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We consider electrokinetic flows about a freely suspended liquid drop, deriving a
macroscale description in the thin-double-layer limit where the ratio δ between Debye
width and drop size is asymptotically small. In this description, the electrokinetic
transport occurring within the diffuse part of the double layer (the ‘Debye layer’)
is represented by effective boundary conditions governing the pertinent fields in
the electro-neutral bulk, wherein the generally non-uniform distribution of ζ , the
dimensionless zeta potential, is a priori unknown. We focus upon highly conducting
drops. Since the tangential electric field vanishes at the drop surface, the viscous
stress associated with Debye-scale shear, driven by Coulomb body forces, cannot be
balanced locally by Maxwell stresses. The requirement of microscale stress continuity
therefore brings about a unique velocity scaling, where the standard electrokinetic
scale is amplified by a δ−1 factor. This reflects a transition from slip-driven electro-
osmotic flows to shear-induced motion. The macroscale boundary conditions display
distinct features reflecting this unique scaling. The effective shear-continuity condition
introduces a Lippmann-type stress jump, appearing as a product of the local charge
density and electric field. This term, representing the excess Debye-layer shear, follows
here from a systematic coarse-graining procedure starting from the exact microscale
description, rather than from thermodynamic considerations. The Neumann condition
governing the bulk electric field is inhomogeneous, representing asymptotic matching
with transverse ionic fluxes emanating from the Debye layer; these fluxes, in turn,
are associated with non-uniform tangential ‘surface’ currents within this layer. Their
appearance at leading order is a manifestation of dominant advection associated with
the large velocity scale. For weak fields, the linearized macroscale equations admit
an analytic solution, yielding a closed-form expression for the electrophoretic velocity.
When scaled by Smoluchowski’s speed, it reads

δ−1 sinh(ζ/2)/ζ

1+ 3
2µ+ 2αsinh2(ζ/2)

,

wherein ζ , the ‘drop zeta potential’, is the uniform value of ζ in the absence of
an applied field, µ the ratio of drop to electrolyte viscosities, and α the ionic drag
coefficient. The difference from solid-particle electrophoresis is manifested in two key
features: the δ−1 scaling, and the effect of ionic advection, as represented by the
appearance of α. Remarkably, our result differs from the small-δ limit of the mobility
expression predicted by the weak-field model of Ohshima, Healy & White (J. Chem.
Soc. Faraday Trans. 2, vol. 80, 1984, pp. 1643–1667). This discrepancy is related to
the dominance of advection on the bulk scale, even for weak fields, which feature
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cannot be captured by a linear theory. The order of the respective limits of thin double
layers and weak applied fields is not interchangeable.

Key words: drops and bubbles, electrohydrodynamic effects, low-Reynolds-number flows

1. Introduction
When a solid particle (radius a∗, zeta potential ζ ∗) suspended in unbounded

electrolyte (permittivity ε∗, viscosity µ∗) is exposed to an otherwise uniform electric
field of magnitude E∗, it migrates in the field direction. In the thin-double-layer limit,
Smoluchowski (1903) explained this phenomenon assuming that an electro-osmotic
slip mechanism applies locally at each point of the particle boundary, thus obtaining
his celebrated formula

v∗S =
ε∗ζ ∗

µ∗
E∗ (1.1)

for the electrophoretic velocity. What would be the corresponding formula for a liquid
drop?

1.1. Approximation methodology
As in other fundamental problems in electrokinetic transport (e.g. solid-particle
electrophoresis, streaming potential), existing analyses of drop electrophoresis have
employed two types of linearization procedure. The earlier studies assume small zeta
potentials (Booth 1951); following the methodology of O’Brien & White (1978),
subsequent studies made use of weak-field linearization, describing small deviations
from spherically-symmetric equilibrium. This scheme was applied to metal drops by
Ohshima, Healy & White (1984) and to electrolyte drops by Baygents & Saville
(1991a,b).

The inherent simplification in a weak-field scheme notwithstanding, the linear
analyses remain technically challenging. Making use of symmetry arguments, the
ingenious methods of O’Brien & White (1978) allow the governing partial differential
equations to be reduced into ordinary differential equations. The latter however can
only be solved numerically; thus, the key output of a weak-field approximation is a set
of numerically calculated mobility curves, rather than a closed-form approximation.

More importantly, the weak-field linearization implicitly entails the assumption that
electric-potential variations on the particle scale are small compared with the thermal
voltage. This point, not always appreciated, warrants some clarification. In their § 3,
O’Brien & White (1978) write: ‘The difficulties involved in solving this set of coupled
nonlinear partial differential equations are formidable, but fortunately we are only
concerned with the solution of these equations in the case when the applied field E
is small compared with the fields that occur in the double layer’. As their analysis
is performed for Debye thickness comparable with particle size, this statement is
equivalent to the above assumption.

When the Debye layer is thin, as in the follow-up analysis of O’Brien & Hunter
(1981), the two criteria are no longer equivalent; careful inspection reveals that
the underlying linearization is in fact predicated upon the more strict assumption
expressed in terms of particle size. Even for solid-particle electrophoresis, where the
size of typical colloidal particles ranges in the micron scale, this assumption is rather
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strained (see Schnitzer & Yariv 2012d ,a). When considering drops and bubbles of
typical millimetric dimensions, the weak-field approximation is of quite limited value
(Baygents & Saville 1989).

An approximation which does suit realistic scenarios is that of thin double
layers, where the Debye width 1/κ∗ is assumed small compared with drop size
a∗. This assumption, so useful in the analysis of solid colloids (Anderson 1989;
Yariv 2010a; Schnitzer & Yariv 2012c), is even more suitable for analysing the
typically larger (by orders of magnitudes) drop and bubbles. We here propose to
analyse drop electrophoresis using the thin-double-layer limit δ� 1, with δ = 1/κ∗a∗.
This singular limit is to be handled using boundary-layer asymptotic analysis. Such
an analysis would provide a useful macroscale model wherein the Debye-layer
physics is embodied in effective boundary conditions, whereby the inherent scale
disparity is removed. As in other electrokinetic macroscale models following the same
methodology (Yariv 2010a,b; Yariv, Schnitzer & Frankel 2011; Schnitzer & Yariv
2012c), it is not restricted by the assumption of small zeta potentials or weak fields.

1.2. Conducting drops
We focus here on ‘conducting’ drops, considering situations where drop conductivity
is much higher than that of the suspending electrolyte. This is clearly the case for
liquid-metal (e.g. mercury) drops. It may also constitute a good approximation for
various systems involving highly concentrated electrolyte drops (Pascall & Squires
2011).

The pioneering analysis of liquid-metal drops was carried out by Frumkin (1946),
as described in Levich (1962). More intuitive than rigorous, this analysis resembles
the classical derivation of Smoluchowski (1903); moreover, it is a priori limited to
weak applied fields. Applying thermodynamic arguments, Levich (1962) represents
the mechanical aspect of the double layer in terms of an apparent surface tension,
determined by the local value of the zeta potential through a Lippmann–Helmholtz
constitutive equation.

The most significant finding of Levich (1962) concerns the velocity scaling. For
solid-particle electrophoresis the characteristic velocity is provided by Smoluchowski’s
scale, see (1.1); this would also be the proper scaling for an electrolyte drop. When the
drop is highly conducting, however, the characteristic scale is that of (1.1) multiplied
by δ−1. This remarkable feature is absent from the analysis of Booth (1951), who
obtained an electrophoretic velocity comparable with (1.1) for all conductivity ratios.
As explained by Levine & O’Brien (1973) (see also Pascall & Squires 2011), this
discrepancy can be traced back to the ad hoc superposition procedure in Booth (1951).
The unique Frumkin–Levich velocity scaling has been experimentally confirmed
(Levich 1962).

The first systematic analysis of conducting drops was carried out by Ohshima
et al. (1984) using a weak-field linearization procedure in the spirit of O’Brien &
White (1978). This analysis, resulting in a numerical scheme for the calculation of
the electrophoretic mobility, is valid for arbitrary values of Debye thickness and zeta
potential. For thin double layers, Ohshima et al. (1984) were able to reduce their
mobility calculation into a closed-form expression, which reproduced the enhanced
velocity scaling of Levich (1962) but did not entirely agree with his results.

Our goal is to derive a thin-double-layer macroscale model which is restricted
to neither weak fields nor small zeta potentials. A further objective is to resolve
the lack of agreement between the corresponding mobility results of both of the
above classic analyses in their apparent overlapping domain of validity. Our starting
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Electrokinetic flows about conducting drops 397

point on the microscale level is the standard nonlinear electrokinetic description,
sharing the physical assumptions underlying the (linear) model of Ohshima et al.
(1984). Thus, we assume a drop of infinite electric conductivity; the drop charge
is accordingly distributed over its surface, with the internal electric field identically
vanishing. Following Ohshima et al. (1984), the drop is further assumed to be ideally
polarizable, whereby ionic sorption is absent. The total drop charge is accordingly
set through the initial configuration, prior to the application of an applied field. It is
therefore considered as a prescribed non-varying quantity.

1.3. Macroscale description
The desired macroscale model is obtained via a boundary-layer analysis. It results
in an approximate description of the electro-neutral bulk outside the Debye
layer, together with effective boundary conditions which represent the transport
processes taking place in that layer. This method has been extensively exploited for
systematically deriving approximate descriptions of electrokinetic flows about solid
surfaces (Yariv 2010a,b; Yariv et al. 2011; Schnitzer, Frankel & Yariv 2012; Schnitzer
& Yariv 2012d ,c). In the present context of conducting drops, it exhibits three unique
features.

