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Abstract

Inspired by work of Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb. 23
(2019), 249–254] on the minimal excludant or ‘mex’ of partitions, we define four new classes of minimal
excludants for overpartitions and establish relations to certain functions due to Ramanujan.
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1. Introduction

Given an integer partition π, the minimal excludant of π is defined to be the smallest
positive integer that is not a part of π. This partition statistic seems to have been first
considered by Grabner and Knopfmacher [12] in 2006, who call it the least gap. They
obtained the result that the sum of the minimal excludants over all partitions of n is
equal to the number of partitions of n into distinct parts with two colours. In 2019,
Andrews and Newman introduced the terminology ‘minimal excludant’ or ‘mex’ of
an integer partition function and initiated the study of the connections of the mex to
other partition theoretic objects and statistics. This statistic was also reported earlier in
2011 by Andrews [3], where he relates the minimal excludant, then called the smallest
part of a partition that is not a summand, to the Frobenius symbol representation of
partitions.

In the first of two papers, Andrews and Newman [5] considered σ mex(n), the sum
of mex(π) taken over all partitions π of n. Among other results, they rediscovered the
result of Grabner and Knopfmacher. Aricheta and Donato [8] extended this concept to
overpartitions. To recall, an overpartition is a partition in which the first occurrence
of a number may be overlined [9]. Aricheta and Donato define the minimal excludant
or mex of an overpartition π, denoted by mex(π), to be the smallest positive integer
that is not a part of the nonoverlined parts of π. For a positive integer n, they define
σmex(n) to be the sum of the minimal excludants over all overpartitions π of n and
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prove that σmex(n) equals the number of partitions of n into distinct parts using three
colours [8, Theorem 1.1].

In the second paper on the minimal excludant statistic, Andrews and Newman [6]
defined an extended function of their minimal excludant and explored relations of this
extended mex function to other well-studied partition statistics such as the rank and
crank. The connection between the mex and the crank was independently made by
Hopkins and Sellers [14] in the same year. In [10], we studied generalised versions
of these relations by calculating the generating function of the general case of the
extended minimal excludant of Andrews and Newman. At the end of that paper [10,
Section 4], we defined a new minimal excludant for overpartitions which, to our
surprise, was related to a function of Ramanujan. In this paper, we continue our study
on minimal excludants of overpartitions and their relations to two fifth-order mock
theta functions and some other q-series of Ramanujan.

Let L, m, n be nonnegative integers. Throughout the paper, we use the following
standard notation [2]:

(a)L = (a; q)L :=
L−1∏
k=0

(1 − aqk); (a)∞ = (a; q)∞ := lim
L→∞

(a)L where |q| < 1.

We define the q-binomial coefficient by

[m
n

]
q

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(q)m

(q)n(q)m−n
for m ≥ n ≥ 0,

0 otherwise.

Let P(q) = (−q)∞/(q)∞ and Po(q) = (−q; q2)∞/(q; q2)∞ denote the generating func-
tions of overpartitions and overpartitions into odd parts, respectively.

We define four new classes of minimal excludants of overpartitions with an example
for each. The first of these minimal excludants appears in our previous paper [10,
Section 4].

We believe that there are more interesting classes of minimal excludants for
overpartitions to be discovered, and further relations to other mock theta functions
and interesting q-series. While not all definitions lead to interesting results, our results
suggest that a systematic complete study is warranted.

1.1. Four overpartition mex statistics

DEFINITION 1.1. For an overpartition π, let omex(π) be the smallest positive integer
that is not a part (overlined or nonoverlined) of π.

REMARK 1.2. The minimal excludant in Definition 1.1 differs from that considered
by Aricheta and Donato because their mex is the smallest part missing from the
nonoverlined parts of the partition.
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EXAMPLE 1.3. From the two overpartitions

π1 = 5 + 4 + 4 + 2 + 1, π2 = 10 + 8 + 5 + 3 + 2 + 1,

we have omex(π1) = 3 and omex(π2) = 4.

Let m(n) denote the number of overpartitions π of n having the property that no
positive integer less than omex(π) is overlined. As an example, the eight overpartitions
of 3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

The overpartitions π ∈ {3, 3, 2 + 1, 1 + 1 + 1} have the stated property and hence,
m(3) = 4. Define

M(q) =
∞∑

n=0

m(n)qn.

