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Abstract. We present numerical solution of a fully nonlinear electron kinetic equation
in self-similar variables, which on the one hand has all features of a ‘standard’ hy-
drodynamics (ratios of the electron mean free path to the scale length γ ≡ λC/L� 1),
and on the other hand has no restriction on the smallness of the parameter γ. The
self-similar variable approach reduces dimensionality of the space-dependent kinetic
equation, thereby providing numerical analysis of the electron heat transport in the
velocity space. The electron distribution structure and its super thermal power-law
tail are examined.

PACS number(s): 52.25.Dg, 52.65.Ff, 52.50.-b

1. Introduction and statement of the problem
The paper is organized as follows. The first section contains introduction, preliminary
discussion and statement of the problem. In Section 2, we consider an equation that
is computed at first examining the separate influence of its constituent operators and
shortly discussing numerical issues. The illustrative simulation results are presented
graphically. Concluding remarks follow at the end.

Kinetic treatment of plasma systems plays an important role in a description
of macroscopic plasma properties that cannot be learned under hydrodynamic
approach. The Boltzmann kinetic equation (BKE) is a cornerstone for the study of
transport phenomena in gases and plasmas, as well as the photon, neutron, phonon
etc. transport in different media [1–6].

For the one-dimensional in space electron distribution function f(x, v, t) BKE
reads

∂f

∂t
+ vx

∂f

∂x
− eE(x)

m

∂f

∂vx
= Ce(f), (1.1)

where e and m are the electron charge and mass, respectively, and E(x) is an external
electrical field as it is usually assumed dealing with transport processes. The operator
Ce(f) =Cee(f, f) +Cei(f) describes electron–electron and electron–ion collisions. For
spatially uniform problem ∂f/∂x = 0, the kinetic equation is of the Landau–Fokker–
Planck (LFP) type. The nonlinear electron–electron collisional integral Cee(f, f) in
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the Landau form reads

(
2πe4Λn

m2

)−1

Cee(f, f) =
∂

∂vi

{∫
dwUij

(
∂

∂vj
− ∂

∂wj

)
f(v)f(w)

}
,

Uij =
u2δij − uiuj

u3
, |u| = |v − w|,

(1.2)

where Λ is the Coulomb logarithm and n is the electron density.
Direct solving of the BKE is a rather complicated problem for several reasons,

therefore the most common approach to transport problems in gases and plasmas
is based on successive expansion of the distribution function f(x, v, t) in the Taylor
series over small parameter γ, with further derivation of ‘hydrodynamic’ equations
for some moments of the locally equilibrium distribution function, by taking into
account only first-order corrections over small parameter γ. These small parameters
assume rather long scales of spatiotemporal evolution of the media in comparison to
both particle mean free path λC �L and time between particle collisions te � t. Here

λC = T 2/2π e4Λn, te = m2v
3/2
th /2πe4Λn and vth = (2T/m)1/2 is the thermal velocity.

However, generally speaking it is not clear a priori, how small γ should be to
insure reasonable accuracy of hydrodynamic transport equations. For example, in
order to use the Spitzer–Harm expression for electron heat conduction [7] with
reasonable accuracy, γ should be below just few×10−2 (e.g. see Ref. [8]). The reason
for this is a strong increase of the Coulomb mean free path, λC , with electron energy,
ε (λC ∼ ε2), so that electrons responsible for heat transport (ε∼ 10 × T, where T is
the electron temperature) are much less collisional than for thermal ones.

Meanwhile γ ∼ 0.1 are often observed in many applications (e.g. in edge plasma
of fusion devices, ICF studies, space plasmas etc.), which shows the needs for
the models going beyond a ‘standard’ hydrodynamics. Extension of the ‘standard’
hydrodynamic equations by taking into account higher order terms over parameter
γ does not look very attractive because of possible impact of non-expandable terms
(e.g. exp(−1/γp), where p is some constant) existing in the solution of the BKE (see
below).

In order to overcome the problem arising from the solution of the BKE by
the Taylor expansion of the distribution function, other methods of approximate
solution of the BKE were suggested for both plasma and neutral gas (e.g. see Ref.
[8–11] and the references therein). However, it is difficult to judge on both accuracy
and applicability limits of these approaches related to kinetic description without
some exact reference solutions of the BKE.

