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In some cases, navigation of aircraft or spacecraft may need to be conducted in a Global
Navigation Satellite System (GNSS)-denied environment. So, additional sources of navigation
information may need to be used to increase navigation precision and resilience. Such sources
can include visual navigation systems such as visual shoreline navigation. The main feature of
visual shoreline navigation is the severe variability of navigation errors depending on the shape
of the observed shoreline, the distance and the view angle of the observation. Such variations
are so great that it is not possible to use average values of errors. So, each measurement of an
aircraft or spacecraft position should be accompanied with an estimation of the error covariance
matrix in real time. It is proposed to use the Cramer-Rao lower bound of visual shoreline nav-
igation errors as such a matrix. The method for constructing the Cramer-Rao lower bound is
described in this paper.
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1. INTRODUCTION. Global Navigation Satellite Systems (GNSS) have an essentially
unavoidable drawback. Their navigation receivers can be easily jammed or spoofed. Thus,
other types of navigation devices are being developed. Computer vision systems are widely
applied for the solution of motion control and navigation problems. Visual band cameras
are comparatively small, lightweight and cheap. Nevertheless, such cameras are capa-
ble of realising high precision measurements. For instance, star trackers can determine
angular orientation with errors of about 1–3 arc seconds. Unfortunately, the precision of
visual shoreline navigation is much worse. This is due to the variability of the observed
navigation object, their significant size and the presence of atmospheric distortions and
obscuration. The atmosphere causes light absorption and light refraction and the shape of
the observed shoreline can vary significantly. The variations of the shoreline shape are so
great that the navigation errors cannot be replaced with averaged values. So, each navi-
gation measurement should be accompanied with an individual error covariance matrix of
measurements.

This paper constructs a Cramer-Rao lower bound for position estimation. Well-
developed algorithms of visual navigation usually have errors which are near to this bound.
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A necessary condition for this is the approximately Gaussian law of the localisation error
distribution of the shoreline segment, with the absence of “heavy tails” of distribution and
the absence of anomalous errors.

2. STATE OF THE ART. Automatic image navigation algorithms are used to correct
the orbital and attitude misalignment of geosynchronous satellites. Additionally, automatic
matching of landmarks is used for the calibration and control of imagery geometry (Carr
and Madani, 2007). Landmarks are formed from the Global Self-consistent Hierarchical
High-resolution Shoreline (GSHHS) database (GSHHG, 2017; Wessel and Smith, 1996).
It should be mentioned that similar automatic image navigation algorithms can function on
board in real time provided that there is a sufficiently powerful processor.

The tasks involved in Earth image automatic map registration are close to the tasks of
navigation. Registration tasks of satellite images to different vector maps are significantly
widespread (Fujii and Arakawa, 2004; Madani et al., 2004; Wang et al., 2008; Habbecke
and Kobbelt, 2012; Li and Briggs, 2006; Zeng et al., 2017). Fujii and Arakawa (2004)
introduced a fully automatic method for registering satellite images to vector maps in
urban areas. Madani et al. (2004) presented a fully automatic real-time landmark image
registration based on matching a measured landmark to the corresponding shoreline land-
marks extracted from a digital map. Wang et al. (2008) proposed a fast automatic algorithm
for registering aerial image sequences to vector map data using linear features as control
information. Habbecke and Kobbelt (2012) investigated the problem of a fully automatic
and robust registration for oblique aerial images in cadastral maps. Li and Briggs (2006)
proposed a new approach for automated georeferencing of raster images to a vector road
network. Alignment of the latitude and longitude for all pixels for Geo-Stationary Meteo-
rological Satellite (GSMS) images was considered by Zeng et al. (2017). The shorelines of
selected reference lakes were used as landmarks.

The shoreline is a unique object for navigation. With the exception of the circumpolar
regions, the world’s oceans do not freeze. A very small difference in the heights of world
oceans greatly simplifies the task of recognising coastlines from a wide range of angles of
observation and the position of the sun. In addition, the shorelines themselves have a high
contrast in the red and near infrared range.

It should be mentioned that even for one section of the coastline, different angles and
observation distances will result in different errors of navigation. For different segments
of shorelines, the accuracy of navigation will differ even more. This is one of the essential
features of optical navigation. For estimation of the navigation error, the Cramer-Rao lower
bound can be used.