DEFINITION 1.4. For an overpartition π into odd parts, let omoex(π) be the smallest
positive odd integer which is not a part (overlined or nonoverlined) of π.

EXAMPLE 1.5. From the overpartitions

π3 = 7 + 7 + 3 + 1, π4 = 7 + 7 + 5 + 3 + 1,

we have, omoex(π3) = 5 and omoex(π4) = 9.

Let mo(n) denote the number of overpartitions π of n into odd parts having the
property that no positive integer less than omoex(π) is overlined. For example, for
n = 3, the overpartitions π ∈ {3, 3, 1 + 1 + 1} have the stated property and, hence,
mo(3) = 3. Define

Mo(q) =
∞∑

n=0

mo(n)qn.

For our other two classes of overpartition mexes, we define an ordering on the
parts of an overpartition π, where every nonoverlined part is smaller than its overlined
counterpart, that is,

1 < 1 < 2 < 2 < 3 < 3 < · · · .

In the two definitions that follow, we use a ∼ symbol to denote the minimal excludant
taken over overpartitions with this ordering on the parts.

DEFINITION 1.6. For an overpartition π where we take into consideration the ordering
on the parts, let õmex(π) be the smallest overlined positive integer which is not a part
of π.

EXAMPLE 1.7. From the overpartitions

π5 = 5 + 3 + 2 + 1, π6 = 7 + 7 + 5 + 3 + 2 + 1,

we have õmex(π5) = 1 and õmex(π6) = 3.

https://doi.org/10.1017/S0004972724001321 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724001321


4 A. Dhar, A. Mukhopadhyay and R. Sarma [4]

Let m̃(n) denote the number of overpartitions π of n having the property that all
overlined and nonoverlined parts smaller than õmex(π) occur as parts. For example,
for n = 3, the overpartitions π ∈ {2 + 1, 2 + 1, 1 + 1 + 1} have the stated property and,
hence, m̃(3) = 3. Define

M̃(q) =
∞∑

n=0

m̃(n)qn.

DEFINITION 1.8. For an overpartition π into odd parts where we once again take into
consideration the ordering on the parts, let ˜omoex(π) be the smallest overlined positive
odd integer which is not a part of π.

EXAMPLE 1.9. From the overpartitions

π7 = 5 + 3 + 3 + 1, π8 = 11 + 7 + 5 + 3 + 3 + 1,

we have ˜omoex(π7) = 7 and ˜omoex(π8) = 9.

Let m̃o(n) denote the number of overpartitions of n into odd parts having the
property that all overlined and nonoverlined parts smaller than ˜omoex(π) occur as
parts. For example, the only overpartition of 3 that has the stated property is 1 + 1 + 1
and, hence, m̃o(3) = 1. Define

M̃o(q) =
∞∑

n=0

m̃o(n)qn.

1.2. Two arithmetic mex functions. Finally, analogous to the arithmetic function

σmex(n) =
∑
π�n

mex(π)

over partitions π of n considered by Andrews and Newman, we study the following
two analogous sums of our first two minimal excludants of overpartitions introduced
in Definitions 1.1 and 1.4. To that end, let us consider the sum

σomex(n) =
∑
π�n

omex(π)

taken over all overpartitions π of n. Define M(z, q) to be the double series in which the
coefficient of zmqn is the number of overpartitions π of n with omex(π) = m and let

σM(q) =
∑
n≥0

σomex(n)qn.

Again, we consider the sum

σomoex(n) =
∑
π�n

omoex(π)
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taken over all overpartitions π of n into odd parts. Define Mo(z, q) to be the double
series in which the coefficient of zmqn is the number of overpartitions π of n into odd
parts with omoex(π) = m and let

σMo(q) =
∑
n≥0

σomoex(n)qn.

2. Main results

In this section, we present the statements of our results. Theorem 2.1 below is also
stated and proved in our paper [10]. We have included the statement of the result here
for the sake of completeness.

THEOREM 2.1 [10, Theorem 30]. We have M(q) = P(q)(2 − R(q)), where

R(q) =
∞∑

n=0

qn(n+1)/2

(−q)n
= 1 +

∞∑
n=1

(−1)n−1qn(q)n−1 = (q)∞ + 2(q)∞
∞∑

n=1

qn

(q)n(1 + qn)
.

