscent of a Galerkin method (GM) where the governing equations are
projected onto some predetermined set of basis functions, the current approach is
appreciably different. Since we consider a steady process we can not integrate the
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equations forward in time as would be generally done in the GM. Furthermore, since the
resolvent framework provides a basis for both the velocity and the nonlinearity, (2.27) is
an exact representation of (2.7) whereas the GM represents the governing equations only
in an integral sense.

2.6. Solution methodology
We solve the optimization problem (2.30) using a trust-region algorithm built into
Matlab’s fminunc function for R = 100, 200 and 400. For each Reynolds number the
mean velocity profile used in constructing (2.14) is taken from the DNS described in
§ 2.1. We note that various authors, such as Mantič-Lugo, Arratia & Gallaire (2014,
2015), Rosenberg & McKeon (2019a) and Bengana & Tuckerman (2021), have computed
approximate mean velocity profiles from the laminar base flow for a range of flows.
These methods approximate the Reynolds stress as the self-interaction of a single eigen-
or resolvent mode. However, we note that Bengana & Tuckerman (2021) have described
conditions under which such approximations are expected to fail. We do not employ such
methods here, choosing instead to focus on the prediction of the velocity fluctuations about
a known mean flow.

The gradient and Hessian of (2.30) may be derived explicitly and are input to the
algorithm to improve accuracy. The weighting parameter a in (2.30) is set to 0.01 which
means that the triadic constraint is penalized 99 times more heavily than the mean
constraint. This reflects the observation that the triadic constraint which encodes the
fully nonlinear governing equation for the fluctuations is far more complex than the mean
constraint which, given the fact that the mean profile is known, is simply a least-squares
fit to a curve.

While this value of a was found to lead to the most consistent and accurate results, the
results are qualitatively robust to changes in a as long as 0.0005 � a � 0.8. If a � 0.0005,
i.e. the triadic constraint is weighted too heavily, the optimization converges to the laminar
state since the triadic constraint admits a trivial solution. If a � 0.8, the mean constraint
is weighted too heavily and the optimization tends to over fit to the input mean. Since the
triadic constraint is simply a least-squares fit to a known curve, the error can in principle
be reduced arbitrarily with increased degrees of freedom. However, this does not guarantee
that the resulting local minimum will represent a realistic solution.

The optimization also requires an initial guess. For this we solve the rank 1 formulation
of (2.30) using just one wavenumber, the fundamental, and one resolvent mode, in which
case the minimum can be found analytically, which results in an amplitude σ1,1χ1,1 ≈
0.13. We then initialize the full optimization such that σ1,1χ1,1 = 0.13 and the remaining
σk,jχk,j are assigned random values between −0.01 and 0.01. This range of initial values
was chosen to roughly reflect the expected roll off in the amplitudes σk,jχkj . However, we
did not find any dependence on these initial values as long as these amplitudes were not
all set to zero, in which case the optimization tended to converge to the trivial solution.

We assess the convergence and accuracy of our model solution using three metrics. First,
we compute the final minimum residual of the cost function in (2.30) denoted g∗. Second,
we compute the error of the model solution compared with the temporal average of the
DNS solution:

edns ≡
√√√√ Nk∑

k=1

‖ûk − ûk,dns‖2, (2.33)
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where the norm is defined in (2.16). Third, we quantify the error of our model solution
in solving the underlying governing equations (2.7), the details of which are discussed in
§ 3.2.

We note that the error metric comparing our model with the DNS should be viewed
with some caution since the Fourier decomposition of the DNS involves some inherent
uncertainty. While our model is formulated in Fourier space, the DNS with which we
compare our model utilizes a finite difference method in the axial direction. This means
that the five or six Taylor vortices in the computational domain are not necessarily exactly
the same size and the fundamental wavenumber βz can only be defined in an average sense,

βz = 2π
nroll

Lz
, (2.34)

where nroll is the number of Taylor vortices contained in the domain and Lz is the axial
domain size. We use this average βz in the construction of our model. To compute the
DNS Fourier modes used in (2.33) we extract a single Taylor vortex whose size is closest
to the average and perform a Fourier decomposition on this reduced domain. The largest
difference between this best fit wavenumber and the average we observed was 0.5 %. Since
the radial shape of the Taylor vortices is expected to differ slightly with axial size it is
unclear whether minor differences between our results and those from DNS arise from
errors in our model or uncertainties in the Fourier decomposition of the DNS.

At R = 400, which will be the main focus in this work, it was found that Nk = 9 axial
wavenumbers with Nk

SVD = 22 for k ≤ 4 and Nk
SVD = 10 for k > 4 resolvent modes were

sufficient such that we did not observe any further meaningful decrease in the residual
g∗ with increased N. A detailed discussion of the choice of these particular truncation
values is presented in § 3.6. These truncation values, the total degrees of freedom, the
axial wavenumber βz, as well as the error metrics for all three Reynolds numbers are
summarized in table 2.

