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Abstract
Drought is the major abiotic constraint to the rice production in the rain-fed areas across Asia and
sub-Saharan Africa. Wild species of Oryza offer a wide spectrum of adaptive traits and can serve as
potential donors of biotic and abiotic stress tolerance. At the Punjab Agricultural University, we are
maintaining an active collection of 1630 accessions of wild species germplasm (AA, CC, BBCC and
CCDD) of rice. These accessions were screened to assess genetic variation for drought tolerance
under field conditions. Severe water stress was imposed at the late vegetative stage by withholding
water initially for 25 d and then extended further to 35 d during kharif season in the years 2013–14
and 2015–16. The tolerance score for drought stress was based on the extent of leaf rolling and leaf
drying. Based on the 2 years’ data, seven accessions from Oryza rufipogon, four from Oryza long-
istaminata and one each from Oryza officinalis and Oryza latifoliawere found tolerant to drought
stress. These selected accessions were further phenotype for root morphology. The average root
length among the selected accessions ranges between 36 and 80 cm and the number of primary
roots vary from 30 to 87 cm. TheO. rufipogon accession IRGC 106433,O. longistaminata accession
IRGC 92656A, O. officinalis accession IRGC 101152 and O. latifolia accession IRGC 80769 showed
approximately 2–2.5 times longer root length and number than the indica rice elite cultivar PR121.
The results indicated potentiality of selected wild species germplasm for conferring drought
tolerance to the elite cultivars.
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Introduction

Drought is one of the most devastating abiotic stress of rice
under rain-fed ecosystem, reducing crop yield up to 50%.
Approximately, 34 million hectares (Mha) of rain-fed low-
land and 8 Mha of upland rice in Asia suffers from drought
stress of varying intensities almost every yearwith 13.6 Mha
area affected in India alone (Wopereis et al., 1996; Singh
et al., 2016a, b). Developing rice cultivars with an inherent
capacity to tolerate drought stress is one of the most

promising ways for having sustainable yield under rain-fed
environment. Drought tolerance is a complex trait gov-
erned by many physiological and biochemical properties
of plants. Genotypes that have deep, coarse roots with
a high ability of branching and penetration, higher
root-to-shoot ratio, elasticity in leaf rolling, early stomatal
closure and cuticular resistance are reported as component
traits of drought avoidance (Blum, 1988; Samson et al.,
2002; Wang and Yamauchi, 2006). Leaf rolling is one of
the drought avoidancemechanism to prevent water deficits
during drought stress. Loresto and Chang (1981) have also
suggested leaf rolling as a criterion for scoring drought tol-
erance in tall and semi-dwarf rice cultivars. Severity of leaf*Corresponding author. E-mail: kneelam@pau.edu
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rolling as well as leaf drying increased with duration of
drought stress. Leaf rolling during stress reduces the leaf
surface exposure to sunlight energy and decrease transpir-
ation leading to the closure of stomata, so that gaseous
exchange and CO2 entry into cells are reduced and photo-
synthesis is decreased. Many quantitative trait loci (QTLs)
were mapped for secondary traits (Nguyen et al., 2004;
Ding et al., 2011; Uga et al., 2013) from the cultivated
gene pool but none from wild species germplasm of rice.
Wild species of rice constitute valuable resources for
genes/alleles and QTLs for resistance to biotic and abiotic
stresses and for enhancing the productivity of modern cul-
tivars (Brar and Khush, 1997; Brar and Singh, 2011; Singh
et al., 2016a, b). Only a few reports on the screening or util-
ization of wild species of rice in improving drought toler-
ance are available (Liu et al., 2004; Zhang et al., 2006;
Feng et al., 2012). Keeping in view the above-said need
of exploring new resources, the objectives of the present
study is to assess genetic variation in component traits of
drought among wild species germplasm of Oryza under
water deficit.

