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SUMMARY

Two distributed stochastic search algorithms are proposed
for motion planning of multi-robot systems: (i) distributed
gradient, (ii) swarm intelligence theory. Distributed gradient
consists of multiple stochastic search algorithms that start
from different points in the solutions space and interact
with each other while moving toward the goal position.
Swarm intelligence theory is a derivative-free approach to
the problem of multi-robot cooperation which works by
searching iteratively in regions defined by each robot’s best
previous move and the best previous move of its neighbors.
The performance of both approaches is evaluated through
simulation tests.
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1. Introduction

In recent years there has been growing interest in multi-robot
systems since swarms of cooperating robots can perform
complicated tasks that a single robot can not carry out. As
the cost of robotic vehicles goes down and their size becomes
more compact the number of military and industrial applic-
ations of multi-robot systems increases. Possible industrial
applications of multi-robot systems include hazardous ins-
pection, underwater or space exploration, assembling and
transportation, search and rescue, and underground
exploitation of energy resources.1 Some examples of military
applications are guarding, escorting, patrolling (surface
surveillance), and strategic behaviors, such as stalking and
attacking.

Control of cooperating robotic vehicles has been
extensively studied in both the behavior-based and the
system-theoretic approach. Behavior-based approaches for
multi-robot systems have the advantage of being flexible,
easy to implement and update, while they require no explicit
models of the vehicle/robot and its environment.2 These
approaches are well suited to domains in which mathematical
representation of tasks are difficult to obtain, and models
are not available, too complex for computation, or time-
varying.3 On the other hand, system-theoretic approaches
have provable performance and are applicable in cases where
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tasks can be parameterized, but require models of the vehicles
and their environment. In the system-theoretic approach
the stability of cooperative motion can been analyzed using
Lyapunov theory through which suitable control functions
for the steering of the individual mobile agents can be
also found.4 In the latter case, distributed control laws
for multi-robot systems have been derived and have made
possible motion planning through obstacles and convergence
of mobile agents to targeted regions.5,6 To implement this
cooperative behavior issues related to distributed sensing,
measurements fusion, and communication between the
individual robots have also to be taken into account.7,8

This paper studies multi-robot swarms following
principally the system-theoretic point of view, i.e., it is
assumed that an explicit mathematical model of the robots
and their interaction with the environment is available. The
objective is to succeed motion planning of the multi-robot
system in a workspace that contains obstacles. A usual
approach for doing this is the potential fields theory, in which
the individual robots are steered toward an equilibrium
by the gradient of an harmonic potential.9–12 Variances of
this method use nonlinear anisotropic harmonic potential
fields which introduce to the robots’ motion directional and
regional avoidance constraints.11

The novelty introduced is the so-called distributed gradient
algorithm. There are M robots which emanate from arbitrary
positions in the 2D space and the potential of each robot
consists of two terms: (i) the cost V i due to the distance of
the i-th robot from the goal state, (ii) the cost due to the in-
teraction with the other M − 1 robots. Moreover, a repulsive
field, generated by the proximity to obstacles, is taken into
account. The gradient of the aggregate potential provides the
kinematic model for each robot, and defines a path toward the
equilibrium. Thus, it is proved that the update of the position
of each robot is described by a gradient algorithm which
contains an interaction term with the gradient algorithms
defining the motion of the rest M − 1 robots. Distributed
gradient assures simultaneous convergence of the individual
robots toward the equilibrium, and this convergence is
analytically proved with the use of Lyapunov stability theory
and LaSalle’s theorem. It is shown that the mean position
of the multi-robot system reaches precisely the goal state x∗
while each robot stays in a bounded area close to x∗. The
distributed gradient algorithm is an original result for the
area of stochastic approximations and adaptive systems and
can have several engineering applications. Moreover, it is of
interest for the field of nanorobotics since it approximates
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the Brownian motion and simulates the diffusion of nano-
particles.13

An alternative solution to multi-robot motion planning
proposed by this paper is based on swarm intelligence.
Previous applications of the particle swarm optimization
algorithm for the steering toward desirable final positions
and the simulation-solution of diffusion systems can be found
in.14,15 This method works by searching iteratively in regions
defined by each robot’s best previous move and the best
previous move of its neighbors. Swarm intelligence is evident
in biological systems and has been also studied in statistical
physics, where collective behavior of self-propelled particles
has been observed.16 The method is useful for the avoidance
of local minima. A swarm, which is a collection of robots,
can converge to a wide range of distributions, while no
individual robot is aware of the distribution it is working
to realize. The dynamic behavior of the robots under the
particle swarm algorithm can be analyzed with the use
of ordinary differential equations.17 It can be shown that
appropriate tuning of the differential equation’s coefficients
can prevent explosion, i.e. the robots velocity is kept within
certain bounds.

The structure of the paper is as follows: In Section 2
elements of stochastic search algorithms are summarized
and distributed gradient is proposed for multi-robot motion
planning. Stability analysis of the distributed gradient
algorithm is performed with the use of Lyapunov theory. In
Section 3 particle swarm theory is proposed for multi-robot
motion planning. The dynamic behavior of the robots is
analyzed with the use of ordinary differential equations.
In Section 4 the performance of the distributed gradient
algorithm and of the particle swarm theory in the problem
of multi-robot motion planning is tested through simulation
tests. Finally, in Section 5 concluding remarks are stated.