The first is an effective tangential-stress condition, incorporating a stress-jump term
representing the excess shear associated with the unique velocity profile within the
narrow Debye layer. For weak fields, this jump degenerates to the Lippmann-type
term presented in Levich (1962). The tangential-stress condition emphasizes the shear
mechanism which here drives the leading-order electrokinetic flow, whose magnitude
is asymptotically larger than that of ‘standard’ slip-driven flow generated about solid
surfaces.

This amplified velocity scaling leads to the second feature: the inhomogeneous
Neumann condition governing the bulk electric field. Conventional electrokinetic flows
at moderate zeta potentials are typically governed by a homogeneous Neumann
condition (Keh & Anderson 1985; Anderson 1989; Yariv 2010a), representing the
absence of charge conduction into the Debye layer. In the present class of problems,
strong advection gives rise to significant non-uniform ‘surface currents’, necessitating
comparable Debye-layer charging from the Ohmic bulk.

The third feature is also a byproduct of the inherently-strong advection. Just as it
induces the above-mentioned Debye-scale transverse charge current, it also generates
comparable salt fluxes, which in turn necessitate salt supply from the bulk. This
however is incompatible with the uniform salt distribution enforced in that domain
– by the very same intense advection. This incompatibility results in a diffusive
boundary layer of thickness O(δ1/2), thicker than the Debye layer. In this intermediate
layer, salt relaxation through both advection and diffusion ensures salt-flux continuity
on the macroscale. Intermediate diffusive layers under dominant advection occur in a
variety of other electrokinetic problems (Baygents & Saville 1989; Yariv et al. 2011;
Schnitzer & Yariv 2012d).

A subtle issue in the present model concerns the notion of the zeta potential.
This concept emerges naturally in any systematic thin-double-layer analysis (Yariv
2010a,b; Schnitzer & Yariv 2012c) as the leading-order Debye-layer voltage, which
is essentially linked to the surface-charge density. When considering dielectric solid
surfaces, a plausible assumption is that the latter is a specified – say uniformly
distributed – quantity, whereby the associated zeta-potential distribution is a derived
one. When considering liquid drops, on the other hand, the surface charge is mobile;
its density is generally non-uniform, and may not be considered as a prescribed
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quantity. This is evident in the limit of a conducting drop, where the equipotential
condition on the very drop boundary readily results in a non-uniform zeta-potential
distribution once an electric field is applied.

The paper is organized as follows. In the next section we formulate the ‘exact’
microscale model for a conducting drop. In § 3 we discuss the unique velocity scaling
associated with the thin-double-layer limit and derive the appropriate description of the
electrokinetic transport in the bulk. The companion Debye-scale analysis is provided
in § 4, where we derive the effective boundary conditions governing the bulk fields.
In this section we also identify the emergence of a diffusive boundary layer of an
intermediate asymptotic thickness. The resulting macroscale model is recapitulated in
§ 5. To facilitate comparison with existing weak-field approximations, we analyse in
§ 6 the linearized version of our model, obtaining the drop electrophoretic mobility.
The mismatch with Ohshima et al. (1984) is discussed in § 6.1, while the relation to
Levich (1962) is explained in § 6.2. Our findings are summarized in § 7. The problem
governing the diffusive boundary layer is outlined in the Appendix.

Readers who are primarily interested in the macroscale model rather than the
detailed asymptotic derivation may want to skip from § 3.1 directly to the macroscale
formulation of § 5.

2. Exact formulation
We consider an ideally-polarizable charged metal drop suspended in an unbounded

liquid electrolyte of permittivity ε∗ and viscosity µ∗. (Dimensional quantities are
hereafter shown with an asterisk.) The electrolyte is symmetric, with valencies ±Z
and equilibrium concentrations c∗; for simplicity, we assume an identical ionic
diffusivity D∗ for both ionic species. This system is exposed to a uniform applied
electric field E∗ in a direction denoted by the unit vector ı̂. Our interest is in the
calculation of the resulting steady-state electrokinetic transport, and, specifically, the
electrophoretic velocity U ∗ of the drop relative to the otherwise quiescent electrolyte
– the experimentally observable quantity.

We assume that surface tension is sufficiently strong to retain a spherical drop
shape (see § 4.6). The drop radius a∗ is used to normalize length variables. It is
convenient to employ spherical coordinates (r, θ,$) attached to the moving drop,
r = 0 corresponding to the drop centre and the polar axis θ = 0 pointing in the applied-
field direction. Following Saville (1977), we normalize ionic concentrations by c∗ and
electric potentials by the thermal scale ϕ∗ = k∗T∗/Z e∗, wherein k∗T∗ is the Boltzmann
temperature and e∗ the elementary charge. Stress variables are accordingly normalized
by the Maxwell scale M∗ = ε∗ϕ∗2/a∗2. Balancing this term with characteristic viscous
stress then provides the electrokinetic velocity scale

v∗ =
ε∗ϕ∗2

µ∗a∗
, (2.1)

used here to normalize all velocity fields.
In describing ionic transport within the electrolyte we employ the Nernst–Planck

expressions for the molecular fluxes, comprising both diffusion and electro-migration.
Normalized by D∗c∗/a∗, these fluxes therefore take the form

j± =−∇c± ∓ c±∇ϕ, (2.2)

wherein c± are the ionic concentrations and ϕ the electric potential. The steady-state
Poisson–Nernst–Planck description of the electrokinetic transport within the electrolyte
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then consists of the following.

(a) The ionic conservation equations,

∇ · j± + αu ·∇c± = 0, (2.3)

in which u is the electrolyte velocity field. The dimensionless drag coefficient

α =
ε∗ϕ∗2

µ∗D∗
(2.4)

is independent of drop size a∗ and salt concentration c∗; for typical diffusivities
in aqueous solutions (D∗ ∼ 10−9 m2 s−1) α ≈ 0.5 (Saville 1977). Superficially, this
coefficient appears to play the role of a primitive Péclet number.

(b) Poisson’s equation,

−2δ2
∇

2ϕ = c+ − c−, (2.5)

wherein δ = 1/κ∗a∗ is the dimensionless Debye thickness, in which the Debye
width 1/κ∗ is defined by

κ∗
2
=

2Z 2e∗2c∗

ε∗k∗T∗
. (2.6)

An alternative formulation to (2.2)–(2.3) is obtained using the mean (‘salt’)
concentration (normalized by c∗) and the volumetric charge density (normalized by
2Z e∗c∗)

c= 1
2(c
+
+ c−), q= 1

2(c
+
− c−), (2.7)

together with the salt flux j = (j+ + j−)/2 and current density i = (j+ − j−)/2. The
constitutive relations (2.2) then read

j =−∇c− q∇ϕ, i=−∇q− c∇ϕ, (2.8)

while the ionic conservation equations (2.3) take the form

∇ · j + α u ·∇c= 0, ∇ · i+ α u ·∇q= 0. (2.9)

In terms of these variables, Poisson’s equation (2.5) becomes

δ2
∇

2ϕ =−q. (2.10)

The Poisson–Nernst–Planck equations are supplemented by the continuity

∇ ·u= 0 (2.11)

and Stokes

∇p=∇2u+∇2ϕ∇ϕ (2.12)

equations governing the motion of a fluid subject to Coulomb body forces. The
inhomogeneous Stokes equation can be interpreted as a statement of zero stress
divergence,

∇ ·S = 0, (2.13)

wherein S is the sum of Newtonian

−pI +∇u+ (∇u)† (2.14)
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and Maxwell

∇ϕ∇ϕ − 1
2∇ϕ ·∇ϕI (2.15)

stresses, in which I is the idemfactor and † denotes transposition. In principle, the
isotropic part of the Maxwell stress comprises an additional term, associated with
the density dependence of the dielectric constant (Landau & Lifshitz 1960). As
explained by Saville (1997), when considering an incompressible liquid this term
can be absorbed in the pressure. This common practice is justified even in the presence
of free surfaces, as the pertinent boundary conditions only involve the total stress. The
symbol p appearing in both (2.12) and (2.14) thus represents a modified pressure.

Within the highly-conducting drop the electric potential is uniform and the electric
field vanishes; the drop charge is distributed over its boundary so as to satisfy this
condition. Since the drop is ideally polarizable, no ions adsorb to its surface from the
electrolyte. The net charge of the drop is therefore considered a prescribed quantity.
Normalized by ε∗κ∗ϕ∗a∗2, we denote it 4πσ , σ thus representing the average surface
charge density. As usual, the drop is treated as another Newtonian liquid. The flow
equations governing the drop-phase velocity field ū and pressure field p̄ then read

∇ · ū= 0, ∇p̄= µ∇2ū, (2.16)

in which µ is the ratio of the drop viscosity to that of the electrolyte.
At the interface r = 1 the normal ionic fluxes vanish,

êr · j± = 0, (2.17)

and the electric potential equals V , the (arbitrary) value of the uniform potential of the
drop,

ϕ = V . (2.18)

The velocity fields u= êru+êθv and ū= êrū+êθ v̄ further satisfy the tangential-velocity
continuity and the impermeability conditions

v = v̄, u= ū= 0 (2.19)

together with the tangential-stress balance

∂v

∂r
− v = µ

(
∂v̄

∂r
− v̄

)
. (2.20)

Note that no Maxwell stresses appear in the latter, in accordance with the vanishing
tangential electric field at r = 1. The surface charge density σ on the drop boundary,
normalized by ε∗κ∗ϕ∗, is provided by the local form of Gauss’ law

σ =−δ
∂ϕ

∂r
. (2.21)

Unlike the comparable analysis of solid particles (Yariv 2010a; Schnitzer & Yariv
2012c), here this law does not provide a boundary condition governing ϕ, since the
charge density is not a priori prescribed. Rather, it serves to determine σ once the
electric field has been calculated.

