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This paper presents a theory based on the law of momentum conservation to define
and help analyse the problem of large wind farm aerodynamics. The theory splits the
problem into two subproblems; namely an ‘external’ (or farm-scale) problem, which
is a time-dependent problem considering large-scale motions of the atmospheric
boundary layer (ABL) to assess the amount of momentum available to the bottom
resistance of the ABL at a certain time; and an ‘internal’ (or turbine-scale) problem,
which is a quasi-steady (in terms of large-scale motions of the ABL) problem
describing the breakdown of the bottom resistance of the ABL into wind turbine drag
and land/sea surface friction. The two subproblems are coupled to each other through
a non-dimensional parameter called ‘farm wind-speed reduction factor’ or ‘farm
induction factor,’ for which a simple analytic equation is derived that can be solved
iteratively using information obtained from both subproblems. This general form of
coupling allows us to use the present theory with various types of flow models for
each scale, such as a numerical weather prediction model for the external problem
and a computational fluid dynamics model for the internal problem. The theory is
presented for a simplified wind farm situation first, followed by a discussion on how
the theory can be applied (in an approximate manner) to real-world problems; for
example, how to estimate the power loss due to the so-called ‘wind farm blockage
effect’ for a given large wind farm under given environmental conditions.

Key words: atmospheric flows, general fluid mechanics

1. Introduction
The aerodynamic performance of a large array of wind turbines, or a wind farm,

depends on both natural and technological factors at various scales, ranging from
regional weather conditions, through the layout of turbine array, down to detailed
rotor design and operating conditions of each individual turbine. Because of this
multiscale nature, the problem of wind farm aerodynamics is usually split into a
few subproblems, such as regional-scale, array-scale and turbine-scale problems, to
investigate key flow physics at each scale. The challenge here is to consider the
effect of interscale interactions appropriately, which is crucial for future ‘high-level’
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optimisation of large wind farms examining not only the layout but also the design
and operating conditions of turbines simultaneously (Nishino & Hunter 2018). In this
paper we propose a simple theory based on the law of momentum conservation that
allows us to split the problem of wind farm aerodynamics into external (farm-scale)
and internal (turbine-scale) subproblems and to describe their relationship in a generic
manner, i.e., regardless of the specific details of flow models employed at each scale.

One of the motivations behind the present theoretical work is to provide a basis
for estimating the loss of wind farm power due to the so-called wind farm blockage
effect (Bleeg et al. 2018), i.e., the effect of average wind-speed reduction across an
entire wind farm (due to the deflection of incoming flow, causing part of the flow to
bypass the entire farm). (Note that this so-called wind farm blockage effect is different
from the local blockage effect that increases the power of individual wind turbines
placed side by side and close to one another (Nishino & Draper 2015), and also
different from the global (cross-sectional) blockage effect that increases the power of
a turbine or turbines placed in a confined flow passage, such as a closed test section
of a wind tunnel (Garrett & Cummins 2007). The increase in turbine power due to
the local/global blockage effect is relative to the case with no (or less) confinement
of flow, whereas the decrease in farm power due to the wind farm blockage effect
is relative to the (hypothetical) case in which the macroscopic flow outside of the
farm is not affected by the farm itself. Hence, this wind farm blockage effect may
as well be referred to as wind farm induction effect.) Such an effect of farm-scale
flow reduction has been known to play a key role in the case of tidal-stream turbines
in shallow water (e.g., Nishino & Willden 2012, 2013; Garrett & Cummins 2013)
but had been considered insignificant for wind turbines for many years, except for
the case of an ideal ‘infinitely large’ wind farm, which has been studied by, e.g.,
Frandsen (1992), Emeis & Frandsen (1993) and Calaf, Meneveau & Meyers (2010).
In contrast to the traditional ‘wake’ models (e.g., Lissaman 1979; Jensen 1983;
Katić, Højstrup & Jensen 1986) that describe the reduction of flow behind each
turbine, the models that describe the reduction of flow across a very large wind
farm in a horizontally averaged sense (like models for flow through vegetation) are
often referred to as ‘top-down’ models, as discussed in detail by Meneveau (2012).
More recently, Stevens, Gayme & Meneveau (2015, 2016) have proposed a coupled
‘wake’ and ‘top-down’ model (called a CWBL model) and showed that such a
coupled model may predict the statistical (or ensemble averaged for a given wind
direction) performance of a large finite-size wind farm better than traditional wake
models. However, CWBL is a pragmatic, engineering-oriented model derived from
two existing low-order flow models (rather than directly from the principles of fluid
mechanics), meaning that it is inherently subject to limitations due to the underlying
low-order flow models. To better understand the true nature of the problem and to
provide a new basis for future wind farm modelling at different levels of complexity,
it is beneficial to develop a more general ‘theory’ of wind farm aerodynamics that
describes the relationship between the macroscopic flow over an entire farm and the
microscopic flow around each turbine without restricting ourselves to specific flow
models for each scale. See, e.g., Porté-Agel, Bastankhah & Shamsoddin (2020) for a
more comprehensive review of the literature on wind farm modelling.

The two-scale momentum theory that we propose in this paper is somewhat similar
to the CWBL model of Stevens et al. (2015, 2016) but different in that its aim is
to describe a generic relationship between turbine-scale and farm-scale flow problems
without specifying the details of flow models at each scale. In particular, we avoid
using the logarithmic law explicitly, on which most of the existing top-down models
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LF (≫ ∂ABL)
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Hc√ (£ ∂ABL) ≫ HF > Hhub

FIGURE 1. Schematic of a large wind farm, representative control volume within the farm,
coordinate system and length scales/dimensions considered.

are based. Instead, here we derive our theory directly from the law of momentum
conservation, so that the theory may account for the effect of large-scale motions
of the atmospheric boundary layer (ABL) in a time-dependent (rather than statistical)
manner. This makes it possible to use the present theory to combine, for example, a
numerical weather prediction (NWP) model with various types of turbine array models
to estimate the wind farm blockage effect for a given large wind farm under given
atmospheric (or environmental) conditions. Some of the key concepts employed in the
present theory originate from the model Nishino (2016) proposed for an ideal very
large wind farm, which is shown to be derived as a special case from the present
theory later in this paper. In the following, we first present the theory in a rigorous
manner for a simplified large wind farm situation in § 2. We then discuss in § 3 how
the theory may be applied in an approximate manner to more realistic large wind farm
situations where some of the simplification assumptions employed in the theory are
not fully satisfied. We also discuss the limitations and future prospects of the present
work in § 3, followed by conclusions in § 4.

