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LEVEL THEORY, PART 3: A BOOLEAN ALGEBRA OF SETS ARRANGED
IN WELL-ORDERED LEVELS

TIM BUTTON

Abstract. On a very natural conception of sets, every set has an absolute complement.
The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst
retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-
ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level
Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald.
BLT neatly implement Conway’s games and surreal numbers; and a natural extension of BLT
is definitionally equivalent with ZF.

Like all walls it was ambiguous,
two-faced. What was inside it
and what was outside it
depended upon which side you
were on.

Le Guin (1974, p. 1)

Building on work by Alonzo Church and Urs Oswald, Thomas Forster has
provided a pleasingly different way to think about sets. As in the ordinary
cumulative hierarchy, the sets are stratified into well-ordered levels. But,
unlike the ordinary cumulative picture, the sets form a boolean algebra.
In particular, every set has an absolute complement, in the sense that
∀a∃c∀x(x ∈ a ↔ x /∈ c). In this paper, I develop an axiomatic theory for
this conception of set: Boolean Level Theory, or BLT.

I start by outlining the bare-bones idea of a complemented hierarchy of
sets, according to which sets are arranged in stages, but where each set
is found alongside its complement. I axiomatize this bare-bones story in
the most obvious way possible, obtaining Boolean Stage Theory, BST. It
is clear that any complemented hierarchy satisfies BST (see Sections 1 and
2). Unfortunately, BST has multiple primitives. To overcome this, I develop
Boolean Level Theory, BLT. The only primitive of BLT is ∈, but BLT and
BST say exactly the same things about sets. As such, any complemented
hierarchy satisfies BLT. Moreover, BLT is quasi-categorical (see Sections
3–5). I then provide two interpretations using BLTZF (an obvious extension
of BLT): we can regard ZF as a proper part of BLTZF; but ZF is definitionally
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2 TIM BUTTON

equivalent to BLTZF (see Sections 6 and 7). I close by explaining how to
implement Conway’s games and surreal numbers in BLT (see Section 8).

This paper is the third in a triptych. It closely mirrors Part 1, but can be
read in isolation. Let me repeat, though, that Part 1 is hugely indebted to
the work of Dana Scott, Richard Montague, George Boolos, John Derrick,
and Michael Potter; this paper inherits those debts.1

Some remarks on notation (which is exactly as in Pt.1 Section 0). I use
second-order logic throughout. Mostly, though, this is just for convenience.
Except when discussing quasi-categoricity (see Section 5), any second-order
claim can be replaced with a first-order schema in the obvious way. I use
some simple abbreviations (where Ψ can be any predicate whose only free
variable is x, and � can be any infix predicate):

(∀x : Ψ)φ := ∀x(Ψ(x) → φ) (∀x � y)φ := ∀x(x � y → φ)
(∃x : Ψ)φ := ∃x(Ψ(x) ∧ φ) (∃x � y)φ := ∃x(x � y ∧ φ).

I also concatenate infix conjunctions, writing things like a ⊆ r ∈ s ∈ t for
a ⊆ r ∧ r ∈ s ∧ s ∈ t. And I run these devices together; so (∀x /∈ x ∈ a)x ⊆
a abbreviates ∀x((x /∈ x ∧ x ∈ a) → x ⊆ a). When I announce a result or
definition, I list in brackets the axioms I am assuming. For readability, all
proofs are relegated to the appendices.

§1. The complemented story. Here is a very natural image of sets: sets are
not just collections of objects; sets partition the universe, and both sides of the
partition yield a set. There is the set of sheep; and there is the set of non-
sheep. There is the set of natural numbers; and there is the set of everything
else. There is the empty set; and there is the universal set.

Many will reject this image out of hand. Supposedly, the paradoxes of
naı̈ve set theory have taught us that there is no universal set; for if there were
a universal set V = {x : x = x}, then Separation would entail the existence
of the Russell set {x : x /∈ x}, which is a contradiction.

That reasoning, though, is too quick. Separation is incompatible with
the existence of V.2 More generally, Separation is incompatible with
the principle of Complementation (i.e., with the principle that every set
has an absolute complement). But it does not immediately follow that
Complementation is false; only that we must choose between Separation and
Complementation.

Both principles are very natural. Separation, however, has the weight of
history behind it; and this might not merely be a historical accident. There is
a serious argument in favour of Separation and against Complementation,
which runs as follows. The paradoxes of naı̈ve set theory forced us to develop
a less naı̈ve conception of set. The best such conception (according to this

1See in particular Montague (1965, p. 139), Montague et al. (unpublished, Section 22),
Scott (1960, 1974), Boolos (1971, pp. 8–11, 1989), and Potter (1990, pp. 16–22, 2004,
Chapter 3).

2NB: I assume classical logic throughout.
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LEVEL THEORY, PART 3 3

argument) is the cumulative iterative conception, as articulated by this bare-
bones story (recycled from Pt.1):

The Basic Story. Sets are arranged in stages. Every set is found at some
stage. At any stage s: for any sets found before s, we find a set whose
members are exactly those sets. We find nothing else at s.

It is easy to see that this conception of set yields Separation rather than
Complementation: any subset of a set a occurs at (or before) any stage
at which a itself occurs. So (the argument concludes) we should embrace
Separation and reject Complementation.

I take this argument very seriously. However, its success hinges on whether
the ordinary cumulative iterative conception really is the ‘best’ conception
of set. Whatever exactly ‘best’ is supposed to mean, the argument lays down
a challenge: produce an equally good or better conception of set, which
accepts Complementation and rejects Separation.

This paper considers a very specific reply to this challenge, due to Forster’s
development of work by Church and Oswald.3 Forster’s idea is to make a
small tweak to the story of the ordinary hierarchy, so that ‘each time we [find]
a new set...we also [find] a companion to it which is to be its complement’.4

In slightly more detail, we offer the following bare-bones story:

The Complemented Story. Sets are arranged in stages. Every set is found
at some stage. At any stage s: for any sets found before s, we find both

(Lo) a set whose members are exactly those sets, and
(Hi) a set whose non-members are exactly those sets.

We find nothing else at s.

3Church (1974) and Oswald (1976); see also Mitchell (1976) and Sheridan (2016). Forster
(2001) includes a nice summary of the technicalities behind the original Church–Oswald
idea.

4Forster (2008, p. 100). Note that I speak of ‘finding’ sets, whereas Forster speaks of
‘creating’ them. Talk of ‘creation’ leads Forster to say that the members of V change, stage-
by-stage, as more sets are created, so that V is ‘intensional’, in a way that ∅ is not (2008, p.
100). I think that Forster should regard ∅ as equally ‘intensional’, since what ∅ omits changes,
stage-by-stage. However, if sets are discovered (rather than created) stage-by-stage, then all
issues concerning intensionality can be side-stepped: all that changes, stage-by-stage, is our
knowledge about V ’s members and ∅’s non-members.

If we admit contingently-existing urelements, then the discussion of intensionality becomes
much more complicated. In the actual world, Boudica ∈ {x : x = x}; but in a possible
world where she never existed, Boudica /∈ {x : x = x}; by contrast, in all possible worlds,
Boudica /∈ {x : x �= x}. From this, one might infer that V is intensional whereas ∅ is not.
But this inference is not immediate; it requires two substantial, further, assumptions: (1) that
the descriptions ‘{x : x �= x}’ and ‘{x : x = x}’ rigidly designate ∅ and V respectively, and
(2) that intensionality concerns trans-world variation of members rather than trans-world
variation of non-members. I hope to explore both assumptions elsewhere. (Thanks to James
Studd, Timothy Williamson, Stephen Yablo, and an anonymous referee for this journal, for
pushing me on this point.)
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4 TIM BUTTON

According to our new story, we find each set using either clause (Lo) or
clause (Hi). Moreover, if we find a set using clause (Lo), then we find its
absolute complement using clause (Hi), and vice versa. This is the absolute
complement since, in clause (Hi), we quantify over all sets that will ever
be discovered, not just those discovered before stage s. This story therefore
secures Complementation; it describes the bare idea of a complemented
hierarchy of sets. But it only describes the bare idea, since, for example, it
says nothing about the height of the hierarchy.

In what follows, I will develop an axiomatic theory of this story, and
explore that theory’s behaviour. To be clear: I am not claiming that we
should reject the ordinary hierarchy in favour of the complemented. My aim
is only to provide a coherent (and surprisingly elegant) conception of set
which allows for Complementation rather than Separation.

In what follows, I will speak of low sets and high sets.5 A set is low iff we
find it using clause (Lo); we characterize low sets by saying ‘exactly these
things, which we found earlier, are this set’s members’. The limiting case of
a low set is the empty set, ∅. A set is high iff we find it using clause (Hi); we
characterize high sets by saying ‘exactly these things, which we found earlier,
are omitted from this set’. The limiting case of a high set is the universe, V.
(Note that low sets can have high sets as members, e.g., {V } would be a low
set with a high member.)