3. COORDINATE SYSTEMS. The World Geodetic System (WGS) 84 coordinate
system will be used for navigation. The Earth is approximated by an ellipsoid as in Figure 1.

The position of any point in space is determined by three parameters - λ – latitude, μ –
longitude and h – altitude over the ellipsoid surface (Equation (1)).

⎧⎪⎨
⎪⎩

X = (N + h) cos λ cos μ

Y = (N + h) cos λ sin μ,
Z = (Nb2/a2 + h) sin λ

(1)

https://doi.org/10.1017/S0373463318000875 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000875


NO. 2 ESTIMATION OF VISUAL SHORELINE NAVIGATION ERRORS 391

Figure 1. World Geodetic System ellipsoid; a – semi-major axis, b – semi-minor axis.

Figure 2. Axes of the camera’s coordinate system.

where N is the prime vertical:

N =
a√

1 − e2 sin2 λ
, (2)

and e2 is the first eccentricity:

e2 =
a2 − b2

a2 (3)

The spatial rectangular coordinates of a camera expressed through geodetic coordinates
are shown in Figure 2.

The vectors of the camera coordinate system are now determined by using the differen-
tiation operation. The camera is at point Q with coordinates Q = (X , Y, Z). The vectors are
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Figure 3. Camera’s coordinate system.

introduced:

e∗
1 = −dQ

dh
, e∗

2 =
dQ
dλ

, e∗
3 =

dQ
dμ

(4)

e∗
1 =

(− cos λ cos μ, − cos λ sin μ, − sin λ
)

e∗
3 =

(−(N + h) cos λ sin μ, (N + h) cos λ cos μ, 0
) (5)

These vectors will be used to obtain orthonormal basis vectors e1, e2 and e3 (Figure 3).
Vector e2 can be more easily obtained from a vector product of e3 and e1. These e1 and e3
vectors are:

e1 =
e∗

1

‖e∗
1‖

=
(− cos λ cos μ, − cos λ sin μ, − sin λ

)
=
(
e11, e12, e13

)

e3 =
e∗

3

‖e∗
3‖

=
(− sin μ, cos μ, 0

)
=
(
e31, e32, e33

)
(6)

The vector e2 is obtained as the vector product:

e2 =

∣∣∣∣∣∣
i j k

e31 e32 e33
e11 e12 e13

∣∣∣∣∣∣ =

∣∣∣∣∣∣
i j k

− sin μ cos μ 0
− cos λ cos μ − cos λ sin μ − sin λ

∣∣∣∣∣∣
=
(− sin λ cos μ, − sin λ sin μ, cos λ

)
(7)

So, vector e1 is directed to the ellipsoid surface and orthogonal to it. The vector e2 is
directed to the North Pole and lies in the plane which is parallel to the ellipsoid surface.
The vector e3 is directed to the direction of increasing longitude and also lies in the plane
which is parallel to the ellipsoid surface. It is easy to take into account the real angles of
roll, pitch and yaw, but taking these angles into account will complicate further calculations
and make them more difficult to understand.
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Figure 4. CCD matrix’s coordinate system.

A relation between the coordinate systems of the camera (see Figure 3) and of the
Charge-Coupled Device (CCD) matrix is shown in Figure 4. Here f is the focal length.
U and V are the axes of the CCD matrix coordinate system. The vector e1 coincides with
the optical axis of the camera.

4. SHORELINE MAP IMAGE. The shoreline map presents a sequence of segments
which approximate a shoreline. The segments are represented by a sequence of points with
coordinates of longitude and latitude. All contours are closed. The direction of contour
bypass is counter-clockwise. An image of some segments is presented in Figure 5. The
points Pi, Pi+1, Pi+2, Pi+3, Pi+4 are the ends of segments. Points Ci, Ci+1, Ci+2, Ci+3 are the
midpoints of segments. Profiles of the brightness of the ocean/mainland are attached to
these points. Normals ni, ni+1, ni+2, ni+3 are directed from the ocean to the mainland.

The Global Self-consistent, Hierarchical, High-resolution Geography Database
(GSHHG, 2017) maps include the World Vector Shorelines map. This map has five res-
olutions (full, high, intermediate, low and crude). Unfortunately, these maps have poor
precision (Aksakal, 2013; Baldina et al., 2016). Errors can vary from 50 to 500 m (Aksakal,
2013). These errors should be eliminated at the stage of map preparation. Also, tidal
corrections should be made at this stage.