2. Distributed Stochastic Search for Multi-Robot

Motion Planning

Motion planning of multi-robot systems can be solved with
the use of distributed stochastic search algorithms. These
can be multiple gradient algorithms that start from different
points in the solutions space and interact with each other
while moving toward the goal position. Distributed gradient
algorithms stem from stochastic search algorithms which
retreated in18,19 if an interaction term is added:

xi(t + 1) = xi(t) + γ i(t)[h(xi(t)) + ei(t)]

+
M∑

j=1,j �=i

g(xi − xj ), i = 1, 2, . . . , M. (1)

The term h(x(t)i) = −∇xiV i(xi) indicates a local gradient
algorithm, i.e., motion in the direction of decrease of the
cost function V i(xi) = 1

2ei(t)
T
ei(t). The term γ i(t) is the

algorithms step while the stochastic disturbance ei(t) enables
the algorithm to escape from local minima. The term∑M

j=1,j �=ig(xi − xj ) describes the interaction between the
i-th and the rest M − 1 stochastic search algorithms. Con-
vergence analysis based on the Lyapunov stability theory can

be stated in the case of distributed gradient algorithms. This
is important for the problem of multi-robot motion planning.

2.1. Kinematic model of the multi-robot system
The objective is to lead a swarm of M mobile robots, with
different initial positions on the 2-D plane, to a desirable
final position. The position of each robot in the 2-D space is
described by the vector xi ∈ R2. The motion of the robots is
synchronous, without time delays, and it is assumed that at
every time instant each robot i is aware about the position and
the velocity of the other M − 1 robots. The cost function that
describes the motion of the i-th robot toward the goal state
is denoted as V (xi) : Rn → R. The value of V (xi) is high
on hills, small in valleys, while it holds ∇xiV (xi) = 0 at the
goal position and at local optima. The following conditions
must hold:

(i) The cohesion of the swarm should be maintained, i.e.
the norm ‖xi − xj‖ should remain upper bounded ‖xi −
xj‖ < εh,

(ii) Collisions between the robots should be avoided, i.e.
‖xi − xj‖ > εl ,

(iii) Convergence to the goal state should be succeeded
for each robot through the negative definiteness of the
associated Lyapunov function V̇ i(xi) = ėi(t)

T
ei(t) <

0.18

The interaction between the i-th and the j -th robot is

g(xi − xj ) = −(xi − xj )[ga(‖xi − xj‖)

− gr (‖xi − xj‖)], (2)

where ga() denotes the attraction term and is dominant for
large values of ‖xi − xj‖, while gr () denotes the repulsion
term and is dominant for small values of ‖xi − xj‖. Function
ga() can be associated with an attraction potential, i.e.
∇xi

Va(‖xi − xj‖) = (xi − xj )ga(‖xi − xj‖). Function gr ()
can be associated with a repulsion potential, i.e. ∇xi

Vr (‖xi −
xj‖) = (xi − xj )gr (‖xi − xj‖). A suitable function g() that
describes the interaction between the robots is given by20

g(xi − xj ) = −(xi − xj )
(
a − be

‖xi − xj ‖2

σ2
)
, (3)

where the parameters a, b, and c are suitably tuned.
It holds that ga(xi − xj ) = −a, i.e. attraction has a
linear behavior (spring-mass system) ‖xi − xj‖ga(xi − xj ).

Moreover, gr (xi − xj ) = be
−‖xi−xj ‖2

σ2 which means that
gr (xi − xj )‖xi − xj‖ ≤ b is bounded. Applying Newton’s
laws to the i-th robot yields

ẋi = vi, miv̇i = Ui, (4)

where the aggregate force is Ui = f i + F i . The term f i =
−Kvv

i denotes friction, while the term F i is the propulsion.
Assuming zero acceleration v̇i = 0 one gets F i = Kvv

i ,
which for Kv = 1 and mi = 1 gives F i = vi . Thus an
approximate kinematic model is

ẋi = F i. (5)
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According to the Euler-Langrange principle, the propulsion
F i is equal to the derivative of the total potential of each
robot, i.e.

F i = −∇xi {V i(xi) + 1

2

M∑
i=1

M∑
j=1,j �=i

[Va(‖xi − xj‖

+Vr (‖xi − xj‖)]} ⇒

F i = −∇xi {V i(xi)} +
M∑

j=1,j �=i

[∇xiVa(‖xi − xj‖)

−∇xiVr (‖xi − xj‖)] ⇒

F i = −∇xi {V i(xi)} +
M∑

j=1,j �=i

[−(xi − xj )ga(‖xi − xj‖)

− (xi − xj )gr (‖xi − xj‖)] ⇒

F i = −∇xi {V i(xi)} −
M∑

j=1,j �=i

g(xi − xj ).

Substituting in Eq. (5) one gets Eq. (1), i.e. xi(t + 1) =
xi(t) + γ i(t)[−∇xiV i(xi) + ei(t + 1)] − ∑M

j = 1,j �=i g(xi −
xj ), i = 1, 2, . . . , M , with γ i(t) = 1, which verifies that the
kinematic model of a multi-robot system is equivalent to a
distributed gradient search algorithm.