3. Results

3.1. Velocity field reconstruction
The final result of the model is shown in figures 1 and 2 where we compare the model result
with that from DNS. We plot the mean-subtracted azimuthal velocity uθ and the azimuthal
vorticity ωθ = ∂ur/(∂z) − ∂uz/(∂r) for R = 100, 200 and 400. The model solution is
axisymmetric and steady by construction, and thus the radial and axial velocities are
linked through continuity; no information is omitted by plotting ωθ . As a comparison
we show the azimuthal average of the mean subtracted DNS; however, at this Reynolds
number the flow is axisymmetric and steady, so the average field shown is representative
of the flow at any azimuthal location and at any instance in time. There is good agreement
between the resolvent model (a) and the DNS (b). The model accurately captures the
dominant structure of the flow including the strong plumes of azimuthal velocity. The
azimuthal vorticity exhibits a chequerboard pattern of regions of roughly constant vorticity
of opposing signs. Regions of higher vorticity are concentrated near the walls, while the
larger segments in the bulk of the domain have comparatively lower levels of vorticity.
These results are in agreement with those obtained from DNS by Sacco et al. (2019), who
found that as the Reynolds number increases this concentration of vorticity at the walls is
enhanced and the bulk becomes increasingly ‘empty’ of vorticity.

A more quantitative assessment of the model’s accuracy is shown in figure 3 where
we compare the individual Fourier modes of the model solution with the Fourier modes
computed from the DNS. For clarity of presentation we focus on R = 400 and show
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Figure 1. Mean subtracted azimuthal velocity uθ computed by our model (a) and DNS (b) at (from left to
right) R = 100, 200 and 400.

only (k ≤ 4). However an analysis of the accuracy of all retained Fourier modes for all
Reynolds numbers is presented in figure 4 in § 3.2. Compared with the DNS, the model
slightly overpredicts the amplitude of the radial velocity for the fundamental Fourier mode,
but the wall-parallel components of the fundamental are captured almost exactly. Most
striking is the good agreement of the higher harmonics. The largest scale dominates the
contribution to the Reynolds stress divergence and is thus determined primarily by the
mean constraint, which as mentioned previously is relatively ‘easy’ to solve. However,
the smaller scales require accurately approximating the solutions to the nonlinear triadic
constraint, a much less trivial task. Furthermore, small deviations between the Fourier
modes of the model and DNS are not necessarily indicative of errors in our model, since
for the reasons discussed above, a Fourier decomposition of the DNS incurs some inherent
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Figure 2. Azimuthal vorticity ωθ = ∂ur/(∂z) − ∂uz/(∂r) computed by our model (a) and DNS (b) at (from
left to right) R = 100, 200 and 400.

uncertainty. A more rigorous assessment of how accurately our model solves the governing
equations is presented in § 3.2. Additionally, figure 3(a) compares the DNS mean velocity
profile, used as an input to the model, with the mean velocity profile computed by solving
(2.5) where the Reynolds stress term is replaced by the mean forcing computed from the
model itself:

1
R

∇2Ūmodel =
∑
k /= 0

(ûk · ∇û−k + û−k · ∇ûk). (3.1)

The input and output mean velocity profiles show very good agreement, with only some
mild discrepancy at the edge of the inner boundary layer. The error in mean velocity may
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Figure 3. Model solution (lines) compared with the DNS (symbols) at R = 400. Mean velocity profile, Ū,
computed from Reynolds stress divergence of the model compared with input mean velocity from DNS
(a). First four Fourier modes of the model solution, ûθ , ûr, ûz (b–d), k = 1 (black), k = 2 (blue), k = 3 (red),
k = 4 (green).

be computed as

e0 ≡ ‖ŪDNS − Ūmodel‖, (3.2)

which is associated with residual of the mean constraint (2.31) in (2.30). However, note
that while (3.2) is written in terms of the mean velocity, (2.31) is written in terms of the
Reynolds stress divergence. The values of e0 for all three Reynolds numbers are tabulated
in table 2. We generally do not use (3.2) as one of the measures of convergence since very
few modes are required to accurately capture the mean, and thus e0 reaches a minimum
long before the full nonlinear flow is converged. This is consistent with past studies which
have shown that the mean velocity profile of various flows may be accurately modelled
using the Reynolds stress divergence of a single resolvent or eigenmode (Mantič-Lugo
et al. 2014, 2015; Rosenberg & McKeon 2019a).

Overall, the success of the model in capturing this fully developed TVF indicates that,
despite its fully nonlinear nature, the full solution remains relatively low dimensional.
Nevertheless, given the relative simplicity of the flow, the model reduction is not as drastic
as one might expect from an analysis purely of the energetic content of the flow. At
R = 400 the velocity associated with the third harmonic (k = 4) is two orders of
magnitude less than the fundamental, and yet nine wavenumbers must be retained in order
to achieve the convergence shown here. The dynamic importance of these energetically
weak harmonics is discussed in § 3.2.
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Figure 4. Azimuthal velocity component of the model solution’s primary Fourier mode (open circles) and
forced Fourier mode (lines) as well as the Fourier modes from DNS (open squares) for R = 100 (red), R = 200
(blue) and R = 400 (black). (a–c) k = 1–3, (d–f ) k = 4–6 and (g–i) k = 7–9.