5. MAXIMUM LIKELIHOOD METHOD. The error of shoreline localisation on the
raster image of the Earth is approximated by the normal law, expressed in Equation (8).

η(x) =
1

σ
√

2π
exp

(
− (x − x0)2

2σ 2

)
(8)

The error of the relative position of the map segment is measured in the normal direction
to this image map segment. These errors of localisation are attributed to the midpoints of the
segments (points Ci, Ci+1, Ci+2, Ci+3). The normal law graph of localisation errors attached
to the midpoint of the shoreline image segment is shown in Figure 6.

https://doi.org/10.1017/S0373463318000875 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000875


394 VLADIMIR A. GRISHIN VOL. 72

Figure 5. Segments of shoreline map.

Figure 6. Normal law of localisation error.

The parameters of the normal law are formed during the task of determining the nav-
igation solution, which was done by alignment of the shoreline map with the shoreline
raster image in two steps. The first step is a coarse alignment. After the first step, the align-
ment error between the vector shoreline map and the raster image of the shoreline does not
exceed one pixel. At the second step (precision alignment), the shift between the calculated
position of the map shoreline segments and the real shoreline position on the raster image
is iteratively reduced by optimisation in the space of variables λ, μ and h. A special method
is used for the estimation of the real shoreline position on the raster image. Let us briefly
consider it. The brightness profile model on the border between an ocean and a mainland is
presented in Figure 7. In the same figure, the brightness sample points of the raster image
profile are marked 1–18. These points are located on a straight line perpendicular to the
segment of the shoreline map.
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Figure 7. Brightness profile model and brightness sample points.

The brightness profile model consists of two horizontal segments with brightness a
(ocean) and b (mainland) and the transitional zone between them. The transitional zone
is modelled by a spline of the third order. The middle of the transition zone is tied to
the calculated position of the map shoreline segment. This model is described by four
parameters (brightness of the ocean, brightness of the mainland, width of transition zone
and shift along the OX axis). For localisation, it is advisable to use the maximum like-
lihood method, which simultaneously evaluates all four parameters. Estimation of these
parameters requires searching for an extremum in four-dimensional spaces for all the map
segments used for navigation. This task requires too much computational resource, espe-
cially for on board applications. For simplification of this task, the mean value of brightness
of a (ocean) and b (mainland) is estimated as the average of values of brightness of samples
1–6 and 13–18. The width of the transitional zone depends on the effective point scattering
function of the optical system and preliminary processing of images. For the images under
consideration, this width was chosen to be equal to six pixels. In this way, only one param-
eter should be estimated by means of a search for an extremum. This parameter is the shift
of the brightness profile model relative to the border between ocean and mainland on the
raster image. The method of forming the brightness samples 1–18 will be considered later.

The relative shift δ of the brightness profile model and the real shoreline on samples
1–18 is estimated with a precision of 0·1 pixels by means of minimisation of the sum of the
squares of the deviation of the model profile from the real profile – see Figure 8.

In the transition zone, the residual deviations ε1 − ε6 of the real brightness profile from
the model influence the error of relative shift estimation. These deviations are called the
regressive residuals in regression analysis.

There is a very serious and complicated question of error localisation estimation for
each individual segment. The fact is that the individual profiles of ocean/mainland bright-
ness differ greatly. So, the localisation errors of the shoreline differ greatly too. Therefore,
it is highly undesirable to use “average” estimates, which can be very far from reality. It is
suggested to use regressive residuals for the estimation of localisation errors. The assump-
tion of the independence of these residuals greatly simplifies the calculations of localisation
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Figure 8. Estimation relative shift δ between the model profile and the real one. Points on the graph are the
real brightness profile on the raster image.

errors, although it gives a somewhat overestimated value of the error estimate for localisa-
tion. In our case, the standard deviation of δ is estimated from a very simple formula:

σ 2 =
1

(b − a)2

6∑
i=1

ε2
i (9)

Consider how the brightness samples 1–18 are formed. Each segment of the shore-
line map which is used for navigation generates a local coordinate system. One vector
is directed along a segment, and another is directed orthogonal to this segment. In this
coordinate system a grid of samples of brightness is built. The grid step size is selected in
the order of one pixel or more (Figure 9, left image). The samples of brightness are formed
by subpixel bilinear interpolation on the raster image.

Then, all these samples are summarised in a direction parallel to the segment. So,
samples 1–18 of brightness profile are obtained (Figure 9, right image).