At large distances away from the drop the concentrations approach unity and −∇ϕ
approaches the uniformly imposed field,

c±→ 1, ∇ϕ→−β ı̂. (2.22)
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Here,

β =
E∗a∗

ϕ∗
(2.23)

is the dimensionless magnitude of the applied field. The velocity field approaches a
uniform stream of magnitude U ,

u→−U ı̂ (2.24)

representing the drop electrophoretic velocity.
The preceding equations are supplemented by a pair of integral conditions. The first

is the familiar force-free condition, requiring that the resultant force exerted on the
drop by the combined Newtonian and Maxwell stresses (see (2.14)–(2.15)) vanishes:∮

r=1
S · n̂ dA= 0; (2.25)

here dA is a differential areal element normalized by a∗2. In view of (2.13), the
integral in (2.25) can be evaluated over any closed surface enclosing the drop. The
second is essentially a ‘memory condition’ specifying the invariance of the total drop
charge, ∮

r=1
σ dA= 4πσ . (2.26)

As already indicated, for an ideally polarizable drop σ is a prescribed quantity,
which is unaffected by the application of an external field. Thus, conditions
(2.25)–(2.26) serve to uniquely determine the electrophoretic velocity and the electric-
field distribution (see (2.21)). Generally, the electrophoretic velocity U is a (nonlinear)
function of σ , vanishing for σ = 0.

The problem thus formulated is rather intractable. Furthermore, even numerical
simulations are difficult owing to the scale disparity associated with the smallness of δ
prevailing in practical scenarios. This very feature is however what allows us to make
progress by means of asymptotic methods. This is addressed next.

3. Thin-double-layer limit
We now consider the limit δ � 1. It is well known that this limit is singular, the

non-uniformity being associated with the multiplication of the highest-order derivative
in Poisson’s equation (2.10) by the small asymptotic parameter. The electrolyte
domain, where (2.10) holds, is conceptually decomposed into two asymptotic sub-
domains: a thin boundary (‘Debye’) layer of thickness δ, formed about r = 1, and
the remaining ‘bulk’ exterior to it. No such decomposition is required in the ion-free
liquid drop.

Before proceeding to postulate separate asymptotic expansions in the Debye layer
and bulk regions, it is necessary to carefully inspect the velocity scale appropriate to
the limit δ→ 0.

3.1. Velocity scaling
In the familiar case of a solid boundary, field scaling within the Debye layer is
essentially the same as that implied by the above normalization of the governing
equations. Thus, the ionic concentration, electric potential, and tangential velocity
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are O(1). The associated O(δ−1) velocity gradient is manifested in an electro-osmotic
velocity jump in the macroscale description.

When considering electrokinetic flows about a free surface, tangential-shear-stress
continuity must be satisfied locally. In the case of an electrolyte drop it is readily
verified that the preceding scaling remains valid, the O(δ−1) large viscous stress being
balanced by a comparable Maxwell stress, originating from the quadratic interaction
of the O(δ−1) Debye-layer transverse electric field with the respective O(1) tangential
field.

With the same velocity scaling, however, tangential-stress continuity cannot be
satisfied in the case of a conducting drop considered here. With the tangential field
vanishing on the interface, the Maxwell traction is normal thereto and cannot balance
the Debye-scale shear. Nor can this viscous shear be balanced by comparable drop-
phase stresses: because of tangential-velocity continuity, fluid velocities within the
drop are of the same asymptotic magnitude as those in the Debye layer; however,
in the absence of a Debye layer in the drop phase, the Newtonian stress there is
asymptotically smaller.

Following Levich (1962), this incompatibility is resolved by postulating a unique
velocity scaling, different from the classical thin-double-layer limit. In the bulk, the
fluid velocity is asymptotically large,

u∼ O(δ−1). (3.1)

In the Debye layer, the tangential velocity is of the same asymptotic order. It
is however transversely uniform, variations across the layer only appearing at the
next O(1) asymptotic term. Thus, the leading-order tangential velocity constitutes an
extrapolation of the bulk flow. This allows satisfaction of tangential-stress continuity.
Indeed, the Debye-layer shear is again O(δ−1), but now resulting from transverse
variation of the O(1) velocity correction. The associated viscous stress may then
be balanced by two separate contributions (see (4.16) below). The first is the
curvature-induced stress associated with the transversely uniform O(δ−1) velocity. The
second is contributed by the drop-phase viscous stresses: because of tangential-velocity
continuity, the velocity field within the drop is also O(δ−1); in the absence of a Debye
layer within the drop, the rate of strain there is of the same asymptotic magnitude. It is
useful to note that, unlike the case of planar interfaces, the former contribution allows
a tangential-stress balance at the drop surface even when its viscosity is very small.

Since the analysis of Levich (1962) is focused on the weak-field limit, his scaling
model entails a transition from the Smoluchowski scale v∗S (see (1.1)) to δ−1v∗S . For
β ∼ O(1), v∗S coincides with the Maxwell scale v∗ (see (2.1) and (2.23)). In the
present scheme, which is not restricted to the weak-field limit β � 1, the primitive
velocity scale is v∗, originally presented by Saville (1977). The thin-double-layer limit
is therefore represented by a transition to dimensional velocities of order δ−1v∗, as
indicated in (3.1).

3.2. Outer expansions
In the outer bulk region the position vector x is replaced by the ‘coarse-grained’ vector
x̃, which does not resolve the fine details of the Debye layer. Thus, the effective
boundary r̃ = 1 represents the outer edge of the Debye layer, rather than the actual
interface r = 1.

We accordingly employ the generic expansion

f (x; δ)= f̃0(r̃, θ)+ δf̃1(r̃, θ)+ · · · , (3.2)
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which holds for all bulk electrochemical fields. In view of (3.1), the dynamic fields
possess the expansions,

u= δ−1ũ−1 + ũ0 + · · · , p= δ−1p̃−1 + p̃0 + · · · , (3.3)

with comparable expansions for the drop-phase velocity ū and pressure p̄,

ū= δ−1ū−1 + ū0 + · · · , p̄= δ−1p̄−1 + p̄0 + · · · . (3.4)

It then follows that the drop electrophoretic velocity is also O(δ−1):

U = δ−1U−1+U 0 + · · · . (3.5)

In view of the large velocity scaling, the salt balance equation (2.9) at O(δ−1) is
advection dominated:

ũ−1 ·∇c̃0 = 0. (3.6)

It follows that c̃0 is constant along the streamlines of the leading-order flow. We
assume, subject to a posteriori verification, that these lines are open, originating
at infinity, where c̃0 = 1. Thus the strong advection results in a homogeneous salt
concentration,

c̃0 ≡ 1. (3.7)

In a similar manner it is readily established that q̃0 ≡ 0. It follows that at O(1) the
current density is Ohmic and the salt flux vanishes,

ĩ0 =−∇ϕ̃0, j̃0 = 0. (3.8)

The leading-order charge balance (2.9) is then dominated by Ohmic conduction,

∇
2ϕ̃0 = 0. (3.9)

Poisson’s equation (2.10) reveals that the charge density q vanishes up to O(δ2)

inclusive.
Lastly, the large velocity scaling implies that the leading-order flow is governed by

the homogeneous Stokes equations without any body forces

∇ · ũ−1 = 0, ∇p̃−1 =∇
2ũ−1; (3.10)

similar equations govern the drop-phase flow,

∇ · ū−1 = 0, ∇p̄−1 = µ∇
2ū−1. (3.11)

4. Debye-scale analysis
4.1. Debye-scale formulation

In analysing the Debye-scale fields, we employ the inner coordinate

Z =
r − 1
δ

. (4.1)

As in the outer region, ionic concentrations and the electric potential are expected to
remain O(1),

c± = C±0 + δC
±

1 + · · · , ϕ =Φ0 + δΦ1 + · · · . (4.2)
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404 O. Schnitzer, I. Frankel and E. Yariv

In view of (2.17) and the matching requirement, we also anticipate O(1) transverse
fluxes in the radial direction

êr · j± = J±0 (Z, θ)+ · · · , (4.3)

with similar expansions for the radial current and salt flux (see (2.8))

êr · i= I0(Z, θ)+ · · · , êr · j = J0(Z, θ)+ · · · . (4.4)

At Z = 0 the following conditions apply (cf. (2.17)–(2.18)):

J±0 = 0, Φ0 = V . (4.5)

The leading-order surface-charge density is provided by (cf. (2.21))

σ0 =−
∂Φ0

∂Z
. (4.6)

At large Z the Debye-layer fields must match their electroneutral-bulk counterparts,
thus

Φ0→ ϕ̃0, C±0 → 1 as Z→∞. (4.7)

Hereafter, outer (shown with a tilde) variables (or their radial derivatives) appearing
in any Debye-scale equation are understood to be evaluated at the effective boundary
r̃ = 1, and are accordingly functions of θ alone.

