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Abstract In this short article, we will be principally investigating two classes of modules over any
given group ring – the class of Gorenstein projectives and the class of Benson’s cofibrants. We begin
by studying various properties of these two classes and studying some of these properties comparatively
against each other. There is a conjecture made by Fotini Dembegioti and Olympia Talelli that these two
classes should coincide over the integral group ring for any group. We make this conjecture over group
rings over commutative rings of finite global dimension and prove it for some classes of groups while also
proving other related results involving the two classes of modules mentioned.
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As mentioned in the abstract, our dealings in this article will focus around two classes of
modules, namely the class of Gorenstein projectives and the class of Benson’s cofibrants,
which are conjectured to be coinciding all the time (see Conjecture 1.1).

Most of the arguments presented in this article are straightforward and easy to follow.
There is a lot of background from the theory of cohomological invariants of groups, etc.,
without which one can struggle to appreciate the results, and this is why we have taken
great care to expand on the background in the first section.

We start by providing a number of useful definitions and known results in §1. Then,
in §2, we show that for any group G and any commutative ring R, both the classes
of Gorenstein projective RG-modules and the class of RG-modules M such that M ⊗R

B(G, R) (for the rest of this paper, we will be writing just ⊗ to mean ⊗R, with R being
clear from the immediate context) is projective are good classes in the sense of Definition
3.5 of [5] (= Definition 2.1 of this paper) – the RG-module B(G, R), which is given by all
G → R functions that are only allowed to take finitely many values, plays a big role in the
definition of Benson’s cofibrants, we define this module in Definition 1.15. Then, in §3, we
investigate the relations between the classes of modules generated by those two classes
and show how, for groups satisfying certain properties or belonging to certain classes,
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we can derive information about the coincidence of these classes from the coincidence
of the classes generated by them. When we say ‘generation’ here, we mean generation
in the sense introduced in [5]. And then, after investigating some less important or less
relevant questions on Gorenstein projectivity in §4, we prove some general results on the
coincidence of Gorenstein projectives and Benson’s cofibrants for some classes of groups
in §5.

1. Preliminaries and definitions

We begin by stating the main conjecture by Dembegioti and Talelli that we will be dealing
with in this article.

Conjecture 1.1 (made over Z in [10]). For any group G and any commutative ring
R of finite global dimension, the class of Gorenstein projective RG-modules coincides
with the class of Benson’s cofibrant RG-modules, i.e. the class {M ∈ Mod(RG) : M ⊗R

B(G, R)is projective} (see Definition 1.15).

All of our tensor products in this article will be over R.
We now look into the two classes of modules mentioned in the statement of

Conjecture 1.1 and study some of their important properties.
To define Gorenstein projectives, we need to provide a definition of complete resolutions

because Gorenstein projectives are defined to be precisely those modules that occur as
kernels in complete resolutions.

Definition 1.2. Let A be a ring and let M be an A-module. A complete resolution

admitted by M is an infinite exact sequence of A-projective modules, (F∗, d∗): ..
dn+1→

Fn
dn→ Fn−1

dn−1→ · · · d1→ F0
d0→ F−1 → · · · such that

(a) There exists a projective resolution of M , (P∗, δ∗) � M , such that for some n ≥ 0,
(Pi, δi)i≥n = (Fi, di)i≥n. The smallest such n is called the coincidence index of the
complete resolution with respect to the given projective resolution.

(b) HomA(F∗, P ) is acyclic for any A-projective module P .

An A-module is called Gorenstein projective iff it occurs as a kernel in a complete
resolution.

When A is a group ring RG, where G is a group and R is a commutative ring, a group
G is said to admit a complete resolution over R if the trivial RG-module R admits a
complete resolution.

First, note that if we are working over a group algebra over a commutative ring R of
finite global dimension, then Gorenstein projectives over the group algebra are projective
over R. This follows straightforwardly from the definition of complete resolutions. We
record this in the following lemma. We will be making use of this fact in §3.

Lemma 1.3. Let G be a group and let R be a commutative ring of finite global
dimension and let M be a kernel in an exact sequence of projective RG-modules that
extends to infinity in both directions. Then, M is R-projective.
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Proof. Let the global dimension of R be r. We have M as a kernel in a doubly infinite
acyclic complex of projectives, (F∗, d∗). Let M = Ker(dt). Looking at the exact sequence
0 → M ↪→ Ft → Ft−1 → · · · → Ft−s � Im(dt−s) → 0 where s ≥ r − 1, we see that M is
the (s + 1)th syzygy of Im(dt−s) and since r is the global dimension of R, this implies
that M is R-projective. �

Theorem 1.4 (Thm 2.5, Prop. 2.27 of [15]). The class of Gorenstein projective
R-modules, for any ring R, contains the class of projectives and is closed under arbi-
trary direct sums and direct summands. Additionally, Gorenstein projectives are either
projective or of infinite projective dimension.

The following result provides a nice class of examples of Gorenstein projectives.

Lemma 1.5 (Lemma 2.21 of [1]). Let G be a group and R a commutative ring
of finite global dimension. Then, any RG-permutation module with finite stabilizers is
Gorenstein projective.

It is important to note that, when working over group algebras over rings of finite
global dimension, whenever we have the trivial module admitting complete resolutions,
all other modules admit complete resolutions. This result can be stated in terms of the
Gorenstein projective dimension, and since we will be dealing a lot with the Gorenstein
projective dimension in the coming sections, we provide here its definition and a very
useful property.

Definition 1.6. Let R be a ring and let M be an R-module. The Gorenstein projective
dimension of M as an R-module, denoted GpdR(M), is defined as min{n ∈ N : ∃ an exact
sequence 0 → Gn → · · · → G1 → G0 → M → 0 where each Gi is a Gorenstein projective
R-module}. If M does not admit a finite length resolution by Gorenstein projective
R-modules, we say GpdR(M) is not finite.

For any group G, the Gorenstein cohomological dimension of G with respect to R (in
such cases, we usually require R to be commutative), denoted GcdR(G), is defined as
GpdRG(R).

Any given group G achieves its highest Gorenstein cohomological dimension over the
ring of integers among all commutative rings. This was proved in [14].

Proposition 1.7 (Proposition 2.1 of [14]). Let G be a group. Then, for any
commutative ring R, GcdR(G) ≤ GcdZ(G).

Theorem 1.8 (Theorem 2.20 of [15]). Let R be a ring and let M be an R-module
such that GpdR(M) < ∞. The following are equivalent.

(a) GpdR(M) ≤ n.

(b) Ext>n
R (M, N) = 0 for any R-module N satisfying proj.dimR(N) < ∞.

(c) Ext>n
R (M, P ) = 0 for any projective P .
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(d) In any exact sequence 0 → K → Ln−1 → · · · → L1 → L0 → M → 0, where each Li

is Gorenstein projective, K is Gorenstein projective.

It follows from Theorem 2.24 of [15] that we cannot have a situation where there is
a short exact sequence with one module of infinite Gorenstein projective dimension and
every other module of finite Gorenstein projective dimension. Using the Ext-formulation
of Gorenstein projective dimension ((a)–(c) equivalence in Theorem 1.8), we get the
following result.

Lemma 1.9. Let R be a ring. Take a short exact sequence of R-modules 0 → A →
B → C → 0. Then GpdR(C) ≤ max{GpdR(A) + 1, GpdR(B)}.

Proof. If GpdR(A) or GpdR(B) is not finite, we have nothing to prove, so we can
assume they are both finite. So, by Theorem 2.24 of [15], it follows that GpdR(C) is
finite.