It is necessary to consider map quality. The law expressed by Equation (8) is adequate
provided there are no systematic errors in the map. Unfortunately, some fragments of
GSHHG maps have significant systematic errors. Systematic errors condition the corre-
lation of individual errors of the localisation of different segments and produce significant
navigation errors. It is assumed that maps do not have systematic errors, so we can obtain
a multi-dimensional function of segment error localisation for n segments (it is also a
likelihood function for fixed x1, x2, . . . , xn).

f (θ, x1, x2, . . . , xn) =
n∏

i=1

1

σi
√

2π
exp

(
− (xi − x0i(θ))2

2σ 2
i

)
(10)

The points x0i(θ) are calculated according to the map and taking into account the camera
position and orientation. This is the “ideal” position of shoreline segments. The real posi-
tion of the shoreline on the pixel image from the camera will differ from its “ideal” position.
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Figure 9. A grid of samples in the vicinity of the segment (left image). Samples 1–18 of brightness profile
(right image).

For each map segment, we measure a shift xi of the “real” ocean/land border relative to its
“ideal” position in the normal direction to the map segment.

Here it is assumed that segment localisation errors are independent and have a normal
distribution law. Error independence allows reduction of the multidimensional distribution
density to the product of one-dimensional densities. Error independence is provided by the
quality of the preparation of cartographic information.

Vector θ = (λ, μ, h) should be determined to solve the navigation task. This vector has
three dimensions instead of six. In fact, rotation of the camera around two horizontal axes
and the shift relative to this axis are strongly correlated. Thus, roll and pitch can be esti-
mated by means of another sensor (for instance, a star tracker for spacecraft or high-altitude
hypersonic unmanned aerial vehicle). In this case, it is also expedient to determine the
remaining course angle (yaw) by means of a star tracker. The star tracker must be rigidly
mechanically connected with the navigation camera. If it is necessary to expand the vector
of the measured parameters, the information matrix can be easily obtained by analogy with
the three parameters case.

The logarithm of the likelihood function is:

L(θ , x1, x2, . . . , xn) =
n∑

i=1

ln
(

1

σi
√

2π
exp

(
− (xi − x0i(θ))2

2σ 2
i

))

= −n
2

ln(2π ) +
n∑

i=1

(
− ln σi − (xi − x0i(θ))2

2σ 2
i

)
(11)

6. CRAMER-RAO LOWER BOUND AND FISHER INFORMATION MATRIX. The
Cramer-Rao lower bound (Van Trees, 2001) is expressed through the Fisher information
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matrix:

Var(θ) =

⎛
⎜⎜⎜⎜⎜⎝

E
(
λ̂ − ¯̂

λ
)2

E
(
λ̂ − ¯̂

λ
) (

μ̂ − ¯̂μ
)

E
(
λ̂ − ¯̂

λ
) (

ĥ − ¯̂h
)

E
(
μ̂ − ¯̂μ

) (
λ̂ − ¯̂

λ
)

E
(
μ̂ − ¯̂μ

)2
E
(
μ̂ − ¯̂μ

) (
ĥ − ¯̂h

)
E
(

ĥ − ¯̂h
) (

λ̂ − ¯̂
λ
)

E
(

ĥ − ¯̂h
) (

μ̂ − ¯̂μ
)

E
(

ĥ − ¯̂h
)2

⎞
⎟⎟⎟⎟⎟⎠ ≥ I−1

n (θ),

(12)
where E is the sign of mathematical expectation, λ̂, μ̂, ĥ are estimations of coordinates and
¯̂
λ, ¯̂μ, ¯̂h are the mathematical expectation of these estimations.

The Fisher information matrix is used for the estimation of measurement error. It is
shown for instance by Van Trees (2001) that the Fisher information matrix can be calculated
in two forms:

In(θ) = −E
(

∂2L(θ, x1, x2, . . . , xn)
∂θ2

)

= E

((
∂L(θ, x1, x2, . . . , xn)

∂θ

)(
∂L(θ, x1, x2, . . . , xn)

∂θ

)T
)

(13)

This equality takes place in the condition of the existence and absolute integrability of
the first and second derivatives. The matrix is written in the following form:

In(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
(

∂L
∂λ

∂L
∂λ

)
E
(

∂L
∂λ

∂L
∂μ

)
E
(

∂L
∂λ

∂L
∂h

)