REMARK 2.2. The first two q-series representations of R(q) are due to Ramanujan [16]
and the last representation is due to Gupta [13, (1.11)]. Andrews [1] studied R(q) in
connection with identities from Ramanujan’s ‘Lost’ Notebook. Conjectures made by
Andrews in his paper on the distribution of the coefficients of R(q) were proved by
Andrews et al. [4].

THEOREM 2.3. We have Mo(q) = Po(q)(1 − F(−q)), where

F(q) =
∞∑

n=1

(−1)nqn2

(q; q2)n
.

REMARK 2.4. Consider partitions into odd parts, with the property that if k occurs as a
part, then all positive odd numbers less than k also occur. Then, F(q) is the generating
function for the number of such partitions where the largest part is congruent to 3
modulo 4 minus the number of such partitions, where the largest part is congruent to
1 modulo 4. See [4, Section 5] for a treatment of F(q), which is a companion function
to R(q).

THEOREM 2.5. We have M̃(q) = P(q)( f0(q) − 1), where

f0(q) =
∞∑

n=0

qn2

(−q)n

is a fifth-order mock theta function of Ramanujan.

https://doi.org/10.1017/S0004972724001321 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724001321


6 A. Dhar, A. Mukhopadhyay and R. Sarma [6]

THEOREM 2.6. We have M̃o(q) = qPo(q)F1(−q), where

F1(q) =
∞∑

n=0

q2n2+2n

(q; q2)n+1

is a fifth-order mock theta function of Ramanujan.

REMARK 2.7. Ramanujan’s mock theta functions are examples of mock modular
forms. The functions of M̃(q) and M̃o(q) are mixed mock modular forms and possess
interesting properties. See [15] for a treatment of mixed mock modular forms.

In the next theorem, we relate our sum of mex function σM(q) to a q-series which
comprises a sum of tails formed by discarding the initial terms of a certain q-series.

THEOREM 2.8. We have

σM(q) = P(q)
(
R(q) − 2(q)∞

∞∑
n=0

qn

(q)n(1 + qn)
Gn(q)

)
,

where Gn(q) is the q-series tail given by

Gn(q) =
∞∑

i=n+1

qi

1 + qi .

THEOREM 2.9. We have

σMo(q) = Po(q)
(
1 + q

∞∑
n=1

(−1)n(q2; q2)nqnHn(q2)
)
,

where the partial sum

Hn(q) =
n∑

i=1

qi

1 − qi

is the q-analogue of the harmonic number Hn =
∑n

i=1 1/i.

REMARK 2.10. The q-harmonic series Hn(q) are partial sums of the generating
function of the divisor function given by

∞∑
i=1

d(i)qi =

∞∑
i=1

qi

1 − qi =

∞∑
i=1

(−1)i−1qi(i+1)/2

(1 − qi)(q; q)i
.

Interesting formulae for harmonic and q-harmonic numbers Hn and Hn(q) were
re-established by Andrews and Uchimura in [7] using differentiation of classical
hypergeometric series. One such formula relevant to this discussion is the finite
analogue of the generating function of the divisor function,

Hn(q) =
n∑

i=1

qi

1 − qi =

n∑
i=1

(−1)i−1

1 − qi qi(i+1)/2
[n
i

]
q
.
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3. Proofs of the main results

In this section, we provide proofs of our results. We follow the notation of Gasper
and Rahman [11]. The unilateral basic hypergeometric series rφr−1 with base q and
argument z is defined by

rφr−1

(a1, . . . , ar
b1, . . . , br−1

; q, z
)

:=
∞∑

k=0

(a1, . . . , ar; q)k

(q, b1, . . . , br−1; q)k
zk, |z| < 1.