2. Theory
2.1. External momentum balance

Let us consider a large wind farm over flat terrain or sea surface, as illustrated
in figure 1. The horizontal length scale of the farm, LF, is much larger than the
thickness of the ABL, δABL, which is typically 1 to 2 km. We consider a short-time
averaged flow, i.e., we consider large-scale fluctuations due to changes in atmospheric
conditions (with periods of more than approximately an hour) but not small-scale ones
due to turbulence (with periods of typically less than a few minutes). We assume
that: (i) many identical wind turbines are arranged regularly over the whole farm
area; (ii) the magnitude and vertical profile of ‘undisturbed’ wind may change in
time but they do not vary spatially over the whole farm area at any time, since the
horizontal scale of the local atmospheric system driving wind over the farm area is
usually much larger than LF; and (iii) the flow over the turbine array (or the internal
boundary layer, known as IBL) is in a fully developed state except for a limited
region near the farm edge, i.e., all turbines except for those located near the farm
edge have the same flow conditions. In reality, these assumptions may not be fully
satisfied and the flow conditions around each turbine may vary over the entire farm.
However, the theoretical analysis presented below may still be modified and applied
(in an approximate manner) to such a real-world situation, as discussed later in § 3.1.

The above assumptions allow us to make a simplified analysis of farm efficiency
by considering a representative, rectangular control volume (CV) containing only one
turbine in the middle of the farm (note that this is just for the sake of simplicity;
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we may also consider a larger CV containing a group of more than one turbine to
allow for the existence of periodic flow features with a scale larger than the scale of
a single turbine). The horizontal area of the CV, Scv, corresponds to the farm area
per turbine (or group of turbines), whereas its height, Hcv, is large enough to have
a negligibly small shear stress at the top, i.e., Hcv ≈ δABL. The wind direction may
change in altitude (z) and time (t), but the side faces of the CV are always aligned
to the farm’s ‘streamwise’ direction, xF(t), defined as the direction of the horizontally
averaged flow at the turbine hub-height, Hhub (typically approximately 100 m, which
is much less than δABL). The height of a nominal farm layer, HF, is not required at
this stage and will be given later in § 2.2.

Now we consider the momentum balance for this representative CV. The streamwise
momentum equation for a short-time averaged flow is expressed, using the material
derivative, D/Dt, as

ρ
DU
Dt
=−

∂p
∂xF
+

(
∂τxFxF

∂xF
+
∂τxFyF

∂yF
+
∂τxFz

∂z

)
+ fxF , (2.1)

where ρ, U and p are the fluid density, streamwise velocity and pressure, respectively,
xF and yF the horizontal coordinates (streamwise and lateral directions, respectively,
which may change in time but are always perpendicular to each other), τij denotes the
stress (mainly the Reynolds stress resulting from the short-time averaging process),
and fxF the body force acting in the streamwise direction per unit volume, including
the Coriolis force as described below. The drag due to the turbine may also be
considered as part of the body force here, even though this drag is non-zero for
only a small fraction of the CV (note that the stress term will implicitly include
the dispersive stress if the flow discussed here is a spatially filtered one and does
not resolve the spatial inhomogeneity caused by the turbine, but this will not affect
the following analysis explicitly). By integrating (2.1) over the CV and noting the
assumption that the same flow pattern around each turbine (or each group of turbines)
is repeated horizontally over the entire farm (except for the farm edge region), we
obtain∫

∂(ρU)
∂t

dVcv =− (〈pout〉 − 〈pin〉) 1yFHcv − 〈τw〉1xF1yF +

∫
fxF dVcv, (2.2)

where Vcv(= ScvHcv = 1xF1yFHcv) is the volume of the CV, 1xF and 1yF are
the streamwise and lateral lengths of the CV, respectively, 〈pout〉 and 〈pin〉 are the
pressure averaged over the outlet (downstream) and inlet (upstream) surfaces of the
CV, respectively, and 〈τw〉 is the streamwise shear stress averaged over the bottom
surface of the CV. Note that the only shear stress that appears in (2.2) is 〈τw〉 but this
does not mean that the effect of mixing inside the CV is ignored. Mixing affects the
strength of the ‘streamwise’ Coriolis force described below and thus the momentum
balance in (2.2).

Next, we consider the momentum balance given in (2.2) for two different cases:
one is with wind farm and the other is without wind farm. For the former case, both
Coriolis force and turbine drag contribute to the last term in (2.2). Note that this
Coriolis force could be generated not only by the Earth’s rotation but also by the
change of the streamwise direction itself (especially when it changes rapidly in time)
as this causes an additional rotation of the coordinate system, but in the following
we ignore this additional rotation effect for simplicity. Although the Coriolis force
acts in the direction perpendicular to the local flow direction, this may still affect the
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FIGURE 2. Schematic of flows and forces: (a) fully developed flows observed in a
representative CV without and with wind farm; (b,c) local flow and force vectors at the
hub-height (b) and at a higher altitude (c) with the ‘streamwise’ component of the Coriolis
force represented by the green arrow.

farm’s streamwise (xF) momentum balance since the local flow direction may change
in altitude (z) and thus be different from the streamwise direction, as illustrated in
figure 2. Hence, the last term in (2.2) can be rewritten as∫

fxF dVcv =−T − fc

∫
(ρU tan θ) dVcv, (2.3)

where T is the turbine drag, fc is the Coriolis parameter ( fc = 2Ω sin φ, where Ω =
7.292× 10−5 rad s−1 is the rotation rate of the Earth and φ is the latitude) and θ is
the angle of local flow direction measured from the streamwise direction (θ is taken
positive in the clockwise direction in figure 2(c), looking down from the top of the
ABL for the northern hemisphere and looking up from the bottom for the southern
hemisphere). Note that the local velocity in the local flow direction is U(cos θ)−1

since U is the velocity in the farm’s streamwise direction (xF). We can expect that
the (horizontally averaged) flow direction does not vary substantially across the thin
nominal farm layer of height HF given later in § 2.2, but at a higher altitude the flow
direction varies and the angle θ tends to be positive due to the Ekman effect, yielding
a component of the Coriolis force opposing to the farm’s streamwise direction as
shown by the green arrow in figure 2(c). By substituting (2.3) into (2.2) and using
square brackets to represent volume averaging over the CV, we obtain

∂[ρU]
∂t
=
1p
1xF
−

T + 〈τw〉Scv

Vcv
− fc[ρU tan θ ], (2.4)

where 1p(= 〈pin〉 − 〈pout〉) is the average pressure drop in the streamwise direction
across the CV. By repeating the same analysis for the case without the wind farm,
we also obtain

∂[ρ0U0]

∂t
=
1p0

1xF0
−
〈τw0〉Scv

Vcv
− fc[ρ0U0 tan θ0], (2.5)

where the subscript ‘0’ indicates that the variable is for the case without farm. It
should be noted that the streamwise direction for the case without farm, xF0, may be
different from that for the case with farm (xF); hence, for example, U0 is the velocity

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.252


894 A2-6 T. Nishino and T. D. Dunstan

in xF0 and not in xF. By substituting (2.5) into (2.4) for Vcv, we obtain a combined
(non-dimensionalised) momentum equation,

T + 〈τw〉Scv

〈τw0〉Scv
=

1p
1xF
−C−

∂

∂t
[ρU]

1p0

1xF0
−C0 −

∂

∂t
[ρ0U0]

, (2.6)

where C= fc[ρU tan θ ] and C0= fc[ρ0U0 tan θ0]. The left-hand side of (2.6) represents
the ratio of the streamwise momentum lost by ‘total bottom resistance’ (including
turbine drag) for the case with farm (T + 〈τw〉Scv) to that for the case without farm
(〈τw0〉Scv), whereas the right-hand side shows the ratio of the streamwise momentum
available to the total bottom resistance for the case with farm to that for the case
without farm. Hence, for convenience, we introduce a new parameter called the
momentum availability factor, M, to denote the right-hand side of (2.6), i.e.,

M ≡

1p
1xF
−C−

∂

∂t
[ρU]

1p0

1xF0
−C0 −

∂

∂t
[ρ0U0]

. (2.7)

As will be discussed later in § 2.4, M is a parameter depending on several external
(farm-scale) conditions but can be modelled numerically using an NWP model.
Specifically, M will be modelled as a function of the farm wind-speed reduction
factor that is defined below.