Balancing the large Coulombic body force in the Stokes equations (2.12) requires a
comparable O(δ−2) pressure,

p= δ−2P−2 + · · · . (4.8)

Here, large-Z asymptotic matching implies that

P−2→ 0 as Z→∞. (4.9)

Following the discussion in § 3.1 the tangential velocity is expanded as

v = δ−1V−1(θ)+ V0(Z, θ)+ · · · , (4.10)

with V−1 independent of Z. Asymptotic matching with the bulk velocity readily yields

V−1 = ṽ−1. (4.11)

Furthermore, the transverse uniformity of V−1 and the need for velocity-gradient
matching implies that the shear associated with the correction V0 must satisfy

∂V0

∂Z
→

∂ṽ−1

∂ r̃
as Z→∞. (4.12)

Since V−1, as given by (4.11), is effectively an extrapolation of the bulk flow, the
microscale velocity–continuity condition (2.19) is transformed into the macroscale
continuity condition

v̄−1(r = 1)= ṽ−1(r̃ = 1). (4.13)

The continuity equation (2.11) in conjunction with the impermeability condition
(2.19) implies that the radial velocity is O(1):

u= U0(Z, θ)+ δU1(Z, θ)+ · · · . (4.14)

At leading order, (2.19) then yields

U0 = 0 at Z = 0. (4.15)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.102


Electrokinetic flows about conducting drops 405

With the preceding expansions, the tangential-stress balance equation (2.20) yields at
leading order

∂V0

∂Z
− V−1 = µ

(
∂v̄−1

∂r
− v̄−1

)
at Z = 0. (4.16)

Note that by (4.11) and (4.13) both V−1 and v̄−1 can be replaced with ṽ−1.
The Debye-scale analysis which follows consists of three steps: (i) the leading-order

ionic conservation equations are solved to yield a quasi-equilibrium Gouy–Chapman
structure (§ 4.2); (ii) the subdominant O(1) electro-osmotic flow is analysed, resulting
in an effective macroscale stress-jump condition (§ 4.3); (iii) the O(1) transverse ionic
fluxes, driven by the O(δ−1) tangential velocity, are calculated; the associated current
density is matched to the corresponding bulk flux, resulting in an effective Neumann
boundary condition governing the bulk potential (§ 4.4). The role of the comparable
salt flux is discussed in § 4.5.

4.2. Gouy–Chapman structure

The absence of O(δ−1) transverse ionic fluxes (see (4.3)) in conjunction with (2.2)
written in inner variables yields

−
∂C±0
∂Z
∓ C±0

∂Φ0

∂Z
= 0. (4.17)

Integrating with respect to Z and applying (4.7) provides the Boltzmann distribution

C±0 = e∓Ψ . (4.18)

Here Ψ = Φ0 − ϕ̃0 is the ‘excess’ Debye-layer potential. Substituting into the Poisson
equation (2.5) yields the Poisson–Boltzmann equation

∂2Ψ

∂Z2
= sinhΨ. (4.19)

Integrating once with respect to Z and applying (4.7) we obtain the first-order
differential equation

∂Ψ

∂Z
=−2 sinh

Ψ

2
. (4.20)

We adopt the following definition of the zeta potential:

ζ = Ψ (Z = 0), (4.21)

namely the leading-order local voltage across the diffuse Debye layer. With (4.5), this
potential difference can be written

ζ(θ)= V − ϕ0(θ). (4.22)

With definition (4.21), the surface-charge density obtained from (4.6) and (4.20) is

σ0 = 2 sinh
ζ

2
. (4.23)
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4.3. Flow

The leading-order radial momentum equation, at O(δ−3), represents a balance between
pressure gradients and the electrical body force,

∂P−2

∂Z
=
∂2Φ0

∂Z2

∂Φ0

∂Z
. (4.24)

Integration with respect to Z in conjunction with the matching conditions (4.7) and
(4.9) yields

P−2 =
1
2

(
∂Ψ

∂Z

)2

. (4.25)

Substitution into the O(δ−2) tangential-momentum equation yields

∂2V0

∂Z2
=
∂Ψ

∂Z

∂2Ψ

∂Z∂θ
−
∂2Ψ

∂Z2

(
∂Ψ

∂θ
+

dϕ̃0

dθ

)
. (4.26)

Integration with respect to Z (employing (4.20) and the matching condition (4.12))
then gives

∂V0

∂Z
−
∂ṽ−1

∂ r̃
=−

∂Ψ

∂Z

dϕ̃0

dθ
. (4.27)

No further integration is needed as our objective is the O(δ−1) shear stress associated
with the electro-osmotic flow V0 rather than V0 itself. Indeed, substitution of (4.27),
evaluated at Z = 0, into the tangential-stress-balance equation (4.16) yields the
required condition

∂ṽ−1

∂ r̃
− ṽ−1 + 2 sinh

ζ

2
dϕ̃0

dθ
= µ

(
∂v̄−1

∂ r̃
− v̄−1

)
at r̃ = 1 (4.28)

specifying the macroscale stress discontinuity.
For future reference, use of the leading-order continuity equation (see (2.11))

∂U0

∂Z
+

1
sin θ

d
dθ
(ṽ−1 sin θ)= 0, (4.29)

in conjunction with the impermeability condition (4.15), yields the radial velocity

U0 =−
Z

sin θ
d

dθ
(ṽ−1 sin θ). (4.30)

4.4. Transverse current
To obtain an effective boundary condition governing the bulk potential ϕ̃0 it is
necessary to calculate the O(1) current density normal to the interface. At O(δ−1),
the Nernst–Planck equations (2.3) read

∂J±0
∂Z
+ α

(
U0
∂C±0
∂Z
+ ṽ−1

∂C±0
∂θ

)
= 0. (4.31)

Integration from Z = 0 to ∞ in conjunction with (4.5) yields the fluxes

J±0 (Z→∞)=−α
∫
∞

0
dZ

(
U0

∂

∂Z
+ ṽ−1

∂

∂θ

)
(C±0 − 1), (4.32)
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Electrokinetic flows about conducting drops 407

where we have replaced C±0 , which appears only under differentiation, by C±0 − 1.
Integration by parts in conjunction with (4.30) furnishes the expression

J±0 (Z→∞)=−
α

sin θ
d

dθ

{
ṽ−1 sin θ

∫
∞

0
(C±0 − 1) dZ

}
, (4.33)

wherein convergence of the integrals is ensured by the large-Z exponentially rapid
decay of C±0 − 1.

The transverse-current density, I0 = (J
+

0 − J−0 )/2, is obtained using (4.18):

I0(Z→∞)=
α

sin θ
d

dθ

{
ṽ−1 sin θ

∫
∞

0
sinhΨ dZ

}
. (4.34)

The integral
∫
∞

0 sinhΨ dZ = 2 sinh(ζ/2) is readily evaluated using (4.20). Matching
with the O(1) bulk current (3.8) finally furnishes the requisite effective macroscale
boundary condition

∂ϕ̃0

∂ r̃
=−

2α
sin θ

d
dθ

{
ṽ−1 sinh

ζ

2
sin θ

}
at r̃ = 1. (4.35)

Inhomogeneous Neumann conditions in the thin-double-layer limit are usually
encountered in weak-field analyses of the electrophoresis of highly charged solid
particles (large zeta potentials), where the enabling ‘surface conduction’ mechanism is
related to the extremely large counter-ion concentration near the surface (Derjaguin &
Dukhin 1974; O’Brien & Hunter 1981; O’Brien 1983; Schnitzer & Yariv 2012c). The
emergence of that mechanism is associated with the pertinent Dukhin number (of order
δeζ/2, see Dukhin 1993) attaining O(1) values. In contrast, the present condition (4.35)
has been derived for a moderate surface-charge density, where this Dukhin number
is vanishingly small: see (4.23); in such circumstances the bulk electric field would
normally be governed by a homogeneous Neumann condition (Keh & Anderson 1985;
Anderson 1989; Yariv 2010a; Schnitzer & Yariv 2012c).

The present problem, where an inhomogeneous condition represents an effective
surface-conduction mechanism at moderate zeta potentials, is reminiscent of both
large-Péclet-number streaming-potential phenomena (Yariv et al. 2011) and solid-
particle electrophoresis in the strong-field limit (Schnitzer & Yariv 2012d). These two
different electrokinetic phenomena share the feature of a strong externally imposed
field – hydrodynamic in the former, electric in the latter. In the present problem, where
the imposed field is moderate, the surface conduction mechanism is instead driven by
the singularly large shear-driven velocity inherent in electrokinetic flows about highly
conducting drops.

4.5. Salt-flux incompatibility: diffusive boundary layer

The preceding effective boundary conditions are sufficient for prescribing a self-
contained macroscale model. Specifically, no need arises for specifying a boundary
condition governing the salt concentration, since its distribution has already been found
to be uniform, see (3.7). Note, however, that addition of the transverse fluxes (4.33)
predicts a non-zero salt flux J0 = (J

+

0 + J−0 )/2, which, using (4.18), reads

J0(Z→∞)=−
α

sin θ
d

dθ

{
ṽ−1 sin θ

∫
∞

0
(coshΨ − 1) dZ

}
. (4.36)
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The integral
∫
∞

0 (coshΨ − 1) dZ = 4sinh2(ζ/4) is evaluated using (4.20), whereby the
salt flux adopts the form

J0(Z→∞)=−
4α

sin θ
d

dθ

{
ṽ−1sinh2 ζ

4
sin θ

}
. (4.37)

Obviously, this non-zero salt flux emanating from the Debye layer is incompatible
with the homogeneous bulk (3.7).

In resolving this apparent paradox we note that, with O(δ−1) velocities, the limit
δ→ 0 represents a twofold singularity, resulting from the multiplication of the highest
derivative by the small parameter in two separate equations. The first singularity
occurs in Poisson’s equation (2.10); this is the familiar singularity giving rise to
the O(δ)-wide Debye layer. The second, associated with the dominance of ionic
advection, appears in (2.3), when the scaling (3.1) is incorporated. This newly-
identified singularity gives rise to a diffusive boundary layer. Since the tangential
velocity already approaches its large O(δ−1) value on the Debye scale, one finds by
balancing transverse diffusion with (transverse and tangential) advection that the width
of this intermediate layer is δ1/2 (Leal 2007).