We also need the q-binomial theorem:

1φ0

(a
−

; q, z
)
=

∞∑
k=0

(a; q)k

(q; q)k
zk =

(az; q)∞
(z; q)∞

, |z| < 1, (3.1)

and Heine’s 2φ1 transformation: for |z| < 1 and |b| < 1,

2φ1

(a, b
c

; q, z
)
=

(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2φ1

(c/b, z
az

; q, b
)
. (3.2)

Finally, we will also make use of the following simple identity [10, (3)] obtained from
a 1φ1 summation of Gasper and Rahman:

∞∑
n=0

znqn(n−1)/2

(−zq; q)n
= 1 + z. (3.3)

PROOF OF THEOREM 2.3. By standard combinatorial arguments,

Mo(q) =
∞∑

n=0

mo(n)qn =

∞∑
n=1

q1+3+···+(2n−3)∏∞
m=n+1(1 + q2m−1)∏∞

m=1
m�n

(1 − q2m−1)

=
(−q; q2)∞
(q; q2)∞

∞∑
n=1

q(n−1)2
(1 − q2n−1)

(−q; q2)n

=
(−q; q2)∞
(q; q2)∞

[ ∞∑
n=1

q(n−1)2

(−q; q2)n
−
∞∑

n=1

qn2

(−q; q2)n

]

= Po(q)(1 − F(−q)),

where the last line follows by replacing q 	→ q2 and substituting z = q in (3.3). �

PROOF OF THEOREM 2.5. By standard combinatorial arguments,

M̃(q) =
∞∑

n=1

m̃(n)qn =

∞∑
n=1

q1+1+2+2+···+(n−1)+(n−1)+n∏∞
m=n+1(1 + qm)∏∞

m=1(1 − qm)

=
(−q)∞
(q)∞

∞∑
n=1

qn2

(−q)n
= P(q)[ f0(q) − 1]. �
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PROOF OF THEOREM 2.6. By standard combinatorial arguments,

M̃o(q) =
∞∑

n=1

m̃o(n)qn =

∞∑
n=1

q1+1+3+3+···+(2n−3)+(2n−3)+(2n−1)∏∞
m=n+1(1 + q2m−1)∏∞

m=1(1 − q2m−1)

=
(−q; q2)∞
(q; q2)∞

∞∑
n=1

q2n2−2n+1

(−q; q2)n
=

(−q; q2)∞
(q; q2)∞

∞∑
n=0

q2n2+2n+1

(−q; q2)n+1

= qPo(q)F1(−q). �

PROOF OF THEOREM 2.8. In the q-series transformations, we use Heine’s 2φ1
transformation and the following identity due to Gupta [13, (1.15)], valid for any c ∈ R
and |t| < 1:

∑
n=0

cn((t)n − (t)∞) = (t)∞
∞∑

n=1

tn

(q)n(1 − cqn)
. (3.4)

Proceeding with the proof of our theorem,

M(z, q) =
∞∑

n=1

znq1+2+···+(n−1)∏∞
m=n+1(1 + qm)∏∞

m=1
m�n

(1 − qm)
=

(−q)∞
(q)∞

∞∑
n=1

znqn(n−1)/2(1 − qn)
(−q)n

= P(q)
[ ∞∑

n=0

znqn(n−1)/2

(−q)n
−
∞∑

n=0

znqn(n+1)/2

(−q)n

]
.

Thus,

σM(q) =
∂

∂z

∣∣∣∣∣
z=1

M(z, q),= P(q)[A(q) − B(q)],

where

A(q) =
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znqn(n−1)/2

(−q)n
=
∂

∂z

∣∣∣∣∣
z=1

lim
τ→0

2φ1

(−1/τ, q
−q

; q, zτ
)

=
∂

∂z

∣∣∣∣∣
z=1

lim
τ→0

(q)∞(−z)∞
(−q)∞(zτ)∞

2φ1

(−1, zτ
−z

; q, q
)

(using (3.2) with (a, b, c, z) 	→ (−1/τ, q,−q, zτ))