2.2. Farm wind-speed reduction factor
Now we define the ‘farm-average’ wind speed, UF, by introducing a thin ‘nominal
farm layer’ of height HF as depicted earlier in figure 2. The purpose of defining
UF, and thus the farm wind-speed reduction factor, β ≡ UF/UF0, is not only for the
modelling of M but also for the left-hand side of (2.6), i.e., change of momentum loss
due to the turbine drag and shear stress on the bottom surface. Eventually, both left-
and right-hand sides of (2.6) will be functions of β, allowing us to calculate β for a
given set of external (farm-scale) and internal (turbine-scale) conditions. The role of β
is thus, essentially, to provide a link between the external problem described in § 2.1
(which is a time-dependent problem considering large-scale motions of the ABL to
assess the momentum available to the total bottom resistance at a certain time) and the
internal problem described later in § 2.3 (which is a quasi-steady problem giving the
breakdown of the total bottom resistance into the turbine drag and the bottom shear
stress). It is worth noting that the role of β (or more precisely, 1− β, which may be
referred to as ‘farm induction factor’) is analogous to that of ‘array-scale induction
factor’ introduced by Nishino & Willden (2012) for their two-scale modelling of tidal
turbine arrays.

There are a few possible ways to define HF and UF, but here we employ the
approach proposed by Nishino (2016) (see also § 2.1 of Nishino & Hunter (2018) for
details). This approach defines HF based on a ‘natural’ wind profile, Ū0(z), which
is a long-time average of the streamwise velocity profile for the case without farm,
U0(z, t). Specifically, HF is defined as the farm-layer height with which the value of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.252


Two-scale momentum theory for large wind farms 894 A2-7

Ū0 averaged over the farm layer agrees with that averaged over the turbine’s rotor
swept area, i.e., ∫ HF

0
U0 dz

HF
=

∫
U0 dA

A
, (2.8)

where A is the rotor swept area. A typical value of HF is between 2Hhub and 3Hhub
depending on the turbine design and the ABL profile. With the above definition of
HF, now UF and UF0 are defined as

UF ≡

∫ (∫ HF

0
U dz

)
dScv

HFScv
and UF0 ≡

∫ HF

0
U0 dz

HF
. (2.9a,b)

This allows us to introduce a ‘local’ or ‘internal’ thrust coefficient of the turbine, C∗T ,
defined using UF as the reference wind speed, i.e.,

C∗T ≡
T

1
2ρFU2

FA
, (2.10)

where ρF is the fluid density averaged over the farm layer for the case with farm, but
this should be almost identical to that for the case without farm, ρF0. Note that here
we assume that the turbine drag is all due to the rotor thrust (and this is why the
reference area for C∗T is the rotor swept area, A) but the turbine’s support-structure
drag may also be considered in a similar manner if necessary (Ma & Nishino 2018).
In addition to C∗T , we also introduce a bottom friction exponent, γ , which is defined
as

γ ≡ logβ(〈τw〉/〈τw0〉), (2.11)

where β ≡ UF/UF0. As will be discussed later in § 2.3, C∗T and γ are parameters
depending on several internal (turbine-scale) conditions; the former gives a relationship
between T and UF, whereas the latter gives a relationship between 〈τw〉 and UF. By
substituting (2.7), (2.10) and (2.11) into (2.6), and assuming ρF = ρF0, the momentum
equation (2.6) can be transformed into

C∗T
λ

Cf 0
β2
+ βγ =M, (2.12)

where λ ≡ A/Scv is the farm density (or array density) and Cf 0 is a bottom friction
coefficient for the case without farm, defined as

Cf 0 ≡
〈τw0〉

1
2ρF0U2

F0
. (2.13)

The parameter λ/Cf 0 in (2.12) is referred to as the effective farm density (Nishino
2016; Nishino & Hunter 2018). A typical range of λ/Cf 0 is between 1 and 10,
depending on the roughness of the land/sea surface as well as on the interturbine
spacing. The first and second terms of (2.12) describe ‘relative’ momentum losses due
to the turbine drag and the bottom shear stress, respectively (relative to the natural
momentum loss for the case without farm). Note that the transformed momentum
equation (2.12) is still almost identical to the original momentum equation (2.6) since
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894 A2-8 T. Nishino and T. D. Dunstan

the only approximation made during the transformation is that for the farm-average
fluid density (ρF = ρF0). Hence (2.12) should be almost exactly satisfied if the values
of C∗T , γ and M are all accurate (for a given ‘fully developed’ farm at a given farm
location and time).

Before discussing how to model C∗T and γ , it should be noted that the height of
the farm layer, HF, may be defined differently from the above. For example, we may
define HF simply as a fixed height, e.g., HF = 2.5Hhub, instead of using (2.8) which
requires the natural wind profile. Differences in the definition of HF will affect the
values of Cf 0, C∗T and γ (and also the value of ‘momentum response factor’, ζ , which
will be introduced later for the modelling of M); however, the momentum equation
(2.12) will be unchanged by the definition of HF. In other words, equation (2.12) is
valid (and can therefore serve as the condition for coupling between the internal and
external problems) as long as the same value of HF is used in the modelling of both
internal and external problems. The theory is expected to remain physically reasonable
if (i) HF is much smaller than the ABL thickness (i.e., HF� δABL) and (ii) HF is large
enough to include the region where the flow is most strongly affected by the turbines
(i.e., HF >Hhub + R, where R is the rotor radius). The main advantage of employing
(2.8) is that it gives a link between the natural wind speed averaged over the farm
layer and that averaged over the rotor swept area, thus simplifying the relationship
between the power coefficient of the turbine and a (non-dimensional) power density
of the farm that will be given later in § 2.5.