The structure of the O(δ1/2)-wide diffusive layer is resolved using the stretched
radial coordinate (cf. (4.1))

Z̀ =
r − 1
δ1/2

. (4.38)

The scaling of the diffusive-layer fields is determined by matching requirements: on
one hand, the need to approach the unity concentration and O(1) electric field in
the bulk; on the other, the need to match the O(1) fluxes, of both salt and charge,
emanating from the Debye layer. We therefore postulate the expansions

c= 1+ δ1/2C̀1/2(Z̀, θ)+ · · · , ϕ = Φ̀0(θ)+ δ
1/2Φ̀1/2(Z̀, θ)+ · · · . (4.39)

It is readily verified via asymptotic matching that Φ̀0(θ)= ϕ̃0(θ). (As in § 4.1, all bulk-
scale fields are understood to be evaluated at r̃ = 1.) Moreover, Poisson’s equation
together with asymptotic matching also yields

Φ̀1/2 = Z̀
∂ϕ̃0

∂r
(θ). (4.40)

The requirements of velocity and pressure matching, in conjunction with the continuity
equation (2.11), also suggest the expansions

v = δ−1V̀−1(θ)+ · · · , u= δ−1/2Ù−1/2(Z̀, θ)+ · · · , p= δ−1P̀−1(θ)+ · · · .(4.41)

Here,

V̀−1(θ)= ṽ−1(θ) (4.42)

and

Ù−1/2 =−
Z̀

sin θ
d

dθ
(ṽ−1 sin θ). (4.43)

The last result follows from the continuity equation and small-Z̀ asymptotic matching
with the O(1) Debye-layer transverse velocity (cf. (4.30)).
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Electrokinetic flows about conducting drops 409

The preceding expansions are consistent with q = o(δ). The salt balance then yields
at leading order

∂2C̀1/2

∂Z̀2
= α

(
Ù−1/2

∂C̀1/2

∂Z̀
+ V̀−1

∂C̀1/2

∂θ

)
. (4.44)

Furthermore, C̀1/2 must satisfy the boundary condition

∂C̀1/2

∂Z̀
=

4α
sin θ

d
dθ

(
ṽ−1sinh2 ζ

4
sin θ

)
at Z̀ = 0, (4.45)

representing the small-Z̀ asymptotic matching with the Debye-layer flux (4.37),
together with the decay condition

C̀1/2→ 0 as Z̀→∞, (4.46)

representing asymptotic matching with the bulk.
The parabolic problem (4.44)–(4.46) closely resembles that governing the similarly

scaled boundary layer appearing in the problem of solid-particle electrophoresis under
strong fields (Schnitzer & Yariv 2012d). It is solved in the Appendix following the
same integral-transform procedure presented in that paper. Some adaptation is needed
however to cope with slight added complications resulting from the explicit functional
forms of both ṽ−1(θ) and ζ(θ) being a priori unknown here.

The presence of the intermediate layer implies that the Debye-layer expansion for
the salt (4.2) needs to be modified to incorporate an O(δ1/2) term. Inspection verifies
that this term is independent of Z and therefore does not affect the Debye-layer
analysis relevant to the derivation of the effective boundary conditions. The presence
of the diffusive layer may further introduce similar intermediate orders in the Debye-
layer expansions of other fields. This, in turn, may enhance the asymptotic error in the
macroscale model from O(δ) to O(δ1/2).

4.6. Normal-stress balance
As our analysis considers a spherical drop shape, it implicitly assumes that surface-
tension forces preclude any surface deformation. Concretely, consider a uniform
(microscale) surface tension γ ∗. A spherical shape is approximately retained provided
that the capillary pressure, of order γ ∗/a∗, is large compared with viscous and
Maxwell stresses acting on the interface. Note that, within the suspending electrolyte,
these stresses are associated with the Debye-scale fields.

While both the Debye-layer pressure and Maxwell stress are O(δ−2), their
contributions to the normal-stress balance mutually cancel, see (4.25). The stresses
that affect drop deformation are accordingly O(δ−1), and are contributed by both the
electrolyte and drop phases. In dimensional terms, these correspond to magnitudes of
order δ−1µ∗v∗/a∗. Using (2.1), we conclude that deviation from a spherical drop shape
is small if Ca� 1, where

Ca=
ε∗ϕ∗2

γ ∗
κ∗ (4.47)

is the pertinent capillary number. Consistent with our model which assumes no
adsorption at the drop interface, (4.47) shows that for a given pair of drop
and suspending liquids the capillary number is essentially determined by the bulk
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electrolyte concentration (through κ∗). For a typical system consisting of a mercury
drop in aqueous solution (ε∗ ≈ 7×10−10 kg m s−2 V−2, γ ∗ ≈ 0.4 kg s−2) Ca≈ 10−12κ∗,
where κ∗ is measured in m−1; even for nano-metric Debye thickness, Ca is very small.

The O(Ca) leading-order drop deformation may be determined from the normal-
stress jump across the interface calculated using the solution for a spherical drop (Leal
2007). At O(δ−1), this jump is provided by the difference(

−P−1 + 2
∂U0

∂Z
+
∂Ψ

∂Z

∂Φ1

∂Z

)
Z=0

−

(
−p̄−1 + 2µ

∂ ū−1

∂r

)
r=1

, (4.48)

involving both Debye-scale and drop-phase fields. It is tacitly understood that the large
O(1/Ca) pressure terms associated with the equilibrium spherical shape are omitted
from both P−1 and p̄−1.

To write the stress jump (4.48) in terms of macroscale fields, we first note from the
Debye-scale continuity equation (4.29) and the bulk continuity equation that ∂U0/∂Z
is equal to ∂ ũ−1/∂r. (As in § 4.1, bulk-scale fields are understood to be evaluated
at r̃ = 1.) Next, we consider the O(δ−2) transverse momentum equation within the
Debye layer,

∂P−1

∂Z
=
∂2U0

∂Z2
+

∂

∂Z

(
∂Ψ

∂Z

∂Φ1

∂Z

)
+ 2
(
∂Ψ

∂Z

)2

. (4.49)

In view of (4.29), the first term on the right-hand side vanishes. Integration with
respect to Z from 0 to ∞ in conjunction with (4.20) and the large-Z exponential decay
of ∂Ψ/∂Z yields

p̃−1 − P−1|Z=0 =−
∂Ψ

∂Z

∂Φ1

∂Z

∣∣∣∣
Z=0

+ 8
∫
∞

0
sinh2Ψ (Z)

2
dZ, (4.50)

in which the matching condition

P−1→ p̃−1 as Z→∞ (4.51)

has been employed. The integral in (4.50) is evaluated using (4.20) as 2sinh2(ζ/4).
Substituting into (4.48) reveals that the terms involving Φ1 mutually cancel, hence no
need arises to calculate this field. In terms of the macroscale fields, the normal-stress
jump is accordingly given by(

−p̃−1 + 2
∂ ũ−1

∂r

)
r̃=1

−

(
−p̄−1 + 2µ

∂ ū−1

∂r

)
r=1

+ 16sinh2 ζ

4
, (4.52)

where the last term represents a macroscale ‘surface-tension’ contribution,
corresponding to an ‘electro-capillary’ deviation of magnitude

−8sinh2 ζ

4
(4.53)

of the effective surface-tension coefficient from its original uniform value.
For a well-posed macroscale problem, this jump is considered known at this stage.

It is therefore possible in principle to calculate the leading-order deviation from the
equilibrium spherical shape. Presenting the deformed interface shape as

r = 1+ Ca R(θ)+ · · · , (4.54)
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the mean curvature reads

2− Ca

(
d2R

dθ 2
+ cot θ

dR

dθ

)
+ · · · . (4.55)

The shape perturbation R is accordingly governed by the differential equation,

d2R

dθ 2
+ cot θ

dR

dθ
=

(
p̃−1 − 2

∂ ũ−1

∂r

)
r̃=1

− 16sinh2 ζ

4
−

(
p̄−1 − 2µ

∂ ū−1

∂r

)
r=1

, (4.56)

regularity on the polar axis, and the volume-conservation constraint∫ π
0

R(θ) sin θ dθ = 0. (4.57)

5. Macroscale model
For easy reference, we recapitulate here the macroscale model for the

electrophoretic motion of a conducting drop in the thin-double-layer limit. Within
the framework of this description, the presence of the Debye layer is lumped into a set
of boundary conditions, applying at the effective boundary r̃ = 1.

For simplicity we hereafter omit the tilde decoration identifying the outer variables:
since the suspending phase is represented only through these variables, no confusion
should arise. We also omit all indices. Thus, the pertinent variables correspond to the
respective first terms in the asymptotic expansions (3.2)–(3.3). With this notation, the
effective normalization procedure of § 2 applies to all fields, except for the dynamic
variables. Velocity is now understood to be scaled by the product of δ−1 and the
original Maxwell scale v∗, namely

(2c∗ε∗)1/2 (k∗T∗)3/2

Zµ∗e∗
. (5.1)

Stress variables are accordingly understood to be normalized by δ−1M∗.
The bulk electrolyte (r > 1) is homogenized (c ≡ 1) by the dominance of advection.

The absence of O(1) charge diffusion and advection then implies that the electrical
potential is harmonic,

∇
2ϕ = 0. (5.2)

The flows in both the suspending electrolyte and the suspended drop are governed by
the homogeneous Stokes equations

∇ ·u= 0, ∇p=∇2u, ∇ · ū= 0, ∇p̄= µ∇2ū. (5.3)

The boundary conditions applying at the effective interface comprise the following.

(a) The inhomogeneous Neumann condition

∂ϕ

∂r
+

α

sin θ
∂

∂θ
(vσ sin θ)= 0 at r = 1, (5.4)

arising from the non-uniform advection of charge within the Debye layer. Here,

σ = 2 sinh
ζ

2
(5.5)
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412 O. Schnitzer, I. Frankel and E. Yariv

is the surface-charge density at the drop surface, wherein the zeta potential ζ is
given by

ζ = V − ϕ(r = 1). (5.6)

In general, ζ (and hence σ ) is a function of θ . We choose to formulate the
macroscale model in terms of σ (rather than ζ ) which results in a more compact
description. Thus, with the macroscale charge density of the Debye layer being
−σ , condition (5.4) represents a balance between Ohmic charging and surface
divergence of advective currents.