2.2. Stability of the multi-robot system
The behavior of the multi-robot system is determined by the
behavior of its center (mean of the vectors xi) and of the
position of each robot with respect to this center. The center
of the multi-robot system is given by

x̄ = E(xi) = 1

M

M∑
i=1

xi ⇒ ˙̄x = 1

M

M∑
i=1

ẋi ⇒

˙̄x = 1

M

M∑
i=1

⎡
⎣−∇xiV i(xi) −

M∑
j=1,j �=i

(g(xi − xj ))

⎤
⎦ . (6)

From Eq. (3) it can be seen that g(xi − xj ) = −g(xj − xi),
i.e. g() is an odd function. Therefore, it holds that
1
M

(
∑M

j=1,j �=ig(xi − xj )) = 0, and

˙̄x = 1

M

M∑
i=1

[−∇xiV i(xi)
]
. (7)

Denoting the goal position by x∗, and the distance between
the i-th robot and the mean position of the multi-robot system
by ei(t) = xi(t) − x̄ the objective of distributed gradient for
robot motion planning can be summarized as follows:

(i) limt→∞x̄ = x∗, i.e. the center of the multi-robot system
converges to the goal position,

(ii) limt→∞xi = x̄, i.e. the i-th robot converges to the center
of the multi-robot system,

(iii) limt→∞ ˙̄x = 0, i.e. the center of the multi-robot system
stabilizes at the goal position.

If conditions (i) and (ii) hold then limt→∞xi = x∗.
Furthermore, if condition (iii) also holds then all robots will
stabilize close to the goal position.

It is known that the stability of local gradient algorithms
can be proved with the use of Lyapunov theory19. A similar
approach can be followed in the case of the distributed
gradient algorithms given by Eq. (1). The following simple
Lyapunov function is considered for each gradient algo-
rithm20:

Vi = 1

2
eiT ei ⇒ Vi = 1

2
‖ei‖2. (8)

Thus, one gets

V̇ i = eiT ėi ⇒ V̇ i = (ẋi − ˙̄x)ei

⇒ V̇ i =
⎡
⎣−∇xiV i(xi) −

M∑
j=1,j �=i

g(xi − xj )

+ 1

M

M∑
j=1

∇xj V j (xj )

⎤
⎦ ei.

Substituting g(xi − xj ) from Eq. (3) yields

V̇i =
⎡
⎣−∇xiV i(xi) −

M∑
j=1,j �=i

(xi − xj )a +
M∑

j=1,j �=i

(xi − xj )

× gr (‖xi − xj‖) + 1

M

M∑
j=1

∇xj V j (xj )

⎤
⎦ ei,

which gives,

V̇i = −a

⎡
⎣ M∑

j=1,j �=i

(xi − xj )

⎤
⎦ ei +

M∑
j=1,j �=i

gr (‖xi − xj‖)

× (xi − xj )T ei−
⎡
⎣∇xiV i(xi) − 1

M

M∑
j=1

∇xj V j (xj )

⎤
⎦

T

ei.

It holds that
∑M

j=1(xi − xj ) = Mxi − M 1
M

∑M
j=1x

j =
Mxi − Mx̄ = M(xi − x̄) = Mei , therefore

V̇i = −aM‖ei‖2 +
M∑

j=1,j �=i

gr (‖xi − xj‖)(xi − xj )T ei

−
⎡
⎣∇xiV i(xi) − 1

M

M∑
j=1

∇xj V j (xj )

⎤
⎦

T

ei . (9)

It assumed that for all xi there is a constant σ̄ such that

‖∇xiV i(xi)‖ ≤ σ̄ . (10)
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Eq. (10) is reasonable since for a robot moving on a 2-D
plane, the gradient of the cost function ∇xiV i(xi) is expected
to be bounded. Moreover it is known that the following
inequality holds:

M∑
j=1,j �=i

gr (xi − xj )T ei≤
M∑

j=1,j �=i

bei≤
M∑

j=1,j �=i

b‖ei‖.

Thus the application of Eq. (9) gives:

V̇ i ≤ aM‖ei‖2 +
M∑

j=1,j �=i

gr (‖xi − xj‖)‖xi − xj‖ · ‖ei‖

+‖∇xiV i(xi) − 1

M

M∑
j=1

∇xj V j (xj )‖‖ei‖

⇒ V̇ i ≤ aM‖ei‖2 + b(M − 1)‖ei‖ + 2σ̄‖ei‖,

where it has been taken into account that

M∑
j=1,j �=i

gr (‖xi − xj‖)T ‖ei‖ ≤
M∑

j=1,j �=i

b‖ei‖ = b(M − 1)‖ei‖,

and from Eq. (10),∥∥∥∥∥∥∇xiV i(xi) − 1

M

M∑
j=1

∇xiV j (xj )‖ ≤ ‖∇xiV i(xi)

∥∥∥∥∥∥
+ 1

M

∥∥∥∥∥∥
M∑

j=1

∇xiV j (xj )

∥∥∥∥∥∥ ≤ σ̄ + 1

M
Mσ̄ ≤ 2σ̄ .

Thus, one gets

V̇ i ≤ aM‖ei‖·
[
‖ei‖ − b(M − 1)

aM
− 2

σ̄

aM

]
. (11)

The following bound ε is defined:

ε = b(M − 1)

aM
+ 2σ̄

aM
= 1

aM
(b(M − 1) + 2σ̄ ). (12)

Thus, when ‖ei‖ > ε, V̇i will become negative and
consequently the error ei = xi − x̄ will decrease. Therefore
the error ei will remain in an area of radius ε i.e. the position
xi of the i-th robot will stay in the cycle with center x̄ and
radius ε.

2.3. Stability in the case of a quadratic cost function
The case of a convex quadratic cost function is examined, for
instance

V i(xi) = A

2
‖xi − x∗‖2 = A

2
(xi − x∗)T (xi − x∗), (13)

where x∗ = [0, 0] is a minimum point V i(xi = x∗) = 0.
The distributed gradient algorithm is expected to converge

to x∗. The robotic vehicles will follow different different
trajectories on the 2-D plane and will end at the goal position.