The proof now is done in exactly the same way the very well-known analogous result
is proved for projective dimension.

Let GpdR(A) = m and GpdR(B) = n.
First, we deal with the case where m + 1 ≥ n. For any R-projective P , look at the

long exact Ext-sequence: . . . → Extm+1
R (A, P ) → Extm+2

R (C, P ) → Extm+2
R (B, P ) → ..;

here, Extm+1
R (A, P ) = 0 by Theorem 1.8 as GpdR(A) = m and Extm+2

R (B, P ) = 0 again
by Theorem 1.8 as GpdR(B) = n and m + 2 > m + 1 ≥ n. Therefore, Extm+2

R (C, P ) = 0,
and by Theorem 1.8, we have GpdR(C) ≤ m + 1.

Now, we deal with the case where n > m + 1. Again, for any R-projective P ,
look at the long exact Ext-sequence:. . . → Extn

R(A, P ) → Extn+1
R (C, P ) → Extn+1

R (B,
P ) → ... Here, by Theorem 1.8 and since n > 1 + GpdR(A), Extn

R(A, P ) = 0, and again by
Theorem 1.8 and since GpdR(B) = n, Extn+1

R (B, P ) = 0. Therefore, Extn+1
R (C, P ) = 0,

and by Theorem 1.8, GpdR(C) ≤ n.
Although the two cases dealt with above can be summed up in one argument, we dealt

with them separately for clarity. �

Remark 1.10. We will be making use of Lemma 1.9 later in §2 to see why the class
of Gorenstein projectives is a ‘good’ class in the sense of Definition 3.5 of [5]. However,
it is noteworthy that instead of using Lemma 1.9, we can just use Theorem 2.24 of [15]
in its place in §3.

It is easy to see that a module admits a complete resolution iff it has finite Gorenstein
projective dimension – this is a very useful result. In our next result, we see, as touched
upon before, that the trivial module admitting complete resolutions and all modules
admitting complete resolutions are equivalent.

Theorem 1.11 (Theorem 1.7 of [14]). Let G be a group and let R be a commu-
tative ring of finite global dimension. Then, GpdRG(R) < ∞ iff GpdRG(M) < ∞ for all
RG-modules M .

On the topic of groups admitting complete resolutions, it is to be noted that there are
infinitely many groups that do not admit complete resolutions over any commutative ring
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of finite global dimension-free abelian groups of infinite rank, for example. Before looking
at some interesting examples of infinite groups that admit complete resolutions, we make
the following definition of two large classes of groups.

Definition 1.12 (see [18, 24]). Let X be a class of groups. We define H0X := X,
and for any successor ordinal α, a group G is said to be in HαX iff there exists a finite
dimensional contractible CW -complex on which G acts by permuting the cells with cell
stabilizers in Hα−1X. If α is a limit ordinal, then we define HαX as

⋃
β<α HβX. G is said

to be in HX iff G is in HαX for some ordinal α (note that α may be chosen to be a
successor ordinal here). We also use the notation H<αX :=

⋃
β<α HβX, for any ordinal α.

A group G is said to be of type Φ over a commutative ring R if for any RG-module
M , proj.dimRG(M) < ∞ iff proj.dimRH(M) < ∞ for all finite subgroups H of G.

Notation 1.13. Throughout this paper, F will denote the class of all finite groups.

Taking X = F, the class of all finite groups, in the above definition, we get many groups
in HF that do not admit complete resolutions. For example, the free abelian group of
rank t with ℵ0 ≤ t < ℵω where ω is the first infinite ordinal, does not admit complete
resolutions but is in H2F \ H1F (see Theorem 7.10 of [11]). In fact, if t here is at least 1
but strictly smaller than ℵ0, then the free abelian group of rank t is in H1F \ H0F. The
class H1F is an interesting class here because all of its groups admit complete resolutions.
This was proved in [8], but as we noted in [6], we can have a much shorter proof using
the language of Gorenstein projectives:

Theorem 1.14 (different proof in [8], also noted in Proposition 2.4 of [6]).
If G ∈ H1F, then G admits complete resolutions over any commutative ring. And, for
any commutative ring R of finite global dimension, all RG-modules admit complete
resolutions.

Proof. From the definition of H1F, it follows that there exists a finite dimensional
contractible CW -complex X, say of dimension n, on which G acts by permuting its cells
with finite cell stabilizers. We look at the augmented cellular complex of this action:
0 → An → An−1 → ... → A1 → A0 → Z → 0 where each Ai is a direct sum of permuta-
tion ZG-modules with finite stabilizers. Permutation modules with finite stabilizers are
Gorenstein projective (see Lemma 1.5) and as Gorenstein projectives are closed under
direct sums (see Lemma 1.4), we conclude that each Ai is Gorenstein projective. There-
fore, GpdZG(Z) ≤ n, and it follows that G admits complete resolutions over the ring of
integers and by Proposition 1.7, it follows that G admits complete resolutions over any
ring. The second part follows from Theorem 1.11 over commutative rings of finite global
dimension. �

If G is of type Φ over a commutative ring R of finite global dimension, then it also
admits complete resolutions. This was shown in [19], but we can provide a very short
proof using Benson’s cofibrants and a result of Cornick and Kropholler. To show this
short proof, we need to make use of an RG-module which we usually denote by B(G, R),
which is also crucial in defining the class of modules that we have been calling ‘Benson’s
cofibrants’. We define these modules below and state a couple of important and useful
results involving B(G, R).
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Definition 1.15. For any group G and any commutative ring R, the module B(G, R)
is defined to be the RG-module of all G → R functions that are only allowed to take
finitely many values. The module structure is given by g.f(h) = f(g−1h) for all g, h ∈ G
and f ∈ B(G, R). When R = Z, B(G, Z) is the module of all bounded functions from G
to Z.

We define an RG-module M to be Benson’s cofibrant if M ⊗R B(G, R) is projective
as an RG-module. For R = Z, this definition was made by Benson in [3]. As mentioned
earlier, throughout this article, we will drop the subscript ‘R’ while writing this tensor
product.

For the rest of this article, whenever we say ‘cofibrant’, we mean ‘Benson’s cofibrant’
as in Definition 1.15.

Lemma 1.16 (Lemma 3.4 of [3]). For any group G and any commutative ring
R, B(G, R) is R-free and RH-free for every finite subgroup H of G. Also, B(G, R) =
B(G, Z) ⊗Z R.

Using the word ‘cofibrant’ without a model theoretic context might seem strange, so
the following is a natural question to ask.

Question 1.17. What is the motivation behind using the word ‘cofibrant’ in
Definition 1.15?

Answer 1.18. In [4], Benson put a closed model category structure on the module
category of RG-modules, for any group G and any commutative Noetherian ring R,
and defined cofibrations in the closed model category with the class of modules that
we are calling ‘Benson’s cofibrants’ as the cofibrant objects. He additionally showed, in
Theorem 10.10 of [4], that the homotopy category of the closed model category, denoted
Ho.Mod(RG), is equivalent to the ‘stable module category’ where the objects are the

RG-modules and the arrows between modules M and N are given by Êxt
0

RG(M, N) (See

Remark 1.19 for more on Êxt
∗
RG(M, N).)