3.2. Self-sustaining solutions – closing the resolvent loop
We have shown that our model accurately captures the structure of the TVF observed in
the DNS. Now we analyse the accuracy of our model viewed from the perspective of a
self-sustaining process. In other words we assess how accurately our model approximates
a solution to the governing equations (2.7). In the resolvent framework, the nonlinear term
is interpreted as a forcing to the linear dynamics. As such, a solution is self-sustaining if
the sum of all triadic interactions at a particular wavenumber provides the correct forcing
for the response at that wavenumber. This means that we must have

ûk = Hk
∑

m /= 0

∑
n /= 0

−(ûm · ∇ûn)δm+n,k ∀ k. (3.3)

Note that (3.3) is simply a restatement of (2.13) with the nonlinear forcing written explicitly
in terms of ûk and that our model will generally not satisfy (3.3) exactly.

Here we refer to the direct result of our model, i.e. the quantity on the left-hand side of
(3.3), as the ‘primary’ velocity, and we denote the right-hand side of (3.3), computed from
that model solution, as the ‘forced’ velocity. In figure 4 we plot the azimuthal component
of both the primary and forced Fourier modes for all the wavenumbers and for all three
Reynolds numbers. For all Reynolds numbers and wavenumbers agreement between the
primary (open circles) and forced mode (lines) is very good indicating that our model is
indeed a close approximation of a solution to (2.7). Figure 4 also shows the Fourier modes
computed from the DNS for comparison (open squares). We see that there is growing
discrepancy between the model result and the DNS modes with increasing wavenumber.
However, note that the discrepancy between the model and the DNS, which is only present
in the higher harmonics, is two orders of magnitude smaller than the amplitude of the
fundamental. This discrepancy is due to the structure of the nonlinear forcing and is
discussed further in § 3.3. Additionally, we note that for both the model and DNS the mode
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shapes of the higher harmonics, k � 3 do not seem to differ significantly with increasing
k indicating some level of universality as the length scale decreases.

We quantify the total error in nonlinear compatibility as

ense =

√√√√√
Nk∑

k=1

‖ûk − Hk
∑

m /= 0

∑
n /= 0

−(ûm · ∇ûn)δm+n,k‖2. (3.4)

This may be thought of as the total residual associated with how accurately our model
solution approximates a solution to (2.7), or in other words it represents the final residual
associated with the triadic constraint (2.32). For all three Reynolds numbers considered
the error is O(10−3), with the exact values listed in table 2.

3.3. Analysis of the forcing structure
Here we investigate which individual triadic interactions are most important in sustaining
the flow and how these vary with Reynolds number. As previously noted, for R = 200, 400,
the higher harmonics k � 5, do not contribute significantly to the energy content of the
flow yet still play a crucial role in the nonlinear forcing of the larger structures and are
necessary to achieve the convergence shown in figures 1 and 2. To identify the mechanics
underlying the forcing structure we compute the individual terms in the summation on the
right-hand side of (3.3). These individual contributions of the forced velocity, defined as

v̂k,k′ ≡ −Hk(ûk′ · ∇ûk−k′ + ûk−k′ · ∇ûk′(1 − δk,2k′)), (3.5)

represent the contribution of each individual triadic interaction in (3.3) and are shown
in figures 5 and 6 for R = 100 and R = 400 respectively. The individual contributions
(3.5) are plotted with coloured symbols and the full Fourier mode is plotted in black.
By definition the individual contributions (symbols) sum to the full Fourier mode (solid
black). To clarify the following discussion we define a ‘(forward) forcing cascade’ as the
forcing of mode k0 by interactions involving strictly modes k ≤ k0 and an ‘inverse forcing
cascade’ as the forcing of mode k0 by interactions involving at least one k > k0.

At R = 100 ≈ 1.25Rc, we observe a forcing mechanism reminiscent of a weakly
nonlinear theory where the harmonics are all driven exclusively by a forward forcing
cascade. The k = 2 mode is driven primarily by the self-interaction of the k = 1 mode,
the k = 3 mode is driven by the interaction of the k = 1 and k = 2 modes, and so on. In
other words, modes with wavenumber k0 do not contribute to the forcing of modes with
wavenumber k < k0.

The higher Reynolds number model solutions do not exhibit the same unidirectional
forcing cascade observed close to the bifurcation from laminar flow. We plot the same
individual triadic contributions (3.5) for R = 400 ≈ 5Rc in figure 6. For the harmonics
(k > 1), the pair of contributions due to triadic interactions involving the fundamental
(k = ±1), i.e. k = (k + 1) − 1 and k = (k − 1) + 1, have large, almost equal amplitudes
but are of opposite sign and almost cancel. The same phenomenon is observed for
the triads involving the k = ±2 mode, albeit it is not as pronounced as for the triads
involving the fundamental. This raises the question of whether or not these components
exactly cancel, and thus do not play a significant role in the dynamics, or whether the
small differences in shape and amplitude dictate the structure of the resulting mode. To
investigate this we compute the projection of the individual triadic contributions onto the
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Figure 5. Azimuthal velocity component of the forced Fourier modes at R = 100. The individual triadic
contributions, v̂k,k′ , are shown as coloured symbols and the full Fourier mode, ûk,θ , is plotted in solid black.
The sum of the individual triad components (symbols) add up to the total forced mode (solid black). (a,b)
k = 1–2 and (c,d) k = 3–4.