2.3. Internal momentum balance
Now we briefly discuss the modelling of C∗T and γ , which together describe the
internal momentum balance in the left-hand side of (2.12), i.e., balance between the
momentum lost by the turbine drag and that lost by the bottom shear stress, for a
given β (remember that we need M as well as C∗T and γ to obtain β). In general,
C∗T and γ may depend on several internal (turbine-scale) conditions, such as the
design and operating conditions of the turbines and their array configuration, as well
as on the conditions of wind over the turbine array, including its speed, direction
and turbulence characteristics. Some external (farm-scale) conditions, such as the
size and location of the farm (and of nearby farms if they exist) and the type of
local atmospheric system that drives wind over the farm, may also affect C∗T and γ

indirectly because these conditions may affect the conditions of wind over the turbine
array (as will be discussed further in § 2.4). However, it is impractical to analyse
the influence of all internal and external conditions simultaneously. This is why the
present theory splits the problem into the internal and external problems; C∗T and γ

are modelled in the former and M in the latter.
In the internal problem, we do not consider the influence of external conditions

explicitly, although we may still prescribe various conditions of wind over the turbine
array (that are in reality influenced by some external conditions) to assess their effects
on C∗T and γ . We also do not consider any direct effect of large-scale fluctuations that
are considered in the external problem (with typical periods of more than an hour)
since their time scale is much larger than that of the flow around each turbine. This
basically means that the internal problem is considered as a quasi-steady problem,
i.e., large-scale fluctuations may affect the internal problem (and thus C∗T and γ )
only indirectly through β and the prescribed wind profiles (that may result from
large-scale fluctuations). (However, we may consider small-scale fluctuations due to
turbulence explicitly in the internal problem. In this case, the flow modelled for the
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FIGURE 3. Relationship between the external and internal problems: (a) general case,
where the two problems are loosely coupled via β; (b) simplified case, where the external
problem is decoupled from the internal problem. Here, Ei and Ii represent external and
internal conditions, respectively.

internal problem needs to be short-time averaged to obtain the values of C∗T and γ

that represent the local thrust coefficient and bottom friction exponent at a ‘given
time’ from the viewpoint of the (longer time scale) external problem.) The only flow
condition that depends explicitly on the two-way interaction between the internal
and external problems is the magnitude of wind, which is readily determined by the
value of β that is obtained from (2.12). Hence, the internal problem is only loosely
coupled to the external problem (and this may even be decoupled by introducing a
further simplification, as will be described below and illustrated in figure 3).

The internal problem may be modelled either numerically or analytically to
obtain C∗T and γ . If we employ a high-fidelity numerical model, such as large-eddy
simulations (LES) of ABL flow over a periodic array of turbines represented using an
actuator line method (e.g., Lu & Porté-Agel 2011), we would obtain highly accurate
values of C∗T and γ for a specific case. However, such high-fidelity simulations
require large computational resources and thus cannot be employed to assess the
effects of a wide range of internal conditions. If we temporarily ignore the effects
of turbine rotor’s details and focus on the effects of other internal conditions, then
LES combined with an actuator disc model or a porous disc model (e.g., Calaf et al.
2010) would be an alternative option. For example, Ghaisas, Ghate & Lele (2017) and
Dunstan, Murai & Nishino (2018) have conducted such LES to investigate the effects
of turbine array configuration, ground (or sea surface) roughness and atmospheric
stability condition on C∗T and γ . The benefits of employing a simple actuator disc
model are not only that the computational cost is reduced but also that the internal
problem becomes insensitive to the value of β (as the performance characteristics of
an actuator disc do not depend on the absolute value of wind speed, unlike a more
detailed model that takes into account the dependence of turbine’s characteristics
on the wind speed, e.g., whether the wind speed is above or below the rated wind
speed), making it possible to assess the effects of other internal conditions on C∗T
and γ independently from the external problem.
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894 A2-10 T. Nishino and T. D. Dunstan

The above LES studies by Ghaisas et al. (2017) and Dunstan et al. (2018), and also
a similar study by Zapata, Nishino & Delafin (2017) using Reynolds-averaged Navier–
Stokes (known as RANS) simulations, suggest that C∗T may be predicted fairly well for
a range of internal conditions using a simple analytical model. This analytical model,
proposed first by Nishino (2016) in conjunction with the definition of the nominal
farm layer discussed earlier, gives C∗T simply as a function of wind-speed reduction at
the rotor plane (using an analogy with the classical actuator disc theory for an isolated
wind turbine) as

C∗T = 4α(1− α), (2.14)

where α≡UT/UF is a ‘local’ or ‘internal’ (turbine-scale) wind-speed reduction factor,
and UT is the streamwise velocity averaged over the turbine’s rotor swept area, i.e.,

UT ≡

∫
U dA

A
. (2.15)

This is arguably the simplest possible model of C∗T , which takes into account the
effect of local wind-speed reduction (or turbine resistance) only and does not consider
any other conditions, such as array configuration, wind direction and wind profile,
explicitly. Nevertheless, unless neighbouring turbines are aligned perfectly with
wind direction to cause a significant level of direct wake interference, the C∗T value
calculated from (2.14) tends to agree fairly well with the true C∗T value (with a typical
error of less than 10 %) for a realistic range of interturbine spacing (Nishino 2016;
Zapata et al. 2017) and for various wind profiles induced by different atmospheric
stability conditions (Dunstan et al. 2018). A further investigation into the validity
of (2.14) is shown in appendix A. Apart from its simplicity, a major advantage of
this approach using an analogy with the actuator disc theory is that it can be easily
combined with the blade-element theory to assess the effects of turbine rotor design
and operating conditions on C∗T (see Nishino & Hunter (2018) for further details). If
we employ (2.14) as the model of C∗T and substitute it into the momentum equation
(2.12), we obtain

4α(1− α)
λ

Cf 0
β2
+ βγ =M. (2.16)

Note that, if we assume M = 1 (i.e., if the momentum available to the total bottom
resistance does not change between the cases with and without wind farm), this
equation (2.16) becomes identical to the original two-scale momentum model of
Nishino (2016) (which predicts an upper limit of power generation from an ideal,
infinitely large wind farm with a fixed amount of momentum per unit area supplied
by an ideal, infinitely large atmospheric system). In other words, equation (2.16)
can be seen as a generalised version of the two-scale momentum model of Nishino
(2016).

For the modelling of γ , the LES study by Ghaisas et al. (2017) suggests that this
parameter may be modelled, for the case of a neutral ABL, as a function of the
turbine resistance coefficient, C′T = C∗T/α

2 multiplied by the array density. However,
further investigations are required in the future to develop a model of γ for a wider
range of internal conditions. Nevertheless, as discussed by Nishino (2016), the value
of γ is expected to be close to and less than 2 in most cases, since the value of
a ‘local’ bottom friction coefficient, Cf ≡ 〈τw〉/

1
2ρFU2

F, tends to be larger than its
undisturbed value, Cf 0 (due to the effects of turbines increasing turbulence intensity
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and local flow inhomogeneity within the nominal farm layer). The aforementioned
LES studies by Ghaisas et al. (2017) and Dunstan et al. (2018) also suggest that the
value of γ is in the range between 1.5 and 2 for most cases and, as will be shown
later in § 2.5, the farm performance predicted using the present theory is not very
sensitive to the value of γ in this range. Hence, unless sufficient data are available,
it is acceptable to employ a fixed γ value, for example, γ = 2 (which gives Cf =Cf 0,
i.e., 〈τw〉 varies with U2

F) as a first-order approximation.