For a group of type Φ over R, now making the assumption that R has finite global
dimension in addition to being Noetherian, stable module categories for RG-modules were
studied by Mazza and Symonds in [19], and their definition (Definition 3.2 of [19]) of the
stable module category exactly coincided with Benson’s definition above (to note that
the definitions for Hom-sets coincide, compare Definition 3.2 of [19] with the definition

of Êxt
0

RG provided in Remark 1.19). The hypotheses that R has finite global dimension
and that G is of type Φ over R become important in [19] in a key result of the paper
(Theorem 3.10 of [19]) where it is shown that the stable module category is equivalent, as
a triangulated category, to several other known and well-behaved triangulated categories.

Because of the similarity in definition of the stable module category highlighted above,
we can conclude that if one repeated the treatment in [4] of putting a closed model
category structure on the module category of RG-modules, with G a group of type Φ
over R where R is commutative Noetherian and of finite global dimension, we will get
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the same conclusion regarding the homotopy category being equivalent to the Mazza–
Symonds stable module category and the class of ‘Benson’s cofibrants’ being the cofibrant
objects.

Remark 1.19. Following the treatment in §3 of [3], we denote by HomRG(M, N)
the quotient of HomRG(M, N) by the additive subgroup consisting of homomorphisms
M → N that factor through an RG-projective. As noted in §3 of [3], there is a nat-
ural homomorphism HomRG(M, N) → HomRG(Ω(M), Ω(N)). Now, for any integer r,
Êxt

r

RG(M, N) is defined as lim−→i
HomRG(Ωi+r(M), Ωi(N)).

Note that, Êxt
r

RG(M, N) can also be defined using satellite functors as shown in [20].
It is shown in §4 of [20] that there is a natural isomorphism between the complete coho-
mology functors defined using satellite functors (as done in [20]) and those defined as per
the definition above.

Coming back to the question of complete resolutions, we show with the aid of the
following result why groups of type Φ admit complete resolutions.

Theorem 1.20 (Theorem 3.5 of [8]). For any group G and any commutative ring
R, if M is an RG-module such that M ⊗ B(G, R) has finite projective dimension as an
RG-module, then M admits complete resolutions.

Corollary 1.21. If G is a group of type Φ over a commutative ring R, then the trivial
module admits complete resolutions. If, in addition, R is of finite global dimension, then
all RG-modules admit complete resolutions.

Proof. From Lemma 1.16 and the definition of type Φ, it follows that B(G, R) is of
finite projective dimension and then by Theorem 1.20, it follows that the trivial module
admits complete resolutions. If R has finite global dimension, then from Theorem 1.11,
it follows that all RG-modules admit complete resolutions. �

We do not know of any groups that admit complete resolutions over a ring of finite
global dimension but are not of type Φ over that ring or are not in H1F. The following
is conjectured regarding the classes H1F and groups of type Φ.

Conjecture 1.22 (Conjecture A in [24], Conjecture 43.1 in [7]). For any group
G, the following are equivalent.

(a) G is of type Φ over Z.

(b) G admits a finite-dimensional model for its classifying space of proper actions.

(c) G ∈ H1F.

(d) G admits complete resolutions over Z.

(c) ⇒ (a) is very easy to check and it has been proved in [19]. We checked (a) ⇒ (d) and
(c) ⇒ (d) although it must be noted that they were already known in the literature.

We end this section with some more examples of groups in these classes. We have
already mentioned some free abelian examples of H1F-groups. Some other examples of
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groups that are type Φ (over the ring of integers) are groups of finite virtual cohomo-
logical dimension like discrete subgroups of Lie groups with finitely many components,
for example, groups acting on trees with finite stabilizers like Q/Z. See §3 in [23] for a
reference.

2. Both classes in Conjecture 1.1 are good classes

For the rest of this article for a group G and a commutative ring R, we shall denote by
GProj(RG) the class of Gorenstein projective RG-modules and by CoF(RG) the class
of RG-modules M such that M ⊗ B(G, R) is projective. Our first result here is that
GProj(RG), for all groups G and all rings R, is a ‘good’ class. We recall the definition of
a good class first.

Definition 2.1 (see Definition 3.5 of [5]). Let R be a ring. Let T be a class of
R-modules. An R-module M is generated in zero steps from T iff it is in T and in n steps
iff there is an exact sequence 0 → M2 → M1 → M → 0, where Mi is generated from T

in ai steps, and a1 + a2 ≤ n − 1. The class of all R-modules generated in finitely many
steps from T is denoted 〈T〉.

The T-dimension of an R-module M , denoted T- dim(M), is defined to be the smallest
integer n such that there exists an exact sequence 0 → Tn → · · · → T1 → T0 → M → 0,
where each Ti ∈ T, for some n. The class of all R-modules with finite T-dimension is
denoted [T].

A class of R-modules is called good iff [T] = 〈T〉.
We proved the following characterization result for good classes in [5].

Proposition 2.2 (part of Proposition 7.2 of [5]). Let R be a ring and let T be a
class of R-modules. Then, the following two statements are equivalent.

(a) For any short exact sequence of R-modules 0 → A → B → C → 0, if A, B ∈ [T],
then C ∈ [T].

(b) For any exact sequence of R-modules 0 → Cn → Cn−1 → · · · → C1 → C → 0, for
any n > 1, if each Ci ∈ [T], then C ∈ [T]. Note that this is equivalent to saying
[[T]] = [T].

(c) T is a good class.

Proof. (a) ⇒ (b): We shall proceed by induction on n. If n = 2, (b) holds true, by
(a). Let the statement of (b) hold true for n = k, this is our induction hypothesis. Now
let 0 → Ck+1 → Ck → · · · → C1 → C → 0 be an exact sequence where each Ci is in [T].
We split this into two exact sequences.

(S0) 0 → Ck+1 → Ck → Im(Ck → Ck−1) → 0.
(S1) 0 → Im(Ck → Ck−1) ↪→ Ck−1 → · · · → C1 → C → 0.
From (a), it follows that in (S0), Im(Ck → Ck−1) ∈ [T]. Therefore, in (S1), every

module other than C is in [T]. So, by our induction hypothesis, C ∈ [T].
(b) ⇒ (c): First note that we always have [T] ⊆ 〈T〉, i.e. for any R-module M ,

if the T- dim(M) < ∞, then M ∈ 〈T〉. This follows from an easy induction – if

https://doi.org/10.1017/S0013091521000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000481


Benson’s cofibrants, Gorenstein projectives and a related conjecture 787

T- dim(M) = 0, then M ∈ T ⊆ 〈T〉. Assume as an induction hypothesis that for all M
satisfying T- dim(M) ≤ n, M ∈ 〈T〉. Now, let T- dim(M) = n + 1; then there exists an
exact sequence 0 → Tn+1 → Tn → · · · → T0 → M → 0 where each Ti ∈ T. It follows that
T- dim(Ker(T0 → M)) ≤ n and therefore Ker(T0 → M) ∈ 〈T〉 by our induction hypothe-
sis, and from the exact sequence 0 → Ker(T0 → M) → T0 → M → 0, since all the modules
except M are in 〈T〉, we get from Definition 2.1 that M ∈ 〈T〉.

Now, we need to show 〈T〉 ⊆ [T] assuming (b) to be true. For any M ∈ 〈T〉, denote
by αT(M) the least number of steps required to generate M from T. We make the
induction hypothesis that for all M such that αT(M) ≤ n, M ∈ [T]. The base case is
obvious as if αT(M) = 0, then M ∈ T ⊆ [T]. Now assume αT(M) = n + 1, then there
is an exact sequence 0 → M2 → M1 → M → 0 where αT(Mi) ≤ n, for i = 1, 2. By the
induction hypothesis, M1, M2 ∈ [T] and by (b), we have M ∈ [T].