Using Eq. (13) yields ∇xiV i(xi) = A(xi − x∗). Moreover,
the assumption ∇xi V i(xi) ≤ σ̄ can be used, since the gradient
of the cost function remains bounded. The robotic vehicles
will concentrate round x̄ and will stay in a radius ε given by
Eq. (12). The motion of the mean position x̄ of the vehicles
is

˙̄x = − 1

M

M∑
i=1

∇xiV i(xi) ⇒ ˙̄x = − A

M
(xi − x∗)

⇒ ˙̄x − ẋ∗ = − A

M
xi + A

M
x∗ ⇒ ˙̄x − ẋ∗ = −A(x̄ − x∗).

(14)

The variable eσ = x̄ − x∗ is defined, and consequently

ėσ = −Aeσ ⇒ εσ (t) = c1e
−At + c2, (15)

with c1 + c2 = eσ (0). Eq. (15) is an homogeneous differen-
tial equation, which for A > 0 results into limt→∞eσ (t) = 0,
thus limt→∞x̄(t) = x∗. It is left to make more precise the
position to which each robot converges.

2.4. Convergence analysis using La Salle’s theorem
It has been shown that limt→∞x̄(t) = x∗ and from Eq. (11)
that each robot will stay in a cycle C of center x̄ and
radius ε given by Eq. (12). The Lyapunov function given
by Eq. (8) is negative semi-definite, therefore asymptotic
stability cannot be guaranteed. It remains to make precise
the area of convergence of each robot in the cycle C of
center x̄ and radius ε. To this end, La Salle’s theorem can be
employed.20,21

La Salle’s Theorem: Assume the autonomous system ẋ =
f (x) where f : D → Rn. Assume C ⊂ D, a compact set
which is positively invariant with respect to ẋ = f (x), i.e.
if x(0) ∈ C ⇒ x(t) ∈ C ∀ t . Assume that V (x) : D → R is
a continuous and differentiable Lyapunov function such that
V̇ (x) ≤ 0 for x ∈ C, i.e. V (x) is negative semi-definite in C.
Denote by E the set of all points in C such that V̇ (x) = 0.
Denote by M the largest invariant set in E and its boundary by
L+, i.e. for x(t) ∈ E : limt→∞x(t) = L+, or in other words
L+ is the positive limit set of E. Then every solution x(t) ∈ C

will converge to M as t → ∞. (See Fig. 1).
La Salle’s theorem in applicable in the case of the multi-

robot system and helps to describe more precisely the area
round x̄ to which the robot trajectories xi will converge.
A generalized Lyapunov function is introduced which is
expected to verify the stability analysis based on Eq. (11). It
holds that

V (x) =
M∑
i=1

V i(xi)

+ 1

2

M∑
i=1

M∑
j=1,j �=i

{Va(‖xi − xj‖ − Vr (‖xi − xj‖)}
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Fig. 1. LaSalle’s theorem: C: invariant set, E ⊂ C: invariant set
which satisfies V̇ (x) = 0, M ⊂ E: invariant set, which satisfies
V̇ (x) = 0, and which contains the limit points of x(t) ∈ E, L+ the
set of limit points of x(t) ∈ E.

⇒ V (x) =
M∑
i=1

V i(xi)

+ 1

2

M∑
i=1

M∑
j=1,j �=i

{a‖xi − xj‖ − Vr (‖xi − xj‖)

and

∇xiV (x) =
[

M∑
i=1

∇xiV i(xi)

]
+ 1

2

M∑
i=1

M∑
j=1,j �=i

∇xi

× {a‖xi − xj‖ − Vr (‖xi − xj‖)}

⇒ ∇xiV (x) =
[

M∑
i=1

∇xiV i(xi)

]
+

M∑
j=1,j �=i

(xi − xj )

× {ga(‖xi − xj‖) − gr (‖xi − xj‖)}

⇒ ∇xiV (x) =
[

M∑
i=1

∇xiV i(xi)

]
+

M∑
j=1,j �=i

(xi − xj )

× {a − gr (‖xi − xj‖)}

and using Eq. (1) with γ i(t) = 1 yields ∇xiV (x) = −ẋi , and

V̇ (x) = ∇xV (x)T ẋ =
M∑
i=1

∇xiV (x)T ẋi

⇒ V̇ (x) = −
M∑
i=1

‖ẋi‖2 ≤ 0. (16)

Therefore, in the case of a quadratic cost function it holds
V (x) > 0 and V̇ (x) ≤ 0 and the set C = {x : V (x(t)) ≤
V (x(0))} is compact and positively invariant. Thus, by
applying La Salle’s theorem one can show the convergence
of x(t) to the set M ⊂ C, M = {x : V̇ (x) = 0} ⇒ M = {x :
ẋ = 0}.

3. Particle Swarm Theory for Multi-Robot Motion

Planning

3.1. The particle swarm theory
It has been shown that the distributed gradient algorithm
can have satisfactory performance for the motion planning
problem of multi-robot systems in the case of quadratic cost
functions. An alternative method of distributed search for the
goal position is the particle swarm algorithm which belongs
to derivative-free optimization techniques17.