2.4. Momentum availability factor
Now we return to the external problem for the modelling of the right-hand side of
(2.12), namely the farm’s momentum availability factor, M. In the external problem
we do not consider the effect of any internal conditions explicitly; hence, internal
conditions may affect M only indirectly through β, as illustrated earlier in figure 3(a).
This simplification allows us to model the external problem (and thus M) numerically
without resolving any details of flow around each turbine. For example, we may
use a regional NWP model with a large wind farm represented simply by an area
of increased bottom roughness to assess the effect of large-scale motions of the
atmosphere on M. The assumption here is that such a simple farm model (that
does not resolve individual turbines) can still predict the level of Reynolds stress
(averaged over the farm layer) reasonably well for a given β, so that the macroscopic
flow around the entire farm (especially the rate of turbulent mixing downstream of
the entire farm) is predicted correctly for a given β. In reality, the Reynolds stress
level and thus the macroscopic flow characteristics may change with some internal
conditions, such as the array configuration, even for a fixed value of β. To account
for such secondary effects of internal conditions separately from β, we would need to
employ a more sophisticated farm model that yields a correct level of Reynolds stress
for a given set of internal conditions (see, e.g., Fitch, Olson & Lundquist (2013) and
Abkar & Porté-Agel (2015)).

To obtain the value of M numerically using an NWP model, we need to conduct
‘twin’ simulations, i.e., two simulations under identical initial and boundary conditions
except that one is with farm and the other is without farm. Since M depends on
β (and β depends on the internal problem), in general, we need to conduct NWP
simulations several times (with varying the farm resistance) iteratively in conjunction
with an internal flow model to find a converged value of β for a given farm situation
(as in figure 3a). However, we may be able to reduce the number of required NWP
simulations if we can develop an approximate model of M as a function of β and an
environment-dependent parameter that does not depend on β. One example of such a
model is a linear approximation model given by

M = 1+ ζ (1− β), (2.17)

where ζ is a non-dimensional parameter, which we refer to as ‘momentum response
factor’ since this describes how the momentum available to the total bottom resistance
responds to the change of farm-average wind speed. Although this is a very simple
model, a recent numerical study of pressure-driven boundary-layer flow over a
large staggered array of actuator discs by Nishino (2018) shows that this linear
approximation works well for a practical range of β (between 1 and 0.8) with the
value of ζ depending on the roughness length of the land/sea surface around the farm
area but not depending on β. The basic trend is that M becomes larger than 1 (i.e.,
the momentum available to the total bottom resistance becomes larger than that for
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894 A2-12 T. Nishino and T. D. Dunstan

the case without farm) as β decreases from 1. As discussed by Nishino (2018) this
is essentially because an additional pressure difference is induced across the farm
area by the resistance caused by the farm itself. The amount of this farm-induced
pressure difference depends on the characteristics of macroscopic flow around the
entire farm (i.e., how easily or not so easily the flow can bypass the entire farm),
which explains why the response factor ζ depends on the level of land/sea surface
roughness. Although the numerical study by Nishino (2018) is for a special case
where the acceleration/deceleration of the ABL and the Coriolis force are neglected,
an ongoing study using an NWP model with a large circular patch of increased
bottom roughness to represent a large offshore wind farm (authors’ unpublished
observations) suggests that the linear model given by (2.17) is approximately valid
for more realistic unsteady cases as well (with ζ depending on time).

A major advantage of employing an approximation model of M, such as (2.17), is
that the external problem can be decoupled from the internal problem, as described
in figure 3(b). This will allow us to solve the external problem to assess the response
characteristics of the ABL for a given farm location (represented by the value of ζ
in this example) separately from, and even before solving, the internal problem. This
means that we may evaluate the potential of a given wind farm site not only from
the characteristics of wind naturally available at the site but also from its response
characteristics (which determine how significant the reduction of farm-average wind
speed tends to be at that site) obtained from an independent external flow model.

2.5. Power coefficient and power density
Finally, we define the power coefficient of the turbine and a non-dimensional power
density of the farm, both of which describe the efficiency of power generation at a
given time (from the viewpoint of the time-dependent external problem). The power
coefficient, CP, may be defined as

CP ≡
P

1
2ρT0U3

T0A
=

P
1
2ρF0U3

F0A
σ1, (2.18)

where P is the turbine power, ρT0 and UT0 are the fluid density and streamwise
velocity, respectively, averaged over the turbine rotor swept area (for the case without
farm), and σ1 is a conversion factor given by

σ1 =
ρF0U3

F0

ρT0U3
T0

. (2.19)

Note that CP in (2.18) represents the ratio of the (short-time average) turbine power to
the (long-time average) power of natural wind passing through the turbine rotor swept
area. If we introduce a ‘local’ or ‘internal’ power coefficient, C∗P, in a similar manner
to C∗T defined earlier in (2.10), i.e.,

C∗P ≡
P

1
2ρFU3

FA
, (2.20)

and assume ρF = ρF0 as before, then we obtain

CP

σ1
=C∗Pβ

3. (2.21)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.252


Two-scale momentum theory for large wind farms 894 A2-13

Similarly to C∗T , C∗P is a parameter obtained from the internal problem (where the
relationship between C∗T and C∗P depends, in general, on many internal conditions
including the details of turbine design and operating conditions). We may also define
the non-dimensional power density, η, as

η≡
P

〈τw0〉UF0Scv
=

P
〈τw0〉UF0Scv

σ2, (2.22)

where σ2 is another conversion factor given by

σ2 =
〈τw0〉UF0

〈τw0〉UF0
. (2.23)

Note that η in (2.22) represents the ratio of the (short-time average) turbine power to
the (long-time average) power of wind that is naturally dissipated due to the land/sea
surface friction over the farm area per turbine. Noting the definition of Cf 0 given
earlier in (2.13) and λ=A/Scv, we can derive the general relationship between η and
CP as

η

σ2
=

CP

σ1

λ

Cf 0
. (2.24)

For special cases where the unsteadiness of the flow is ignored and the fluid density
is assumed to be constant across the farm layer, we obtain σ1 = σ2 = 1 (noting that
(2.8) gives UF0=UT0 for such a case) and hence (2.24) returns to η=CPλ/Cf 0 as in
the model of Nishino (2016).

Although the present theory supposes that the turbine power, and thus the efficiency,
are obtained from an arbitrary combination of (usually numerical) flow models,
it is still possible and meaningful to calculate the efficiency using the simple
analytical/approximation models given earlier in §§ 2.3 and 2.4. Specifically, if we
employ (2.14) and (2.17) to model C∗T and M in (2.12), respectively, we can solve
(2.12) to obtain β as a function of α for a given set of input parameters: γ , ζ , λ
and Cf 0. As the actuator disc concept is used to derive (2.14), we may also consider
P = TUT and C∗P = C∗Tα; hence, CP/σ1 (which represents the turbine power relative
to the power of undisturbed wind available at that time, not the long-time averaged
power) now becomes a function of α and β only, i.e.,

CP

σ1
=

TUT
1
2ρF0U3

F0A
= 4α2(1− α)β3. (2.25)

Therefore, for a given set of input parameters (γ , ζ , λ and Cf 0), we can obtain β and
then CP/σ1 as a function of α. Figure 4 shows the maximum value of CP/σ1 (obtained
by varying α) plotted against the effective farm density, λ/Cf 0, for selected values of
γ and ζ . As can be seen from the figure, the maximum efficiency decreases from
the well known ‘Betz-limit’ of 16/27 (≈0.593) to a lower value as λ/Cf 0 increases
from zero to a higher value. While the effect of γ is relatively minor for a practical
range of γ (between 1.5 and 2 as noted earlier in § 2.3), the effect of ζ seems more
significant. Although a typical range of ζ is still unknown and an extensive numerical
study will be needed in the future to assess ζ under various external conditions, the
aforementioned numerical study by Nishino (2018) suggests that, for the case of a
steady pressure-driven flow, the value of ζ may be around 5 to 10 depending on
the level of land/sea surface roughness. It is worth noting that ζ tends to increase
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FIGURE 4. Maximum efficiency of a turbine located in a ‘fully developed’ part of a large
wind farm plotted against the effective farm density, predicted by the two-scale momentum
theory (2.12) with simplified models of C∗T (2.14) and M (2.17) (solid lines, γ = 2; dashed
lines, γ = 1.5).

as the surface roughness decreases; however, λ/Cf 0 also increases as the surface
roughness decreases (as Cf 0 decreases) and as a result, for a given array of turbines,
the maximum efficiency (CP/σ1)max still tends to decrease with the surface roughness
(Nishino 2018).