(c) ⇒ (a): Let 0 → A → B → C → 0 be an exact sequence where A, B ∈ [T]. From (c),
it follows that A, B ∈ 〈T〉, and therefore C ∈ 〈T〉 = [T] by Definition 2.1. �

Lemma 2.3. Let G be a group and let R be a commutative ring. Then, GProj(RG)
is a good class.

Proof. We saw in Lemma 1.9 that if we have a short exact sequence of RG-modules
0 → A → B → C → 0 where A, B ∈ [GProj(RG)], i.e. GpdRG(A), GpdRG(B) < ∞, then
GpdRG(C) < ∞. Now it follows from Proposition 2.2 that GProj(RG) is a good class. �

Before we show that CoF(RG) is a good class for all G and R, note that since B(G, R)
is R-free, if P∗ � M is an RG-projective resolution of an RG-module M , then P∗ ⊗
B(G, R) � M ⊗ B(G, R) is an RG-projective resolution of M ⊗ B(G, R).

Lemma 2.4. For any group G and any commutative ring R, [CoF(RG)] and the class
of all RG-modules M satisfying proj.dimRG(M ⊗ B(G, R)) < ∞ coincide.

Proof. Let M ∈ [CoF(RG)]. Then, there exists an exact sequence

0 → Cn → Cn−1 → · · · → C1 → C0 → M → 0

where each Ci is a cofibrant module, i.e. Ci ⊗ B(G, R) is projective for all i. Since
B(G, R) is R-free, we can tensor the exact sequence by B(G, R) to get

0 → Cn ⊗ B(G,R) → · · · → C1 ⊗ B(G,R) → C0 ⊗ B(G,R) → M ⊗ B(G,R) → 0

Now, as each term in the exact sequence, other than M ⊗ B(G, R), is projective, we can
say that proj.dimRG(M ⊗ B(G, R)) < ∞. Thus, [CoF(RG)] is a subclass of the class of
all RG-modules M satisfying proj.dimRG(M ⊗ B(G, R)) < ∞.

Now let M be an RG-module satisfying proj.dimRG(M ⊗ B(G, R)) < ∞. Let
(Pi, di)i≥0 be a projective resolution of M , and, for any positive integer r, let Kr(M)
denote the rth kernel in this resolution. Let proj.dimRG(M ⊗ B(G, R)) = t. Then,
Kt(M) ⊗ B(G, R) is projective. By definition of Kt(M), we have the following exact
sequence

0 → Kt(M) → Pt−1 → Pt−2 → · · · → P1 → P0 → M → 0
Pi ⊗ B(G, R) is projective for all i (as B(G, R) is R-free), so each Pi is cofibrant. And,
Kt(M) ⊗ B(G, R) is projective as well, so Kt(M) is cofibrant. Thus, M is in [CoF(RG)].
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Therefore, the class of all RG-modules M satisfying proj.dimRG(M ⊗ B(G, R)) < ∞ is
a subclass of [CoF(RG)]. �

Lemma 2.5. For any group G and any commutative ring R, CoF(RG) is a good class.
In particular, we claim [[CoF(RG)]] = [CoF(RG)].

Proof. It is obvious that [CoF(RG)] is a subclass of [[CoF(RG)]].
Now let M be a module in [[CoF(RG)]]. There exists an exact sequence

0 → Cn → Cn−1 → · · · → C1 → C0 → M → 0

where each Ci is in [CoF(RG)]. We can tensor the above exact sequence by B(G, R),
which is R-free, to get the following exact sequence

0 → Cn ⊗ B(G,R) → Cn−1 ⊗ B(G,R) → · · · → C0 ⊗ B(G,R) → M ⊗ B(G,R) → 0.

By Lemma 2.4, proj.dimRG(Ci ⊗ B(G, R)) < ∞ for i = 0, 1, . . . , n. Therefore,
proj.dimRG(M ⊗ B(G, R)) < ∞, and by Lemma 2.4 again, M is in [CoF(RG)]. Thus,
the classes [[CoF(RG)]] and [CoF(RG)] coincinde. Therefore, CoF(RG) is a good class
by Proposition 2.2. �

3. Relations between the classes generated by Gorenstein projectives and
the cofibrants

We start this section with a technical result.

Proposition 3.1. Let G be a group and R be a commutative ring. Let T be a class
of RG-modules satisfying the following conditions:

(a) T is closed under tensoring with R-free modules.

(b) For any RG-module M , there exists a surjective map of RG-modules φ : TM → M
for some TM ∈ T.

(c) For any RG-module M , if T-dim(M) ≤ n, then in any exact sequence 0 → Kn →
Tn−1 → Tn−2 → · · · → T1 → T0 → M → 0 where each Ti ∈ T, Kn ∈ T.

(d) For any short exact sequence 0 → A → B → C → 0, where B ∈ T and T- dim(A) =
k > 0, T- dim(C) = k + 1.

For any R-free RG-module F , let XF,T := {M ∈ Mod(RG) : M ⊗ F ∈ T}, and let S

denote the class of all RG-modules that occur as kernels of (−∞, ∞)-exact sequences of
modules in T (this means the exact sequences are extending to infinity in both directions).
Then, S ∩ [XF,T] = S ∩ XF,T if FTD(RG) < ∞. Here, FTD(RG) := sup{T-dim(M) :
M ∈ Mod(RG) satisfying T-dim(M) < ∞}.

Proof. All tensor products are being taken over R.
First we prove that [XF,T] = {M ∈ Mod(RG) : T-dim(M ⊗ F ) < ∞}. To show this, we

start with an RG-module M satisfying T-dim(M ⊗ F ) = r < ∞. We know from condi-
tion (b) of our hypothesis, that there exists a surjective RG-linear map φ0 : T0 → M for

https://doi.org/10.1017/S0013091521000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000481


Benson’s cofibrants, Gorenstein projectives and a related conjecture 789

some T0 ∈ T. Similarly, there exists an RG-surjective map φ1 : T1 → Ker(φ0). Going on
like this, we get an exact sequence 0 → Ker(φr−1) ↪→ Tr−1 → Tr−2 → · · · → T1 → T0 →
M → 0, where each Ti ∈ T. When we tensor this exact sequence by F which is R-free, we
get an exact sequence 0 → Ker(φr−1) ⊗ F → Tr−1 ⊗ F → · · · → T0 ⊗ F → M ⊗ F → 0,
where each Ti ⊗ F ∈ T as T is closed under tensoring with R-free modules by condition
(a) of our hypothesis. Now, as T-dim(M ⊗ F ) = r, by condition (c) of our hypothesis,
Ker(φr−1) ⊗ F ∈ T, i.e. Ker(φr−1) ∈ XF,T. Thus, M ∈ [XF,T]. Now if we take M ∈ [XF,T],
then we have an exact sequence 0 → Xn → · · · → X1 → X0 → M → 0 for some n and
some X0, . . . , Xn where each Xi ∈ XF,T. Tensoring this sequence by the R-free F , we
get a finite length resolution of M ⊗ F by modules in T as each Xi ⊗ F ∈ T. Thus,
T-dim(M ⊗ F ) < ∞.