The similarity between the particle models and the
distributed gradient algorithms is noteworthy. Particle
models consist of M particles with mass mi , position xi , and
velocity vi . Each particle has a self-propelling force F i . To
prevent the particles from reaching large speeds, a friction
force with coefficient Kv is introduced. In addition, each
particle is subject to an attractive force which is affected by
the proximity σ to other particles. This force is responsible
for swarming. To prevent particle collisions a shorter-range
repulsive force is introduced. In analogy to Eq. (3), the
potential of the particles is given by

Va − Vr =
M∑

j=1,j �=i

ae− (|xi−xj |)2

σ 2 −
M∑

j=1,j �=i

be− (|xi−xj |)2

σ 2 ,

where a and b determine the strength of the attractive and
the repulsive force respectively. Thus, the motion equations
for each particle are16:

mi

∂

∂t
vi = F i − Kvv

i − ∇(Va − Vr ).
(17)

∂

∂t
xi = vi

The particle swarm algorithm evolves in the search space
by modifying the trajectories of the independent vectors
xi(t) which are called particles. Considering each robot
as a particle, the new position of each robot xi(t + 1) is
selected taking into account the moves of the robot from
its current position xi(t) and the best moves of the rest
M − 1 robots from their positions at time instant t , i.e.
xj (t) j = 1, . . . , M ∨ j �= i.

Assume a set of M robots which is initialized at random
positions xi(0) and which have initial velocities vi(0). The
cost function of the i-th robot is denoted again by V i(xi).
The following parameters are defined (Fig. 2):

(i) xi(t) is the position vector of the i-th robot at time ins-
tant t ,

(ii) pi(t) is the best position (according to V i) to which the
i-th robot can move, starting from its current position
xi(t),

(iii) pg(t) is the best position (according to V i) to which the
neighbors of the i-th robot can move, starting from their
current positions xj (t) j = 1, . . . , M ∨ j �= i.

Figure 2 describes the Von Neumann region round each
mobile robot. The 2D-plane is divided into a grid of square
cells and at the time instant k, the robot is assumed to be
cell at ci,j . Then at time instant k + 1, the robot can make
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Fig. 2. Von Neumann region round each robot in the particle swarm
algorithm.

one of the following moves: ci+1,j , ci+1,j−1,ci+1,j+1, ci−1,j ,
ci−1,j−1, ci−1,j+1, ci,j−1, and ci,j+1.

3.2. Stability of the particle swarm algorithm
The primary concerns of the particle swarm theory are:
(i) Each particle i should move in the direction of cost
function decrease (negative gradient), taking into account the
directions already examined by the neighboring particles, (ii)
The velocity of each particle should approach 0 as time goes
to infinity. To this end, the dynamic behavior of the particle
swarm can be studied with the use of ordinary differential
equations, following the analysis given in17. The position and
the velocity update of the i-th particle is:

vi(t + 1) = vi(t) + φ1(pk − xi) + φ2(pg − xi), (18)

xi(t + 1) = xi(t) + vi(t + 1). (19)

Variable pk denotes the best possible move of the k-th
individual robot, taking into account that the Von-Neumann
motion pattern of the robot permits movement to eight
neighboring cells. pg is the best possible move of the
neighboring robots, i.e. the movement that results in the
largest decrease of the cost function. It holds that

vi(t + 1) = vi(t) + φ1(pk − xi) + φ2(pg − xi)

⇒ vi(t + 1) = vi(t) + φ1p
i + φ2p

g

φ1 + φ2
(φ1 + φ2) − xi(φ1 + φ2)

⇒ vi(t + 1) = vi(t) + φp̄ − φxi ⇒ vi(t + 1)

= vi(t) + φ(p̄ − xi).

The parameter φ1 determines the contribution to the update
of the position of the i-th robot of the term pk − xi which
denotes the distance between robot’s position xi and the po-
sition reached after its best possible move pk . The parameter
φ2 determines the contribution to the update of the position of
the i-th robot of the term pg − xi , which denotes the distance
between the robot’s position xi and the position reached after
the best possible move of its neighbors pg. Through para-
meters φ1 and φ2 the following parameters are defined: φ =
φ1 + φ2 and p̄i = φ1p

i + φ2p
g

φ1 +φ2
. Thus, the following simplified

equations can be derived

vi(t + 2) = vi(t + 1) + φ(p̄ − xi(t + 1)), (20)

xi(t + 1) = xi(t) + vi(t + 1). (21)

To refine the search in the solutions space, tuning through a
constriction coefficient χ = κ

ρ2
, κ ∈ (0, 1) is introduced in

Eq. (19) and Eq. (18). In that case the particle swarm algo-
rithm takes the following form:

vi(t + 1) = χ(vi(t) + φ(p̄i − xi(t)),
(22)

xi(t + 1) = χ(xi(t) + vi(t + 1)).

It holds that

vi(t + 2) = vi(t + 1)(1 − φ) + φ(p̄ − xi(t)). (23)

Subtracting Eq. (20) from Eq. (23) yields

vi(t + 2) + (φ − 2)vi(t + 1) + vi(t) = 0.