full mode:

Γk,k−k′,k′ ≡ 〈v̂k,k′, ûk〉
〈ûk, ûk〉 . (3.6)

These projections are plotted in figures 7 and 8 for R = 100 and R = 400 respectively.
Each panel corresponds to one Fourier mode, k1, and the colour in each tile represents
the magnitude and sign of the contribution to that k1 Fourier mode from the triadic
interaction between k2 and k3. As expected from figure 6, we observe pairs of strong
negative and positive correlations from the two triads involving the fundamental, k = 1,
with less pronounced, but still evident, pairing between triads involving k = ±2. Since the
Γk1,k2,k3 represent a relative fractional contribution, the sum over k2 and k3 of the entries
in each panel is equal to unity for all k1. Note that to improve readability the panels in
figure 8 each has an individual colour scale.

In order to quantify the importance of all triadic combinations involving a certain
wavenumber k2 to the shape of the Fourier mode with wavenumber k1 we compute the
sum of the Γk1,k2,k3 over k3 for all k1 and for all three Reynolds numbers. This metric is
plotted in figure 9. Practically this can be thought of as a summation over the columns
in each panel of figures 7 and 8 as well as the equivalent case for R = 200 (not shown).
Figure 9 makes it clear that, for a given k, it is the two pairs of triads k = (k + 1) − 1
and k = (k − 1) + 1 as well as k = (k + 2) − 2 and k = (k − 2) + 2 which provide the
dominant share of the forcing. We note that similar instances of destructive interference
have been observed by other authors such as Nogueira et al. (2021) in their analysis of
forcing statistics in PCF and Rosenberg & McKeon (2019b) in their interpretation of the
Orr–Sommerfeld/Squire decomposition of the resolvent operator.
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û 4
,θ
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û 3
,θ

v̂
–
cancel

v̂+cancel
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Figure 6. Azimuthal velocity component of the forced Fourier modes at R = 400. The individual triadic contributions, v̂k,k′ , are shown as coloured symbols and the full
Fourier mode, ûk,θ , is plotted in solid black. The sum of the individual triad components (symbols) add up to the total forced mode (solid black). The predicted cancelling
azimuthal velocity contributions, v̂±

k,cancel,θ , derived in § 3.5 are plotted as dashed and dotted black lines. (a–c) k = 1–3, (d–f ) k = 4–6 and (g–i) k = 7–9.
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The large scales at R = 200 are driven almost entirely by the pair of triads involving
k = ±1 with the pair involving k = ±2 only becoming active for k ≥ 4. At R = 400 the
forcing is more distributed among the various triadic interactions indicating a higher
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Figure 9. Projections of the velocity due to individual triadic interactions onto the full Fourier mode summed
over common wavenumbers at R = 100 (red diamonds), R = 200 (blue squares) and R = 400 (black circles).
(a–c) k = 1–3, (d–f ) k = 4–6, (g–i) k = 7–9.

degree of nonlinearity. However, the triads involving k = ±1 and k = ±2 are clearly
still dominant. In fact the contribution of the triads involving k = ±2 is comparable and
sometimes greater than the contributions from those involving k = ±1. Nevertheless, it is
the triads involving the fundamental which have the largest amplitude contributions and
display the largest degree of destructive interference.

At this point we would like to revisit the discrepancy between the Fourier modes of
the model solution and the DNS observed in figure 4. Recall that due to the structure
of the forcing, an accurate reconstruction of a particular Fourier mode with wavenumber
k0 requires accurate knowledge of its harmonic, k0 + 1. Practically, the model must be
truncated at some point and so there will always be a maximum wavenumber km whose
harmonic km + 1 is unknown. Therefore there will be some error in the reconstruction
of ûkm since ûkm+1 is unavailable to participate in the inverse forcing cascade described
above. This error will then ‘back propagate’ through Fourier space until it is outweighed
by the influence of the large scales and the constraint imposed on those large scales by
the input mean flow. A detailed analysis of how the Fourier space truncation affects the
convergence of the optimization is beyond the scope of this work; however, it is interesting
to note that, while the higher harmonics of our model solution deviate slightly from the
DNS, they remain nonlinearly compatible to a very good approximation. In other words,
the primary and forced Fourier modes of the model solution in figure 4 agree very well as
quantified by the small residuals as defined by (3.4) and listed in table 2.

3.4. The transition from weakly to fully nonlinear Taylor vortices
Many studies have approached the nonlinear modelling of TVF through weakly nonlinear
(WNL) theory, where the general premise is that the structure of the largest scale is
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given by the critical eigenmode and that the higher harmonics are all derived from
that fundamental mode (Stuart 1960; Yahata 1977; Jones 1981; Gallaire et al. 2016).
Despite being formally valid for only a small range of Reynolds numbers close to Rc,
the mathematical difficulties associated with the nonlinearity of the NSE often necessitate
the use of WNL methods outside this domain of validity (Gallaire et al. 2016). Our results
illuminate the physical mechanisms which lead to the eventual failure of WNL theory
as the Reynolds number increases. WNL theory proceeds by expanding the solution in
an asymptotic series about the bifurcation point such that the leading order solution u0
is the laminar base flow and the O(ε) solution u1 is given by the critical eigenmode.
The O(ε2) solution u2, as well as the mean flow correction, is then found by solving
the linear system forced by the nonlinear self-interaction of u1. The higher order terms
may then be similarly computed sequentially by solving a forced linear system of the form
Lkuk = f (u1, u2, . . . , uk−1). At the lowest Reynolds number considered here, R = 100,
this formulation is valid since, as shown in figures 5 and 7, the forcing for a certain ûk
depends only on interactions between larger scales. However, as discussed in § 3.3, at
higher Reynolds numbers the forcing is dominated by pairs of triads, one of which involves
ûk+1, a mechanism which is impossible in the WNL formulation.