The decrease in the maximum efficiency predicted here is essentially due to the
reduction of wind speed across the entire farm. This can be seen from figure 5, which
shows the values of α and β that yield the maximum efficiency, namely the optimal
turbine-scale and farm-scale wind-speed reduction factors, αopt and βopt. These optimal
values also depend significantly on ζ and less significantly on γ , but the general
trend is that βopt decreases and αopt increases as λ/Cf 0 increases. When λ/Cf 0 = 0,
the value of β is always 1 and hence αopt is 2/3(≈ 0.667) to maximise the value
of 4α2(1 − α)β3. When λ/Cf 0 > 0, however, β tends to decrease as C∗T increases;
hence αopt becomes higher than 2/3 to reduce C∗T and eventually maximise the value
of 4α2(1− α)β3. This basically means that the optimal resistance of a turbine (or an
actuator disc) in a large wind farm is lower than that of an isolated one because of the
effect of reduced β, lowering the maximum efficiency from the Betz limit of 16/27
(via the reduction of both 4α2(1− α) and β3).

It should be remembered that the results shown in figures 4 and 5 rely on the simple
actuator disc concept for the modelling of C∗T (2.14) and the relationship between C∗T
and C∗P (i.e., C∗P = C∗Tα). In reality, both C∗T and C∗P (and their relationship) depend
on the details of turbine design and operating conditions (Nishino & Hunter 2018) as
well as on other internal conditions (e.g., the array layout); hence the results will be
more complicated. Nevertheless, this simple example using the actuator disc concept
demonstrates how the present theory can be used to determine the farm wind-speed
reduction factor, and thus the efficiency of power generation, from the (modelled)
solutions of both internal and external problems in a combined manner.

3. Discussion
3.1. Horizontal variations across the farm

The theory presented above is based on the assumption that the flow over the turbine
array is in a fully developed state, i.e., the same local flow pattern around each turbine
(or each group of turbines) is repeated over the entire farm (except for the farm
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FIGURE 5. The values of (a) turbine-scale and (b) farm-scale wind-speed reduction factors
that yield the maximum efficiency presented in figure 4, predicted by the two-scale
momentum theory (2.12) with simplified models of C∗T (2.14) and M (2.17) (solid lines,
γ = 2; dashed lines, γ = 1.5).

edge region). In reality, however, the flow over the array may not be fully developed
since, for example, the internal boundary layer generated by the wind farm may not
merge quickly with the external ABL (and the merged boundary layer may also take
a long distance to reach a new equilibrium state) depending on atmospheric stability
conditions (Wu & Porté-Agel 2017). This assumption may also be violated simply due
to an irregular turbine arrangement, variation of turbine operating conditions across the
farm and/or inhomogeneity of the natural atmospheric flow over the farm area. In such
a real-world wind farm problem with horizontal variations of local flow conditions, the
present theory may still be employed to help analyse the farm efficiency but only in
an approximate manner. Specifically, the theory (with minor modifications as described
below) still allows us to couple an external flow model, which captures horizontal
variation of the natural atmospheric flow over the farm area but ignores or highly
simplifies variations caused by turbine-scale details, and an internal flow model, which
captures variations caused by turbine-scale details but ignores or highly simplifies the
variation of the natural atmospheric flow; and thus predict a farm-average value of the
farm wind-speed reduction factor, β̂.

The modifications required to the theory are as follows. First, we consider the
external momentum balance not for the representative CV in the middle of the farm
as discussed earlier in § 2, but for a much larger CV that contains the flow over the
entire farm area, such as the cylindrical volume depicted in figure 1 for a circular
wind farm case. Second, we introduce a single (farm-average) farm layer height,
ĤF, either using (2.8) with replacing U0 with its horizontal average over the entire
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farm, or using an arbitrary definition such as ĤF = 2.5Hhub (as discussed earlier in
§ 2.2). (Such a simple definition of ĤF may be preferable in a real-world problem,
where the natural wind profile may have a local maximum or maxima around the
turbine hub-height (see, e.g., Kettle 2014) and this may prevent us from obtaining
an appropriate farm-layer height from (2.8). It is also worth noting that traditional
‘top-down’ models (employing the logarithmic law to represent the natural wind
profile) are not directly applicable to such cases with a local maximum or maxima in
the profile, whereas the present theory (employing the nominal farm layer to define
the farm-average wind speed) is still valid and applicable to such cases.) Then we
can still derive a momentum equation for two-scale coupling in the same form as
(2.12) but with all variables replaced by corresponding variables defined for the entire
farm. Specifically, the left-hand side of (2.12) will represent the internal momentum
balance for the entire farm if β, λ, Cf 0, C∗T and γ are replaced by the following
‘farm-average’ counterparts:

β̂ ≡
ÛF

ÛF0

, (3.1)

λ̂≡
NA
SF
, (3.2)

Ĉf 0 ≡
τ̂w0

1
2 ρ̂F0ÛF0

2 , (3.3)

Ĉ∗T ≡

1
N

N∑
i=1

Ti

1
2
ρ̂FÛF

2
A
, (3.4)

γ̂ ≡ logβ̂(τ̂w/τ̂w0), (3.5)

where a hat denotes a farm-average value (i.e., value averaged horizontally over the
farm area), N is the number of turbines in the farm, Ti is the turbine drag for the
ith turbine, and SF is the farm area. Note that the velocities and shear stresses are
again for the farm’s ‘streamwise’ direction defined as the direction of the horizontally
averaged flow at Hhub (for each of the cases with and without farm). Meanwhile,
the right-hand side of (2.12), or the momentum availability factor, M, will be in a
more complicated form than that given earlier for the fully developed case in (2.7),
since now we need to consider the effect of (generally non-zero) net momentum
transfer through the side (and also top, unless the ABL thickness is constant over
the farm area) surfaces of the CV in addition to the effects of the pressure gradient,
local acceleration/deceleration and the Coriolis force. While the original M in (2.7)
is relatively simple and may perhaps be modelled analytically in a future study,
the one for the general case considered here, namely M̂, is more difficult to model
analytically. Nevertheless, this can still be obtained using a numerical model in the
same manner as discussed in § 2.4.