Using the z-transform a frequency space expression of the
above difference equation is z2 + (φ − 2)z + 1 = 0. Thus,
the dynamic behavior of the particle depends on the roots of
the polynomial z2 + (φ − 2)z + 1 which are ρ1 = 1 − φ

2 +√
φ2 − 4φ

2 and ρ2 = 1 − φ

2 −
√

φ2 − 4φ

2 . The general solution
of the differential equation is

vi(t) = ci
1e

ρ1t + ci
2e

ρ2t . (24)

The parameters ci
1 and ci

2 are random. In Eq. (24) the
stability condition limt→∞vi(t) = 0 is assured if φ ≥ 417.
The pseudocode of the particle swarm algorithm is
summarized as follows:

Initialize the robots population randomly: xi(0), vi(0), i =
1, 2, . . . , M .
Do (until convergence to x∗)
{

For (i = 1; i < M; i + +)
For all possible moves pi, i = 1, 2, . . . , N from xi

pk = arg minpi {V i(pi)}
For all particles xj , j = 1, 2, · · · , G in area g

pg = arg minpj {V i(pg)};
If (V i(pk) < V i(xi))

vi(t + 1) = vi(t) + φ1(pk − xi) + φ2(pg − xi);
vi(t + 1) = sgn{vi(t + 1)min[vi(t + 1), vmax]};
xi(t + 1) = xi(t) + vi(t + 1);

}.
Parameters φ1 and φ2 are selected from a uniform

distribution, taking into account the above mentioned
convergence conditions. The robots velocity is bounded in
the interval ±vmax . Random weighting with the use of the
parameters φ1 and φ2 helps to avoid local minima but can
lead to explosion. It can be observed that:

• The term φ1(pk − xi) stands for ∇xiV i(xi) of Eq. (1).
• The term φ2(pg − xi) stands for the term

∑M
j=1,j �=ig(xi −

xj ). It is assumed that in the neighborhood of the i-th
particle the rest M − 1 particles are contained.
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Fig. 3. (a) Distributed gradient and (b) Particle swarm with robots interaction in an obstacles-free environment, considering a quadratic
cost function.

• The condition V i(pk) < V i(xi) denotes movement in the
direction of the negative gradient of the cost function
V i(xi).

4. Simulation Tests

4.1. Convergence toward the equilibrium
In the conducted simulation tests the multi-robot system
consisted of 10 robots which were randomly initialized in the
2-D field. Theoretically, there is no constraint in the number
of robots that constitute the robotic swarm. Of course, the
number of robots can be increased and if it is sufficiently
large then the obtained measurements will be also statistically
significant. Two cases were distinguished: (i) motion in an
obstacle-free environment (Fig. 3–Fig. 4) and (ii) motion in
an environment with obstacles (Fig. 5–Fig. 6). The objective
was to lead the robot swarm to the origin [x1, x2] = [0, 0].
To avoid obstacles, apart from the motion equations given in

Sections 2 and 3 repulsive forces between the obstacles and
the robots had to be taken into account.

Results about the motion of the robots in an obstacle-free
2D-plane were obtained. Figure 3(a) describes the motion of
the individual robots toward the goal state, in an obstacle-
free environment, when the distributed gradient algorithm is
applied, while Fig. 3(b) shows the motion of the robots in
the same environment when particle swarm optimization is
used to steer the robots. Figure 4(a) demonstrates how the
mean position of the multi-robot formation approaches the
goal state when the motion takes place in an obstacle-free
environment and the distributed-gradient algorithm is used
to steer the robots. Figure 4(b) shows the convergence of the
average position of the robotic swarm to the equilibrium
[x∗, y∗] = [0, 0], in a 2D-plane without obstacles, when
the steering of the robots is the result of particle swarm
optimization. Next, motion of the robots in a 2D-plane that
contains obstacles is studied. Figure 5(a) demonstrates the
motion of the individual robots toward the goal state, in an

Fig. 4. (a) Distributed gradient and (b) Particle swarm with robots interaction in an obstacles-free environment: trajectory of the mean of
the multi-robot system.

https://doi.org/10.1017/S0263574707004080 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707004080


364 Multi-robot motion planning

Fig. 5. (a) Distributed gradient and (b) Particle swarm with robots interaction in an environment with obstacles, considering a quadratic
cost function.

environment with obstacles, when the steering of the robots
is the result of the distributed gradient algorithm. The robots
are now also subject to attractive and repulsive forces due
to the obstacles. Figure 5(b) presents the convergence of the
individual robots to the attractor [x∗, y∗] = [0, 0], when the
motion takes place again in an environment with obstacles
and when the robots’ steering is the result of the particle
swarm optimization. Figure 6(a) shows how the average
position of the multi-robot formation reaches the equilibrium
when the motion is performed in a 2D-plane which contains
obstacles and when the robots’ trajectories are generated by
the distributed gradient algorithm. Finally, in Fig. 6(b) the
motion of the mean of the multi-robot system toward the goal
state is given, when the robots move again in an environment
that contains obstacles, while their paths are generated by the
particle swarm optimization algorithm.

When the multi-robot system evolved in an environment
with obstacles, the interaction between the individual robots
(attractive and repulsive forces) had to be loose, so as to give

priority to obstacles avoidance. Therefore coefficients a and
b in Eq. (3) were set to small values. The repulsive potential
due to the obstacles was calculated by a relation similar to
Eq. (3) after substituting xj with x

j
o , where x

j
o was the center

of the j -th obstacle.
In the case of distributed gradient the relative values of

the parameters a and b that appear in the attractive and
repulsive potential respectively, affected the performance of
the algorithm. For a > b the cohesion of the robotic swarm
was maintained and abrupt displacements of the individual
robots were avoided. In the particle swarm algorithm the area
of possible moves round each robot was a Von Neumann one
(Fig. 2). It was observed that the ratio λ = φ1

φ2
affected the

performance of the algorithm. It was observed that large λ

resulted in excessive wandering of the robots, while small λ

led to the early formation of a robot cluster.
Figure 7 presents the variation of the Lyapunov functions

of the robots when the motion takes place in an environments
without obstacles, and the distributed gradient approach is

Fig. 6. (a) Distributed gradient and (b) Particle swarm with robots interaction in an obstacles-free environment: trajectory of the mean of
the multi-robot system.
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Fig. 7. Distributed gradient approach in an obstacles-free environment: (a) Lyapunov function of the individual robots and (b) Lyapunov
function of the mean.

applied to steer the robots toward the attractor. The Lyapunov
function is given both in the case of the individual robots
and in the case of the mean position of the multi-robot
formation. It can be observed that the Lyapunov functions
are not monotonous, i.e. and this change of the sign of the
Lyapunov function’s derivative is due to the fact that the
robots’ path encircle the target position several times before
finally stabilizing at [x∗, y∗] = [0, 0]. This means that robots
which were initially approaching fast the goal position had
to make circles round the attractor in order to wait for those
robots which had delayed. This maintained the cohesion of
the multi-robot swarm.