This means that near the bifurcation from the laminar state a model solution of the
nonlinear flow may be truncated at the highest wavenumber of interest since a given
wavenumber depends only on its sub-harmonics. We define such a flow to be in the
WNL regime. As the Reynolds number increases the forcing cascade is no longer only
from large to small scales and an equally important inverse cascade mechanism emerges.
In this case we define the flow to be in the ‘fully nonlinear’ (FNL) regime. For the
case of η = 0.714 considered here, this transition occurs around some 100 < R < 200.
These findings indicate that if one desires to model a certain number of harmonics of
a given flow, the expansion must be carried out to significantly higher order than the
highest harmonic of interest. Sacco et al. (2019) noted a similar transition in the dynamics
of turbulent Taylor vortices. They noted that while Taylor vortices first arise due to a
supercritical centrifugal instability of the laminar base flow, for R ∼ O(104) they persist
in the limit of zero curvature i.e. in the absence of centrifugal effects (Nagata 1990;
Sacco et al. 2019). At sufficiently high Reynolds numbers, they found that the temporal
evolution of the root-mean-square velocity associated with the Taylor vortex and the mean
shear are perfectly out of phase and fluctuate with a common characteristic frequency.
Their results build on the work of Dessup et al. (2018) who showed that the travelling
waves in WVF arise due to an instability of the streaks and that the rolls are sustained
by the nonlinear interaction of these travelling waves. Together these finding indicate a
regenerative self-sustaining process similar to the framework suggested by Waleffe (1997)
and Hamilton et al. (1995). Since we consider steady TVF it is difficult to make a direct
comparison between either of these studies and ours. However, it is possible that the
transition from weakly to fully nonlinear Taylor vortices that we observe is the genesis
of the type of self-sustaining Taylor vortices described by Sacco et al. (2019) and Dessup
et al. (2018)

3.5. Destructive interference forcing structure
As described in § 3.3, we observe that in the FNL regime a crucial component of
the forcing at a given wavenumber k is the destructive interference of the two triads
k = (k − 1) + 1 and k = (k + 1) − 1. This pair of triads leads to velocity contributions
with large amplitudes but with opposite sign. This means that an accurate reconstruction
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of a Fourier mode with wavenumber k requires knowledge of both its subharmonic k − 1
and its harmonic k + 1. In this section we show that for streamwise constant and spanwise
periodic solutions, as considered in this work, this large amplitude destructive interference
is a direct consequence of the structure of the Fourier representation of the nonlinear term
u · ∇u. In cylindrical coordinates the nonlinear interaction between two axisymmetric
Fourier modes a = [ar, aθ , az] and b = [br, bθ , bz] with axial wavenumbers ka and kb is
given by

f a,b ≡ a · ∇b + b · ∇a, (3.7)

where the axial derivative in the gradient operator is replaced through multiplication
by ikb and ika respectively. For clarity of exposition we limit the following analysis to
the azimuthal component of the forcing and note that analogous arguments hold for the
remaining two components. The forcing at wavenumber k due to the interactions of k − 1
and 1 is given by

f̂ + ≡ û1 · ∇ûk−1 + ûk−1 · ∇û1. (3.8)

Using the continuity equation to eliminate the axial velocity, the azimuthal component
takes the form

f +
θ =

(
û1,rû′

k−1,θ + ûk−1,rû′
1,θ + û1,θ ûk−1,r

r
+ ûk−1,θ û1,r

r

)

− (k − 1)
(rû1,r)

′ûk−1,θ

r
− (rûk−1,r)

′û1,θ

r(k − 1)
. (3.9)

Similarly, forcing due to the interactions of k + 1 and −1 is given by

f̂ − ≡ û−1 · ∇ûk+1 + ûk+1 · ∇û−1, (3.10)

with the azimuthal component taking the form

f −
θ =

(
û1,rû′

k+1,θ + ûk+1,rû′
1,θ + û1,θ ûk+1,r

r
+ ûk+1,θ û1,r

r

)

+ (k + 1)
(rû1,r)

′ûk+1,θ

r
+ (rûk+1,r)

′û1,θ

r(k + 1)
. (3.11)

Here the superscript ′ denotes partial derivatives with respect to r, and we have made
use of the fact that for the streamwise constant fluctuations considered here û−1 = û∗

1 =
[û1,r, û1,θ , −û1,z].