(b) Continuity of tangential velocity,

v = v̄ at r = 1, (5.7)

representing the uniformity of the leading-order velocity across the Debye layer.

(c) Flow impermeability

u= 0, ū= 0 at r = 1, (5.8)

wherein the former represents the absence of O(δ−1) radial velocity within the
Debye layer (see (4.14)) and the latter is a genuine kinematic condition.

(d) Tangential-stress discontinuity,(
∂v

∂r
− v

)
− µ

(
∂v̄

∂r
− v̄

)
+ σ

∂ϕ

∂θ
= 0, (5.9)

where the last term on the left-hand side is an effective stress jump which
originates from the excess shear within the Debye layer, driven, in turn, by
the Coulomb body force acting on the Debye-layer charge. Note that this
jump conveniently appears as the product of local Debye-layer charge, −σ , and
tangential field, −∂ϕ/∂θ .

At large distances away from the drop, the electric field tends to the uniform applied
field while the velocity approaches a uniform stream,

∇ϕ→−β ı̂, u→−U ı̂. (5.10)

The first condition entails the main input parameter to the problem – the magnitude
β of the applied field; the second entails the principal outcome of the electrokinetic
process – the electrophoretic velocity U .

The macroscale model is ‘closed’ by imposing two integral constraints. The first
is the zero-force condition, originally provided in the microscale form (2.25); it is
now understood to apply at any closed surface within the bulk electrolyte. Since
the contribution of O(1) Maxwell stress in the bulk is dominated by the O(δ−1)

contribution of the Newtonian stress, we obtain the simplified macroscale version∮
{−pI +∇u+ (∇u)†} · n̂ dA= 0. (5.11)

This constraint is readily satisfied by rejecting a Stokeslet term in the solution for the
Stokes flow u. The second constraint represents the invariance of the net charge of the
drop: ∮

σ dA= 4πσ . (5.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

10
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.102


Electrokinetic flows about conducting drops 413

A subtle issue concerns the value V of the drop potential, which enters this
constraint through (5.5)–(5.6). In general, the electric potential in the fluid is only
defined to within an arbitrary additive constant (apparently suggesting that the value
of V is devoid of physical meaning); this arbitrariness is however implicitly exploited
when choosing a specific member of the family of harmonic functions satisfying
(5.4) and (5.10). Once this choice is made, the value of V cannot be prescribed
arbitrarily. Indeed, this value affects the (physically objective) distribution of σ and ζ ,
see (5.5)–(5.6) (cf. Yariv 2005, 2008). In fact, V is uniquely determined from these
equations together with (5.12): see § 6.

The preceding macroscale description is substantially simplified compared to the
exact problem formulation. Furthermore, it enjoys the advantage of describing
transport on the single length scale a∗, as opposed to the scale disparity at the
microscale level of description. The removal of the small scale is clearly useful
when attempting a numerical solution of the problem. The effective boundary
conditions, representing the Debye-layer physics, constitute a lumped description
of both tangential-stress discontinuity and double-layer polarization which clearly
illuminate the physical mechanisms involved. Further simplification may be provided
using Stokes stream functions (Happel & Brenner 1965) in both the suspending
electrolyte and drop phase,

u=
1

r sin θ
ê$ ×∇ψ, ū=

1
r sin θ

ê$ ×∇ψ̄. (5.13)

Notwithstanding the above, the macroscale model is still nonlinear (see (5.4)–(5.5)
and (5.9)) and in general does not admit a closed-form solution. In what follows, we
consider weak applied fields, where an analytic approximation is obtained.

6. Weak-field approximation
In the absence of an applied field (β = 0) the stationary solution is described by

zero electric field, say ϕ = 0, where the zeta potential is uniform, being equal to V .
The surface charge density is uniform, and is related to the net charge 4πσ by (5.12),
thus simply giving the uniform density

σ = σ . (6.1)

To address the weak-field limit β � 1, representing a small perturbation of this
reference state, we employ the generic expansion

f = βf ′ + · · · (6.2)

describing ϕ, the flow fields (u, p) and (ū, p̄), and the electrophoretic velocity U . The
corresponding expansion for the surface-charge density is

σ = σ + βσ ′ + · · · . (6.3)

The linearized potential ϕ′ is governed by Laplace’s equation, the Neumann
condition

∂ϕ′

∂r
=−

ασ

sin θ
∂

∂θ
(v′ sin θ) at r = 1, (6.4)

and the far-field condition ∇ϕ′→−ı̂. We observe that, even after linearization, the
coupling with the bulk flow (u′, p′) persists. This flow, in turn, is governed by the
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Stokes equations, the effective stress-jump condition at r = 1(
∂v′

∂r
− v′

)
− µ

(
∂v̄′

∂r
− v̄′

)
+ σ

∂ϕ′

∂θ
= 0, (6.5)

and the requirement that u′ = 0 there. It must further satisfy the far-field condition
u′→−U ′ ı̂ and the force-free constraint∮

{−p′I +∇u′ + (∇u′)†} · n̂ dA= 0. (6.6)

Condition (6.5) couples the bulk flow to the Stokes flow (ū′, p̄′) within the drop,
satisfying ū′ = 0 and v̄′ = v′ at r = 1.

The solution of the above linear problem is readily obtained. The electric potential is
represented by a superposition of the uniformly applied field and a dipole disturbance,

ϕ′ =−

(
r +

1− 3ασU ′

2r2

)
cos θ; (6.7)

the bulk flow is irrotational, consisting of a uniform stream and a doublet,

ψ ′ =
1
2
U ′

(
r2
−

1
r

)
sin2θ, (6.8)

where the absence of a Stokeslet term guarantees the satisfaction of the force-free
constraint equation (6.6). The flow within the drop is then given by the Hill-type
vortex (Batchelor 1967)

ψ̄ ′ = 3
4U

′(r4
− r2)sin2θ. (6.9)

The electrophoretic velocity, obtained from (6.5), is

U ′
=

σ

2+ 3µ+ ασ 2 . (6.10)

The surface-charge perturbation is readily obtained from (5.5)–(5.6) and (6.7):

σ ′ =
3(2+ 3µ) (4+ σ 2)

1/2

4(2+ 3µ+ ασ 2)
cos θ. (6.11)

In passing, we note that the irrotational flow equation (6.8) indeed conforms to the
general postulate (§ 3.2) of open streamlines originating at infinity.

6.1. Mismatch with Ohshima et al. (1984)
The electrophoretic mobility (6.10) is expressed in terms of σ which is the most
fundamental attribute of the drop in the present model. For the purpose of comparison
with the literature, (6.10) is recast in the form

U ′
=

sinh(ζ/2)

1+ 3
2µ+ 2αsinh2(ζ/2)

. (6.12)

In this formula, the symbol ζ refers to the uniform value of the zeta potential at the
reference state – the ‘drop zeta potential’. This value is linked to the drop charge 4πσ
via the relation σ = 2 sinh(ζ/2): see (5.5) and (6.1).

We recall that (6.12) has been derived by applying a weak-field linearization to
a macroscale description valid in the thin-double-layer limit. As discussed in § 1.2,
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Electrokinetic flows about conducting drops 415

Ohshima et al. (1984) calculated the drop mobility for arbitrary Debye thickness,
starting from the linearized formulation appropriate to weak fields. For thin double
layers, the mobility was found to approach the limit

sinh(ζ/2)

1+ 3
2µ+ 8α cosh(ζ/2)sinh2(ζ/4)

(6.13)

(their equation (72) in the present notation), which differs from (6.12).
The difference between (6.12) and (6.13) appears in the last term of the

denominator, associated with surface conduction (Ohshima et al. 1984). Resolving
this discrepancy requires a careful inspection of the salt transport. Similarly to all
other dependent variables in the weak-field scheme of Ohshima et al. (1984), salt
concentration is represented as the sum of an equilibrium distribution, valid in the
absence of an applied field, and a small O(β) perturbation. (Ohshima et al. 1984
actually solve for the chemical potentials of the ionic species, and do not explicitly
consider the salt concentration; this technical aspect is however irrelevant to the
present discussion.) Beyond the Debye layer, this equilibrium distribution approaches
unity exponentially rapidly. According to our solution, owing to the inherent strong
advection, the bulk salt is constrained to a unity value (irrespective of field strength).

The non-zero bulk-salt perturbation implicit in the scheme of Ohshima et al. (1984)
can be traced back to the order at which the two limits (thin double layer and weak
field) are calculated. When taking first β→ 0 for δ fixed the term that represents the
advection of that perturbation becomes O(β2) and is therefore a priori absent from
the linearized scheme of Ohshima et al. (1984). Effectively, the salt perturbation in
Ohshima et al. (1984) is therefore governed by a diffusive process in the bulk, driven
by the salt flux (4.37) from double layer (which is O(β) in the scheme of Ohshima
et al. 1984). Indeed, when the homogenizing role of advection is overlooked, this flux
would appear to penetrate the bulk, rather than being accommodated within a diffusive
boundary layer. With a non-uniform salt perturbation in the bulk, the mobility in
Ohshima et al. (1984) is apparently affected by diffuso-osmotic slip, which is absent
in our leading-order scheme. This leads to the difference in the mobility expressions.