§2. Boolean Stage Theory. Given a model of ZF, there are simple methods
for constructing models of the complemented hierarchy.6 However, if the
idea of a complemented hierarchy is genuinely to rival that of the ordinary
hierarchy, it cannot remain parasitic upon ZF; it needs a fully autonomous
theory. I will provide such a theory over the next two sections.7

The Complemented Story, which introduces the bare-bones idea of a
complemented hierarchy, speaks of both stages and sets. To begin, then, I
will present a theory which quantifies distinctly over both sorts of entities.
Boolean Stage Theory, or BST, has two distinct sorts of first-order variable,
for sets (lower-case italic) and for stages (lower-case bold). It has five
primitive predicates:

∈: a relation between sets; read ‘a ∈ b’ as ‘a is in b’
<: a relation between stages; read ‘r < s’ as ‘r is before s’

: a relation between a set and a stage; read ‘a 
 s’ as ‘a is found

at s’

5Note that every set will be low or high. This terminology departs somewhat from Church’s.
Church (1974, p. 298) defined ‘a low set as a set which has a one-to-one relation with a well-
founded set’ and ‘a high set as a set which is the complement of a low set’. This leaves logical
space for sets which are neither low nor high (in Church’s terms), and Church (1974, p. 305)
used such sets to provide a Frege–Russell definition of cardinal numbers.

6See Forster (2001, Section 1–2, 2008, pp. 106–8); and my interpretation I in Appendix D.1.
7The approach in this section follows Scott and Boolos, but in the setting of complemented

hierarchies rather than the ordinary hierarchies; see Pt.1 Sections 1 and 8.
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LEVEL THEORY, PART 3 5

Lo: a property of sets; read ‘Lo(a)’ as ‘a is low’, i.e., we find a using
clause (Lo)

Hi: a property of sets; read ‘Hi(a)’ as ‘a is high’, i.e., we find a using
clause (Hi)

For brevity, I write a ≺ s for ∃r(a 
 r < s), i.e., a is found before s. Then
BST has eight axioms:8

Extensionality ∀a∀b(∀x(x ∈ a ↔ x ∈ b) → a = b)
Order ∀r∀s∀t(r < s < t → r < t)

Staging ∀a∃s a 
 s
Cases ∀a(Lo(a) ∨Hi(a))

PriorityLo ∀s(∀a : Lo)(a 
 s → (∀x ∈ a)x ≺ s)
PriorityHi ∀s(∀a : Hi)(a 
 s → (∀x /∈ a)x ≺ s)

SpecificationLo ∀F ∀s((∀x : F )x ≺ s →
(∃a : Lo)(a 
 s ∧ ∀x(F (x) ↔ x ∈ a)))

SpecificationHi ∀F ∀s((∀x : F )x ≺ s →
(∃a : Hi)(a 
 s ∧ ∀x(F (x) ↔ x /∈ a)))

I will now explain how to justify each axiom.
The first two axioms make implicit assumptions explicit. Whilst I did not

mention Extensionality when I told the story of the complemented hierarchy,
I take it as analytic that sets are extensional.9 Similarly, Order records the
analytic fact that ‘before’ is transitive. Note, though, that I do not explicitly
assume that the stages are well-ordered,10 as it is unclear at this point what
would justify that assumption. (After all, if we are willing to countenance
entities as ill-founded as V, then it is not immediately obvious that we should
refuse to countenance a hierarchy with infinite descending chains of stages.
And the Complemented Story does not explicitly require that the stages be
well-ordered.)

Informally, Staging says that every set is discovered at some stage; this
claim appears verbatim in the Complemented Story. Likewise, Cases says
that every set is either low or high, and this is immediate from the fact
that every set is discovered using either clause (Lo) or clause (Hi). (Note,
though, that I do not assume at the outset that this is an exclusive disjunction;
initially, we should be open to the thought that one set could be discovered
using both clauses.)11

Next, PriorityLo and PriorityHi say that if we find a low set at a stage, then
we find all its members earlier, and if we find a high set at a stage, then we
find all its non-members earlier; both claims follow from clauses (Lo) and
(Hi). Finally, SpecificationLo and SpecificationHi say that if every F was

8Using classical logic yields ‘cheap’ proofs of the existence of a stage, an empty set, and a
universal set, via Staging, SpecificationLo and SpecificationHi . Those who find such proofs
too cheap might wish to add some explicit existence axioms. (Cf. Pt.1 footnote 2.)

9For brevity of exposition, I am considering hierarchies of pure sets.
10Here I part company with Forster (2008, p. 100), who explicitly stipulates that the stages

are well-ordered. Ultimately, BST proves a well-ordering result (Theorem 4.1).
11Ultimately, BST proves that no set is discovered using both clauses (Lemma B.7).
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6 TIM BUTTON

found before a certain stage, then at that stage we find both the low set of
all Fs, and the high set of all non-Fs; again, both claims follow from (Lo)
and (Hi).

Since all eight axioms hold of the Complemented Story, any comple-
mented hierarchy satisfies BST.

§3. Boolean Level Theory. Unfortunately, BST contains rather a lot of
primitives. Fortunately, most of them can be eliminated. In this section, I
present Boolean Level Theory, or BLT. This theory’s only primitive is ∈, but
it makes exactly the same claims about sets as BST does.12 I start with a key
definition:13

Definition 3.1. For any a, let a’s absolute complement be a = {x : x /∈ a},
if it exists. Let Pa = {x : (∃c /∈ c ∈ a)(x ⊆ c ∨ x ⊆ c)}, if it exists.14

The definition of a needs no comment, but the definition of Pa merits
explanation. It turns out that BST proves that a is low iff a /∈ a, and a is
high iff a ∈ a (see Lemma B.7). Seen in this light, Pa collects together all
the subsets of low members of a, and all the complements of such subsets.
As a specific example, if b is low, then P{b} = {x : x ⊆ b ∨ x ⊆ b}, i.e., it is
the result of closing b’s powerset under complements. We use this operation
in this next definition (where ‘bistory’ is short for ‘boolean-history’, and
‘bevel’ is short for ‘boolean-level’):15

Definition 3.2. Say that h is a bistory, written Bist(h), iff h /∈ h ∧ (∀x ∈
h)x = P(x ∩ h). Say that s is a bevel, written Bev(s), iff (∃h : Bist)s = Ph.

The intuitive idea behind Definition 3.2 is that the bevels go proxy for the
stages of the Complemented Story, and each bistory is an initial sequence of
bevels. (It is far from obvious that these definitions work as described, but
we will soon see that they do.) Using these definitions, BLT has just four
axioms:16

Extensionality ∀a∀b(∀x(x ∈ a ↔ x ∈ b) → a = b)
Complements ∀a(∃c = a)(a /∈ a ↔ c ∈ c)

Separation/∈ ∀F (∀a /∈ a)(∃b /∈ b)∀x(x ∈ b ↔ (F (x) ∧ x ∈ a))
Stratification/∈ (∀a /∈ a)(∃s : Bev)a ⊆ s

12The approach in this section mirrors Pt.1 Sections 2–4, which builds on work by
Montague, Scott, Derrick and Potter; see also Pt.1 Section 8.

13Compare Montague’s and Scott’s ¶-operation, presented in Pt.1 Definition 2.1.
14By the notational conventions, Pa = {x : ∃c(c ∈ a ∧ c /∈ c ∧ (x ⊆ c ∨ x ⊆ c))}. BLT’s

axiom Complements guarantees that a exists for every a. However, we do not initially assume
that Pa exists for every a; instead, we initially treat every expression of the form ‘b = Pa’
as shorthand for ‘∀x(x ∈ b ↔ (∃c /∈ c ∈ a)(x ⊆ c ∨ (∃z ⊆ c)∀y(y ∈ z ↔ y /∈ x)))’, and
must double-check whether Pa exists. Ultimately, though, BLT proves that Pa exists for
every a: if a /∈ a then Pa ⊆ Ba (see Definition 4.3); if a ∈ a then Pa = V .

15Compare Pt. 1 Definition 2.2, which simplifies the Derrick–Potter definition of ‘level’.
16As in footnote 8, classical logic yields a ‘cheap’ proof of the existence of ∅ and V.
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LEVEL THEORY, PART 3 7

Intuitively, Complements tells us that every set has a complement, and a set
is low iff its complement is high; Separation/∈ tells us that arbitrary subsets
of low sets exist (and are low); and Stratification/∈ tells us that every low
set is a subset of some bevel (which corresponds to the thought that it is
found at some stage). These axioms and definitions are vindicated by this
next result, which shows that BLT has exactly the same set-theoretic content
as BST (see Appendix B for the proof):

Theorem 3.3. BST � φ iff BLT � φ, for any BLT-sentence φ.

Otherwise put: no information about sets is gained or lost by moving between
BST and BLT. Moreover, since every complemented hierarchy satisfies BST,
every complemented hierarchy satisfies BLT. In what follows, then, I will
treat BLT as the canonical theory of complemented hierarchies.

§4. Characteristics and extensions of BLT. To give a sense of how BLT
behaves, I will state some of its ‘characteristic’ results (the proofs are in
Appendix A). The first two results allow us to characterize BLT with a
simple slogan: a boolean algebra of sets arranged in well-ordered levels.

Theorem 4.1 (BLT). The bevels are well-ordered by ∈.

Theorem 4.2 (BLT). The sets form a boolean algebra under complementa-
tion, ∩ and ∪.

This first result is quite surprising:17 the Complemented Story does not
explicitly specify that the stages must be well-ordered (see Section 2); but,
since every complemented hierarchy satisfies BLT (see Section 3), every
complemented hierarchy has well-ordered levels.