We are now in a position to complete our proof of the proposition. Note that since
XF,T is a subclass of [XF,T], we have S ∩ XF,T to be a subclass of S ∩ [XF,T]. To prove the
other direction, we start with an RG-module M0 ∈ S ∩ [XF,T]. From our first paragraph,
it follows that T-dim(M0 ⊗ F ) < ∞. We need to show M0 ⊗ F ∈ T, so we start with the
assumption that it is not the case and that T-dim(M0 ⊗ F ) = r > 0. By definition of
S, there exists an exact sequence . . . → T1 → T0 → T−1 → T−2 → . . . where each Ti ∈ T

and M0 = Ker(T0 → T−1). For i �= 0, let Mi := Ker(Ti → Ti−1). We can tensor the short
exact sequence 0 → M0 ↪→ T0 � M−1 → 0 by F , which is R-free, to get the short exact
sequence 0 → M0 ⊗ F ↪→ T0 ⊗ F � M−1 ⊗ F → 0 where T0 ⊗ F ∈ T since T is closed
under tensoring with R-free modules. By (d), we can say that T-dim(M−1 ⊗ F ) = r + 1.
Similarly, we get that T-dim(M−FTD(RG) ⊗ F ) = r + FTD(RG) > FTD(RG) which is
not possible. So, M0 ⊗ F ∈ T, i.e. M0 ∈ XF,T. Thus, S ∩ [XF,T] is a subclass of S ∩ XF,T,
and we are done. �

The proposition above is a general result. We can use it to show that when
fin.dim(RG) < ∞, the class generated by Benson’s cofibrants coincides with the class
generated by Gorenstein projectives if and only if the class of Benson’s cofibrants coincides
with the class of Gorenstein projectives. To see why that is true, we state this following
result, which we have already mentioned in the first section (see Theorem 1.20), from the
literature using the language of generation.

Theorem 3.2. For any group G and any commutative ring R,
[CoF(RG)] = 〈CoF(RG)〉 ⊆ 〈GProj(RG)〉 = [GProj(RG)].

Remark 3.3. Note that in [8] although the statement of the result was exactly what
we have stated above, the proof showed that cofibrants admit complete resolutions of
index 0, i.e. they are Gorenstein projective. So we know CoF(RG) ⊆ GProj(RG) for all
G and R and the challenge resides in proving the other direction.

We can actually determine whether the class of modules generated by CoF(RG) con-
tains every module just by looking at the projective dimension of B(G, R) as long as
the ring R is of finite global dimension. It follows from Theorem 3.2 that if the class of
modules generated by the cofibrants includes everything, then the same is true of the
class of modules generated by the Gorenstein projectives. The reverse can be shown to
be true if we assume a related conjecture to be true. We first state this conjecture below.
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Conjecture 3.4. For any group G and any commutative ring R of finite global
dimension, GcdR(G) = proj.dimRG(B(G, R)).

In Remark 3.7, we deal with some progress that has been achieved on Conjecture 3.4.

Proposition 3.5. For any group G and any commutative ring R which has finite
global dimension, the following implications hold with the following statements: (a) ⇐⇒
(b) =⇒ (c), and Conjecture 3.4 =⇒ ((c) =⇒ (b)).

(a) 〈CoF(RG)〉 contains all RG-modules.

(b) proj.dimRG B(G, R) < ∞.

(c) 〈GProj(RG)〉 contains all RG-modules.

Proof. (a) =⇒ (b): If 〈CoF(RG)〉 contains all RG-modules, then it contains the triv-
ial module, and since CoF(RG) is a good class, we have 〈CoF(RG)〉 = [CoF(RG)] =
{M ∈ Mod-RG : proj.dimRG(M ⊗ B(G, R)) < ∞} (by Lemmas 2.4 and 2.5), and so
R ⊗ B(G, R) = B(G, R) must have finite projective dimension.

(b) =⇒ (a) : Let t be the global dimension of R. Let M be an RG-module. Let
(Pi, di)i≥0 be a projective resolution admitted by M (denote by Kr(M) the rth ker-
nel in this projective resolution, for any positive integer r). As B(G, R) is R-free,
(Pi ⊗ B(G, R), di ⊗ id)i≥0 is a projective resolution admitted by M ⊗ B(G, R) and
Kr(M) ⊗ B(G, R) the rth kernel in this projective resolution, for any positive inte-
ger r. Kt(M) is R-projective for any RG-module M as t is the global dimension of
R. As proj.dimRG(B(G, R)) < ∞, we have proj.dimRG(Kt(M) ⊗ B(G, R)) < ∞ and
since (Kt(M) ⊗ B(G, R)) is the tth kernel in the projective resolution P∗ ⊗ B(G, R) �
M ⊗ B(G, R), we have proj.dimRG(M ⊗ B(G, R)) < ∞. So, M is in [CoF(RG)], by
Lemma 2.4. Thus, [CoF(RG)] contains all RG-modules, and, as CoF(RG) is a good class
(by Lemma 2.5), 〈CoF(RG)〉 contains all RG-modules.

(a) =⇒ (c): obvious from Theorem 3.2.
Conjecture 3.4 =⇒ ((c) =⇒ (b)): note that if 〈GProj(RG)〉 is the class of all

RG-modules, then GpdRG(R) = GcdR(G) < ∞, and therefore by Conjecture 3.4,
proj.dimRG(B(G, R)) < ∞. �

Remark 3.6. In the proof of Proposition 3.5, only the part (b) =⇒ (a) makes use of
the fact that R is of finite global dimension.

Remark 3.7. In [6], we proved the following result regarding Conjecture 3.4: for any
group G and any commutative ring R of finite global dimension, proj.dimRG(B(G, R)) =
GcdR(G) if proj.dimRG(B(G, R)) is finite. To do this, we need to invoke an invariant
called the generalized cohomological dimension of a group that was first defined over
the integers in [16], denoted cdR(G). cdR(G) is defined to be the supremum over all
integers n such that there is an R-free RG-module M and an RG-free module F such
that Extn

RG(M, F ) �= 0.
First note that, when proj.dimRG(B(G, R)) = n < ∞, Ωn(R) is Gorenstein projec-

tive by Remark 3.3 and thus, GcdR(G) ≤ n. We also have, under the same hypothesis,
proj.dimRG(B(G, R)) ≤ cdR(G) (see Lemma 3.8). And finally, it follows from the proof
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of Theorem 2.5 of [2] that if GcdR(G) < ∞, then GcdR(G) = cdR(G). It is noteworthy
that here we do not need R to be Noetherian because as we see in the proof of Theorem
2.5 of [2], showing GcdR(G) = cdR(G) when it is already known that GcdR(G) is finite
does not require using silp(RG) = spli(RG) which is the only place where R is required
to be Noetherian. Recall that for any ring A, silp(A) and spli(A) denote, respectively,
the supremum over the injective dimensions of A-projectives and the supremum over the
projective dimensions of A-injectives.

Lemma 3.8 (Lemma 1.19 of [6]). Let G be a group and let R be a commutative
ring. If proj.dimRG(B(G, R)) is finite, then cdR(G) ≥ proj.dimRG(B(G, R)).

Proof. We can assume that cdR(G) is finite. Recall that for any commuta-
tive ring R and any group G, cdR(G) := sup{i ∈ Z : Exti

RG(M, F ) �= 0 for some
R-free M and some RG-free F}. Let us start with the assumption that
proj.dimRG(B(G, R)) = k > cdR(G). There must exist some RG-module M such
that Extk

RG(B(G, R), M) �= 0 because otherwise proj.dimRG(B(G, R)) ≤ k − 1. Now
take FM , the RG-free module on M , and form the short exact sequence 0 →
Ω(M) → FM → M → 0. We now look at the associated long exact Ext-sequence
associated with this short exact sequence and get .. → Extk

RG(B(G, R), Ω(M)) →
Extk

RG(B(G, R), FM ) → Extk
RG(B(G, R), M) → Extk+1

RG (B(G, R), Ω(M)) → . . . Here,
Extk

RG(B(G, R), FM ) = 0 because k > cdR(G) and B(G, R) is R-free and FM is
RG-free. Also, Extk+1

RG (B(G, R), Ω(M)) = 0 because proj.dimRG(B(G, R)) = k. So,
Extk

RG(B(G, R), M) = 0 which gives us a contradiction. �

The following now follows directly from Proposition 3.5 and the more technical
Proposition 3.1.