Material and methods

Materials

A set of 1630 wild species germplasm of Oryza be-
longing to O. sativa and O. officinalis complex were
screened for their vegetative stage drought tolerance
(online Supplementary Table S1). These germplasm acces-
sions were originally procured either from the International
Rice Research Institute (IRRI), Philippines, or from the
National Rice Research Institute (NRRI), Cuttack, and
being actively maintained at the Punjab Agricultural
University (PAU), Ludhiana.

Methods

Screening for drought tolerance at vegetative
stage

(a) Phenotyping for leaf rolling and leaf drying
The experiment was conducted in the field area of the
School of Agricultural Biotechnology, Punjab Agricultural
University, Ludhiana (30°54′ and 75°48′E) during the khar-
if crop season (May to November), 2013–2014 and 2015–
16. The soil is clayey loam with soil pH ranging from 7.8
to 8.5.The seeds of all wild genotypes were sown on raised
beds. Twenty-five days old seedlings were transplanted in
the field along with the susceptible check PR121. The plot
size consisted of a single row per accession with six plants
each. The plant-to-plant distance was 30 cm with 60 cm
row-to-row. After crop season was over, the plants were

left in the field as ratoon. In the next year, severe water
stress was imposed at vegetative stage by withholding
water initially for 25 d and then extended further to 35 d
during the month of May to June. The drought condition
was also ensured with the climate, temperature profile re-
corded above 40o continuously from 15 to 35 d during the
drought period. At the termination of the experiment, soil
moisture content (%) was recorded at four randomly cho-
sen sites in the field. Soil samples were collectedwith screw
augor from different depth and soil moisture content was
determined in soil samples taken from consecutive depths
of 0.15 cm down to a depth of 60.9 cm (A, B, C and D) in
the field. To determine soil moisture content, soil samples
were taken into moisture box. Initial weight of moisture
box (empty) and with fresh soil was recorded separately.
Then, the moisture boxes with fresh soil samples were
kept into oven at 60o till the constant weight is attained.
The calculations were done as per given formula: % mois-
ture on dry weight basis = [(B–A)–(C–A)]/(C–A) × 100, where,
A = weight of empty moisture box (in gm), B =weight of
moisture box with fresh soil (gm), C = weight of moisture
box with dry soil (gm), B–A =weight of fresh soil,
C–A =weight of dry soil, [(B–A)–(C–A) = (B–C)] = weight
of water in the soil.

Data on leaf rolling and leaf drying were recorded after
25 and 35 d of water stress (online Supplementary
Table S2) between 12 and 2 PM using themodified protocol
of Datta et al. (1988). The genotypes that showed a score
range of 2– 3 after 25 d of water stress were considered
as susceptible and highly susceptible, respectively.The
plants with no leaf rolling and leaf drying were scored as
zero.

(b) Root phenotyping
In order to study root morphology, selected drought-
tolerant accessions along with drought-susceptible indica
cultivar Punjab Rice 121 (PR121) were grown in basket
mesh kept above water-filled buckets under glass house.
The experiment was set up in two replications. Root phe-
notyping was done using plastic mesh baskets (width ×-
depth: 18 × 8 cm) method. The baskets were filled with
soil in a green house (average air temperature 35°C, aver-
age humidity, 50–60% and natural light) and were kept on
the top of a bucket (width × depth: 18 × 18 cm) filled with
water. Sufficient water level was maintained for creating an
anaerobic condition. The observations on root length and
number of primary roots were taken after 3 months of ex-
perimental setup and were analysed using one-way ana-
lysis of variance followed by Dunnett’s multiple
comparison test using GraphPad Prism version 7.00,
GraphPad Software, La Jolla California USA, (www.graph-
pad.com).

K. Neelam et al.290

https://doi.org/10.1017/S1479262117000284 Published online by Cambridge University Press

http://www.graphpad.com
http://www.graphpad.com
https://doi.org/10.1017/S1479262117000284


Results

The average moisture content of four randomly chosen
sites and at a depth of 0.15, 15.3, 30.6 and 60.9 cm was
found 3.52, 5.51, 8.02 and 8.66%, respectively, in the year
2013–2014 and these value corresponds to 2.58, 4.25, 7.62
and 8.36% in the year 2015–16. Soil moisture conditions
coupled with high temperature (above 40°C) were suffi-
cient to induce the severe water deficit conditions.