For some integer wavenumber k > 1, the Fourier modes associated with the nearest
neighbour wavenumbers k ± 1 are defined as

û(r)k±1 ≡
∫ ∞

−∞
u(r, z) eiβz(k±1)z dz =

∫ ∞

−∞
u(r, z) eiβzk(1± 1

k )z dz. (3.12)

Since the destructive interference is most pronounced for small scales, we formally
consider the case of k � 1, for which we can expand (3.12) in a Taylor series about
k−1 = 0:

ûk±1 =
∫ ∞

−∞
u(eiβzkz ± iβzk−1 eiβzkz + O(k−2)) dz = ûk + O(k−1). (3.13)

This indicates that for k � 1, ûk and ûk±1 differ by a quantity which is O(k−1), meaning
that for large values of k the shape of the Fourier modes does not change drastically with
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increasing k. Figure 4 shows that this is indeed the case. Substituting ûk±1 = ûk + O(k−1)
into (3.9) and (3.11) we find at leading order,

f +
θ = fθ,eq − k

(rû1,r)
′ûk,θ

r
+ O(k−1), (3.14)

f −
θ = fθ,eq + k

(rû1,r)
′ûk,θ

r
+ O(k−1), (3.15)

where fθ,eq is the same for both triads and is given by

fθ,eq =
[

û1,rû′
k,θ + ûk,rû′

1,θ + û1,θ ûk,r

r
+ ûk,θ û1,r

r
+ (rû1,r)

′ûk,θ

r

]
. (3.16)

The only remaining terms are equal in magnitude but of opposite sign. Furthermore,
since both û1,r and ûk,θ are bounded and non-zero these remaining terms will scale
proportionally with k and therefore are expected to have large amplitudes since we have
assumed k � 1. Expressions (3.14) and (3.15) predict that the large amplitude destructive
interference observed in figures 6 and 8 occurs through the terms ±k((rû1,r)

′ûk,θ /r).
Similar expressions can be derived for the other two components such that the two vector

forcing terms proportional to k, which are expected to cancel, are given by

f̂ ±
k,cancel ≡ ∓k

(rû1,r)
′

r
ûk (k � 1). (3.17)

This prediction may be tested by computing the corresponding velocity contributions to
the Fourier mode with wavenumber k, given by

v̂±
k,cancel = −Hk f̂ ±

k,cancel, (k � 1) (3.18)

and comparing its shape with that of the total velocity contributions v̂k,±1 defined in (3.5).
In figure 6 we plot the v̂±

k,cancel alongside the individual v̂k,±1 for 2 < k < 9. We do not plot
these approximations for k = 1 and 2 since they violate the assumption that k � 1 nor the
highest retained wavenumber, k = 9, since k = 10 is not included in our model. We find
that v̂±

k,cancel is a quite accurate approximation of v̂k,±1 in this intermediate range of k
despite the derivation having assumed that k � 1. These findings establish that f̂ ±

k,cancel
is indeed responsible for the large amplitude destructive interference characteristic of the
fully nonlinear regime.

Inspection of the spectral dynamics of the flow corroborate this finding. If we assume
that the Fourier modes ûk obey a power law

‖ûk‖ ∼ k−p, (3.19)

then, from (3.17), the forcing component f̂ ±
k,cancel must obey the power law

‖f̂ ±
k,cancel‖ ∼ k1−p. (3.20)

Thus the flow will be in the WNL regime as long as p � 1 and we expect the flow to
have transitioned to the FNL regime if p � 1. In figure 10 we plot the norm of the Fourier
modes computed from the DNS data for a range of Reynolds numbers. For all cases the
Fourier modes decay in Fourier space faster than k−1, which is depicted by the dashed
black line. However, the decay rate at R = 100 is significantly faster than those for the
higher Reynolds number cases which seem to converge to a decay rate which is roughly

924 A9-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

62
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.623


Resolvent analysis of Taylor vortex flow

100

R

R

p

κ

inc.

101
10–3

10–2

10–1

100

102 103
0
1

3

5

7

‖ûk‖
‖û1‖

Figure 10. Norm of the Fourier modes computed from DNS at R = 100, 200, 400, 650, 1000 and 2000. Dashed
black line is ∼k−1. Inset shows exponent of best-fit power law as in (3.19). Power-law fit performed over the
range 1 < k < 5 for R = 100 and 1 < k < 10 for all R > 100.

independent of Reynolds number. The inset of figure 10 shows the exponent of the best-fit
power law for all Reynolds numbers. For R = 100 we fit the power law only to k ≤ 5 since
for 5 < k ≤ 10 the norm of the Fourier components remains roughly constant. At R = 100,
in the WNL regime, the best-fit exponent is approximately 5 while at higher Reynolds
numbers, which are in the FNL regime, all exhibit an exponent which seems to approach
an asymptote close to 1. These findings are in agreement with the analysis presented above
which predicts that in the WNL regime the decay rate of the Fourier modes is much faster
than k−1 and the transition to the fully nonlinear regime is associated with the decay rate
approaching k−1.