The well-ordering of the bevels yields a powerful tool, which intuitively
allows us to consider the bevel at which a set is first found:

Definition 4.3 (BLT). If a /∈ a, let Ba be the ∈-least bevel with a as a
subset; i.e., a ⊆ Ba and ¬(∃s : Bev)a ⊆ s ∈ Ba. If a ∈ a, let Ba = Ba.

Note that Ba exists for any a, by Stratification/∈, Complements and
Theorem 4.1.

A third characteristic result is that there is a contra-automorphism on the
universe.18 Roughly put: replacing membership with non-membership (and
vice versa) yields an isomorphic universe. Formally:

Definition 4.4. We recursively define a’s negative, written –a, as follows:

–a := {–x : x ∈ a}, if a /∈ a –a := {–x : x /∈ a}, if a ∈ a
Theorem 4.5 (BLT). ∀a∀b(a ∈ b ↔ –a /∈ –b)

This immediately yields a nice duality:

17It will be much less surprising for those who have read Pt.1 Section 5.
18See Forster (2001, Definition 16 and subsequent comments). This result inspires my

epigraph, from Le Guin. I owe the point to Brian King: in 2006, he arrived at an idea like
the Complemented Story (independently of Forster) and explained it using Le Guin’s image.
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8 TIM BUTTON

Corollary 4.6 (BLT). φ ↔ φ�, for any BLT-sentence φ, where φ� is the
sentence which results from φ by replacing every ‘∈’ with ‘/∈’ and vice versa.

These results highlight some of BLT’s deductive strengths. Now let me
comment on its (deliberate) weakness. By design, BLT axiomatizes only
the bare idea of a complemented hierarchy, and so makes no comment on
the hierarchy’s height.19 If we want to ensure that our hierarchy is reasonably
tall, three axioms suggest themselves (where ‘P’ is a second-order function-
variable in the statement of Unbounded/∈):

Endless/∈ (∀s : Bev)(∃t : Bev)s ∈ t
Infinity/∈ (∃s : Bev)((∃q : Bev)q ∈ s ∧

(∀q : Bev)(q ∈ s → (∃r : Bev)q ∈ r ∈ s))
Unbounded/∈ ∀P(∀a /∈ a)(∃s : Bev)(∀x ∈ a)P(x) ∈ s

Endless/∈ says there is no last bevel. Infinity/∈ says that there is an infinite
bevel, i.e., a bevel with no immediate predecessor. Unbounded/∈ states that
the hierarchy of bevels is so tall that no low set can be mapped unboundedly
into it (recall that the low sets are precisely the non-self-membered sets).

To make all of this more familiar, here are some simple facts relating
BLT to ZF. Let BLT+ stand for BLT + Endless/∈, and BLTZF stand for
BLT + Infinity/∈ + Unbounded/∈; then:20

Proposition 4.7.

(1) BLT proves the Axiom of Empty Set, i.e., ∃a∀x x /∈ a.
(2) BLT proves Union, i.e. ∀a(

⋃
a exists).

(3) BLT+ proves Pairing, i.e., ∀a∀b({a, b} exists), but BLT does not.
(4) BLT+ proves Powersets-restricted-to-low-sets, i.e., (∀a /∈ a)(℘a exists),

but BLT does not.
(5) BLT contradicts Powersets, i.e., it proves ∃a¬∃b∀x(x ∈ b ↔ x ⊆ a).
(6) BLT proves Foundation-restricted-to-high-sets, i.e., (∀a ∈ a)(∃x ∈
a)a ∩ x = ∅.

(7) BLT+ contradicts Foundation, i.e., it proves (∃a �= ∅)(∀x ∈ a)a ∩x �= ∅.
(8) BLTZF proves Endless /∈.

If we want to state this result with maximum shock value: of the standard
axioms of ZF, BLT validates only Extensionality, Empty Set, and Union
(though BLT is also consistent with Pairing and standard formulations of
Infinity).

§5. The quasi-categoricity of BLT. We have seen that every complemented
hierarchy satisfies BLT, so that every complemented hierarchy has well-

19Beyond the fact that classical logic guarantees the existence of at least one stage; see
footnotes 8 and 16.

20Since BLT+ proves Pairing, BLT+ extends NF2, the sub-theory of Quine’s NF whose
axioms are Extensionality, Pairing, and Theorem 4.2. However, BLT+ does not extend NFO,
the theory which adds to NF2 the axiom that {x : a ∈ x} exists for every a; in particular,
{x : ∅ ∈ x} does not exist; see the proof of Proposition 4.7.5 in Appendix A. For discussion
of NF2 and NFO, see Forster (2001, Section 2).
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LEVEL THEORY, PART 3 9

ordered bevels. In fact, we can push this point further, by noting that BLT
is quasi-categorical.21

Informally, we can spell out BLT’s quasi-categoricity as follows: Any two
complemented hierarchies are structurally identical for so far as they both run,
but one may be taller than the other. So, when we set up a complemented
hierarchy, our only choice is how tall to make it.

In fact, there are at least two ways to explicate the informal idea of quasi-
categoricity, and BLT is quasi-categorical on both explications.22 The first
notion of quasi-categoricity should be familiar from Zermelo’s results for
ZF, and uses the full semantics for second-order logic:

Theorem 5.1. Given full second-order logic:
(1) The bevels of any model of BLT are well-ordered.23

(2) For any ordinal α > 0, there is a model of BLT whose bevels form an
α-sequence.24

(3) Given any two models of BLT, one is isomorphic to an initial segment of
the other.25

Since this result involves semantic ascent, it is an external quasi-categoricity
result. There is also an internal quasi-categoricity result for BLT, which is
a theorem of the (second-order) object language, but this point requires a
little more explanation.

In embracing Extensionality, BLT assumes that everything is a pure set.
Here is an easy way to avoid making that assumption. Consider the following
formula, which relativises BLT to a new primitive predicate, Pure:26

BLT(Pure, ε) := (∀a : Pure)(∀b : Pure)(∀x(x ε a ↔ x ε b) → a = b) ∧
(∀a : Pure)(∃c : Pure)((∀x : Pure)(x ε c ↔ x /ε a)

∧ (a /ε a ↔ c ε c))∧
∀F (∀a : Pure)(a /ε a → (∃b : Pure)(b /ε b

∧ ∀x(x ε b ↔ (F (x) ∧ x ε a)))) ∧
(∀a : Pure)(a /ε a → (∃s : Bev)a ⊆ s) ∧
∀x∀y(y ε x → (Pure(x) ∧ Pure(y)))

The first four conjuncts say that the pure sets satisfy BLT;27 the last says that,
when we use ‘ε’, we restrict our attention to membership facts between pure

21This mirrors the discussion of LT’s quasi-categoricity; see Pt.1 Section 6.
22Both ways make essential use of second-order logic, albeit in different ways.
23That is, if M � BLT then {s ∈M : M � Bev(s)} is well-ordered by ∈M.
24That is, there is some M � BLT such that {s ∈M : M � Bev(s)} is isomorphic to α.
25When A and M are models of BLT, say that A is an initial segment of M iff either

A = M or there is some s such that M � Bev(s) and A is isomorphic to the substructure of
M whose domain is {x ∈M : M � Bx ∈ s}.

26Here, ‘⊆’ and ‘Bev’ should be defined in terms of ε rather than ∈; similarly for ‘B’ in the
statement of Theorem 5.2.

27With one insignificant caveat (see footnote 16): whereas classical logic guarantees that
any model of BLT contains an empty set and a universal set, LT(Pure, ε) allows that there
may be no pure sets.
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sets. This avoids the assumption that everything is a pure set. Moreover, I
can use this formula to state our internal quasi-categoricity result (I have
labelled the lines to facilitate its explanation):28

Theorem 5.2. This is a deductive theorem of impredicative second-order
logic:

(BLT(Pure1, ε1) ∧ BLT(Pure2, ε2)) →
∃R(∀v∀y(R(v, y) → (Pure1(v) ∧ Pure2(y))) ∧ (1)

((∀v : Pure1)∃yR(v, y) ∨ (∀y : Pure2)∃vR(v, y)) ∧ (2)

∀v∀y∀x∀z((R(v, y) ∧R(x, z)) → (v ε1 x ↔ y ε2 z)) ∧ (3)

∀v∀y∀z((R(v, y) ∧R(v, z)) → y = z) ∧ (4)

∀v∀x∀y((R(v, y) ∧R(x, y)) → v = x) ∧ (5)

∀v∀x∀y((B1x ⊆1 B1v ∧R(v, y)) → ∃zR(x, z)) ∧ (6)

∀v∀y∀z((B2z ⊆2 B2y ∧R(v, y)) → ∃xR(x, z))) (7)

Intuitively, the point is this. Suppose two people are using their versions of
BLT, subscripted with ‘1’ and ‘2’ respectively. Then there is some second-
order entity, a relation R, which takes us between their sets (1), exhausting
the sets of one or the other person (2); which preserves membership (3);
which is functional (4) and injective (5); and whose domain is an initial
segment of one (6) or the other’s (7) hierarchy. Otherwise put: BLT is
(internally) quasi-categorical.