Out of 1630 wild species germplasm screened, only 13
were found tolerant after 35 d of severe water stress
(Table 1; online Supplementary Table S3; Fig. 1). Out of
1369 accessions from O. sativa complex under study,
only 11 accessions (seven from Oryza rufipogon and four
accessions from Oryza longistaminata) were found toler-
ant to drought with a leaf-rolling score of zero. Among
these 11 accessions of O. sativa complex, slight tip drying
was observed in three accessions of O. rufipogon namely,
IRGC 81802, IRGC 89006 and IRGC 89012. Among 126

accessions of O. longistaminata under study, only four ac-
cessions (three accessions from Mali and one accession
from Ethopia) showed tolerance to water stress. In case
of O. officinalis complex, out of total 261 accessions, two
accessions, one each from O. officinalis (accession no.
IRGC 101152 from Brunei) and Oryza latifolia (accession
no. IRGC 80769 from France) showed the tolerant reaction.

The mean number of roots and root length recorded for
drought-susceptible indica rice PR121 was 42.5 and 31.5
cm, respectively (Table 1; Fig. 2, online Supplementary
Fig. S1). Among O. rufipogon accessions, IRGC 106433
showed nearly two times higher root number (81.0 ± 1.4)
than PR121, followed by CR 100375 (74.0 ± 1.4). Three of
the accessions though had a comparable number of
mean root number, but had root length almost 2–2.5
times higher than PR121. Sufficient variation was observed
for root number (30– 79) and root length (36 cm–68.5 cm)
among selected O. longistaminata accessions. The O. offi-
cinalis acc. IRGC 101152 has the highest mean number of

Fig. 1. Phenotypic evaluation of wild species germplasm of rice under field condition (a, b); the Oryza rufipogon accession
IRGC 106433 with no leaf rolling and tip drying (c); the O. rufipogon accession IRGC 89012 with no leaf rolling, but slight
tip burning after 35 d of water stress (d).
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Table 1. Leaf and root morphology of identified drought-tolerant accession along with their countries of origin

Sr. no. Wild species Origin

Leaf morphology Root morphology

Leaf tip drying Leaf rolling

Mean root no. Mean root length (cm)25 DAS* 35 DAS 25 DAS 35 DAS

1 Oryza sativa cv. PR121 India 9 9 9 9 42.5a ± 6.4 31.5a ± 2.1
2 Oryza rufipogon (#CR 100375) India 0 0 0 0 74.0cd ± 1.4 63.0c ± 1.4
3 O. rufipogon (IRGC 81802) Indonesia 0 1 0 0 46.0b ± 5.7 62.5c ± 3.5
4 O. rufipogon (IRGC 89006) Cambodia 0 1 0 0 66.0c ± 5.7 79.5d ± 6.4
5 O. rufipogon (IRGC 89012) Cambodia 0 1 0 0 35.0a ± 7.1 71.0c ± 1.4
6 O. rufipogon (IRGC 89230) Cambodia 0 0 0 0 51.0b ± 1.4 78.0d ± 2.8
7 O. rufipogon (IRGC 106422) Vietnam 0 0 0 0 35.0a ± 7.1 78.5d ± 4.9
8 O. rufipogon (IRGC 106433) Vietnam 0 0 0 0 81.0d ± 1.4 66.0c ± 5.7
9 Oryza longistaminata (IRGC 105200) Ethopia 0 0 0 0 30.5a ± 0.7 36.0a ± 8.5
10 O. longistaminata (IRGC 83826A) Mali 0 0 0 0 28.5a ± 2.1 41.0a ± 8.5
11 O. longistaminata (IRGC 92619A) Mali 0 0 0 0 60.0b ± 7.1 68.5c ± 4.9
12 O. longistaminata (IRGC 92656A) Mali 0 0 0 0 79.0d ± 1.4 49.0b ± 9.9
13 Oryza officinalis (IRGC 101152) Brunei 0 0 0 0 87.5d ± 3.4 64.0c ± 2.8
14 O. latifolia (IRGC 80769) France 0 0 0 0 75.0cd ± 7.1 79.0d ± 4.2