Theorem 3.9. Let G be a group and let R be a commutative ring of finite global
dimension. If proj.dimRG(B(G, R)) < ∞, then CoF(RG) = GProj(RG).

Proof. From Proposition 3.5, it follows that 〈CoF(RG)〉 and 〈GProj(RG)〉 coincide
with the class of all modules. Therefore, GcdR(G) < ∞. Now, we know from Theorem C of
[9] that fin.dim(RG) ≤ silp(RG), where silp(RG), following the notation mentioned in
Remark 3.7, is the supremum over the injective dimensions of all projective RG-modules
(note that although the statement of Theorem C in [9] has the hypothesis that G is
an HF-group, for the proof of this inequality that assumption was not used). Also, from
Corollary 1.6 of [14], we know that silp(RG) ≤ GcdR(G)+global dimension of R. (We are
dealing with weak Gorenstein projective modules here which are formally defined at the
beginning of §4, see Remark 3.10 for a slightly general remark) Thus, we have in this case
that fin.dim(RG) < ∞, and therefore by Proposition 3.1, CoF(RG) = GProj(RG). �

Remark 3.10. It can be noted that, in the setup used by Theorem 3.9, if silp(RG) is
finite, then all weak Gorenstein projective RG-modules, i.e. modules occurring as kernels
in infinite acylic complexes of projectives satisfying condition (a) of Definition 1.2 but
not necessarily condition (b) of Definition 1.2, are necessarily Gorenstein projective.

Although Theorem 3.9 implies that groups of type Φ over any commutative ring of finite
global dimension satisfy Conjecture 1.1 – this is because it follows from Lemma 1.16 and
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the definition of type Φ groups that if G is of type Φ over R then B(G, R) is of finite
projective dimension – we provide a simpler proof below.

Theorem 3.11. Let G be a group of type Φ over a commutative ring R of finite global
dimension. Then, CoF(RG) = GProj(RG).

Proof. We only need to show GProj(RG) ⊆ CoF(RG) in light of Remark 3.3. Now,
if M ∈ GProj(RG), then M ⊗ B(G, R), since B(G, R) is R-free, occurs as a kernel in a
doubly infinite acyclic complex of projectives. Over type Φ groups, doubly infinite acyclic
complexes of projectives are totally acyclic (note that, for any ring A, an acyclic complex
of projective A-modules, C∗, is called totally acyclic iff HomA(C∗, P ) is acyclic for any
A-projective P ) – this result is proved in Lemma 3.14 of [19], see Remark 3.12. So,
M ⊗ B(G, R) is Gorenstein projective. Now, M is R-projective by Lemma 1.3 and over
any finite subgroup H of G, B(G, R) is RH-free by Lemma 1.16, so M ⊗ B(G, R) is RH-
projective. As G is of type Φ, this means M ⊗ B(G, R) has finite projective dimension
as an RG-module. Now, since M ⊗ B(G, R) is Gorenstien projective, it follows from
Theorem 1.4 that M ⊗ B(G, R) is projective. Therefore, M ∈ CoF(RG). �

Remark 3.12. In Lemma 3.14 of [19], the base ring R is Noetherian but the Noethe-
rian assumption is only used (this is stated explicitly in Remark 3.15 of [19]) to get
silp(RG) < ∞ where R is a commutative Noetherian ring of finite global dimension and
G is of type Φ over R. Actually, we do not need the Noetherian assumption here because,
for just commutative R of finite global dimension, we already have B(G, R) to be of finite
projective dimension as an RG-module and from Remark 3.7, we get GcdR(G) < ∞ and,
then using Corollary 1.6 of [14], that silp(RG) < ∞.

Remark 3.13. As we can see, it is actually quite easy to prove that groups of type
Φ satisfy Conjecture 1.1. We have provided two different proofs already and in §5, we
get a slightly stronger result as a corollary from a technical result for type Φ groups
again. Since for any commutative ring R of finite global dimension and any group G,
B(G, R) being of finite projective dimension as an RG-module implies that G must admit
complete resolutions over R, and since Conjecture 1.22 when stated over R claims that
a group admitting complete resolutions and being of type Φ are equivalent conditions, it
is plausible that B(G, R) being of finite projective dimension and G being of type Φ are
equivalent conditions as well, but if it is not, then Theorem 3.9 proves Conjecture 1.1 for
a larger class of groups than the class of groups of type Φ.

We now look at some conjectured properties of Gorenstein projectivity and how those
conjectures relate to Conjecture 1.1.

4. Two other questions on Gorenstein projectivity

In this section, we introduce a class of modules called the weak Gorenstein projectives.
Recall that Gorenstein projectives are defined as modules that arise as kernels in complete
resolutions and if, for any ring A, (Fi, di)i∈Z is a complete resolution of projective A-
modules, we require by definition that HomA(F∗, P ) be acyclic for all projective A-
modules P . We define F∗ to be a weak complete resolution if it satisfies the same definition
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as complete resolutions except we do not put the condition that HomA(F∗, P ) is acyclic
for all projective P . Weak Gorenstein projectives are defined as modules that occur as
kernels in weak complete resolutions. For any ring A, we shall be denoting the class of
all weak Gorenstein projective A-modules by WGProj(A). Weak Gorenstein projectives
share the following crucial property with Gorenstein projectives.

Lemma 4.1. Let R be a commutative ring of finite global dimension and let G be a
group. Then, weak Gorenstein projectives over RG are R-projective. Also, WGProj(RG)
is closed under direct sums.

Proof. The proof of the first part follows from Lemma 1.3. The proof for weak Goren-
stein projectives being closed under direct sums is obvious as a direct sum of weak
complete resolutions is still a weak complete resolution. �

The following conjecture was made in [10] by Dembegioti and Talelli over the ring of
integers, we make it here over rings of finite global dimension.

Conjecture 4.2. For any group G and a commutative ring R of finite global dimen-
sion, an RG-module M admits a complete resolution iff it admits a weak complete
resolution.

We wish to focus on the following related conjecture regarding the class of weak
Gorenstein projectives.

Conjecture 4.3. For any group G and a commutative ring R of finite global dimen-
sion, the class of weak Gorenstein projective RG-modules coincides with the class of
Gorenstein projective RG-modules.

Before going further in this section, we wish to state another question on Gorenstein
projectivity which will be important in our study of groups in the next section where we
will deal with a situation where a slight variation of Conjecture 1.1 is satisfied at the level
of finitely generated subgroups.

Conjecture 4.4. For any group G and any commutative ring R of finite global dimen-
sion, if M is Gorenstein projective as an RG-module then it is also Gorenstein projective
as an RH-module for any subgroup H of G, i.e. Gorenstein projectivity is closed upon
restriction to subgroups.

The following is an immediate observation.

Lemma 4.5. If Conjecture 4.3 is satisfied for a subgroup-closed class of groups X and
a commutative ring R of finite global dimension, then X-groups satisfy Conjecture 4.4
over R.