As a bonus, this internal quasi-categoricity result can be lifted into an
internal total-categoricity result. To explain how, consider this abbreviation
(where ‘P’ is a second-order function-variable):

∃∞xΦ(x) := ∃P(∀xΦ(P(x)) ∧ (∀y : Φ)∃!x P(x) = y).

This formalizes the idea that there is a bijection between the Φs and the
universe (see Pt.1 Section 6). Using this notation, we can state our internal
total-categoricity result:

Theorem 5.3. This is a deductive theorem of impredicative second-order
logic:

(BLT(Pure1, ε1) ∧ ∃∞x Pure1(x) ∧ BLT(Pure2, ε2) ∧ ∃∞x Pure2(x)) →
∃R(∀v∀y(R(v, y) → (Pure1(v) ∧ Pure2(y))) ∧

(∀v : Pure1)∃!yR(v, y) ∧ (∀y : Pure2)∃!vR(v, y) ∧
∀v∀y∀x∀z((R(v, y) ∧R(x, z)) → (v ε1 x ↔ y ε2 z)))

Intuitively, if both BLT-like hierarchies are as large as the universe, then
there is a structure-preserving bijection between them.

28Button and Walsh’s (2018, Chapter 11) proofs carry over straightforwardly to BLT.
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§6. Ordinary set theory as a proper part of BLT. The Complemented Story
provides two clauses for finding sets. Clause (Lo) tells us that, at each stage
s and for any sets found before s, we find a set whose members are exactly
those sets. But this is exactly what we would find according to the Basic Story
(see Section 1), which deals with ordinary, uncomplemented hierarchies.
Intuitively, then, we should be able to recover an ordinary hierarchy by
considering a complemented hierarchy whilst ignoring any use of clause
(Hi). This intuitive idea is exactly right; the aim of this section is to explain
it carefully.

First, I must formalize the notion of a set which we find without ever using
clause (Hi). I call such sets hereditarily low, or helow for short. So: helow
sets are low, their members are low, the members of their members are low,
etc. Here is the precise definition:

Definition 6.1. Say that a is helow, orHelo(a), iff there is some transitive
c ⊇ a such that (∀x ∈ c)x /∈ x.

To restrict our attention to the ordinary (uncomplemented) hierarchy, we
then just restrict our attention to the helow sets. To implement this formally,
for any formula φ, let φ� be the formula which results by restricting all of
φ’s quantifiers to helow sets. Using this notation, we can then prove results
of this shape: If some theory of uncomplemented hierarchies proves φ, then
some suitable theory of complemented hierarchies proves φ�.

To state these results precisely, we need a suitable theory of uncomple-
mented hierarchies. That theory is LT, discussed in Pt.1. In a nutshell,
LT stands to uncomplemented hierarchies exactly as BLT stands to
complemented hierarchies. I will now briefly recap LT’s key elements. To
formalize the Basic Story, we define a predicate, Lev, to capture the notion
of a level of an uncomplemented hierarchy (Pt.1 Definition 2.2); then LT is
the theory whose axioms are Extensionality, Separation, and Stratification,
which states that ∀a(∃s : Lev)a ⊆ s (see Pt.1 Section 2). It transpires that
LT is quasi-categorical, and that every uncomplemented hierarchy satisfies
LT, regardless of its height (see Pt.1 Sections 5–6). If we want to secure
a tall uncomplemented hierarchy, we can consider the axioms Endless,
Infinity and Unbounded (see Pt.1 Section 7); these are exactly like Endless /∈,
Infinity/∈ and Unbounded/∈ (see Section 3 of this part), except that they
replace ‘Bev’ with ‘Lev’. Let LT+ stand for LT + Endless; it turns out that
ZF is deductively equivalent to LT + Infinity + Unbounded; so LT, LT+,
and ZF are three theories which axiomatize uncomplemented hierarchies,
making successively stronger demands on the hierarchy’s height. With this
background in place, here is the result which intuitively states that the
helow part of any complement hierarchy is an ordinary (uncomplemented)
hierarchy (see Appendix C for the proof):

Theorem 6.2. For any LT-sentence φ:
(1) If LT � φ, then BLT � φ�

(2) If LT+ � φ, then BLT+ � φ�

(3) If ZF � φ, then BLTZF � φ�
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§7. Definitional equivalence. Theorem 6.2.3 allows us to regard ZF as the
result of restricting attention to the helow-fragment of BLTZF’s universe of
sets. But we also have a much deeper interpretative result, as follows (see
Appendix D):29

Theorem 7.1. ZF and BLTZF are definitionally equivalent, as are LT+ and
BLT+.

As an immediate consequence, ZF and BLTZF are equiconsistent, as are LT+

and BLT+. However, definitional equivalence is much stronger than mere
equiconsistency.

Roughly, to say that two theories are definitionally equivalent is to say that
each theory can define all the primitive expressions of the other, such that
each theory can simulate the other perfectly, and where combining the two
simulations gets you back exactly where you began.30 So, in some purely
formal sense, ZF and BLTZF can be regarded as notational variants; as
wrapping the same deductive content in different notational packaging.

One might be tempted to go further, and suggest that Theorem 7.1 shows
that there is no relevant difference between ZF and BLTZF. That, however,
would require further argument.31 Precisely because definitional equivalence
is a purely formal property, it ignores all non-formal matters, and these may
be philosophically significant. There is more philosophical discussion to be
had about the significance of Theorem 7.1, but that must wait for another
time.

§8. Conway games and surreal numbers in BLT. Since ZF and BLTZF are
definitionally equivalent, there is a sense in which each can do anything that
the other can. Still, BLTZF can do some things more easily than ZF. This is
neatly illustrated by considering John Conway’s theory of games and surreal
numbers.32

Consider two-player games in which players move alternately, with no
element of chance, where the game must end in a win or loss. (Think of
chess, but without the possibility of stalemate.) Abstractly, such games can
be thought of as specifications of permissible positions: to make a move in
such a game is just to select a new position which is permissible given the
current game state; and you lose when it is your turn to move but there is
no permissible position. (Think of being checkmated: you must move to a
position where your King is not in check, but no such move is available.)
Crucially, any position in any such game can be considered as a game in its
own right. (Imagine the version of chess which always starts with the pieces
arranged as after the Queen’s Gambit in regular chess.) So every game can

29Forster conjectured that a result of this shape should hold.
30For a more precise statement of what definitional equivalence requires, see Button and

Walsh (2018, Chapter 5).
31Compare Pt.2 Section 9.
32Joel David Hamkins suggested this application of BLT to me; many thanks to him, both

for the initial suggestion, and for much subsequent correspondence.
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be regarded, abstractly, as nothing other than a specification of which games
each player can move to. Otherwise put, if we call the two game-players Low
and High, then a game is just a specification of low options, i.e., games that
Low can move to, and high options, i.e., games that High can move to.

The idea is very natural. However, as Conway remarked, formalizing it ‘in
ZF destroys a lot of its symmetry.’ He therefore suggested that ‘the proper
set theory in which to perform such a formalisation would be one with
two kinds of membership’: a game would just be a set with ‘low-members’
(low options) and ‘high-members’ (high options).33 However, we can easily
implement this idea in BLT, using only one kind of membership. We start by
saying that the games are the sets, and then stipulate:

Definition 8.1 (BLT). If a is low, the set of a’s low options is La := {x ∈
a : x /∈ x}; the set of a’s high options is Ha := {x ∈ a : x ∈ x}. If a is high,
La := La and Ha := Ha.

Intuitively, then, a and a represent the same game. Moreover, there is a
natural algebra on the games, given as follows (I explain the definitions
below):34

Definition 8.2 (BLT). With – as in Definition 4.4, define + and ≤
recursively:

a + c := {x + c : x ∈ La} ∪ {a + x : x ∈ Lc} ∪ {y + c : y ∈ Ha}
∪ {a + y : y ∈ Hc}

a ≤ c iff (∀y ∈ Hc)y � a ∧ (∀x ∈ La)c � x

We stipulate that a ≡ c iff a ≤ c ≤ a, and define a – c := a + (–c).

We can make these algebraic operations intuitive as follows. To take the
negative of a game is to reverse the players’ roles (cf. Theorem 4.5). To add
two games is to place them side-by-side, allowing a player to move in one
game without affecting the other. But the partial-order requires slightly more
explanation. Suppose High plays first on the game a; then Low has a winning
strategy iff whatever move High makes, i.e., for all y ∈ Ha, if Low plays first
on y then High has no winning strategy. Similarly, suppose Low plays first
on a; then High has a winning strategy iff for all x ∈ La, if High plays first
on x then Low has no winning strategy. So, if we gloss ‘∅ ≤ z’ as ‘Low has
a winning strategy as second player on z’ and gloss ‘z ≤ ∅’ as ‘High has a
winning strategy as second player on z’, this motivates two important special

33Conway (1976, p. 66). Cox and Kaye (2012) take up this suggestion and offer an
axiomatic theory with two kinds of membership; they prove it is definitionally equivalent
with ZF. By Theorem 7.1, it is definitionally equivalent with BLTZF.