3.6. Model reduction
Here we address how the particular truncation values Nk

SVD were chosen, and how the
number of retained wavenumbers and resolvent modes at each wavenumber affects the
accuracy of the model. At R = 100 the flow is in the weakly nonlinear regime and thus
the flow may be arbitrarily truncated in Fourier space without appreciably impacting the
accuracy of the retained harmonics. Additionally, in this case the optimal resolvent mode is
a good approximation of the flow and thus retaining only a single harmonic with N1

SVD = 2
and N2

SVD = 5 is sufficient to converge to a result whose two-dimensional representation
(figures 1 and 2) is visually indistinguishable from that obtained by DNS. However, we
retain more wavenumbers and resolvent modes than this in the results discussed in § 3.2
in order to highlight the structure of the nonlinear forcing. At this Reynolds number the
increase in computational cost to do so is trivial.

For the results in the fully nonlinear regime we focus the discussion here on R = 400,
with analogous arguments relevant to R = 200. To establish a sufficiently converged
baseline case from which to reduce the model complexity we increased Nk and Nk

SVD
uniformly until the residual no longer decreased appreciably with added degrees of
freedom. For R = 400 this ‘full’ convergence was achieved with Nk = 9 and Nk

SVD = 22.
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Figure 11. Expansion coefficients of the velocity σk,jχk,j (blue circles) and nonlinear forcing χk,j (green
squares), and singular values σk,j (red triangles) for R = 400. Expansion coefficients are normalized by their
maximum value at a given wavenumber and plotted against the left y-axis. Singular values are plotted against
the right y-axis. (a–c) k = 1–3, (d–f ) k = 4–6 and (g–i) k = 7–9.

In figure 11 we plot the expansion coefficients σk,jχk,j in (2.18) and χk,j in (2.19). The
σk,jχk,j and χk,j represent the projection of the velocity and nonlinear forcing on to their
respective resolvent basis ψk,j and φk,j respectively. We also plot the singular values σk,j
on the right y-axis.

Notably, figure 11 indicates that for k < 5 the nonlinear forcing has a significant
projection onto all of the retained suboptimal modes. This finding is in agreement with
those of Symon, Illingworth & Marusic (2021) and Morra et al. (2021) who showed
that the nonlinear forcing has significant projection onto the suboptimal resolvent forcing
modes for a variety of flows even if the resolvent operator is low rank. The former
considered both ECS as well as flow in a minimal channel while the latter focused entirely
on turbulent channel flow. In fact, as also observed by Morra et al. (2021), the projection
onto the first two forcing modes, χk,1 and χk,2, is much lower than the projection onto
many of the suboptimal modes.

Furthermore figure 11 reveals that for k = 1 the σk,jχk,j decrease rapidly with j,
while for k > 1 there is not only significant projection onto suboptimal modes, up to
approximately j = 10, but that some of these suboptimal modes have amplitudes of
comparable magnitude to the optimal mode, j = 1. A lack of roll off in the σk,jχk,j despite
a steep roll off in σk,j indicates that there is significant structure to the nonlinear forcing.
In other words, this means that modes with low linear amplification are amplified by
the nonlinear dynamics. If the forcing were unstructured ‘white noise’ there would be
equal projection onto each χk,j and thus the σk,jχk,j would decay at the same rate as
the singular values σk,j, which clearly we do not observe in figure 11. This observation
is consistent with the results of § 3.3 where it was found that for the higher harmonics,
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k � 1, the structure of the nonlinear forcing is paramount to the accurate reconstruction
of the velocity field.

Taken together, these results reveal where the basis determined from approximation of
the resolvent (rank truncation) leads to an efficient representation of the flow and where
approximation of the forcing could lead to further efficiency in the modelling (see also
Rosenberg, Symon & McKeon 2019).

From a practical point of view we see that for 2 ≤ k ≤ 4 the model solution has
significant projection onto the majority of the retained singular response modes. The
projections of the fundamental (k = 1) and the higher harmonics, k > 4 generally have
decayed to negligible levels for j � 10. Neglecting these suboptimal modes for the higher
harmonics does not affect the accuracy of the solution and the associated 30 % reduction
in degrees of freedom results in a 90 % reduction in computational complexity since the
cost of computing the 6th order tensors in (2.30) scale as N6. Neglecting these negligible
sub-optimal modes in the higher harmonics we arrive at the final truncation values cited in
§ 2, Nk

SVD = 22 ∀ k ≤ 4, Nk
SVD = 10 ∀ k > 4. With this reduction in degrees of freedom the

computational complexity has decreased to a point where the optimization may be carried
out cheaply on a personal computer. We would like to reiterate that the results presented
§ 3 use these reduced values of Nk

SVD. However, if only the large scales are desired or lower
levels of convergence are acceptable, the solution is robust to significantly more truncation
in both Fourier space and the SVD.

4. Efficient initial conditions for DNS

It is well known, if not entirely understood, that Taylor vortices persist well into the
turbulent regime (Grossmann et al. 2016). While the nature of the Taylor vortices does
evolve with increasing Reynolds number as discussed in this work and by Sacco et al.
(2019), the general structure does not deviate significantly from the form at R = 400 shown
in figures 1 and 2. Given the significant model reduction achieved by our model, we now
investigate whether the large-scale Taylor vortex structure can be precomputed using our
approach and then used to initialize a DNS at a higher Reynolds number to reduce the
time to converge to a statistically stationary state. Similar ideas have been investigated by
Rosales & Meneveau (2006), who initialized DNS and large eddy simulation of isotropic
decaying turbulence with both standard Gaussian and more realistic non-Gaussian vector
fields. They found that the latter, which displayed some of the physical features associated
with turbulence, led to shorter transition times before realistic decay rates were observed.