Proof. Take G ∈ X. Let M be a Gorenstein projective RG-module that occurs as a
kernel in the complete resolution (Fi, di)i∈Z of RG-projective modules. Upon restriction
to a subgroup H of G, M occurs as a kernel in the same weak complete resolution
upon restriction to H (it is still a weak complete resolution because projectivity is closed
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under restriction to subgroups). This means, upon restriction to H, M is weak Gorenstein
projective, but since Conjecture 4.3 is satisfied for H and R (this is because X is subgroup-
closed), we have that M is Gorenstein projective upon restriction to H. �

If it is known for some group G and some commutative ring R that the class of weak
Gorenstein projective RG-modules coincides with the class of Benson’s cofibrants, then
Conjecture 4.2, in fact a slightl y stronger version of it, follows.

Lemma 4.6. Let G be a group and let R be a commutative ring. If WGProj(RG) =
CoF(RG), then, over RG, every weak complete resolution is a complete resolution.

Proof. This follows from Corollary D of [10] where they have dealt with the
exactly similar situation in different language over Z. The same proof works for any
commutative ring R. �

We now note the following straightforward result involving B(G, R) that helps us
to show why the statement of Conjecture 1.1 over a commutative ring R implies
Conjecture 4.4.

Lemma 4.7. For any group G and any commutative ring R, B(H, R) is a summand
of ResG

HB(G, R), where H is any subgroup of G.

Proof. This result has been proved in [22] for R = Z. It follows over any ring commu-
tative R because B(G, R) = B(G, Z) ⊗Z R for any group G. �

Lemma 4.8. Let G be a group and R a commutative ring. Then, if M is cofibrant as
an RG-module, M is cofibrant as an RH-module for any subgroup H ≤ G as well.

Proof. Let M be cofibrant as an RG-module. So, M ⊗ B(G, R) is projective as an
RG-module. This implies that ResG

H(M ⊗ B(G, R)) is projective as an RH-module for
any subgroup H of G. By Lemma 4.7, B(H, R) is a direct summand of ResG

HB(G, R),
and so ResG

HM ⊗ B(H, R) is a summand of ResG
H(M ⊗ B(G, R)) which is projective.

So, ResG
HM is cofibrant as an RH-module. �

Corollary 4.9. Let R be a commutative ring. If a group G satisfies Conjecture 1.1,
then Conjecture 4.4 holds for G as well.

Proof. When Conjecture 1.1 is satisfied for G, the class of Gorenstein projective RG-
modules coincides with the class of RG-modules M such that M ⊗ B(G, R) is projective.
Thus, by Lemma 4.8 and the fact that cofibrant RH-modules are Gorenstein projective
for any subgroup H ≤ G, our result follows. �

5. Groups satisfying a variation of Conjecture 1.1 locally

We start this section by recalling the definition of LHX-groups, where X is a class of
groups.
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Definition 5.1. We define a group G to be in LHX iff all finitely generated subgroups
of G are in HX. Similarly, for any class of groups X, LX or the class of groups that are
locally in X, is defined to be the class of groups all of whose finitely generated subgroups
are in X.

It is important to note that it follows from Theorem 1.1 of [17] that if α is a countable
ordinal, then LHαF ⊂ LHF. This implies that the class LHF contains groups that are
not contained in HnF for any integer n.

Before going forward, we need to prove a technical result which is a close variant of
Theorem B of [10]. Before we state and prove this result, we need to state two lemmas
that will be crucial in its proof and in the proofs of some other results in this section.

Lemma 5.2 (Lemma 5.6 of [3]). Let R be a commutative ring and let G =
⋃

α<γ Gα

where (Gα)α<γ is an ascending chain of subgroups of G for some ordinal γ. Then for any
RG-module M that is projective over each Gα, proj.dimRG(M) ≤ 1.

Lemma 5.3 (Lemma 2.5 of [17]). Every countable group admits an action on a
tree with finitely generated vertex and edge stabilizers.

Proposition 5.4 (done over Z and F in Theorem B of [10], almost the same
proof works here). Let G be a group and let R be a commutative ring of finite global
dimension. Let X be a class of groups and let BG,X be an R-free RG-module that restricts
to a projective module on every subgroup of G that is in X. Now if M is a weak Gorenstein
projective RG-module, then M ⊗ BG,X is projective over every subgroup of G that is in
LHX.

Proof. We first show the result is true over all HX-subgroups of G, i.e. over all
HαX-subgroups of G where α is some ordinal. We shall proceed by transfinite induction
on α. When α = 0, then BG,X is projective over all H0X subgroups of G by definition
and since M is R-projective by Lemma 4.1, we have that M ⊗ BG,X is projective over
all H0X subgroups. Now assume that the result is true over HβX-subgroups of G for all
β < α – this is our induction hypothesis. Now if H is a subgroup of G in HαX, then H
acts on, say, an n-dimensional contractible cell complex with H<αX-stabilizers and the
trivial RH-module admits a length n resolution by direct sums of permutation modules
with stabilizers in HβX for some β < α, i.e. modules that are direct sums of modules of
the form IndH

F (trivial module), for some F ∈ H<αX. For any M ∈ WGProj(RG), we can
tensor this resolution by M ⊗ BG,X and since by the induction hypothesis, M ⊗ BG,X is
projective over all H<αX-subgroups of G, what we get after tensoring is a finite length
resolution of M ⊗ BG,X by modules that are projective over RH. (This is because,
for any F ∈ H<αX, when we tensor IndH

F (trivial module) with M ⊗ BG,X as an RH-
module, we get IndH

F ResH
F (M ⊗ BG,X) and it follows from the induction hypothesis that

IndH
F ResH

F (M ⊗ BG,X) is projective over RH.) So, proj.dimRH(M ⊗ BG,X) ≤ n. Now
note that this is true for all weak Gorenstein projectives M . Now since BG,X is R-free, if
M is a kernel in a weak complete resolution (Fi, di)i∈Z of RH-modules (note that weak
Gorenstein projectivity is closed under restriction to subgroups) then M ⊗ BG,X occurs
as a kernel in the weak complete resolution (Fi ⊗ BG,X, di ⊗ id)i∈Z and all the kernels in
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this weak complete resolution have finite projective dimension over RH, bounded by n,
as we have just showed, so by Proposition 3.1, M ⊗ BG,X is projective over RH.

Now we show the statement of the proposition is true for LHX-subgroups of G. Let
H be an LHX subgroup of G. Then, if H is countable, then by Lemma 5.3, H is in HF.
Let H be an uncountable LHX-subgroup of G. Assume as induction hypothesis that
the statement of the proposition holds true for all LHX-subgroups of G of cardinality
strictly smaller than the cardinality of H. Now as H is uncountable, it can be written
as

⋃
γ<α Hγ where (Hγ)γ<α is a strictly ascending chain of subgroups of H and α is

some ordinal, where each Hγ is strictly smaller than H in cardinality. By our induction
hypothesis, M ⊗ BG,X is projective over RHγ for each γ < α, therefore by Lemma 5.2,
proj.dimRH(M ⊗ BG,X) ≤ 1. Again, if M , as a weak Gorenstein projective RH-module,
occurs as the rth kernel in a complete resolution (Fi, di)i∈Z and if the (r − 1)th ker-
nel, which is also a weak Gorenstein projective RH-module, is denoted by K−1(M), then
we have a short exact sequence 0 → M ⊗ BG,X ↪→ Fr−1 ⊗ BG,X � K−1(M) ⊗ BG,X → 0.
So, if proj.dimRH(M ⊗ BG,X) = 1, then proj.dimRH(K−1(M) ⊗ BG,X) = 2 which is
not possible because since K−1(M) is weak Gorenstein projective, the above claim
for weak Gorenstein projectives shows that proj.dimRH(K−1(M) ⊗ BG,X) ≤ 1. Thus,
proj.dimRH(M ⊗ BG,X) = 0. �

Corollary 5.5. Let G be a group in LHF or of type Φ over a commutative ring R
of finite global dimension. Then, the class of weak Gorenstein projective RG-modules,
the class of Gorenstein projective RG-modules and the class of Benson’s cofibrant RG-
modules all coincide.