34The well-ordering of bevels guarantees determinacy, and licenses induction and recursive
definitions (see footnote 37, below). Definition 8.2 and 8.4 are BLT-implementations of
Conway’s (1976, Chapters 0–1) definitions. (As defined, the sum of two low sets is always low;
an arbitrary choice was required.) For Theorem 8.3, see Conway (1976, p. 78); for Theorem
8.5, see Conway (1976, Chapter 1). For an accessible presentation, see also Schleicher and
Stoll (2006, Sections 2–4).
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cases of the partial order:

∅ ≤ a iff (∀y ∈ Ha)y � ∅ a ≤ ∅ iff (∀x ∈ La)∅ � x.

The remainder of Definition 8.2 is then set up so that a – b ≤ ∅ iff a ≤ b.
More generally, we have the following foundational result:

Theorem 8.3 (BLT). The sets form a partially-ordered abelian Group, with
∅ = 0 and +, –,≤ as in Definition 8.2, all modulo ≡.35

We can obtain a totally-ordered Field by restricting our attention to surreals:

Definition 8.4 (BLT). We specify that a is surreal iff: for all x ∈ La and
all y ∈ Ha, both x and y are surreal and x � y. We define multiplication on
surreals thus:

a · c := {x · c + a · y – x · y : (x ∈ La ∧ y ∈ Lc) ∨ (x ∈ Ha ∧ y ∈ Hc)} ∪
{x · c + a · y – x · y : (x ∈ La ∧ y ∈ Hc) ∨ (x ∈ Ha ∧ y ∈ Lc)}.

We say that a is a surreal-ordinal iff a is both helow and surreal.

Theorem 8.5 (BLT). The surreals form a totally-ordered Field, modulo ≡.

Summing up: Conway’s beautifully rich, nonstandard, theory of surreal
numbers is available, essentially off-the-shelf, within BLT.

§9. Conclusion. The Complemented Story lays down a conception of
set which rivals the (ordinary) cumulative notion, but which accepts
Complementation and rejects Separation (see Section 1).

I have shown that any complemented hierarchy satisfies BLT (see
Sections 2–3). So, given the characteristic results of BLT, the sets of
any complemented hierarchy are arranged into well-ordered bevels, and
constitute a boolean algebra (see Section 4). Moreover, BLT is quasi-
categorical (see Section 5); so our only choice, in setting up a complemented
hierarchy, is how tall to make it.

The theory BLTZF arises from BLT just by adding axioms which state that
the complemented hierarchy is quite tall (see Section 4). And we can regard
ZF as either a proper part of BLTZF (see Section 6), or as a notational variant
(in a purely formal sense) of BLTZF (see Section 7). But both interpretations
suggest that there is no obvious a priori reason to favour Separation over
Complementation. And in some settings, such as the discussion of Conway
games, using Complementation is extremely natural (see Section 8).

§Appendix A. Characteristics of BLT. The remainder of this paper
consists of proofs of the results discussed in the main text. Many of the
simpler proofs are similar to results for Pt.1; in such cases, I omit the proof
and refer interested readers to the appropriate result from Pt.1.

35To quotient by ≡, define [a] := {b ≡ a : (∀x ≡ a)Bb ⊆ Bx}; cf. Scott (1955) and
Conway (1976, p. 65).
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This first appendix deals with the results from Section 4. Initially, I will
work in ECS, the subtheory of BLT whose only axioms are Extensionality,
Complements and Separation/∈ (see Section 3). I start with some simple
results and definitions:

Lemma A.1 (ECS). If c ⊆ a /∈ a, then c /∈ c; if a ∈ a ⊆ c, then c ∈ c.
Proof. If c ⊆ a /∈ a, then c /∈ c = {x ∈ a : x ∈ c} by Separation/∈ and

Extensionality. If a ∈ a ⊆ c, then c ⊆ a /∈ a by Complements, so that c /∈ c
as before, and c ∈ c by Complements. �

Definition A.2. Say that a is potent/∈ iff ∀x(∃c(x ⊆ c /∈ c ∈ a) → x ∈ a).
Say that a is transitive/∈ iff (∀x /∈ x ∈ a)x ⊆ a. Say that a is complement-
closed iff ∀x(x ∈ a ↔ x ∈ a).

Lemma A.3 (ECS). If Pa exists (see Definition 3.1), then:
(1) (∀x /∈ x ∈ Pa)∃c(x ⊆ c /∈ c ∈ a).
(2) Pa is potent/∈.
(3) Pa is complement-closed.

Proof. (1) Fix x /∈ x ∈ Pa; so for some c /∈ c ∈ a, either x ⊆ c or x ⊆ c.
But x ∈ x by Complements, so x � c by Lemma A.1.

(2) Fix x ⊆ c /∈ c ∈ Pa; so x ⊆ c ⊆ b /∈ b ∈ a for some b by (1); hence
x ∈ Pa.

(3) Fix x ∈ Pa. If x ⊆ c for some c /∈ c ∈ a, then x = x ⊆ c so that
x ∈ Pa; if x ⊆ c for some c /∈ c ∈ a, then x ∈ Pa straightforwardly. �
It follows that bevels (see Definition 3.2) have several important closure
properties:

Lemma A.4 (ECS). Every bevel is transitive /∈, potent/∈, complement-closed,
and non-self-membered.

Proof. Let s be a bevel, i.e., s = Ph for some bistory h. So s is potent/∈ and
complement-closed by Lemma A.3. For transitivity /∈, fix a /∈ a ∈ s = Ph; so
a ⊆ c /∈ c ∈ h for some c by Lemma A.3.1; and c = P(c ∩ h) as h is a bistory;
so a ⊆ P(c ∩ h) ⊆ Ph = s . To see that s /∈ s , suppose s ∈ s for reductio.
Then s /∈ s ∈ s by Complements, so s ⊆ s by transitivity /∈, so s = V . Since
h /∈ h by definition, and h ∈ V = s = Ph, by Lemma A.3.1 there is some
c such that h ⊆ c /∈ c ∈ h. Since h is a bistory, c = P(h ∩ c) = Ph = V ,
contradicting the fact that c /∈ c. �
From here, we can prove the well-ordering of the bevels, by proving a
sequence of results like those from Pt.1 Section 3; I leave this to the reader:36

Lemma A.5 (ECS). If there is an F, and all Fs are non-self-membered and
potent/∈, then there is an∈-minimal F. Formally:∀F ((∃xF (x) ∧ (∀x : F )(x /∈
x ∧ x is potent /∈)) → (∃a : F )(∀x : F )x /∈ a)

36For Lemma A.7, first note that if h is a history and c ∈ h, then c = P(c ∩ h) ⊆ Ph /∈ Ph
by Lemma A.4, so c /∈ c by Lemma A.1. For Lemmas A.8 and A.9, reason about non-self-
membered sets in the first instance, then deal with self-membered sets using Complements
and complement-closure.
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Lemma A.6 (ECS). If some bevel is F, then there is an∈-minimal bevel which
is F. Formally: ∀F ((∃s : Bev)F (s) → (∃s : Bev)(F (s) ∧ (∀r : Bev)(F (r) →
r /∈ s)))

Lemma A.7 (ECS). Every member of a bistory is a bevel.

Lemma A.8 (ECS). s = P{r ∈ s : Bev(r)}, for any bevel s.

Lemma A.9 (ECS). All bevels are comparable, i.e., (∀s : Bev)(∀t : Bev)(s ∈
t ∨ s = t ∨ t ∈ s)
Combining Lemmas A.6 and A.9, ECS proves that the bevels are well-
ordered by ∈; this is Theorem 4.1. This licenses our use of the B-operator
(see Definition 4.3). Here are some simple results about that operator, which
can be proved by tweaking the proof of Pt.1 Lemma 3.12:

Lemma A.10 (BLT). For any sets a, c, and any bevels r, s :
(1) Ba exists
(2) a /∈ Ba
(3) r ⊆ s iff s /∈ r
(4) s = Bs
(5) if c ⊆ a /∈ a or a ∈ a ⊆ c, then Bc ⊆ Ba
(6) if c ∈ a /∈ a or c /∈ a ∈ a, then Bc ∈ Ba

Moreover, we can now show that sets are closed under arbitrary pairwise
intersection:

Lemma A.11 (BLT). For any sets a and c, the set a ∩ c = {x : x ∈ a ∧ x ∈
c} exists.

Proof. First suppose that either a /∈ a or c /∈ c (or both); without
loss of generality, suppose a /∈ a; now a ∩ c = {x ∈ a : x ∈ c} exists by
Separation/∈. Next suppose that both a ∈ a and c ∈ c. So both a /∈ a and
c /∈ c by Complements. Let s be the maximum of Ba and Bc. Since s is
potent/∈, both a ⊆ s and c ⊆ s , so a ∪ c = {x ∈ s : x ∈ a ∨ x ∈ c} exists
by Separation/∈. Now a ∩ c = a ∪ c exists by Complements. �
This immediately entails that the sets form a boolean algebra, which
is Theorem 4.2. Our next result shows that the universe is contra-
automorphic:37

Theorem 4.5 (BLT). ∀a∀b(a ∈ b ↔ –a /∈ –b)

Proof. Recall that negative is given as in Definition 4.4 by

–a := {–x : x ∈ a}, if a /∈ a –a := {–x : x /∈ a}, if a ∈ a.
Fix a bevel s and for induction suppose that, for any x, y ∈ s :

37Theorem 4.1 licenses recursive definitions. If we are using second-order logic, such
definitions yield a second-order entity. If we are using first-order logic, then (as usual)
we define a term by considering a strictly increasing sequence of first-order ‘bounded
approximations’ (specifying the behavior of the term over the last few bevels manually, if
there is a last bevel).
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(1) –x is well-defined and Bx = B(–x), and
(2) x = y iff –x = –y.