One of the issues with the solution of even stationary BKE is its high dimension-
ality, at least 1D2V, see (1.1). However, in Ref. [12] it was shown that for some cases
the electron BKE allows exact representation in self-similar variables that resulted
in reducing dimensionality, which makes the equation more tractable. Dealing with
the kinetic equation, the velocity and particle distribution are usually normalized
to vth and n · v−3

th . In Ref. [12] it was suggested to represent the one-dimensional
in space azimuthally symmetric electron distribution function f(x, v, t) as a product
of f̃(ṽ, µ, t) · T (x)−α · N, where T (x) is the effective electron temperature, ṽ = v/vth,

α is an adjustable parameter, µ = cos(ϑ) and ϑ is the azimuthal angle, N is the
normalization constant and n(x) ∝ [T (x)]3/2−α . Such solutions are possible for
specific profiles, which make parameter γ independent of space x. Namely, effective
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temperature T (x) satisfies equation Tα−1/2 · dT
dx

= const, then

γ = − T 2

2π e4Λn
· d lnT

dx
= const.

For such profiles, density and temperature profile the stationary, ∂f/∂t = 0
electron kinetic equation (1.1) with Cei(f) describing electron–ion angle scattering
only, then

m2

2πe4Λn(x)
Cei(f) =

Z

v3

{
∂

∂µ
[(1 − µ2)vf]

}

can be transformed into

γµv

(
αf + v/2

∂f

∂v

)
− γE

2

[
µ
∂f

∂v
+

1

v
(1 − µ2)

∂f

∂µ

]
=

1

4
[Cee(f, f) + Cei(f)] . (1.3)

Omitting tilde sign we returned to the original notations. The normalized ambipolar
electron field γE = E

ED
= e E T

2πe4Ln
equalizes flux current to zero; Z is an effective ion

charge. In Ref. [12] (1.3) was solved analytically for small γ and Z = 1 by choosing
appropriate domains of variable v with further analytic continuations of function
f allowing to match the solutions in different domains. Similar approach has been
used before for the solution of the problem of runaway electrons in DC electric field
[13–15]. In Ref. [12] it was found that function f has a power-law tail

f(v, µ)v2�γ−1/2 ∝ exp

(
−2

3
γ−1/2 − (2π)3/2

Γ (1/4)2
γ−1/4

)
Φ(µ)

v2α
. (1.4)

As one sees, the magnitude of this tail has non-expandable terms that cannot be
recovered by the Taylor expansion.

In Ref. [16] the analytic solution for (1.3) was extended to the case of high Z.
We note that the solutions for high Z, having no power-law tail, found in Ref. [17]
are erroneous, as they are found assuming that the term containing electric field
is a dominant one, while simple examination of (1.3) shows that the first ballistic
term always dominates, what can be also seen further from numerical simulation.
In Ref. [18], self-similar variables were used to analyze neutral transport governed
by charge-exchange processes in edge plasma.

Even though analytic solutions of (1.3) provide some useful information on the
electron distribution function (e.g. the magnitude and the form of the tail), it is
difficult to use them for benchmarking the models targeting quantitative evaluation
of heat flux for the case going beyond the Spitzer–Harm approximation. Therefore,
in Ref. [19] (1.3) was solved numerically for the linear kinetic equation, adopting
the Rosenbluth potentials for the Maxwellian distribution function (FP form of the
equation). Although the power-law tail in these numerical solutions, in agreement
with Ref. [12], was recovered, they are lacking agreement with the Spitzer–Harm
limit where the Rosenbluth potentials should be found self-consistently, i.e. nonlinear
kinetic equation should be considered.