The limits δ� 1 and β � 1 are not interchangeable. The correct limit process for a
specific problem depends upon the relative smallness of δ and β. Since the advection
term outside the Debye layer is of order βδ−1 (see (2.3) and (3.1), and recall that
α is O(1)), the limit process of Ohshima et al. (1984) is technically valid for very
weak fields, i.e. β � δ� 1. Practical experiments do not conform to this limit, since
drop motion is then virtually indiscernible; rather, in typical experiments involving
thin double layers, the relevant values correspond to the limit δ� β, addressed in the
present paper.

On top of the above quantitative estimates, there are other reasons suggesting that
the limit process considered in the present paper is preferable. The singular limit δ� 1
represents a conceptual spatial decomposition of the fluid domain, suggesting that it
should precede the weak-field limit – essentially a regular perturbation. The order by
which these two limits are taken here is also consistent with typical experimental
procedure, where one first sets the salt concentration (thereby fixing the Debye
thickness) and only then applies a voltage source.

In the small-ζ limit (6.12) and (6.13) coincide, yielding the mobility

ζ

2+ 3µ
. (6.14)
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In this limit the surface conduction mechanism is negligible, hence the double limit
δ� 1 and β� 1 is commutative.

Drop electrophoresis in the thin-double-layer limit was recently discussed by Pascall
& Squires (2011) using an intuitive approach limited to both weak fields and
small zeta potentials. Their mobility expression (7.18) consists of two terms. In the
present notation their first term, O(δ−1β), agrees with the above degenerate small-
ζ limit (6.14) of both (6.12) and (6.13); their second term is higher order in δ,
namely O(δ0β). Incorporation of such terms in a weak-field approximation – which
altogether neglects terms quadratic in β – is rather dubious. As already explained, the
proper limit describing typical experiments is δ� β, implying β � δ−1β2; but these
larger O(δ−1β2) terms are neglected at the outset when starting from a weak-field
approximation.

6.2. Comparison with Levich (1962)
Remarkably, our weak-field approximation (6.10) agrees with that obtained from the
Frumkin–Levich model. The analysis of Frumkin (1946) and Levich (1962), starting
from a linearized weak-field model, is different from the present one. Thus, it does
not consider the Debye-layer structure. Rather, this layer is effectively represented
as an interface between the drop and the bulk electrolyte. The dynamic macroscale
effects of the double layer are accordingly embodied in an apparent interfacial tension
varying with the local bulk potential according to the Lippmann–Helmholtz relation.
Furthermore, their analysis does not address the issue of salt transport. It is therefore
desirable to rationalize the fortuitous agreement of the final result.

Formally, the derivation of the electrophoretic velocity in Levich (1962) hinges
upon three key elements. The first is the use of Laplace’s equation in the statement
of the problem governing the bulk electric potential. While this is not justified by
Levich (1962), our asymptotic analysis reveals that applicability of Laplace’s equation
only follows from the dominance of salt advection in the bulk. The second is
an inhomogeneous Neumann condition, also governing the electric potential. This
condition represents the surface divergence of the advective Debye-layer currents
(see (6.4)). As explained by Levich (1962), this effective condition does not depend
upon the Debye-layer structure because of the uniformity of the tangential velocity
across this layer.

The third element in Levich (1962) is the representation of the shear-stress
discontinuity in the macroscale dynamic boundary condition through a Lippmann
term. This is equivalent to the term representing the stress jump in (5.9). Indeed,
with dζ = −dϕ (see (5.6)) the present term is provided by the tangential derivative of
−8sinh2(ζ/4), the latter quantity already known to play the role of an electro-capillary
deviation of the effective interfacial tension from an equilibrium value, see (4.53).
When linearized for weak applied fields, this quantity degenerates to that postulated by
Levich (1962).

Some of the literature implies that the Frumkin–Levich analysis is limited to small
zeta potentials. For example, (2.5) of Pascall & Squires (2011), linear in the zeta
potential, is presented as the mobility derived by that analysis, while in fact it is a
linearization of the original result given in both Frumkin (1946) and Levich (1962).
This confusion may be related to the conclusion of Ohshima et al. (1984) that ‘the
theory of Levich and Frumkin for the electrophoresis and sedimentation of mercury
drops is valid only for very small ζ . . . ’. This conclusion is based upon comparison
with their mobility prediction; in view of the above discussion in § 6.1, this statement
is unwarranted.
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Levich (1962) also obtained a macroscale expression for the normal-stress jump
across the effective interface. To compare that expression with the present model, we
note that in our weak-field terminology, the variable ζ appearing in (4.52) needs to be
replaced here by ζ + βζ ′. The term 16sinh2(ζ/4) appearing in (4.52) therefore reads

16sinh2 ζ

4
+ 4βζ ′ sinh

ζ

2
+ O(β2). (6.15)

The first term (6.15) is uniform and does not affect deviations from spherical shape.
The second term represents the product of local curvature, 2, reference Debye-layer
charge, −2 sinh(ζ/2), and electric-potential perturbation, βϕ′ = −βζ ′; it is equivalent
to the expression obtained by Levich (1962) via thermodynamic reasoning. Calculation
of the radial-stress jump (4.52) at O(β) using the latter term and the velocity fields
(6.8)–(6.9) yields a nil result. Thus, as already noted by Levich (1962), the jump in the
normal stress does not lead to a deviation from a spherical shape. This should not be
expected to hold outside the linear régime.

7. Discussion
We have constructed a macroscale description of electrokinetic flows about a

perfectly conducting drop in the thin-double-layer limit δ � 1, where the double-
layer physics is embodied in effective boundary conditions. Our model, derived from
‘first principles’, is restricted to neither small zeta potentials nor weak applied fields.
The distinction between free and solid surfaces is rooted in the microscale dynamic
boundary conditions (e.g. pointwise continuity of shear stress). Moreover, since unlike
a solid particle this surface is mobile, the electrolyte velocity does not vanish there.

In standard thin-double-layer descriptions of electrokinetic flows, Coulomb body
forces drive intense velocity gradients across the narrow Debye layer, giving rise to
asymptotically large Newtonian shear stress within the electrolyte phase. Normally,
this stress is balanced by a comparable Maxwell stress, whereby the fluid velocity
is characterized by the Maxwell scale v∗ defined in (2.1). When the drop is highly
conducting, however, the tangential electric field vanishes and the Maxwell traction on
its surface is purely normal, resulting in an essentially new scaling. This is the limit
considered here.

In the new asymptotic structure corresponding to this limit the fluid velocity is
enhanced to the larger scale δ−1v∗ provided in (5.1). At this asymptotic order, the
fluid velocity does not vary across the Debye layer. Nevertheless, owing to surface
curvature, this velocity is associated with a tangential-stress contribution comparable to
the stress resulting from transverse gradients of the velocity correction; this allows a
dominant stress balance even in the absence of Maxwell stresses. The drop-phase
shear stress may also enter this leading-order balance: while no double layer is
formed on the drop side of the interface, velocity continuity there mandates large
O(δ−1v∗) velocities varying on the drop scale. The new structure implies a radical
departure from conventional slip-driven electro-osmotic flows to a different régime,
where electrokinetic flows are driven by interfacial shear.

Our starting point at the microscale level is the standard electrokinetic model.
In the physicochemical modelling of the drop we follow Ohshima et al. (1984),
describing the drop as an ideally polarizable (no chemical reactions) perfectly
conducting (uniform electric potential) medium. Drop-phase charge is thus confined
to the interface, its total amount being an invariant of the problem. This is the natural
model for describing metal drops.
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Exploiting the thinness of the double layer we employ matched asymptotic
expansions to derive a coarse-grained description of the problem. The unique features
of this macroscale model, which distinguish it from those describing flows about solid
surfaces (Yariv 2010a; Schnitzer & Yariv 2012c), stem from the above-mentioned
large velocity scaling. In the electro-neutral bulk the salt concentration is rendered
uniform by the strong advection of salt from the homogeneous far field. The
dominance of advection in the bulk is accompanied by strong tangential fluxes within
the Debye layer. As these ‘surface’ currents are generally non-uniform, they give
rise to transverse ionic fluxes. The transverse flux of charge is manifested by a
novel inhomogeneous Neumann condition governing the electric potential, replacing
the standard homogeneous Neumann condition in ‘conventional’ electrokinetic flows
(Yariv 2010a). The transverse flux of salt, on the other hand, is incompatible with
the homogeneous distribution in the bulk. This necessitates an intermediate diffusive
boundary layer over which salt relaxation takes place.

In a sense, the present dominance of advection in the Debye-layer transport
represents an effective ‘surface conduction’ mechanism at moderate zeta potentials.
We have already encountered similar ‘zero-Dukhin-number’ phenomena in the context
of other thin-double-layer problems, namely electro-viscous effects at large Péclet
numbers (Yariv et al. 2011) and particle electrophoresis under strong fields (Schnitzer
& Yariv 2012d). Here surface conduction at moderate zeta potentials is inherent in
the problem, being imposed by neither by large ambient velocities (as in Yariv et al.
2011), nor by strong applied fields (as in Schnitzer & Yariv 2012d).

Surface conduction is traditionally associated with a non-vanishing Dukhin number
defined as the ratio of surface-to-bulk conductivities (Dukhin 1993; Lyklema 1995).
In the common class of problems concerning electrokinetic transport about dielectric
solids, and in the absence of anomalous conduction behind the slip plane, this number
scales as the product of δ and an exponential of ζ (cf. (4.35) et seq.). Obviously,
this ‘conventional’ Dukhin number, which is vanishingly small in the present analysis
limited to moderate zeta potentials, does not represent the unique advective mechanism
of surface conduction in the present free-surface problem. In view of this one may
attempt to define a ‘modified Dukhin number’ (see Khair & Squires 2009a,b) more
representative of the physical mechanisms of ionic transport actually involved. From
(5.4) ασ seems to represent the ratio of surface-to-bulk conductivities. The inherent
non-uniformity of σ suggests that we should instead take ασ (see (5.12)) as the
definition of that modified Dukhin number; furthermore, within the framework of the
present assumptions the latter is invariably O(1). Note, however, that the anticipated
large variations of σ under an applied field which is not weak render questionable the
usefulness of the latter choice as well. Moreover, when σ = 0 (i.e. for an uncharged
drop), the surface-conduction magnitude is essentially field dependent through a
nonlinear charging process (cf. Schnitzer & Yariv 2012b). Finally, as our analysis
is limited to moderate zeta potentials, we do not know what the scaling of the
conductivity ratio at larger potentials (due to either large drop charge or applied field)
is. Thus, no useful definition of a modified Dukhin number seems feasible here.