It suffices to show that both properties hold of a, b when Ba = Bb = s .
Concerning (1). Suppose a /∈ a. If x ∈ a, then B(–x) = Bx ∈ Ba by

induction assumption (1) and Lemma A.10.6. Using Separation/∈, let
c /∈ c = {v ∈ Ba : (∃x ∈ a)v = –x} = {–x : x ∈ a}. Moreover, Bc = Ba,
by the well-ordering of bevels and since B(–x) = Bx ∈ Ba for all x ∈ a.
Now c ∈ c = –a by Complements; so Ba = Bc = Bc = B(–a). The case
when a ∈ a is similar, defining c /∈ c = {v ∈ Ba : (∃x /∈ a)v = –x} = {–x :
x /∈ a} = –a.

Concerning (2). If a ∈ a ↔ b ∈ b, then a = b iff –a = –b by induction
assumption (2). Without loss of generality, suppose that a ∈ a and b /∈
b; in establishing (1), we found that –a /∈ –a and –b ∈ –b; so a �= b and
–a �= –b. �

I ended Section 4 by stating some simple facts about extensions of BLT. I will
prove the distinctively boolean facts, leaving the remainder to the reader:

Proposition 4.7 (Fragment).
(2) BLT proves Union, i.e., ∀a(

⋃
a exists)

(5) BLT contradicts Powersets, i.e., it proves ∃a¬∃b∀x(x ∈ b ↔ x ⊆ a)
(6) BLT proves Foundation-restricted-to-high-sets, i.e., (∀a ∈ a)(∃x ∈
a)a ∩ x = ∅.

(7) BLT+ contradicts unrestricted Foundation, i.e., it proves (∃a �= ∅)(∀x ∈
a)a ∩ x �= ∅.

Proof. (2) If a ∈ a, then
⋃
a = {x ∈ a : (∀y ∈ a)x /∈ y}, which exists

by Separation/∈ and Complements. If a /∈ a, then using Separation/∈ let
a0 = {x ∈ a : x /∈ x} and let a1 = {x ∈ a : x ∈ x}. I will show that

⋃
a0

and
⋃
a1 exist, so that, using Complements and Lemma A.11:

⋃
a =

⋃
a0 ∪

⋃
a1 =

⋃
a0 ∩

⋃
a1.

Clearly
⋃
a0 exists by Separation/∈ on Ba. If a1 = ∅ then

⋃
a1 = ∅; other-

wise,
⋃
a1 =

⋂
{x : x ∈ a1}, which exists by Complements and Separation/∈

on Ba.
(5) If there is only one bevel, then the only sets are ∅ and V = {∅, V }, so

that ℘∅ = {∅} does not exist. Otherwise, we find {∅} at the second bevel,
and if ℘{∅} existed it would be {x : ∅ /∈ x}. So suppose for reductio that
a = {x : ∅ /∈ x}. Then ∅ /∈ ∅, so ∅ ∈ a, so a /∈ a. Now a ∈ a = {x : ∅ ∈ x}
by Complements, so that ∅ ∈ a, contradicting that ∅ ∈ a.

(6) If a ∈ a then a ∈ a by Complements, and a ∩ a = ∅.
(7) We find {V } at the second bevel, and {V } ∩ V �= ∅. �

§Appendix B. The set-theoretic equivalence of BST and BLT. I now want
to prove Theorem 3.3, which states that BLT and BST say exactly the same
things about sets. (This mirrors Pt.1 Section 4.)
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To show that BST says no more about sets than BLT does, I define a
translation ∗ : BST −→ BLT, whose non-trivial actions are as follows:38

Lo(x) := x /∈ x Hi(x) := x ∈ x
(s < t)∗ := s ∈ t (x 
 s)∗ := (x ⊆ s ∨ x ⊆ s) (∀sφ)∗ := (∀s : Bev)(φ∗).

After translation, I treat all first-order variables as being of the same sort.
Fairly trivially, for any BLT-sentence φ, if BST � φ then BST∗ � φ. The
left-to-right half of Theorem 3.3 now follows as ∗ is an interpretation:

Lemma B.1 (BLT). BST∗ holds.

Proof. Extensionality∗ is Extensionality. Order∗ holds by Lemma A.4;
Staging∗ holds by Stratification/∈ and Complements; and Cases∗ is trivial.
Next, by Lemma A.4 and Lemma A.8, we can simplify (x ≺ s)∗ to x ∈ s.
So, using Lemmas A.1 and A.4, we can simplify Priority∗Lo thus:

(∀s ∈ Bev)(∀a /∈ a)((a ⊆ s ∨ a ⊆ s) → (∀x ∈ a)x ∈ s)
i.e., (∀s ∈ Bev)(∀a ⊆ s)(∀x ∈ a)x ∈ s

which is trivial; then Priority∗Hi holds similarly, by Complements. A similar
simplification allows us to obtain Specification∗

Lo via Separation/∈; then
Specification∗

Hi holds similarly, by Complements.39 �
To obtain the right-to-left half of Theorem 3.3, I will work in BST. I start by
defining slices, which will go proxy for stages, and will turn out to be bevels,
and then stating a few elementary results (for proofs, tweak those of Pt.1
Section 4):

Definition B.2 (BST). For each s, let š = {x : x ≺ s}. Say that a is a slice
iff a = š for some stage s.

Lemma B.3 (BST). ∀F (∀a : Lo)(∃b : Lo)∀x(x ∈ b ↔ (F (x) ∧ x ∈ a))

Lemma B.4 (BST). ∀s(∀a : Lo)(a 
 s ↔ (∀x ∈ a)x ≺ s)

Lemma B.5 (BST). For any s:
(1) š exists and is low
(2) ∀r(∀a : Lo)(a 
 r ≤ s → a 
 s)
(3) (∀a : Lo)(a ⊆ š ↔ a 
 s)

We must now part company slightly with the strategy of Pt.1 Section 4, to
handle low and high sets, and their relation to (non-)self-membership:

Lemma B.6 (BST). If some slice is F, then there is an ∈-minimal slice which
is F.

38So the other clauses are: (¬φ)∗ := ¬φ∗; (φ ∧ �)∗ := (φ∗ ∧ �∗); (∀xφ)∗ := ∀xφ∗;
(∀Fφ)∗ := ∀Fφ∗; and α∗ := α for all atomic formulas α which are not of the forms
mentioned in the main text.

39Note that the ∗-translation of any BST-Comprehension instance is a BLT-
Comprehension instance.
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Proof. Every slice is low, by Lemma B.5.1. Subsets of low sets are low,
by a result like Lemma A.1. From this, and Lemma B.5, it follows that
∀š∀x((∃c : Lo)x ⊆ c ∈ š → x ∈ š). The result now follows, reasoning as in
Pt.1 Lemma 3.5. �

Lemma B.7 (BST). a is low iff a /∈ a; and a is high iff a ∈ a.

Proof. Suppose for reductio that a ∈ a is low. Using Staging and Lemma
B.6, let š be an ∈-minimal slice such that ∃t(a 
 t ∧ ť = š); let t witness this.
Since a ∈ a 
 t and a is low, a 
 r < t for some r by PriorityLo; so ř ∈ ť = š
by Lemma B.5, contradicting š’s minimality. Discharging the reductio: if a is
low, then a /∈ a. Similarly: if a is high, then a ∈ a. The biconditionals follow
by Cases. �

Lemma B.8 (BST). a exists; and a /∈ a ↔ a ∈ a; and ∀s(a 
 s ↔ a 
 s).

Proof. Using Staging, let a 
 s. If a /∈ a, then a is low by Lemma B.7, so
(∀x ∈ a)x ≺ s by PriorityLo, so that by SpecificationHi and Extensionality
{x : x /∈ a} = a 
 s exists and is high, i.e., a ∈ a by Lemma B.7. If a ∈ a,
reason similarly using PriorityHi and SpecificationLo. �
Note that BST � ECS by Lemmas B.3, B.7, and B.8. So Lemmas A.1–A.9
hold verbatim within BST. We can now complete our reasoning about slices,
by resuming the proof-strategy of Pt.1 Section 4; at this point, I leave the
remaining details to the reader:

Lemma B.9 (BST). š /∈ š; and š is transitive/∈; and š = P{ř : ř ∈ š}.

Lemma B.10 (BST). All slices are comparable, i.e.,∀š∀ť(š∈ ť∨ š = ť∨ ť∈ š).

Lemma B.11 (BST). s is a bevel iff s is a slice.

It follows that BST proves Stratification/∈, delivering Theorem 3.3.

§Appendix C. Helow sets. In this appendix I prove Theorem 6.2, which
shows how to recover ordinary, uncomplemented hierarchies via helow sets
(see Definition 6.1). For readability, I refer to non-self-membered sets as
low, and self-membered sets as high (cf. Lemma B.7). Note that every helow
set is low, since all its members are low (i.e. non-self-membered). Now:

Definition C.1 (BLT). If a is low, let a� := {x ∈ a : x is helow}; by
Separation/∈, a� exists and is low.