E
(

∂L
∂μ

∂L
∂λ

)
E
(

∂L
∂μ

∂L
∂μ

)
E
(

∂L
∂μ

∂L
∂h

)

E
(

∂L
∂h

∂L
∂λ

)
E
(

∂L
∂h

∂L
∂μ

)
E
(

∂L
∂h

∂L
∂h

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

The matrix elements are in the following form:

E
(

∂L
∂λ

∂L
∂λ

)
= E

(
∂L (θ, x1, x2, . . . , xn)

∂λ

∂L (θ, x1, x2, . . . , xn)

∂λ

)

=
∫∫∫

xk
k=1...n

n∏
i=1

1

σi
√

2π
exp

(
− (xi − x0i(θ))2

2σ 2
i

)

∗
n∑

m=1

(
2(xm − x0m(θ))

2σ 2
m

∂x0m(θ)
∂λ

)

∗
n∑

j =1

(
2(xj − x0j (θ))

2σ 2
j

∂x0j (θ)
∂λ

)
dx1dx2 . . . dxk . . . dxn
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=
∫∫∫

xk
k=1...n

n∏
i=1

1

σi
√

2π
exp

(
− (xi − x0i(θ))2

2σ 2
i

)

∗
n∑

m=1

n∑
j =1

1
σ 2

mσ 2
j

(xm − x0m(θ))
(
xj − x0j (θ)

)

× ∂x0m(θ)
∂λ

∂x0j (θ)
∂λ

dx1dx2 . . . dxk . . . dxn

=
n∑

m=1

n∑
j =1

1
σ 2

mσ 2
j

∂x0m(θ)
∂λ

∂x0j (θ)
∂λ

∫∫∫
xk

k=1...n

n∏
i=1

1

σi
√

2π
exp

(
− (xi − x0i(θ))2

2σ 2
i

)

∗ (xm − x0m(θ))
(
xj − x0j (θ)

)
dx1dx2 . . . dxk . . . dxn (15)

Integration is carried out within infinite limits on every variable: x1, x2, . . . xk . . . xn,
1 ≤ k ≤ n. The integral is considered in more detail. Integration on every variable xk on
condition k �= m and k �= j gives unity (as the integral of the probability density function
within infinite limits). The multiple integral transforms into either a double integral for
k = m and k = j and m �= j on variables xm and xj , or a single integral for k = m = j .

In the first case, as a result of the integration, zero is obtained. In fact, after the change of
variables the integral reduces to the integration within infinite limits of an absolutely inte-
grable odd function. The function is odd due to the factors (xm − x0m(θ)) and (xj − x0j (θ)).
Thus:

E
(

∂L
∂λ

∂L
∂λ

)
=

n∑
k=1

1
σ 2

k σ 2
k

∂x0k(θ)
∂λ

∂x0k(θ)
∂λ

×
∫

xk

1

σk
√

2π
exp

(
− (xk − x0k(θ))2

2σ 2
k

)
(xk − x0k(θ))(xk − x0k(θ))dxk

=
n∑

k=1

1
σ 2

k σ 2
k

∂x0k(θ)
∂λ

∂x0k(θ)
∂λ

σ 2
k

=
n∑

k=1

1
σ 2

k

∂x0k(θ)
∂λ

∂x0k(θ)
∂λ

=
n∑

k=1

1
σ 2

k

(
∂x0k(θ)

∂λ

)2

(16)

Performing similar transformations with all elements of the matrix, the following Fisher
information matrix is obtained:

In(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
k=1

1
σ 2

k

(
∂x0k(θ)

∂λ

)2 n∑
k=1

1
σ 2

k

∂x0k(θ)
∂λ

∂x0k(θ)
∂μ

n∑
k=1

1
σ 2

k

∂x0k(θ)
∂λ

∂x0k(θ)
∂h

n∑
k=1

1
σ 2

k

∂x0k(θ)
∂μ

∂x0k(θ)
∂λ

n∑
i=k

1
σ 2

k

(
∂x0k(θ)

∂μ

)2 n∑
i=k

1
σ 2

k

∂x0k(θ)
∂μ

∂x0k(θ)
∂h

n∑
k=1

1
σ 2

k

∂x0k(θ)
h

∂x0k(θ)
∂λ

n∑
k=1

1
σ 2

k

∂x0k(θ)
∂h

∂x0k(θ)
∂μ

n∑
i=k

1
σ 2

k

(
∂x0k(θ)