Proof. For the case where G is in LHF, it follows directly from Proposition 5.4,
with X = F and BG,X = B(G, R), that weak Gorenstein projective RG-modules are Ben-
son’s cofibrant. Exactly this was handled and proved in Theorem B and subsequently in
Corollary C of [10] by Dembegioti and Talelli.

Now, let us assume that G is of type Φ over a commutative ring R of finite global
dimension. Let M be a weak Gorenstein projective RG-module which occurs as a kernel
of a weak complete resolution (Fi, di)i∈Z of projective RG-modules. Then M ⊗ B(G, R)
is projective as an RF -module for all finite subgroups F of G (this is because M is
R-projective and B(G, R) is RF -free for all finite F ≤ G). Since G is of type Φ,
this implies that proj.dimRG(M ⊗ B(G, R)) < ∞. But fin.dim(RG) < ∞ as G is of
type Φ (see Lemma 2.4 of [19]) and M can be any kernel in F∗; so by Propo-
sition 3.1, M ⊗ B(G, R) is projective as an RG-module. By Remark 3.3, it now
follows that M ∈ GProj(RG). Thus, we have WGProj(RG) ⊆ CoF(RG) ⊆ GProj(RG) ⊆
WGProj(RG). So, WGProj(RG) = CoF(RG) = GProj(RG). This gives us a new proof
of Theorem 3.11. �

Although it is usually not much convenient, we can replace the class of finite subgroups
in the definition of type Φ and have in its place subgroups belonging to some other
arbitrary class.

Definition 5.6. A group G is said to be of type Φ-X, for a class of groups X, over a
commutative ring R if the following conditions are equivalent for all RG-modules M .
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(a) proj.dimRG(M) < ∞.

(b) proj.dimRH(M) < ∞ for all subgroups H ≤ G such that H ∈ X.

Now, from Proposition 5.4, the following two corollaries follow.

Corollary 5.7. Let G be a group and let R be a commutative ring of finite global
dimension. Let X be a class of groups, and let BG,X be an R-free RG-module that
restricts to a projective module on every X-subgroup of G. Then, for any weak Gorenstein
projective RG-module M , M ⊗ BG,X is projective over every subgroup of G that is of
type Φ-LHX over R.

Proof. Let M ∈ WGProj(RG). From Proposition 5.4, we get that M ⊗ BG,X is
projective over LHX-subgroups of G, and then from Definition 5.6 it follows that
M ⊗ BG,X has finite projective dimension over all Φ-LHX-subgroups of G. Let us fix
K to be a Φ-LHX-subgroup of G. Note that as WGProj(RG) is closed under restriction
to subgroups, M , restricted as an RK-module, is in WGProj(RK) and as BG,X is R-free,
M ⊗ BG,X ∈ WGProj(RK) (here, we are restricting both M and BG,X as RK-modules,
and we will be considering BG,X as an RK-module for the rest of this proof).

We claim that sup{proj.dimRK(N ⊗ BG,X) : N ∈ WGProj(RK)} is finite. This is easy
to see because otherwise for every integer n > 0, we will have an Nn ∈ WGProj(RK)
such that proj.dimRK(Nn ⊗ BG,X) > n, and then proj.dimRK(

⊕
n Nn ⊗ BG,X) will not

be finite which will be a contradiction as WGProj(RK) is closed under direct sums. Now,
from Proposition 3.1, it follows that M ⊗ BG,X is actually projective over K. �

Corollary 5.8. Let G be a group of type Φ-LHF over a commutative ring R of finite
global dimension. Then, the class of weak Gorenstein projective RG-modules, the class
of Gorenstein projective RG-modules and the class of Benson’s cofibrant RG-modules all
coincide.

One of the main arguments in the proof of Proposition 5.4 is moving from the module
M ⊗ BG,X being projective over all HX-subgroups to proving that it must be so over all
subgroups that are locally HX. The proof of Proposition 5.4, however, allows us to prove
the following.

Theorem 5.9. Let G be a group and let R be a commutative ring. Let X be a class of
groups. Assume that for any weak Gorenstein projective RG-module M , M ⊗ B(G, R)
is projective over every X-subgroup of G. Then, M ⊗ B(G, R) is projective over every
LHX-subgroup of G. Note that from this it follows that M ⊗ B(G, R) is projective over
every LX-subgroup and over every HX-subgroup of G.

Corollary 5.10. Let R be a commutative ring of finite global dimension. If a group
G is in LHFφ,R, where Fφ,R is the class of all groups of type Φ over R, or locally Φ-LHF

over R, then, the class of weak Gorenstein projectives, Benson’s cofibrants and Gorenstein
projectives all coincide.

Proof. The proof is obvious from Theorem 5.9 and Corollary 5.7 which shows that
the weak Gorenstein projectives form a subclass of Benson’s cofibrants and from the
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logic in the proof of Corollary 5.5 it follows that we have WGProj(RG) ⊆ CoF(RG) ⊆
GProj(RG) ⊆ WGProj(RG). �

Remark 5.11. I do not know of any examples of groups that are locally Φ-LHF over,
say, Z, but are not of type Φ-LHF over the same. The following question becomes crucial
in investigating locally Φ-LHF should imply Φ-LHF: is a module over a group of finite
projective dimension if it is of finite projective dimension over any finitely generated
subgroup of the given group?

For any commutative ring R of finite global dimension, taking as base class Fφ,R, the
class of all groups of type Φ over R, we get that Kropholler’s class HFφ,R is much larger
than Fφ,R because HFφ,R contains HF as Fφ,R contains F and there are examples of free
abelian groups of infinite rank that are in HF which do not admit complete resolutions as
we have discussed before and therefore cannot be in Fφ,R. Free abelian groups of infinite
rank are also locally type Φ but not type Φ themselves over any ring of finite global
dimension. However, if (a) ⇔ (c) holds in Conjecture 1.22, then HFφ,Z = H(H1F) = HF,
and LHFφ,Z = LHF, and that would mean, for R = Z, our result (Corollary 5.10) for
LHFφ,Z-groups does not give us any groups for which Conjecture 1.1 is not already known
to be true.

We end this section with the following corollary which shows that, for a given com-
mutative ring R of finite global dimension, Conjecture 4.4 is satisfied by LHFφ,R-groups
and groups that are either fully or locally Φ-LHF.

Corollary 5.12. Fix a commutative ring R of finite global dimension. Using the
notation of Corollary 5.10, Gorenstein projectivity is closed under

(a) subgroups that are in LHFφ,R.

(b) subgroups that are either locally or fully Φ-LHF (or even Φ-LHFφ,R) over R.

Proof. If M is a Gorenstein projective RG-module, then for any subgroup H of G,
ResG

H(M) is a weak Gorenstein projective RH-module, and if H is a subgroup of G
satisfying (a) or (b) of the hypothesis of Corollary 5.12, then ResG

H(M) is a Gorenstein
projective RH-module by Corollary 5.10. �
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