*DAS=days after imposing stress. #Code IRGC represents accessions from the International Rice Genetic Consortium, Philippines; CR represents accessions from the
National Rice Research Institute, Cuttack, India. Superscripts (a–d) represent significant differences in the means of wild species germplasm accessions for root number
and length.
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roots (87.5 ± 3.4) among all the selected drought-tolerant
accessions from four different species.

Discussion

Drought is one of the most serious abiotic stress limiting rice
productivity in the world and poses a serious threat to the

sustainability of rice yields in rain-fed agriculture.
Developing water use efficient and drought-tolerant variety
may help to combat this problem in the era of global climate
change. Leaf morphology and associated traits have been
suggested as one of the parameters for selecting drought-
tolerant genotypes (Biswal and Kohli, 2013). The presence
of genetic variability for leaf rolling and correlation between

Fig. 2. Root phenotyping using plastic mesh baskets (1) After 1 month of vegetative growth: (a) rice cultivar PR121, (b) Oryza
rufipogon accession IRGC 106433, (c)Oryza officinalis accession IRGC 101152, (2) after 3 months of vegetative growth, (d) rice
cultivar PR121, (e) O. rufipogon accession IRGC 106433, (f) Oryza latifolia accession IR80769.
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leaf area index and drought have also been studied by vari-
ous scientist, indicating the probable role of leaf traits as a
measure of drought susceptibility or tolerance (Subashri
et al., 2009; Farooq et al., 2009; Salunkhe et al., 2011;
Cerqueira et al., 2013; Singh et al., 2013; Kumar et al.,
2014; Sokoto and Muhammad 2014). Our results revealed,
sufficient genetic variation in leaf and root morphology
among selected wild species germplasm accessions. Some
of the accessions had a higher root number, whereas some
of them had a higher root length, suggesting a different
underlyingmechanism of drought tolerance in them.We no-
ticed thepresenceofmore secondary rootmass in thedeeper
soil zone in these selected accessions suggesting absorption
of more water or moisture and thus helping them to with-
stand under water stress condition. The presence of drought
resistance inO. rufipogon andO. officinalis accessions were
also reportedbyFeng etal. (2012) byassessingmorphologic-
al and physiological traits related to drought tolerance. He
observed stronger drought resistance inO. officinalis acces-
sions as inour case.Greatermembrane stability,more stoma-
tal conduction andelongationof the leaves alongwithhigher
root mass in deeper soil levels were also observed under
water deficit amongO. rufipogon andO. longistaminata ac-
cessions as comparedwithO. sativa by Liu et al. (2004).One
of the probable explanations for the occurrence of novel al-
leles for drought tolerance in O. longistaminata and O. lati-
folia is their natural habitat, that is,O. longistaminata usually
found in seasonally dry areas, whereasO. latifolia used to be
found on hill slopes. Therefore, they might have developed
some adaptive traits for their survival under adverse environ-
ment. In the context of occurrence of drought responsive
traits inO. rufipogon accessions, the putative role of differen-
tially expressed tissue-specific miRNA was explained by
Zhang et al. (2017). He suggested that these differentially ex-
pressed miRNA might be involved in the regulation of the
auxin pathways, flowering pathways, drought pathways
and lateral root development and hence conferring resist-
ance against water deficit. The transfer of drought tolerance
from the identifiedO. rufipogon (IRGC 89006, IRGC 106433)
andO. longistaminata (IRGC92619A) accessions toelite rice
cultivars PR121 and PR122 have already been initiated at the
Punjab Agricultural University, which would definitely help-
ful in getting sustainable yield under water stress.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S1479262117000284.
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