∂h

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)
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Thus, it is necessary to determine the following derivatives to calculate the Fisher
matrix:

∂x0k(θ)
∂λ

,
∂x0k(θ)

∂μ
,
∂x0k(θ)

∂h
(18)

The map is now considered. Each point of the shoreline contour is presented as
two coordinates – longitude and latitude: Mi(μi, λi), Mi+1(μi+1, λi+1), Mi+2(μi+2, λi+2),
Mi+3(μi+3, λi+3) . . . Equations (1)–(3) are used to calculate the rectangular coordinates of
each point on the ellipsoid surface (for h = 0):⎧⎪⎨

⎪⎩
xi = N cos λ cos μ

yi = N cos λ sin μ,
zi = N

(
b2/a2

)
sin λ

(19)

where N – is the prime vertical.
The rectangular coordinates (X , Y, Z) of the projection centre Q of the camera are given

in Equation (1).
The relative coordinates of the points of the coastline with respect to the projection

centre are: ⎧⎪⎨
⎪⎩

x′
i = xi − X

y ′
i = yi − Y

z′
i = zi − Z

(20)

The coordinates of the projection of the map point on the CCD matrix are:{
ui = a(x′

ie31 + y ′
i e32 + z′

ie33)
vi = a(x′

ie21 + y ′
i e22 + z′

ie23)
, (21)

where:

a =
f
s

1
x′

ie11 + y ′
i e12 + z′

ie13
, (22)

s is the CCD matrix pixel size.
Thus, for each point of the map Mi(μi, λi), the coordinates of the point Pi(ui, vi) on the

CCD matrix are calculated. For each neighbouring pair of points Pi and Pi+1 from contours
on the CCD matrix, the vector orthogonal to this segment is found and normalised to 1:{


u = ui+1 − ui


v = vi+1 − vi
(23)

n∗
i =

(−(vi+1 − vi), ui+1 − ui
)

(24)

‖n∗
i ‖ =

√
(vi+1 − vi)2 + (ui+1 − ui)2 (25)

Thus, the normalised normal vector is obtained:

ni =
n∗

i

‖n∗
i ‖

= (ni1, ni2) (26)
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Since the displacements x0k are measured along the normal to the segments of the map,
wanted derivatives can now be written as scalar products (projections):

∂x0k(θ)
∂λ

= ni1
dui

dλ
+ ni2

dvi

dλ

∂x0k(θ)
∂μ

= ni1
dui

dμ
+ ni2

dvi

dμ

∂x0k(θ)
∂h

= ni1
dui

dh
+ ni2

dvi

dh

(27)

The derivatives in the right parts of equations are calculated at the middle points of the
segments. The derivatives are now found. For small δλ, δμ, δh, the basis vectors e1, e2, e3
are considered as fixed. This is a completely natural assumption when using star trackers.

First the derivative dui
dλ

is found:

ui =
f
s

x′
ie31 + y ′

i e32 + z′
ie33

x′
ie11 + y ′

i e12 + z′
ie13

(28)

dui

dλ
=

f
s

(
e31

d
dλ

x′
i + e32

d
dλ

y ′
i + e33

d
dλ

z′
i

) (
x′

ie11 + y ′
i e12 + z′

ie13
)

(
x′

ie11 + y ′
i e12 + z′

ie13
)2

− f
s

(
e11

d
dλ

x′
i + e12

d
dλ

y ′
i + e13

d
dλ

z′
i

) (
x′

ie31 + y ′
i e32 + z′

ie33
)

(
x′

ie11 + y ′
i e12 + z′

ie13
)2

(29)

The derivatives dui
dμ

, dui
dh will be obtained in the same way.

Similarly, the derivative dvi
dλ

is obtained:

vi =
f
s

x′
ie21 + y ′

i e22 + z′
ie23

x′
ie11 + y ′

i e12 + z′
ie13

(30)

dvi

dλ
=

f
s

(
e21

d
dλ

x′
i + e22

d
dλ

y ′
i + e23

d
dλ

z′
i

) (
x′

ie11 + y ′
i e12 + z′

ie13
)

(
x′

ie11 + y ′
i e12 + z′

ie13
)2

− f
s

(
e11

d
dλ

x′
i + e12

d
dλ

y ′
i + e13

d
dλ

z′
i

) (
x′

ie21 + y ′
i e22 + z′

ie23
)

(
x′

ie11 + y ′
i e12 + z′

ie13
)2

(31)

The derivatives dvi
dμ

, dvi
dh will be obtained in the same way.