Perhaps the key feature in the macroscale description is the appearance of a
discontinuity in the effective tangential-stress condition (5.9). On the microscale,
this discontinuity originates from the excess shear, driven by Coulomb body forces
within the narrow Debye layer. On the macroscale level, this jump condition marks
a fundamental transition from slip-driven to shear-driven electrokinetic flows. In fact,
the present shear mechanism is remarkably similar to that in Marangoni-type flows
(Leal 2007). It must be emphasized that, in contrast to the thermodynamic approach of
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Levich (1962), the stress jump in the present derivation is a direct consequence of the
transition from the exact microscale description (where the surface tension is uniform)
to the macroscale one.

The resulting macroscale model, albeit nonlinear, is substantially simpler than the
original microscale model. The removal of scale disparity inherent in the latter
facilitates numerical solutions using standard techniques. Since nonlinearity appears
only through the effective boundary conditions, a numerical solution would be
straightforward using eigen-function expansions (see Yariv 2008; Yariv & Davis 2010).
In principle, such a numerical solution would provide the drop velocity U as a
function of the applied field β and the drop charge 4πσ . The formulation of the
problem in terms of the latter parameter represents its fundamental role in the present
physical model. The zeta potential is generally non-uniform and cannot play a similar
role.

An analytic solution is obtained for the linearized system governing weak-field
electrophoresis, β � 1, wherein drop velocity scales as β. In this case, the
electrophoretic velocity (6.10) may be expressed through an effective ‘drop zeta
potential’ representing the uniform value of ζ at the equilibrium reference state
corresponding to β = 0, see (6.12). Note that the mobility U ′ attains a maximum
at σ =

√
(2+ 3µ)/α; this corresponds to an O(1) value of the reference zeta potential.

As in the classical analysis of O’Brien & Hunter (1981), the appearance of a mobility
maximum is related to non-uniform Debye-layer currents. In their analysis, these
currents are associated with finite Dukhin numbers, hence the mobility maximum
appears at a zeta potential that depends upon the Debye thickness. Here, however, the
‘surface-conduction’ mechanism is an essentially advective one, related to the large
velocities involved, and accordingly has already emerged at moderate zeta potentials.

The dimensional counterpart of (6.10) is obtained via multiplication of U ′ by the
product of the velocity scale δ−1v∗, provided in (5.1), with β. Since, βv∗ is the
Smoluchowski scale v∗S , defined in (1.1), this product is simply the Frumkin–Levich
scale δ−1v∗S . In terms of the primitive quantities of the problem, this scale is (cf. (5.1))

E∗a∗

µ∗
(2ε∗k∗T∗c∗)1/2 . (7.1)

In the weak-field limit, the electrophoretic velocity is accordingly linear in drop size.
The mobility obtained by the present scheme differs from that calculated by

Ohshima et al. (1984). Careful inspection reveals that the two limits involved in
the mobility calculation, namely thin double layers and weak fields, do not commute.
Unsurprisingly, the failure in interchanging the order of these limits is related to the
large velocities involved in electrokinetic flows about conducting drops in the thin-
double-layer limit. Thus, the present limit process δ � β � 1 represents convection-
dominated salt transport in the bulk as opposed to the diffusion-governed process
represented by the limit β � δ � 1 implicit in Ohshima et al. (1984). Considering
typical values of δ and β in concrete systems, the former is more representative of
realistic scenarios. For small zeta potentials, the two double limits result in an identical
mobility, namely (6.14).

Formally, the mobility decays at sufficiently large drop charge (or, equivalently, zeta
potential) in the reference state, see (6.10)–(6.12). We expect the true decay rate at
large zeta potentials to be even larger because of the suppressing role of ‘classical’
surface conduction, associated with the intensification of counter-ion concentration
near the surface. This mechanism, which becomes quite complex in the nonlinear
régime (Schnitzer & Yariv 2012c), has not been taken into account in our model.
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Another formal limit, also predicting vanishing mobility, is that of relatively large
drop-phase viscosity, µ� 1. In that limit one might expect to retrieve the mobility
expression for a chemically-inert conducting solid particle (Yariv 2008). The latter
quantity is however of smaller asymptotic order in δ and cannot be discerned in the
present analysis: in fact, the same applies to all slip-driven electrokinetic effects.

The macroscale thin-double-layer description of electrolyte drops in the spirit of the
present methodology constitutes a desirable extension. This is a challenging goal since
the modelling of such drops is considerably more complicated. Until this extension is
accomplished, the present model may under certain limits be applicable to electrolyte
drops. Thus, the pioneering weak-field analysis of this problem (Baygents & Saville
1991a) suggests that when the ionic concentration within the drop is much higher than
that within the surrounding liquid the drop approximates a perfect conductor. Such
approximations are in fact widely used in the related fields of electrohydrodynamics
(Tseluiko et al. 2008) and electrowetting (Mugele & Baret 2005).

Finally, it is important to note that the Frumkin–Levich mobility, which agrees with
our weak-field prediction, was confirmed by ingenious experiments (Levich 1962). The
present paper will hopefully stimulate further experiments, as well as complementary
numerical solution of the present macroscale model, which would help illuminate the
nonlinear drop behaviour under stronger applied fields.
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Appendix. Diffusive boundary layer: scaling and analysis
We assume without loss of generality that σ > 0, whereby U > 0 as well. (The

case σ < 0 is readily treated using symmetry arguments.) Since in the drop-fixed
reference system the incident flow is in the negative-ı̂ direction, we employ the
plausible assumption that

ṽ−1(θ) > 0 for 0< θ < π. (A 1)

This is certainly true for weak fields, wherein (see (6.8))

ṽ−1 =
3
2βU ′ sin θ. (A 2)

(It may well be that (A 1) is satisfied as a consequence of the open-streamline
structure, assumed in § 3.2.)

We employ the coordinate transformation (Z̀, θ)→ (η, θ), wherein

η =
√
αZ̀ṽ−1(θ) sin θ (A 3)

is proportional to the local stream function. Defining the reduced concentration g(η, θ)
by

C̀1/2(Z̀, θ)= 4αg(η, θ), (A 4)

we find that it satisfies the diffusion-type equation

∂g

∂θ
= ṽ−1(θ)sin2θ

∂2g

∂η2
, (A 5)
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the Neumann condition

∂g

∂η
=

1

ṽ−1(θ)sin2θ

d
dθ

[
ṽ−1(θ) sin θsinh2 ζ(θ)

4

]
at η = 0, (A 6)

and the requirement of decay at large η.
This linear problem is solved by means of a Fourier cosine transform, defined as

G(k, θ)=

(
2
π

)1/2 ∫ ∞
0

g(η, θ) cos kη dη. (A 7)

Applying (A 7) to (A 5)–(A 6) provides the first-order differential equation

∂G

∂θ
+ k2ṽ−1(θ)sin2θ G=−

(
2
π

)1/2 d
dθ

[
ṽ−1(θ) sin θsinh2 ζ(θ)

4

]
(A 8)

whose solution is

G= A(k)e−k2ξ(θ)
−

(
2
π

)1/2 ∫ θ

0

d
dt

[
ṽ−1(t) sin t sinh2 ζ(t)

4

]
ek2
[ξ(t)−ξ(θ)] dt, (A 9)

in which

ξ(θ)=

∫ θ

π/2
ṽ−1(t) sin2t dt. (A 10)

In view of (A 1), ξ(θ) is a monotonically increasing function for 0 < θ < π. Thus,
the second term in (A 9) decays for large k. On the other hand, since ξ(θ) < 0 for
0< θ < π/2, the exponent in the first term of (A 9) diverges in that limit. We therefore
find that A= 0. Employing the inverse transform and reverting to the original variables
then yields the requisite salt profile

C̀1/2 =−
4α
π1/2

∫ θ

0
[ξ(θ)− ξ(t)]−1/2

×
d
dt

[
ṽ−1(t) sin t sinh2 ζ(t)

4

]
exp

{
−
αZ̀2ṽ2

−1(θ)sin2θ

4[ξ(θ)− ξ(t)]

}
dt. (A 11)

As a specific illustration, consider the weak-field limit β� 1, where (A 2) implies

ξ(θ)=− 3
2βU ′λ(θ) (A 12)

in which λ(θ)= cos θ − (1/3)cos3θ . Then,

C̀1/2 =−α

(
96βU ′

π

)1/2

sinh2 ζ

4

∫ θ

0

sin t cos t
√
λ(t)− λ(θ)

exp

{
−

3αβZ̀2sin4θ

8[λ(t)− λ(θ)]

}
dt, (A 13)

in which ζ denotes the reference zeta potential at the unperturbed state β = 0.
Note that the fluxes responsible for the generation of the diffusive layer are

antisymmetric in the weak-field limit, varying as cos θ : see (4.45) and (A 2). Because
of the biasing role of advection, however, that antisymmetry is not preserved in the
diffusive-layer structure. Indeed, while C̀1/2 approaches a finite values as θ → 0, it
diverges as θ → π. This divergence may, in turn, suggest the formation of a salt wake
(Leal 2007).
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