In what follows we present for the first time numerical solution of the nonlinear
electron kinetic equation in self-similar variables, which on the one hand has all
features of a ‘standard’ hydrodynamics (e.g. Spitzer–Harm limit of electron heat
conduction, very small γ), and on the other hand has no restriction on the smallness
of parameter γ. In the next section we present numerical simulation results.
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2. Solution of the time-dependent kinetic equation
Strictly speaking one cannot state the existence of solution to (1.3) for several
reasons. A complexity of the equation makes possible its analytical treatment under
simplifying assumptions, thus providing us with asymptotic solutions. In order to
find the solutions for (1.3) numerically, the relaxation method is used, i.e. instead of
stationary (1.3) the time-dependent equation

∂f/∂t + Γf + Ef = [Cee(f, f) + Cei(f)]/4 (2.1)

is employed for computing the electron distribution function evolution, where Γf

and Ef are the ballistic and electrical field operators, respectively, from (1.3). The

electron distribution is normalized to unity, i.e. n =
∫ ∞

0
dvv2

∫ 1

−1
dµ f(v, µ, t) = 1 and

ε =
∫ ∞

0 dvv4
∫ 1

−1 dµ f(v, µ, t) = 1, where n and ε correspond to the electron density
and energy, respectively. As usual, the distribution function (or its derivatives) is
bounded at v = 0, µ = ±1 and tends to be zero f → 0 with v → ∞ fast enough
ensuring the moment ε is limited. The local Maxwell distribution corresponding to
the time-dependent thermal velocity defined as vth =

√
2ε/3 � vth(0) is fMaxw(v, t) =

2π−1/2v−3
th · exp

(
−v2/v2

th

)
. For simplicity, the initial condition on the distribution

function f(v, µ, 0) = f0(v) is set to the Maxwell distribution. The evolution of the
distribution tails in high velocity region v � vth for t� te and formation of the
non-equilibrium steady-state electron function is searched. Before we proceed with
presentation of numerical results it would be helpful to analyze constituent operators
contained in (1.3) and (2.1) and roughly estimate the solution we are going to obtain
for different input parameters. Dealing with the numerical solution it is practicable
to have firm references to compare with. The Maxwell distribution and asymptotic
solution (1.4) play an important role particularly for the verification of numerical
results.

It is well known that the collisional integral action can be formally subdivided into
a Coulomb diffusion part and a transport term. The influence of Coulomb diffusion is
the utmost in the cold energetic region 0 � v < vth, where the solution acquires a quasi
equilibrium form within the period of collision time te. The time period when the
relaxation of the distribution bulk is finished is characterized for our normalization in
(2.1) by te ∼ 4. In high velocity region, v � vth, the LFP nonlinear parabolic equation
degenerates because of the known Rutherford cross-section dependence on velocity
and the transport term (the first derivative) becomes more important. This condition
leads to inevitable retarding of the distribution tail formation in comparison to the
bulk part of the distribution (at least, t> 20 in numerical simulation). Operator
Cei(f) contributes to the electron distribution function isotropization. Big magnitude
of charge Z leads to the faster Maxwellization of the distribution and mainly in the
thermal velocity region.

Integrating over velocity space both sides of (2.1) with corresponding weights, we
obtain the following laws for changing of distribution function moments with time

dn

dt
= γ(α − 2) J;

dJ

dt
= γ(α − 5/2) ε‖ − γE

2
n,

dε

d t
= γ(α − 3)

∫ ∞

0

dvv5

∫ 1

−1

dµ µf(v, µ, t) − γEJ,

(2.2)
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where parallel component of energy is denoted as ε‖ =
∫ ∞

0
dvv4

∫ 1

−1
dµ µ2f(v, µ, t). It

has been mentioned above that the problem presumes to be a no-current condition,

thus J =
∫ ∞

0
dvv2

∫ 1

−1
dµ vµ · f(v, µ, t) = 0 has to be fulfilled by suitably chosen value

of ambipolar field γE. As can be seen from (2.2), if J ≈ 0, then during the whole
process under consideration the electron density n remains constant. The energy
ε(t) slightly increases in time proportionally to the fifth moment (density energy
flux) multiplied by factor γ (α − 3). Our goal is to preserve the macroscopic laws
(2.1) in discrete case by adequate approximation in numerical schemes. For the
LFP nonlinear kinetic equation the completely conservative implicit finite-difference
scheme is used with iterations over nonlinearity (e.g. see Ref. [20] and the references
therein). The well-known specific property of the kinetic equation is that the form
of the operators that is taken for discrete approximation is of great importance. For
operator Efthis is the well-known form of the density conservation (differential) law
(e.g. see Ref. [21, 22] and references therein)