=
∂

∂z

∣∣∣∣∣
z=1

(q)∞
(−q)∞

∞∑
n=0

(−1)n(−zqn)∞qn

(q)n
= 2(q)∞

∞∑
n=0

qn

(q)n

∞∑
i=n

qi

1 + qi

= 2(q)∞
∞∑

n=1

qn

(q)n

∞∑
i=n

qi(−q)i−1

(−q)i
+ 2(q)∞

∞∑
i=0

qi

1 + qi
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= 2(q)∞
∞∑

n=1

q2n

(q)n

∞∑
i=0

qi(−q)i+n−1

(−q)i+n
+ 2(q)∞

∞∑
i=0

qi

1 + qi

= 2(q)∞
∞∑

n=1

q2n(−q)n−1

(q)n(−q)n
2φ1

(q,−qn

−qn+1 ; q, q
)
+ 2(q)∞

∞∑
i=0

qi

1 + qi

= 2(q2)∞
∞∑

n=1

q2n

(q)n

∞∑
i=0

(−1)i(q)iqni

(q2)i
+ 2(q)∞

∞∑
i=0

qi

1 + qi

(using (3.2) with (a, b, c, z) 	→ (q,−qn,−qn+1, q) in the first double sum)

= 2(q2)∞
∞∑

i=0

(−1)i(q)i

(q2)i

∞∑
n=1

q(i+2)n

(q)n
+ 2(q)∞

∞∑
i=0

qi

1 + qi

= 2(q2)∞
∞∑

i=0

(−1)i(q)i

(q2)i

[ 1
(qi+2)∞

− 1
]
+ 2(q)∞

∞∑
i=0

qi

1 + qi

(using (3.1) with (a, z) 	→ (0, qi+2) in the first double sum)

= 2
∞∑

n=0

(−1)n(q)n(1 − (qn+2)∞) + 2(q)∞
∞∑

n=0

qn

1 + qn

= 2
∞∑

n=0

(−1)n(q)n(1 − (qn+2)∞) + 2(q)∞
∞∑

r=0

(−1)rqr+1

1 − qr+1 + (q)∞

= 2
∞∑

n=0

(−1)n(q)n(1 − (qn+2)∞) + 2
∞∑

n=0

(−1)nqn+1(q)n(qn+2)∞ + (q)∞

= 2
∞∑

n=0

(−1)n((q)n − (q)∞) + (q)∞ = 2(q)∞
∞∑

n=1

qn

(q)n(1 + qn)
+ (q)∞

(using (3.4) with (c, t) 	→ (−1, q))
= R(q),

and

B(q) =
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znqn(n+1)/2

(−q)n

=
∂

∂z

∣∣∣∣∣
z=1

lim
τ→0

∞∑
n=0

(−q/τ)nznτn

(−q)n

=
∂

∂z

∣∣∣∣∣
z=1

lim
τ→0

2φ1

(−q/τ, q
−q

; q, zτ
)

=
∂

∂z

∣∣∣∣∣
z=1

lim
τ→0

(q)∞(−zq)∞
(−q)∞(zτ)∞

2φ1

(−1, zτ
−zτ

; q, q
)

(using (3.2) with (a, b, c, z) 	→ (−q/τ, q,−q, zτ) in the first double sum)
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=
∂

∂z

∣∣∣∣∣
z=1

(q)∞
(−q)∞

∞∑
n=0

(−1)n(−zqn+1)∞qn

(q)n

=
(q)∞

(−q)∞

∞∑
n=0

(−1)n(−qn+1)∞qn

(q)n

∞∑
i=n+1

qi

1 + qi

= 2(q)∞
∞∑

n=0

qn

(q)n(1 + qn)

∞∑
i=n+1

qi

1 + qi .

This gives the desired result. �

PROOF OF THEOREM 2.9. We have

Mo(z, q) =
∞∑

n=1

znq1+3+···+(2n−3)∏∞
m=n+1(1 + q2m−1)∏∞

m=1
m�n

(1 − q2m−1)
=

(−q; q2)∞
(q; q2)∞

∞∑
n=1

znq(n−1)2
(1 − q2n−1)

(−q; q2)n

= Po(q)
[ ∞∑

n=1

znq(n−1)2

(−q; q2)n
−
∞∑

n=1

znqn2

(−q; q2)n

]
.