The basic procedure for calculating β̂ for a given wind farm (under given
atmospheric conditions) would therefore be as follows. First, the internal problem is
modelled to calculate Ĉf 0, Ĉ∗T and γ̂ for a given external flow condition (typically
by fixing either velocity or pressure outside the farm). If the internal problem is
modelled using a three-dimensional (Navier–Stokes-based) numerical model, all these
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parameters are obtained directly from the model; however, if a low-order ‘engineering’
model (such as those relying on the traditional ‘wake’ models mentioned earlier) is
employed, only Ĉ∗T may be obtained from the model and Ĉf 0 and γ̂ may need to
be estimated empirically. Second, the external problem is modelled to calculate M̂
for a given total bottom resistance (for example, by prescribing an increased bottom
roughness to represent the whole farm). Third, the obtained values of Ĉf 0, Ĉ∗T , γ̂
and M̂ (together with the value of λ̂ determined from the array configuration) are
substituted into (2.12) to calculate β̂. Then both internal and external problems
are updated such that the value of β̂ realised in each problem agrees with that
calculated from (2.12) (by adjusting the previously given conditions, such as fixed
external velocity or pressure for the internal problem and the level of increased
bottom roughness for the external problem) to obtain updated values of Ĉ∗T , γ̂ and
M̂; and the same process is repeated as in figure 3(a) until a converged value of β̂ is
obtained. Eventually, the power generated by the farm (taking into account the loss
due to the wind farm blockage effect) can be obtained from the internal problem
with the correct (converged) value of β̂.

Finally, it should be noted that the amount of power loss due to the wind farm
blockage effect can be calculated explicitly by subtracting the final prediction of farm
power (obtained using the correct value of β̂) from an initial (wrong) prediction using
a fixed wind speed upstream of the farm. Since the farm power is often approximately
proportional to β̂3, we may consider β̂3

∗
− β̂3 as an indicator of the significance of

wind farm blockage effect, where β̂∗ denotes the (farm-average) farm wind-speed
reduction factor for the case with a fixed wind speed upstream of the farm.

3.2. Limitations and future prospects
The main feature of the two-scale momentum theory is that, as the word ‘momentum’
in its name implies, it describes the relationship between the external and internal
problems only in terms of the momentum balance through the farm wind-speed
reduction factor β. In other words, the theory does not provide any specific details
on how the two problems should be coupled regarding the flow conditions other than
β, such as the wind direction and vertical profiles of wind and turbulence. While the
advantage of this theory is its generality or compatibility with many different types
of flow models that may be employed at each scale, the details of the flow conditions
(other than β) given to the internal problem need to be decided carefully, depending
on the specific type of flow model employed. In particular, it should be noted that
the direction of the wind approaching the wind farm may change depending on the
total bottom resistance (and thus on β) due to, for example, the Coriolis effect. Such
a change in the ‘external’ wind direction can be taken into account when the internal
and external problems are coupled as in figure 3(a), i.e., the correct external wind
direction for a given β can be calculated in the external flow model and returned
to the internal model (as indicated by the dashed arrow in the left-hand side of the
figure). However, if the two subproblems are decoupled as in figure 3(b), we cannot
correct the external wind direction in the internal problem for an updated β. The
difference in the external wind direction between the cases with and without farm is,
for most practical cases, expected to be relatively small. Nevertheless, such a change
may still affect the array performance substantially and therefore need to be assessed
carefully when the two subproblems are decoupled as in figure 3(b).
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While the present theory describes a fundamental relationship between the
turbine-scale and farm-scale flow problems and is therefore expected to serve as
a basic framework for multiscale modelling of large wind farms in the future,
there is still considerable room for improvement in the (especially analytical and
low-order numerical) modelling of each subproblem. In particular, it would be useful
to develop an analytical model of C∗T that accounts for the effects of array layout
and wind direction, especially for the case with a high array density, where the
layout/direction effects are more complex due to combined effects of local blockage
and wake mixing (Nishino & Draper 2019) and therefore the simple analytical model
of C∗T given in (2.14) may yield a larger error. It would also be beneficial to further
investigate the modelling of the momentum availability factor, M, under different
types of atmospheric/weather conditions. Although the linear approximation model of
M proposed in (2.17) is useful for decoupling the external problem from the internal
problem (and thus reducing the number of numerical simulations required for a given
wind farm) as noted earlier in § 2.4, the validity of such an approximation needs to
be investigated further in future studies. All these improvements of flow models at
each scale, combined following the present theory appropriately, would eventually
enable more effective operation of existing large wind farms (using active control of
turbine thrust and yaw angle, for example, for given weather conditions) and even a
higher-level optimisation of future large wind farms, where the design of individual
turbines may also be optimised for a given wind farm location (Nishino & Hunter
2018) to reduce their levelised cost of electricity (known as LCOE).

4. Conclusions

In this paper we have presented a fundamental theory based on the law of
momentum conservation to help understand the complex multiscale problem of
large wind farm aerodynamics. Care has been taken in the derivation of the theory
to attempt to describe the basic relationship between the external (farm-scale) and
internal (turbine-scale) flow problems in a generic manner so that the theory may
be useful for various types and levels of large wind farm modelling, regardless of
the specific details of flow models employed at each scale. In particular, unlike
most of previous large wind farm models, the present theory does not consider
modelling the ABL profile explicitly based on the logarithmic law. Instead, we have
employed the concept of farm-average wind speed and derived a momentum equation
that provides a generic coupling condition between the external and internal flow
problems in terms of the reduction factor of the farm-average wind speed. This
generic approach allows us to use the present theory in conjunction with a numerical
weather model, for example, to investigate the effect of large-scale motions of the
ABL on the aerodynamic performance of a large wind farm in a time-dependent
(rather than statistical) manner. Although the theory has been rigorously derived only
for a simplified wind farm situation where the flow over the turbine array is assumed
to be in a fully developed state, we have also discussed how the theory can be
applied (in an approximate manner) to real-world wind farm problems where the flow
pattern around each turbine may vary over the entire farm. The theory therefore also
provides a practical basis for estimating, e.g., the loss of power due to the so-called
wind farm blockage effect.

To demonstrate how the present theory can help us determine the efficiency of
a large wind farm from (modelled) solutions of the internal and external problems
in a combined manner, we have also presented very simple analytical models for
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the local thrust coefficient C∗T (2.14) and the momentum availability factor M (2.17),
respectively. However, it should be remembered that the most important contribution
of the present theory lies in the generality of the momentum equation (2.12) to be
met in various types and complexity-levels of large wind farm modelling. Since the
present theory provides only a framework for the coupling of the turbine-scale and
farm-scale flow problems, the success of predictions of large wind farm performance
still, of course, relies on the accuracy of flow models employed at each scale. While
high-fidelity numerical flow models are already available at each scale, there is
still considerable room for improvement in the analytical and low-order numerical
modelling at each scale, which is necessary for high-level optimisation of future
large wind farms. In particular, it would be helpful to further investigate and
model in future studies how the local thrust coefficient C∗T is affected by various
internal conditions (such as array configuration) in the internal problem, and how
the momentum availability factor M changes under various atmospheric/weather
conditions in the external problem.