We performed two sets of DNS of Taylor–Couette flow for a range of Reynolds numbers
from 400 to 2000: the first using a random perturbation as an initial condition and one
using the R = 400 model solution as an initial condition. The simulations were run until
the torque at the inner and outer cylinders agreed to within 1 %. The simulation was then
continued for an additional 200 non-dimensional time units at which point the simulation
was deemed to be converged. We define the percent reduction in time to convergence
between the two cases:

P ≡ T0 − Tm

T0
× 100 %, (4.1)

where T0 and Tm are the time required to reach convergence with the random and
model initial conditions respectively. Table 3 summarizes the savings for all the Reynolds
numbers we considered. As expected the percentage of run time saved decreases
as the Reynolds number increases because the Taylor vortices change slightly and,
more crucially, because the flow becomes more three-dimensional and time dependent.
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R 400 650 1000 1500 2000
P 82 % 80 % 75 % 72 % 65 %

Table 3. Percentage reduction in convergence time using the model TVF solution as initial condition compared
with random perturbation as a function of Reynolds number. All cases use the R = 400 model result as an initial
condition.

However, it is remarkable that even at the highest Reynolds number, R = 2000, which is
five times the Reynolds number of the model used as an initial condition, the run time is
reduced by 65 %. Physically, this finding speaks to the robustness of the Taylor vortices,
a phenomenon which has been observed by a host of authors (Grossmann et al. 2016).
However, we acknowledge that the practical relevance of this finding may be limited.
When computing a flow for a range of Reynolds numbers one would only need to initialize
the lowest Reynolds number case with a random perturbation and then simply initialize
subsequent cases with the final state of the previous simulation.

5. Conclusions

We have presented a fully nonlinear reduced-order model of Taylor vortex flow for
Reynolds numbers up to five times greater than the critical value. The resolvent
formulation allows the governing equations for the fluctuations about a known mean
velocity to be transformed into a set of polynomial equations. We approximate the solution
to these equations by minimizing their associated residual in conjunction with a constraint
which ensures the model generates Reynolds stresses compatible with the input mean
velocity profile. We are able to generate model solutions which solve the NSE to a very
good approximation and replicate the flow field computed through DNS at a tiny fraction of
the computational cost. We believe this is the first explicit example of ‘closing the resolvent
loop’ published in the literature, although Rosenberg (2018) presented a similar analysis
applied to ECS in a channel in his doctoral thesis which was the inspiration for this work.
We analysed the nonlinear interactions driving the flow for a range of Reynolds numbers
and identified the transition from a weakly nonlinear regime close to the bifurcation from
the laminar state where the structure of the flow is accurately modelled by the linear
dynamics and the forcing cascade is purely from large scales to small scales. At higher
Reynolds numbers we define a fully nonlinear regime where an inverse forcing cascade
from small to large scales emerges to counter the cascade from large to small scales.
In this regime, the dominant nonlinear interactions at a given wavenumber k involve
the pair of triadic interactions k = (k ± 1) ∓ 1, with the pair of triads k = (k ± 2) ∓ 2
also emerging as a dominant forcing mechanism for the highest Reynolds number case.
The velocity contributions from these pairs of triads have opposite sign and almost
equal amplitudes which are much larger than the full Fourier mode. Their sum results
in significant destructive interference with the small differences in shape giving rise to
the shape of the full Fourier mode. We demonstrated that this destructive interference is a
direct consequence of the structure of the nonlinear term of the NSE formulated in Fourier
space. Furthermore, this bidirectional forcing cascade implies that to accurately model
a flow up to a certain order in Fourier space significantly more harmonics than desired
must be retained to capture this inverse forcing cascade. We postulated that this shift from
linear/weakly nonlinear to fully nonlinear dynamics is related to a similar transition in the
physics of Taylor vortices observed by Sacco et al. (2019). Finally, we used our model
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solution as an initial condition to DNS of TCF at higher Reynolds numbers and were able
to significantly reduce the time to convergence compared with initializing the simulation
with a random perturbation.

Acknowledgements. We thank Kevin Rosenberg for many inspiring and helpful discussions.

Funding. This work is supported by the Office of Naval Research under grants ONR N00014-17-1-2307 and
N00014-17-1-3022.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Benedikt Barthel https://orcid.org/0000-0002-6890-5047;
Xiaojue Zhu https://orcid.org/0000-0002-7878-0655;
Beverley McKeon https://orcid.org/0000-0003-4220-1583.

Appendix A

The Navier–Stokes operator in cylindrical coordinates linearized about a one-dimensional
azimuthal mean flow U(r) and Fourier transformed in z, θ and t is given by

Lk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

inU
r

+ 1
R

(
1
r2 − ∇2

)
1
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)
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∂r
in
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ik 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)
where the Laplacian operator is defined as

∇2 = ∂2

∂r2 + 1
r

∂

∂r
−

(
k2 + n2

r2

)
. (A2)

The weight matrix, M , is defined as

M ≡

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦ . (A3)
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