Figure 8 presents the variation of the Lyapunov function
of the robots when the motion takes place in an environment
with obstacles, and the distributed gradient approach is
applied to steer the robots toward the attractor. The Lyapunov
function is given again both in the case of the individual
robots and in the case of the mean position of the multi-
robot formation. In that case the Lyapunov functions tend

to become monotonous, i.e. continuously decreasing, and
this is due to the fact that the interaction forces between the
robots have been made weaker after suitable tuning of the
coefficients α and β. This enables the robots to approach to
the goal state following an almost linear trajectory, since
the interaction forces that caused curving of the robots
path and encircling of the attractor have now been dimi-
nished.

Figure 9 shows the variation of the Lyapunov function
of the robots and the Lyapunov function of the mean
position of the multi-robot formation, when particle swarm
optimization is applied to steer the robots toward the attractor
and no obstacles are present in the 2D plane. The Lyapunov
functions are monotonically decreasing which is due to the
tuning of the interaction forces between the robots. Setting
the interaction between the robots at low values enables
almost linear convergence toward the goal state, which means
that the quadratic error function keeps on decreasing as the
motion of the robots continues.

Fig. 8. Distributed gradient approach in an environment with obstacles: (a) Lyapunov function of the individual robots and (b) Lyapunov
function of the mean.
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Fig. 9. Particle swarm approach in an obstacles-free environment: (a) Lyapunov function of the individual robots and (b) Lyapunov function
of the mean.

Figure 10 shows the variation of the Lyapunov function
of the robots and of the Lyapunov function of the average
position of the multi-robot system when particle swarm
optimization is applied to steer the robots toward the attractor
in the presence of obstacles. It can be observed again
that the Lyapunov functions decrease monotonically until
they become zero, and comparing to the motion in an
obstacle-free environment the rate of approach toward the
steady state [e = 0, ė = 0] is larger. This is due to the fact
that the interaction between the robots has become looser,
thus the robots are enabled to approach rapidly the goal
state without waiting for convergence of the rest of the
swarm.

Regarding the significance of the mean and the variance
of the multi-robot system for evaluating the behavior of the
robotics swarm, the following can be stated: although the
average position of the multi-robot system is not always
meaningful, for instance in case that the individual bypass
an obstacle with equal probability from its left or right side,

it is a useful parameter that helps to monitor this many-
body system. The mean and the variance of the multi-robot
formation becomes particularly significant when the motion
takes place at nanoscale. In the latter case, all information
about the behavior of the nanoparticles swarm is contained
in the mean position of the swarm and its variance.

Finally, simulation results about the motion of the multi-
robot swarm in a workspace with polyhedric obstacles have
been given. Thus additional evaluation for the performance
of the proposed motion planning algorithms is obtained.
The obstacles considered in the simulation experiments
are not points but polyhedra with cover certain regions in
the 2D plane. Therefore the attractive and repulsive forces
generated between the robots and obstacles affect the robots’
trajectories and may also result in local minima. These results
are depicted in Fig. 11–Fig. 14.

It can be observed that in the case of motion in a 2D-
plane with arbitrarily positioned polyhedric obstacles the
distributed gradient algorithm results in smoother trajectories

Fig. 10. Particle swarm approach in an environment with obstacles: (a) Lyapunov function of the individual robots and (b) Lyapunov
function of the mean.
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Fig. 11. (a) Distributed gradient and, (b) Particle swarm optimization for motion planning of the multi robot system in a 2D-plane with
polyhedric obstacles.

than the particle swarm optimization method. For even
though the obstacles are not symmetrically placed in the
2D-plane and thus the aggregate force exerted on the robots
in not zero, the multi-robot system in both cases converges to
the origin [x∗ = 0, y∗ = 0]. The cost function is is no longer
a convex one. Local minima can be generated due to the
proximity to obstacles and the attractive forces between the
individual robots. For instance, local minima can be found
in narrow passages between the obstacles. The inclusion of
a stochastic term in the equations that describe the position
update of the robots, i.e. in Eq. (1) and Eq. (19) may enable
escape from minima minimum. Moreover, suitable tuning
of the attractive and repulsive forces that exist between the
robots may also permit the robots to move away from local
minima.