Ef =
γE

2

1

v2

{
∂

∂v
(µv2f) +

∂

∂µ
[(1 − µ2)vf]

}
. (2.3)

The action of this operator leads to the well-known runaway effect when the
distribution stretching is moved in the field direction µ= 1 toward the high velocity
region v > vcr � γ−1

E except for the quasi isotropic part in the cold velocity region
because of collisions. Current dJ/dt∼ γEn resulted from the strong splitting of the
distribution function over all ‘directions’ µ grows in time as well as in energy.
But the temperature of tail particles remains less than the temperature of thermal
particles (the local Maxwellian distribution). The value of energy growth dε/dt∼ γEJ

is connected in our case with the parameter γ(α − 3).
Further, we consider equation ∂f/∂t+Γf = 0, f(v, µ, 0) = f0(v, µ) with the ballistic

operator Γf that can be written in different forms, for example

Γf = γµv

(
αf +

v

2

∂f

∂v

)
=

γ

2

1

v3

∂

∂v
(µv5f) + γµ

(
α − 5

2

)
vf = γµ

1

v2α−2

∂

∂v
(v2αf).

The last form gives an idea about the character of a solution

f(v, µ, t) = f0

(
v

1 + v µγt/2

) (
1

1 + v µγt/2

)2α

. (2.4)

The following representation for Γf is used in numerical simulation

Γf =
γ

2

1

v2

∂

∂v
(µv4f) + γµ(α − 2)vf.

This form yields the correct approximation of the law dn/dt in (2.1) that can
be naturally obtained in discrete case. Note that at the beginning the value of γE
may be estimated from equality γE ≈ 2/3γ(α − 2.5) in (2.2). Thereby in the course of
computing, at every time step two iterative loops are carried out. Firstly, iterations
on γE are made until J ≈ 0, and secondly, iterations are developed over nonlinearity
until the numerical solution converges with preset accuracy. The effect of operators
(2.3) and (2.4) upon initial function should become apparent approximately within
a while t≈ γ−1

E , (αγ)−1.

Operator (2.1) is solved in full formulation (full velocity space) avoiding any
additional restrictions (artificial cutoff of the distribution at the rated interval).
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Specifically, the boundary condition lim
v→∞

f = 0 in the discrete case means that the

numerical distribution function has to be equal to machine zero at the maximum
mesh speed f(vmax, µ, t) = 0. This condition has to be satisfied properly for taking
into account high energetic distribution tails and preserving the conservation laws
(for numerical aspects concerning the LFP equation, see, for example [20] and the
references therein).

Further simulation results of (2.1) are illustrated on pictures 1–5 for different
parameters α, γ, γE. For all cases, J ≈ 0, n≈ 1 are preserved with the approximation
error less than 10−8. Big value of α defines the lower electron function tails and
their steeper slope, see (2.4). Correspondingly, it defines big value of γE and slight
energy increase. In considered cases the energy growth does not exceed 5% of
initial value. Parameter γ mainly determines the time of the distribution function
developing. Illustrative examples prove all that has been stated above. In the region
v � vth the distribution functions are close to the Maxwellian (dashed line) and close
to each other throughout the entire relaxation. Temporal evolution of the electron
distribution function in the direction µ= 1 is presented in logarithmic scale versus
logarithm of squared velocity. In all pictures distribution functions are normalized
on their value at v= 0. Also, the plots of the distribution are given for µ= − 1, 0, 1
at the moment when power-law tails are already formed.

Figure 1 demonstrates the steady-state non-equilibrium distribution formation at
the time moments, t= 5, 10, 25, 50 for parameters α= 50 and γ= 0.005. It is seen
that solution is established up to the moment t= 25. In agreement with the analytic
result (1.4), the function has power-law tail (dotted line denotes v−2α). Figure 2
shows temporal evolution of f(v, µ= 1, t) for α= 5 and γ= 0.0002. At time moment
t= 350 the tail (1.4) is already developed. Figure 3 shows the distribution function
f at µ= − 1, 0, 1 and t= 75 for the same parameter α= 5 but five times bigger
γ= 0.001. As can be seen from comparison of Figs. 2 and 3 the value of γ mainly
defines the time period of the distribution tail formation. Finally two plots of the
distribution function, Figs. 4 and 5, are shown for α= 100 and γ= 0.001 (for these
parameters γE ≈ 0.06). Figure 4 demonstrates the temporal evolution of the electron
function with the distribution profiles falling more steeply in agreement with (1.4)
and (2.4). Energy is rising up to ε(t) ≈ 1.05 · ε(0) during the considered time period
and superthermal distribution tail is constantly developing because of changing
vth(t). Figure 5 shows the distribution in a colder part of velocity in more detail for
µ= −1, 0, 1 at t= 200. Computed function coincides with the Maxwell distribution
(dashed line) in the velocity region up to v2 � (3 vth)