Expressions for the derivatives on the right-hand side of the expressions are obtained:

d
dλ

x′
i = − d

dλ
X = (N + h) sin λ cos μ

d
dμ

x′
i = − d

dμ
X = (N + h) cos λ sin μ (32)

d
dh

x′
i = − d

dh
X = − cos λ cos μ

https://doi.org/10.1017/S0373463318000875 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000875


402 VLADIMIR A. GRISHIN VOL. 72

d
dλ

y ′
i = − d

dλ
Y = (N + h) sin λ sin μ

d
dμ

y ′
i = − d

dμ
Y = −(N + h) cos λ cos μ (33)

d
dh

y ′
i = − d

dh
Y = − cos λ sin μ

d
dλ

z′
i = − d

dλ
Z = −(Nb2/a2 + h) cos λ

d
dμ

z′
i = − d

dμ
Z = 0 (34)

d
dh

z′
i = − d

dh
Z = − sin λ

Thus, all the expressions needed for calculating the Fisher information matrix have been
obtained. The covariance matrix of navigation errors is obtained by inversion of the Fisher
information matrix.

7. RESULTS. An example of navigation errors estimation is given in Figure 10, which
shows Earth surface areas with superimposed coastlines (white line). The Earth images
were obtained by conversion of images from KMSS (Multispectral Imaging System Cam-
era) installed in the Meteor-M satellite. KMSS’s red and near infrared channel was used.
The dimension of the pixel projection on the Earth’s surface is about 600 × 600 metres.
Superimposition of the coastline was fulfilled during solution of the navigation task. The
navigation task was achieved by alignment of the shoreline map with the raster image of
the shoreline. The coordinates λ, μ and h which realise the best alignment are the solution
of the navigation task. The error matrices were recalculated from the degrees of latitude
and longitude in metres. Only segments whose length exceeded 15 pixels were used for
navigation and navigation errors estimation.

It can be seen that most of the shoreline segments in the last image are oriented in
the same direction. This circumstance led to a strong correlation of latitude and longi-
tude errors and an increase of altitude error. Error matrix calculation required less than ten
milliseconds. The programme used one core and one thread of an i7-3770 Intel processor.

8. INVERSION OF FISHER INFORMATION MATRIX. The covariance matrix of
the shoreline optical navigation errors is obtained by inversion of the Fisher information
matrix. Unfortunately, sometimes the shape of the observed shoreline leads to bad matrix
conditioning or matrix singularity. The omission of such measurements is a bad idea, how-
ever. The reason is that a shoreline with high stability and exactly known locations is rare
enough and every effort to obtain navigation information must be made.

The inclusion of the inertial navigation subsystem into the navigation system and a com-
petent solution to the problem of navigation information integration allows the utilisation
of a measurement with a singular Fisher information matrix.

It is stated by Li and Yeh (2012) that Moore-Penrose pseudo-inversion is optimal for a
singular or badly conditioned Fisher information matrix. For verification of this statement
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Figure 10. Coastlines and navigation error matrices.

the Fisher information matrix was calculated for a straight-line artificial shoreline. The
results of the calculations confirmed the conclusions of this article.

9. BIAS OF ATTITUDE ESTIMATION. It can be shown that altitude estimates from
the shoreline map will have a bias. There are two ways to take this effect into account. The
first way supposes the inclusion of bias into the error estimation. The second way supposes
the calculation of this bias and its compensation. From the application point of view, the
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second way is preferable. An analysis of the methods for calculating altitude corrections
will be covered in future work.

10. CONCLUSIONS. Visual shoreline navigation is one of many possible additional
sources of navigation information in a GNSS-denied environment. A feature of visual
shoreline navigation is the severe variability of navigation errors depending on the shape of
the observed shoreline, the distance and the angle of observation. The Cramer-Rao lower
bound for shoreline visual navigation errors is proposed to use as the navigation error
covariance matrix. This bound is determined through errors of localisation of any shoreline
segment which is used for calculating position of aircraft or spacecraft. Shoreline segment
error localisation is estimated through analysis of each individual brightness profile of a
border segment between ocean and land. The presented method of lower bound estimation
is intended for on board real-time estimation of navigation errors for any processed cadre
of information which is used for shoreline navigation.
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