Lemma C.2 (BLT). a is helow iff every member of a is helow.

Proof. Left-to-right. Where c witnesses that a is helow, if x ∈ a, then
x ∈ c and hence x ⊆ c, so c also witnesses that x is helow. Right-to-left. Let
every member of a be helow. Every member of a is low, so a itself is low;
hence a ⊆ (Ba)�. Now (Ba)� witnesses that a is helow: if x ∈ c ∈ (Ba)�
then c is helow so x is helow (by left-to-right), so x ∈ (Ba)� as Ba is
transitive/∈. �
I can now begin to show that � : LT −→ BLT, which simply restricts all
quantifiers to helow sets (see Section 6), is an interpretation of LT:
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Lemma C.3 (BLT). Both Extensionality� and Separation� hold.

Proof. For Extensionality�, fix helow a and b and suppose that (∀x :
Helo)(x ∈ a ↔ x ∈ b); then ∀x(x ∈ a ↔ x ∈ b) by Lemma C.2, so a =
b by Extensionality. Similarly, repeated use of Lemma C.2 shows that
Separation� follows from Separation/∈. �
The next task is to connect bevels with levels�. (See Pt.1 Definitions 2.1–3.1
for the definitions of potent, ¶, Hist and Lev.)

Lemma C.4 (BLT). For any bevels r, s :
(1) s� is helow, potent and transitive
(2) r ∈ s iff r� ∈ s�
(3) s = B(s�)
(4) s� = ¶h = ¶�(h), where h = {r� ∈ s� : Bev(r)}.
(5) s� is a level�

Proof. (1) By Lemma C.2, s� is helow; then s� is potent and transitive
as s is potent/∈ and transitive/∈.

(2) Left-to-right. By (1). Right-to-left. Let r� ∈ s�. So r �= s , since r� /∈ r�.
Similarly, s� /∈ r�, since s� is transitive; so s /∈ r by left-to-right. So r ∈ s ,
by Lemma A.9.

(3) Induction on bevels, using (2).
(4) By (1) and Lemma C.2, h is helow. Ifa ∈ ¶h, thena ∈ s� as s� is potent

by (1). Conversely, if a ∈ s�, then a ⊆ r ∈ s for some bevel r by Lemma A.8,
and a ⊆ r� ∈ s� by (2) and Lemma C.2, so a ∈ ¶h. So s� = ¶h. Repeated
use of Lemma C.2, as in Lemma C.3, now yields that ¶h = ¶�(h).

(5) With h as in (4), since s = ¶�(h) it suffices to show that Hist�(h).
If r� ∈ h, then r� ∩ h = {q� ∈ r� : Bev(q)}, by (1); so r� = ¶�(r� ∩ h) by
(4). �

Lemma C.5 (BLT). The levels� are the bevels�, i.e.: Lev�(a) iff (∃s :
Bev)a = s�.

Proof. By Lemma C.4, if s is a bevel then both Lev�(s�) and B(s�) = s .
To complete the proof, it suffices to note that if p and q are distinct levels�,
then Bp �= Bq; this follows from Lemma A.10.6 and the fact that the levels�

are well-ordered by ∈. (The well-ordering of levels� is Pt.1 Theorem 3.10�,
which holds via Lemma C.3.) �

Corollary C.6 (BLT). Stratification� holds; Endless/∈ proves Endless�;
Infinity/∈ proves Infinity�; and Unbounded/∈ proves Unbounded�.

Recalling that LT+Infinity+Unbounded is equivalent to ZF (see Section 6),
Lemmas C.3 and C.6 yield Theorem 6.2.

§Appendix D. Definitional equivalence. In this appendix, I prove the
definitional equivalence discussed in Section 7.40

40Recall: both LT and BLT (and their extensions) are formulated as second-order theories. I
continue to frame my discussion in second-order terms in this appendix. However, the theories
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D.1. Interpreting BLTZF in ZF. I first define an interpretation, I , to
simulate (extensions of) BLT within (extensions of) LT. The key idea is
to use ∅ as a flag to indicate whether to treat a set as low or high. To allow ∅
to play this role, I define a bijection � : V −→ V \ {∅}:41

�(a) :=

{
{a} if a is a Zermelo number,
a otherwise,

where the Zermelo numbers are 0 = ∅ and n + 1 = {n}. I then interpret
membership thus:

x ∈I a iff (�(x) ∈ a ↔ ∅ /∈ a).

Since �(a) /∈ a for all a, it follows that a /∈I a iff ∅ /∈ a (i.e., a is treated
as low), and a ∈I a iff ∅ ∈ a (i.e. a is treated as high). I will now prove a
sequence of results which establish that I is an interpretation of BLT. The
first few are straightforward:

Lemma D.1 (LT+). Where a ⊆I b abbreviates (∀x ∈I a)x ∈I b:
(1) If ∅ /∈ a and ∅ /∈ b, then: a ⊆ b iff a ⊆I b.
(2) If ∅ ∈ a and ∅ ∈ b, then: a ⊇ b iff a ⊆I b.
Proof. (1) Since � is a bijection V −→ V \ {∅}, a ⊆ b iff ∀x(�(x) ∈
a → �(x) ∈ b) iff a ⊆I b.

(2) Similarly, a ⊇ b iff ∀x(�(x) /∈ a → �(x) /∈ b) iff a ⊆I b. �
Lemma D.2 (LT+). ExtensionalityI holds.

Proof. Suppose ∀x(x ∈I a ↔ x ∈I b). If a /∈I a but b ∈I b, then
∀x(�(x) ∈ a ↔ �(x) /∈ b), so that a ∪ b = V , which is impossible. Gen-
eralising, a ∈I a iff b ∈I b. Now apply Lemma D.1. �

Lemma D.3 (LT+). SeparationI/∈ holds.

Proof. Fix F and a /∈I a, i.e., ∅ /∈ a. Using Separation, let b = {�(x) ∈
a : F (x)}. Since ∅ /∈ b we have ∀x(x ∈I b ↔ (F (x) ∧ x ∈I a)). �
The interpretation of complementation is obvious: aI = a ∪ {∅} if a /∈I a,
and aI = a \ {∅} if a ∈I a. The next result follows trivially:

Lemma D.4 (LT+). ∀a∀x(x ∈I a ↔ x /∈I aI ), and ComplementsI holds.

The only intricate part of this interpretation concerns the treatment of bevels.
Within LT+, we can define the von Neumann ordinals, and recursively define
the following:

W� = {�(x) : (∃	 < �)x ⊆W	 ∪ {∅}}.

can easily be reformulated as first-order formulations, and the definitional equivalences hold
for these first-orderisations (only the quasi-categoricity results of Section 5 require second-
order resources).

41Many thanks to Randall Holmes for discussion of this construction (and other
constructions); the proof in this section is much more self-contained than it would have
been, had it not been for his input. Thanks also to Thomas Forster, for encouraging me
to consider the question of definitional equivalence. The proof-strategy is similar to Löwe
(2006).
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Now LT+ proves thatW� exists for each �, and that these are the bevelsI :

Lemma D.5 (LT+). BevI (s) iff s =W� for some �.

Proof. Lemmas D.2–D.4 show that LT+ proves ECSI . Hence LT+ proves
Theorem 4.1I , i.e., that the bevelsI are well-ordered by ∈I . For induction on
�, suppose that if 	 < � thenW	 is the 	 th bevelI . Let s be the � th bevelI . By
Lemma D.1:

W� = {�(x) : (∃	 < �)x ⊆W	 ∪ {∅}}
= {�(x) : (∃	 < �)(x ⊆I W	 ∨ xI ⊆I W	)}
= {�(x) : (∃W	 /∈I W	 ∈I s)(x ⊆I W	 ∨ xI ⊆I W	)}
= (P{w ∈ s : Bev(w)})I .

SoW� = s by Lemma A.8I . By induction, the bevelsI are theW�s. �
I can now prove the crucial proposition:

Lemma D.6 (LT+). StratificationI/∈ holds.

Proof. By Lemma D.5, it suffices to show that (∀a /∈I a)∃� a ⊆I W� .
Since the levels are well-ordered by ∈ (Pt.1 Theorem 3.10), we can write
V� for the � th level. I claim: if a /∈I a ⊆ V� , then a ⊆W� . For induction,
suppose this holds for all ordinals 	 < �. Fix a /∈I a ⊆ V� . If � = 0, then
a = ∅ ⊆I W0 = ∅. Otherwise, fix x ∈I a, i.e., �(x) ∈ a ⊆ V� ; now x ⊆ V	
for some 	 < �, by Pt.1 Lemma 3.12, so that x ⊆W	 ∪ {∅} by the induction
hypothesis; so �(x) ∈W� , i.e., x ∈I W� . Generalising, a ⊆I W� . �

Lemma D.7. LT+ � BLTI+ and ZF � BLTIZF.