Declaration of interests
The authors report no conflict of interest.

Appendix A. Effects of array configuration and wind direction
As noted earlier, one of the key issues in large wind farm modelling is how to

consider the effects of array configuration and wind direction in a simple, inexpensive
manner. To assess the validity of (2.14) introduced as the simplest possible model of
C∗T (which does not account for either of these effects explicitly), we have carried
out a series of LES of a realistic ABL flow over a periodic turbine array using
the Met Office NERC Cloud model (known as MONC) (Brown et al. 2018; Hill,
Brown & Shipway 2018). The domain is doubly periodic in the horizontal (x and y)
directions and has 128 grid points in the vertical (z) direction with a damping layer
near the upper boundary. The dimensions of the domain are π×π× 1 (km) for x, y
and z, respectively. Individual turbines are modelled as actuator discs following the
methodology of Calaf et al. (2010).

Simulations were run until a statistically stationary state was reached, and
data were then collected over a period of approximately 4.5 h for analysis. To
maintain statistical stationarity for a realistic ABL, a relaxation forcing term,
fϕ(z) = (ϕtarget(z) − 〈ϕ〉(z))/τrelax, was added to the governing equation for variable
ϕ, where τrelax = 3600 s is a relaxation time scale and 〈. . .〉 represents an average
over x and y. This forcing was applied to horizontal velocities (U, V) and potential
temperature (Θ), with target profiles extracted from archived data of the Met Office’s
operational UK regional model (United Kingdom variable, UKV) at a near-shore
location in the North Sea. Figure 6 shows the target profiles for U, V and Θ together
with mean profiles obtained from LES without turbines. The target ABL profile
was selected from a series of case studies conducted earlier (Dunstan et al. 2018)
and represents a moderately unstable boundary layer typical of those observed at
this near-shore location. The extracted wind profile was rotated so that V = 0 at
hub-height (Hhub = 100 m) for the target profiles for U and V; however, the stronger
vertical mixing in the surface layer in the LES compared to the UKV means that
this is not strictly maintained in the LES results, as can be seen in figure 6. Note
that the Coriolis force is not included in the present LES, although it is included in
the UKV to produce the ‘veered’ target wind profile for the LES.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

25
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.252


894 A2-20 T. Nishino and T. D. Dunstan

0 5 10 -5 0 275 276 277

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

z (
km

)

U (m s-1) V (m s-1) Œ (K)

Target
LES

(a) (b) (c)

FIGURE 6. Target profiles extracted from UKV (solid lines) and mean profiles obtained
from the reference LES without turbines (dashed lines) for U, V and Θ .

Case Configuration C′T 1x/D, 1y/D

FA1 Fully aligned 0.333 0.245
FA2 Fully aligned 0.667 0.245
FA3 Fully aligned 1 0.245
FA4 Fully aligned 1.333 0.245
FS1 Fully staggered 0.333 0.245
FS2 Fully staggered 0.667 0.245
FS3 Fully staggered 1 0.245
FS4 Fully staggered 1.333 0.245
PS1 Partially staggered 0.333 0.245
PS2 Partially staggered 0.667 0.245
PS3 Partially staggered 1 0.245
PS4 Partially staggered 1.333 0.245
FS4(D) Fully staggered 1.333 0.123

TABLE 1. Array configuration, turbine resistance and horizontal resolution for LES.

Three different turbine configurations were simulated: fully aligned, fully staggered
and partially staggered. A turbine diameter D= 100 m was used for all simulations,
with four different values for the turbine resistance coefficient, C′T = 0.333, 0.667, 1.0
and 1.333. The turbines were arranged in a 6 × 4 array with cross-stream spacing
of 5.24D and streamwise spacing of 7.85D. For the fully staggered and partially
staggered cases, a cross-stream offset of 2.62D and 1.31D, respectively, was applied
to every other row. A summary of the configurations and settings used in the LES
is given in table 1. In addition to the 13 cases listed in table 1, two reference cases
with no turbines were run using both standard (1x = 1y = 0.245D) and double
(1x = 1y = 0.123D) resolutions, which yielded two slightly different values (2.44D
and 2.38D) for the farm-layer height HF from (2.8).

Examples of time-averaged U contours on the horizontal plane at hub height are
shown in figure 7 for all three array configurations. The deflection of turbine wakes
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FIGURE 7. Time-averaged streamwise velocity contours at hub-height for fully aligned
(a,b), fully staggered (c,d) and partially staggered (e, f ) arrays with C′T = 0.333 (a,c,e) and
1.333 (b,d, f ).

(towards the negative y direction, due to mixing down of veered wind from above)
is evident in all cases, but especially so for higher values of C′T since the vertical
mixing is more enhanced by turbines with higher resistance. For the highest C′T cases
tested, the wakes are deflected by more than one turbine diameter before reaching
the next row. Eventually, turbines in a fully aligned configuration, for example, are
positioned in a high-speed flow region outside the wake of the turbine immediately
upstream when C′T is high (as if an optimal ‘wake steering’ was performed to avoid
direct wake interference).
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FIGURE 8. Relationship between C∗T(=C′Tα
2) and 1− α obtained from LES. (a) Original

results and (b) corrected results following Shapiro, Gayme & Meneveau (2019); compared
to theoretical prediction (2.14).

From the LES data, we have calculated the values of α=UT/UF, where UT and UF

are defined in (2.15) and (2.9a), respectively, and the local thrust coefficient C∗T =C′Tα
2

(note that UT is averaged over all 24 turbines in the domain). The results are plotted
in figure 8(a) together with the simple theoretical prediction given earlier by (2.14).
As can be seen, the values of C∗T obtained from the LES tend to be higher than the
theoretical prediction, especially for high C′T cases. However, Shapiro et al. (2019)
note that the values of UT derived from LES tend to be systematically overpredicted
unless the resolution is very high, and propose a correction factor of the form

m=
(

1+
C′T
4

1
√

3πR

)−1

, (A 1)

where R = D/2 is the disc radius and 1 is the effective filter size employed
in LES. We have applied this correction factor to the value of UT , using ∆ =√
1x2 +1y2 +1z2, to produce corrected values of α and C∗T plotted in figure 8(b).

The corrected C∗T values tend to be lower than the prediction given by (2.14),
supporting the argument that this simple model may be used to estimate a practical
upper limit to the value of C∗T (Nishino 2016). Comparing the three different array
configurations tested, it can also be seen that the fully aligned configuration yields
a lower C∗T value than the other two when C′T is low, but a higher C∗T value than
the partially staggered configuration when C′T is high (since the wake deflection is
significant enough to prevent direct wake interference as shown earlier), whereas the
fully staggered configuration yields a higher C∗T value for the entire range of C′T tested.
Overall, the difference in C∗T due to the (combined) effects of array configuration and
wind direction is up to approximately 10 % in these simulations. This level of change
in C∗T is expected to be typical for real large wind farms where some but not all
turbines may experience direct wake interference at a given time, although a larger
discrepancy could be observed in some exceptional situations where all turbines in
the farm are perfectly aligned with the wind direction (see, e.g., Porté-Agel, Wu &
Chen 2013).
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