4.2. Tuning issues and performance of the stochastic
search algorithms
Regarding the tuning of the coefficients α and b which appear
in Eq. (3) and which affect the trajectories of the individual
robots, the following should be noted: coefficient α describes
the influence that the attractive potential Vα(x) has one the
i-th robot (particle), and coefficient b describes the effect
of the repulsive potential Vr (x). These potential terms are
respectively given by

Vα(x) = 1

2
α(xi − xj )2, Vr (x) = 1

2
σ 2be

‖ (xi−xj 2

σ2 ‖
. (25)

The derivation of Vα(x) with respect to xi generates an
attractive spring force Fα(x) while the derivation of Vr (x)

Fig. 12. (a) Distributed gradient, and (ii) Particle swarm optimization in a 2D-plane with polyhedric obstacles: trajectories of the mean of
the multi-robot system.

https://doi.org/10.1017/S0263574707004080 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574707004080


368 Multi-robot motion planning

Fig. 13. Distributed gradient in a 2D-plane with polyhedric obstacles: (i) Lyapunov functions of the robots, (ii) Lyapunov function of the
mean of the multi-robot formation.

with respect to xi results in a repulsive force that contains a
Gaussian term. These forces are explicitly given by

Fα(x) = ∇Vα(x) = α(xi − xj ),

Fr (x) = ∇Vb(x) = (xi − xj )be
‖ (xi−xj )

2

σ2 ‖
.

Similarly a repulsive force can describe the interaction
between the i-th particle and the j -th obstacle, where the
latter is assumed to be located at position x

j
o . Setting α ≤ b,

or in general choosing the ratio α/b to be much smaller
than 1 means that attractive forces between the individual
robots are weaker than the repulsive forces. This may delay
the convergence of the individual robots to the goal state
[x∗, y∗] = [0, 0]. One may also notice that the robots’ paths

become curved and encircle the goal state several times, and
in that way the robots remain in sufficient distance.

Regarding the tuning of coefficient λ = φ1/φ2 which
appears in the particle swarm optimization algorithm, this
is performed ad hoc. Large values of λ resulted in excessive
wandering of the robots, i.e. the robots encircled many times
the goal state before finally converging to it. On the other
hand small values of λ resulted in an early formation of a
robot’s cluster, which may delay convergence to the goal
state in a motion-plane with obstacles.

Regarding the convergence of the distributed gradient
algorithm to the global minimum this can be sure only
in the case of a convex cost function. The distributed
gradient algorithm risks to be trapped to local minima,
however the fact that the search in the solutions space
is distributed and the existence of random terms to the

Fig. 14. Particle swarm optimization in a 2D-plane with polyhedric obstacles: (i) Lyapunov functions of the robots, (ii) Lyapunov function
of the mean of the multi-robot formation.
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individual gradient algorithms make possible the escape
from these local minima. The tuning of the coefficients of
the distributed gradient algorithm is performed ad-hoc and
affects the paths in which the individual robots approach the
goal state, as well as the shape of the trajectories the robots
follow trying to deviate obstacles.

Finally regarding the performance of the proposed motion
planning algorithms, distributed gradient appears to be
superior than particle swarm optimization for the following
reasons: (i) distributed gradient stands for the mathematical
formulation of a physical phenomenon (Brownian motion
and interaction between diffusing particles) while particle
swarm optimization has no direct relation to physics laws,
(ii) in distributed gradient convergence to attractors is proved
based on Lyapunov stability analysis. It is shown that
the mean of the variables updated through the distributed
gradient algorithm converges exactly to the equilibrium
[x∗, y∗] = [0, 0], while the individual variables stay at a
circle of radius ε round the attractor, as predicted by LaSalle’s
theorem. On the other hand there is no strict mathematical
proof of the convergence of particle swarm optimization
approach, (iii) the fact that the particle swarm optimization
method is a derivative-free optimization technique (while
distributed gradient required the explicit calculation of
derivatives) is moderated by the fact that particle-swarm
optimization needs heuristic tuning of several parameters
to converge to a fixed point, (iv) Regarding the capability
to succeed global optimization, the distributed gradient
algorithm is as powerful as the particle swarm optimization
approach, since it can contain stochastic terms that enable
escape from local minima.

5. Conclusions

In this paper the problem of distributed multi-robot motion
planning was studied. A M-robot swarm was considered and
the objective was to lead the swarm to a goal position. The
kinematic model of the robots was derived using elements
of the potential fields theory. The potential of each robot
consisted of two terms: (i) the cost V i due to the distance
of the i-th robot from the goal state, (ii) the cost due to the
interaction with the other M − 1 robots. The differentiation
of the potential provided the kinematic model for each robot
which was shown to be equivalent to a distributed gradient
algorithm. The convergence to the goal state was studied with
the use of Lyapunov stability theory and LaSalle’s theorem.
It was proved that in the case of a quadratic cost function V i

the mean position of the multi-robot system converges to the
goal state x∗ while each robot stays in a bounded area close
to x∗.

Moreover, the paper considered a derivative-free technique
capable of solving the problem of multi-robot motion
planning. The multi-robot system was viewed as a swarm
of M particles and the update of the position and velocity of
each robot was carried out with the use of particle swarm
theory. In that case there was no explicit calculation of
the potential function’s gradient. The dynamic behavior of
the particle swarm was studied with the use of ordinary
differential equations. Appropriate tuning of the differential

equation’s coefficients can assure that the particles velocity
will converge asymptotically to zero.

Distributed gradient and particle swarm theory for multi-
robot motion planning were evaluated through simulation
tests. It was observed that when the multi-robot system was
evolving in an environment with obstacles, the interaction
between the individual robots (attractive and repulsive
forces) had to be loose, so as to give priority to obstacles
avoidance. Both methods succeeded cooperative behavior
of the robots without requirement for explicit coordination
or communication. The performance of both methods was
satisfactory, however distributed gradient was evaluated to
have advantages over the particle swarm optimization mainly
due to its sound convergence proof and the smooth motion
patterns it produced in various environments.

Acknowledgments

The author would like to thank Université Paris XI – Institut
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