Proof. Lemmas D.2–D.6 establish that LT+ � BLTI . And LT+ �
EndlessI/∈, using Endless and our explicitly defined bevelsI , the W�s.
Evidently, Infinity yields InfinityI/∈. For UnboundedI/∈, fix P and a /∈I a;
by Unbounded, the set c = {�(P(x)) : �(x) ∈ a} exists; by construction,
∅ /∈ c and (∀x ∈I a)P(x) ∈I c. The result follows, since ZF is equivalent to
LT + Infinity + Unbounded (see Section 6). �

D.2. Interpreting ZF in BLTZF. I now switch to working in BLT+. Using
�—i.e., using verbatim the same definitions of ‘Zermelo number’ and of �
in BLT+ as we used in LT+—consider this function:


(a) =

{
{�(
(x)) : x ∈ a} if a /∈ a,
{�(
(x)) : x /∈ a} ∪ {∅} if a ∈ a.

I will prove that 
 is a bijection V −→ Helo. I then define a translation, J ,
by stipulating:

x ∈J a iff 
(x) ∈ 
(a).

It will follow that J is an interpretation of LT+ in BLT+.

Lemma D.8 (BLT+). If 
(a) = 
(b), then a = b.

https://doi.org/10.1017/bsl.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.15


LEVEL THEORY, PART 3 23

Proof. Let 
(a) = 
(b), so that a /∈ a ↔ b /∈ b. For induction, suppose
that 
(x) = 
(y) → x = y for all x, y with Bx,By ∈ Ba ∪ Bb. If a /∈ a
and b /∈ b, then {�(
(x)) : x ∈ a} = {�(
(x)) : x ∈ b}, so that a = b by
the induction hypothesis and the injectivity of �. The case when a ∈ a is
similar. �

Lemma D.9 (BLT+). 
(a) is helow, for any a.

Proof. For induction, suppose that 
(x) is helow for all x with Bx ∈ Ba.
Suppose a /∈ a; since �(
(x)) is helow iff 
(x) is helow, every member of

(a) is helow; so 
(a) is helow by Lemma C.2. The case when a ∈ a is
similar. �

Lemma D.10 (BLT+). If a is helow, then a = 
(c) for some c.

Proof. By Lemma D.8, 
–1 is functional. For induction, suppose that for
all helow z ∈ Ba, we have that 
–1(z) is defined and B(
–1(z)) ⊆ Bz.

If ∅ /∈ a, let c /∈ c = {
–1(�–1(x)) ∈ Ba : x ∈ a} using Separation/∈. Fix
x ∈ a; then �–1(x) ∈ Ba and �–1(x) is helow, recalling that a is helow and
using Lemma C.2). Now B(
–1(�–1(x))) ⊆ B(�–1(x)) ∈ Ba by the induction
hypothesis, i.e., 
–1(�–1(x)) ∈ Ba. So c = {
–1(�–1(x)) : x ∈ a}, so that a =

(c) and Bc ⊆ Ba.

If ∅ ∈ a, then instead let c = {
–1(�–1(x)) : ∅ �= x ∈ a}; now a = 
(c). �
Lemma D.11. BLT+ � LTJ+ and BLTZF � ZFJ .

Proof. By Lemmas D.8–D.10, 
 : V −→ Helo is a bijection; now use
Theorem 6.2. �

D.3. The interpretations are inverse. It remains to show that I and J are
mutually inverse, in the sense required for definitional equivalence.42 The
key lies in their treatments of the Zermelo numbers. Working informally, let
zn be the nth Zermelo number, and let vn be defined similarly, but starting
from V rather than ∅, i.e.:

zn =

n times︷︸︸︷
{... { ∅ } ...} vn =

n times︷︸︸︷
{... { V } ...}

We can now consider two sequences:

z0, z1, z2, z3, ... , z2n, z2n+1, ...
z0, v0, z1, v1, ... , zn, vn, ...

Inutitively, I treats the former sequence as the latter, and J treats the latter
as the former. The proof that I and J are mutually inverse simply builds on
this intuitive thought.

Here are two facts which make the intuitive thought precise:

Lemma D.12 (LT+). ∀x x /∈I ∅, and ∀x x ∈I {∅}, and ∀x(x ∈I zn+2 ↔
x = zn) for all n.

Lemma D.13 (BLT+). 
(zn) = z2n and 
(vn) = z2n+1, for all n.

42Via Friedman and Visser (2014, Corollary 5.5), to establish Theorem 7.1 we could instead
verify that I and � (from Section C) are bi-interpretations.
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The proofs of both facts are trivial. Using the second fact, though, I can
build up to the proof in BLT+ that x ∈ a iff (x ∈I a)J :

Lemma D.14 (BLT+). The function �J , i.e., the J -interpretation of LT’s
definition of �, maps zn �→ vn �→ zn+1, and x �→ x otherwise.

Proof. Note that z2n ∈ z2n+1 ∈ z2n+2, with these membership facts unique.
So 
(zn) ∈ 
(vn) ∈ 
(zn+1), by Lemma D.13, i.e., zn ∈J vn ∈J zn+1. �

Lemma D.15 (BLT+). 
(�J (a)) = �(
(a)), for all a.

Proof. By Lemmas D.13–D.14, we have 
(�J (zn)) = 
(vn) = z2n+1 =
�(z2n) = �(
(zn)) and 
(�J (vn)) = 
(zn+1) = z2n+2 = �(z2n+1) = �(
(vn)).
Now suppose a �= zn and a �= vn for any n, so that �J (a) = a and hence

(�J (a)) = 
(a); moreover, 
(a) �= zn for any n by Lemma D.13; so

(�J (a)) = 
(a) = �(
(a)). �

Lemma D.16 (BLT+). 
(�J (x)) ∈ 
(a) ↔ a /∈ a iff x ∈ a
Proof. If a /∈ a then 
(a) = {
(�J (x)) : x ∈ a} by Lemma D.15. If
a ∈ a then 
(a) = {
(�J (x)) : x /∈ a} ∪ {∅}, and note that ∅ �= 
(�J (x)) =
�(
(x)) for all x. �

Lemma D.17 (BLT+). x ∈ a iff (x ∈I a)J

Proof. Using Lemma D.16 and the fact that a /∈ a iff 
(∅) = ∅ /∈ 
(a),
note the following chain of equivalent formulas:

(1) x ∈ a
(2) 
(�J (x)) ∈ 
(a) ↔ 
(∅) /∈ 
(a)
(3) (�(x) ∈ a ↔ ∅ /∈ a)J

(4) (x ∈I a)J �
It remains to show in LT+ that x ∈ a iff (x ∈J a)I . Working in BLT+, define
� as a map sending zn+1 �→ vn �→ zn and x �→ x otherwise; by Lemma D.14,
if x �= ∅ then �–1(x) = �J (x). We then have two quick results:

Lemma D.18 (BLT+). 
(x) ∈ 
(a) iff (x = ∅ ∧ a ∈ a) ∨ (x �= ∅ ∧
(�(x) ∈ a ↔ a /∈ a))

Proof. If x = ∅, then 
(∅) = ∅ ∈ 
(a) iff a ∈ a. If x �= ∅; use
Lemma D.16. �

Lemma D.19 (LT+). If x �= ∅, then �(�I (x)) = x.

Proof. By Lemma D.12, �I maps zn+2 �→ zn+1 �→ zn, and x �→ x
otherwise. �

Lemma D.20 (LT+). x ∈ a iff (x ∈J a)I

Proof. Using Lemmas D.19 and D.18I , note the following chain of
equivalent formulas:

(1) x ∈ a
(2) (∅ = x ∧ x ∈ a) ∨ (∅ �= x ∧ x ∈ a)
(3) (∅ = x ∧ x ∈ a) ∨ (∅ �= x ∧ �(�I (x)) ∈ a)
(4) (∅ = x ∧ a ∈I a) ∨ (∅ �= x ∧ (�I (x) ∈I a ↔ ∅ /∈ a))

https://doi.org/10.1017/bsl.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2021.15


LEVEL THEORY, PART 3 25

(5) (∅ = x ∧ a ∈I a) ∨ (∅ �= x ∧ (�I (x) ∈I a ↔ a /∈I a))
(6) ((∅ = x ∧ a ∈ a) ∨ (∅ �= x ∧ (�(x) ∈ a ↔ a /∈ a)))I

(7) (
(x) ∈ 
(a))I

(8) (x ∈J a)I �
Theorem 7.1 now follows from Lemmas D.7, D.11, D.17, and D.20.

D.4. Finitary cases of definitional equivalences. The base theories, LT and
BLT, are not definitionally equivalent. To see this, consider:

lt(1) := 1 blt(1) := 2

lt(n + 1) := 2lt(n) blt(n + 1) := 2blt(n)+1.

Any model of LT with n levels has lt(n) sets, and any model of BLT with n
bevels has blt(n) sets. In particular, there is a model of LT with four sets,
but no model of BLT has four sets. So LT and BLT are not definitionally
equivalent.

There is, though, a nice definitional equivalence when we insist that there
are infinitely many sets but that every (low) set is finite. Concretely: let
LTfin be LT+ + ¬Infinity, and let BLTfin be BLT+ + ¬Infinity /∈. Our earlier
results immediately entail that LTfin and BLTfin are definitionally equivalent.
Moreover, as noted in Pt.1 Section 7, LTfin is equivalent to ZFfin. Finally,
ZFfin and PA are definitionally equivalent.43 So:

Lemma D.21. PA, ZFfin, LTfin, and BLTfin are definitionally equivalent.
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