Thus,

σMo(q) =
∂

∂z

∣∣∣∣∣
z=1

Mo(z, q) = Po(q)[C(q) − D(q)],

where

C(q) =
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=1

znq(n−1)2

(−q; q2)n
=
∂

∂z

∣∣∣∣∣
z=1

z
∞∑

n=0

znqn2

(−q; q2)n+1

=

∞∑
n=0

qn2

(−q; q2)n+1
+ z
∂

∂z

∣∣∣∣
z=1

∞∑
n=0

znqn2

(−q; q2)n+1

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znqn2

(−q; q2)n+1

(using (3.3) with (z, q) 	→ (q, q2) in the first sum)

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znqn2
(q2; q2)n

(q2; q2)n(−q; q2)n+1

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞
(−q; q2)∞

∞∑
n=0

znqn2
(−q2n+3; q2)∞

(q2; q2)n(q2n+2; q2)∞

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞
(−q; q2)∞

∞∑
n=0

znqn2

(q2; q2)n

∞∑
m=0

(−q; q2)mq(2n+2)m

(q2; q2)m

(using (3.1) with (a, z, q) 	→ (−q, q2n+2, q2))
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= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m

(q2; q2)m

∞∑
n=0

znqn2+2mn

(q2; q2)n

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m(−zq2m+1; q2)∞
(q2; q2)m

(using [2, (2.2.6)] with (z, q) 	→ (zq2m+1, q2))

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞(−zq; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m

(q2; q2)m(−zq; q2)m

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞(−zq; q2)∞
(−q; q2)∞

2φ1

(−q, 0
−zq

; q2, q2
)

= 1 + z
∂

∂z

∣∣∣∣∣
z=1

2φ1

(z, q2

0
; q2,−q

)

(using (3.2) with (a, b, c, z, q) 	→ (−q, 0,−zq, q2, q2))

= 1 −
∞∑

n=1

(−1)n(q2; q2)n−1qn.

Then,

C(−q) = 1 −
∞∑

n=1

(q2; q2)n−1qn = 1 − q lim
c→0

2φ1

(q2, q2

c
; q2, q

)

= 1 − q lim
c→0

(c/q2; q2)∞(q3; q2)∞
(c; q2)∞(q; q2)∞

2φ1

(q5/c, q2

q3 ; q2, c/q2
)

(using (3.2) with (a, b, c, z, q) 	→ (q2, q2, c, q, q2))

= 1 −
∞∑

n=0

(−1)nq(n+1)2

(q; q2)n+1
= 1 + F(q),

which gives C(q) = 1 + F(−q) and

D(q) =
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=1

znqn2

(−q; q2)n
=
∂

∂z

∣∣∣∣∣
z=1

z
∞∑

n=0

znq(n+1)2

(−q; q2)n+1

=

∞∑
n=0

q(n+1)2

(−q; q2)n+1
+ z
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znq(n+1)2

(−q; q2)n+1

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znq(n+1)2

(−q; q2)n+1

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

∞∑
n=0

znq(n+1)2
(q2; q2)n

(q2; q2)n(−q; q2)n+1
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= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

(q2; q2)∞
(−q; q2)∞

∞∑
n=0

znq(n+1)2
(−q2n+3; q2)∞

(q2; q2)n(q2n+2; q2)∞

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

q(q2; q2)∞
(−q; q2)∞

∞∑
n=0

znqn2+2n

(q2; q2)n

∞∑
m=0

(−q; q2)mq(2n+2)m

(q2; q2)m

(using (3.1) with (a, z, q) 	→ (−q, q2n+2, q2))

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

q(q2; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m

(q2; q2)m

∞∑
n=0

znqn2+2mn+2n

(q2; q2)n

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

q(q2; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m(−zq2m+3; q2)∞
(q2; q2)m

(using [2, (2.2.6)] with (z, q) 	→ (zq2m+3, q2))

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

q(q2; q2)∞(−zq3; q2)∞
(−q; q2)∞

∞∑
m=0

(−q; q2)mq2m

(q2; q2)m(−zq3; q2)m

= F(−q) + z
∂

∂z

∣∣∣∣∣
z=1

q(q2; q2)∞(−zq3; q2)∞
(−q; q2)∞

2φ1

(−q, 0

−zq3 ; q2, q2
)

= F(−q) + z
∂

∂z

∣∣∣∣
z=1

q2φ1

(zq2, q2

0
; q2,−q

)

(using (3.2) with (a, b, c, z, q) 	→ (−q, 0,−zq3, q2, q2))

= F(−q) − q
∞∑

n=1

(−1)n(q2; q2)nqn
n∑

i=1

q2i

1 − q2i .

This gives the desired result. �
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