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ELIMINATING DISJUNCTIONS BY DISJUNCTION ELIMINATION

DAVIDE RINALDI, PETER SCHUSTER, AND DANIELWESSEL

Abstract. Completeness and other forms of Zorn’s Lemma are sometimes invoked for
semantic proofs of conservation in relatively elementary mathematical contexts in which the
corresponding syntactical conservation would suffice. We now show how a fairly general
syntactical conservation theorem that covers plenty of the semantic approaches follows from
an utmost versatile criterion for conservation given by Scott in 1974.
To this end we work with multi-conclusion entailment relations as extending single-

conclusion entailment relations. In a nutshell, the additional axioms with disjunctions in
positive position can be eliminated by reducing them to the corresponding disjunction elimi-
nation rules,which in turn prove admissible in all knownmathematical instances. In deduction
terms this means to fold up branchings of proof trees by way of properties of the relevant
mathematical structures.
Applications include the syntactical counterparts of the theorems or lemmas known under

the names of Artin–Schreier, Krull–Lindenbaum, and Szpilrajn. Related work has been done
before on individual instances, e.g., in locale theory, dynamical algebra, formal topology and
proof analysis.

§1. Introduction. As is well-known, certain additional axioms in which
disjunctions occur in positive position such as

P(x ∗ y) → P(x) ∨ P(y) P(e) → ⊥
� → Q(z) ∨Q(∼z) Q(z) ∧Q(∼z) → ⊥

are extremely useful in proof practice: theymake possible quicker and slicker
proofs in the special cases specified by the axioms. Examples include the
characteristic axioms of integral domain, local ring, linear order, ordered
field, and valuation ring. The use of such axioms, however, is said [67]
to obstruct the extraction of computational content from classical proofs,
e.g., by negative translation.
To reduce the general case to the special case, moreover, one needs to have
at hand—in the terminology ofHilbert’s Programme—the ideal objects char-
acterised by the axioms, as there are prime ideals, prime filters, ultrafilters,
complete theories, and linear orders. Yet the existence of these ideal objects
is tied together—again in Hilbert’s terms—with transfinite methods (Axiom
of Choice, Well-Ordering Theorem, Ultrafilter Theorem, Zorn’s Lemma,
etc.) in the appropriate mathematical forms shaped by Artin–Schreier,
Hahn–Banach, Krull–Lindenbaum, Szpilrajn, and others.
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This method is related to semantic conservation proofs with adequate
completeness theorems at hand: by suitably embedding any given model of
the base theory T into a model of the extended theory T ∗ [71]. In fact, if
T ∗ 	 ϕ, then T ∗ � ϕ by soundness; whence T � ϕ by embedding, and thus
T 	 ϕ by completeness. While completeness and embedding normally need
transfinite methods, in some cases Boolean-valued models can be used for
constructive arguments [15].
More often than not one can also put and prove a syntactical conservation
theorem the proof of which contains a proof-theoretic conversion algorithm
that works at least for what is known as Horn sequents [40] or definite Horn
clauses [75]. This approach is not new and has already proved practicable
in different but related contexts: for example, in point-free topology such
as locale theory and formal topology [11, 12, 16, 18, 53, 54]; in constructive
algebra, especially with dynamical methods [21,26,42,43,45,46,78]; and in
proof theory, e.g., in proof analysis [57, 58].
Towards a considerable generalisation (Theorem 3.3) we now employ
a method pointed out in [11]: that is, to work with Scott’s entailment rela-
tions.More specifically,we invoke the extremely efficient ‘sandwich criterion’
Scott [69] has proved equivalent to syntactical conservation of a multi-
conclusion entailment relation extending a single-conclusion entailment
relation (Theorem 3.1 below). This criterion has turned out to hold in
numerous cases including the ones we have abstracted before [63].
In a nutshell, applying Scott’s criterion means to eliminate the additional
axioms with disjunctions in positive position by reducing them to the cor-
responding disjunction elimination rules, which have proved admissible in
all mathematical instances considered so far. In deduction terms this means
to fold up branchings of proof trees by way of properties of the relevant
mathematical structures.
Perhaps it in order to remember a saying by Scott [68, pp. 793–794]:

Unfortunately, in my opinion, both because of the aim of Gentzen’s
own work and in the light of later applications, the Gentzen systems
have been very much oriented toward proof-theoretic analyses—
especially the problems of establishing the so-called cut elimination
theorem. For me this was misleading. It took me a long time to realize
that cut is not eliminable—except in very special circumstances. This
is not to say that cut elimination is uninteresting or unimportant, but
there does seem to be a simple and basic point to make with the aid
of Gentzen’s idea which may not be so generally appreciated.