2. In agreement with formula
(2.4), the distribution function is disintegrated over direction µ because of the ballistic
operator action. From the numerical results for different input parameters it can be
concluded that the ballistic term has always prevailed.

We notice that speculations extensively discussed in literature in connection to
the generalization of the Boltzmann–Gibbs statistics are chiefly addressed to recipe
for generating significant high-energy tails, mostly in space plasmas (e.g. [23] and
references therein). The issues with runaway and power law tails are not limited
to the Coulomb collisions of electrons but possible for environments with different
electron scattering laws. For example, runaway of electrons in external electric
field was considered in Ref. [24] when only electron-neutral interactions matter. In
Ref. [25] it was shown that peculiar dependence of resistivity on electric field in
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Figure 1. Temporal evolution of electron distribution function for µ= 1 normalized on its
value at zero velocity versus squared velocity is shown in double logarithmic scale (arbitrary
units); α= 50, γ = 0.005, t = 5, 10, 25, 50. Dashed line is the Maxwellian distribution and
dotted line is v−2α.

Figure 2. Temporal evolution of the electron distribution function for α= 5, γ= 0.0002 and
t= 200, 300, 350, 400.

n-InSb and n-GaAs at the temperatures 1–10 K could be explained by power-law
tail of the electron distribution function. In Ref. [26] the runaway was studied in a
weakly ionized gas subjected to a weak electric field. The qualitative behavior of the
time-dependent electron distribution for different velocity dependence of collision
frequency ν ∼ v−n (that corresponds to the long-range interaction U ∝ r−s and
impenetrable elastic spheres) was examined. Subsequently elaborated methods were
applied for solid-state plasmas to examine the development of the electron velocity
distribution in n-InSb at helium and hydrogen temperatures. It might be also worth
to mention Refs. [27, 28] where the evolution of the velocity distribution tails for
systems with long-range interaction governed by the LFP equation were studied.
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Figure 3. Electron distribution function for µ= − 1, 0, 1 and α= 5, γ= 0.001, t= 75.
Dashed line is the Maxwellian distribution and dotted line is v−2α.

Figure 4. Temporal evolution of electron distribution function for α= 100, γ= 0.001 and
t= 25, 50, 75, 100, 150.

Accelerated high-energy distribution tails are observed in lab plasma, particularly
in the tokamak scrape-of layer, in space and solid-state plasmas and their behavior
attract increasing interest.

3. Conclusions
We present numerical solution of a nonlinear electron kinetic equation in self-similar
variables, which on the one hand has all features of a ‘standard’ hydrodynamics
(ratios of the electron mean free path to the scale length γ ≡ λC/L� 1), and on
the other hand has no restriction on the smallness of parameter γ. The self-
similar variables approach developed previously reduces dimensionality of the

https://doi.org/10.1017/S0022377811000225 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377811000225


Numerical solution of nonlinear electron kinetic equation 811

Figure 5. Electron distribution function for α= 100, γ= 0.001, t= 200; µ= − 1 dotted line,
µ= 0 – dashed-dot line, µ= 1 –solid line. Dashed line is the Maxwellian distribution.

space-dependent kinetic equation and makes available numerical analysis of the
electron heat transport only in the velocity space. Validation and verification of
the exploited numerical schemes are proved. The problem is unfolded through a
time-dependent numerical solution that tends to the non-equilibrium stable electron
distribution. Structure of the electron distribution function is analyzed in detail, and
asymptotic results are confirmed. Self-similar numerical solutions of the electron
kinetic equation are available and can be used for benchmarking both reduced
models and codes for laboratory, space and solid-state plasmas.
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