On method. All but Section 5 can be expressed within Elementary
Constructive Zermelo–Fraenkel Set Theory ECST [2, 3]. This is a frag-
ment of Constructive Zermelo–Fraenkel Set Theory CZF, which is based
on intuitionistic logic and does not contain the Axiom of Power Set,
let alone the Axiom of Choice. To supply semantics (Section 5) some-
times requires to use classical logic, to speak of power sets or to
invoke Zorn’s Lemma; for simplicity’s sake we refer to ZFC in any
such case.
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By a finite set we understand a set that can be written as {a1, . . . , an} for
some n � 0.1 In ECST the generic subsets of a set T form a proper class,
which as usual we write asP(T ), whereas the finite subsets of a set T do
form a set, which we denote byP�(T ).

§2. Relation.
2.1. Consequence. Let S be a set and � ⊆ P(S) × S. All but one of
Tarski’s axioms of consequence [74] can be put as

U � a
U � a (R)

∀b ∈ U (V � b) U � a
V � a (T)

U � a
∃U0 ∈ P�(U )(U0 � a)

(A),

where U,V ⊆ S, and a ∈ S. Since Sambin’s [64]2 these axioms have also
characterised a finitary covering or Stone covering in formal topology; see
also [14, 55, 56].
The notion of consequence has allegedly been described first by Hertz
[34–36]. We do not employ the one of Tarski’s axioms by which he requires
that S be countable. This axiom aside, Tarski has rather characterised the
set of consequences of a set of propositions, which corresponds to the
algebraic closure operator U �→ U� on P(S) correlated to a relation �
as above, viz.

U� ≡ {a ∈ S : U � a} .
Rather than with Tarski’s notion, we henceforth work with its restriction to
finite subsets, that is, the notion of a single-conclusion entailment relation.
This is a relation � ⊆ P�(S)× S that satisfies

U � a
U � a (R)

V � b V ′, b � a
V,V ′ � a (T) U � a

U,U ′ � a (M)

for all finite U,U ′, V, V ′ ⊆ S and a, b ∈ S, where as usual U,V ≡ U ∪ V
and V, b ≡ V ∪ {b}.
Our focus thus is on finite subsets of S, for which we reserve the letters
U,V,W, . . .; we also sometimes write a1, . . . , an in place of {a1, . . . , an}.
Redefining

T� ≡ {a ∈ S : ∃U ∈ P�(T )(U � a)} (1)

for arbitrary subsets T of S gives back an algebraic closure operator on
P(S). Hence the single-conclusion entailment relations correspond exactly
to the relations satisfying Tarski’s axioms above.

1For the sake of a slicker wording we thus deviate from the prevalent terminology of
constructive mathematics and set theory [2, 3, 8, 9, 46, 52]: (1) to call ‘subfinite’ or ‘finitely
enumerable’ a finite set in the sense above, i.e., a set T for which there is a surjection from
{1, . . . , n} to T for some n � 0; and (2) to reserve the term ‘finite’ to sets which are in
bijection with {1, . . . , n} for a necessarily unique n � 0. Also, finite sets in this stricter sense
do not play a role in this paper.
2This also is from where we have taken the symbol�.
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2.2. Entailment. Let S be a set and 	⊆ P�(S) × P�(S). Scott’s [69]
axioms of entailment can be put as

U �W
U 	W (R)

V 	W,b V ′, b 	W ′

V,V ′ 	W,W ′ (T) U 	W
U,U ′ 	W,W ′ (M)

for finite U,V,W ⊆ S and b ∈ S, where U � W means that U and
W have an element in common.3 To be precise, any such 	 is a multi-
conclusion entailment relation, where ‘multi’ includes ‘empty’. The axioms
are symmetric: that is, 	 satisfies the axioms if and only if so does the
converse relation �.
This fairly general notion of entailment has been introduced by Scott
[68–70], building on Hertz’s and Tarski’s work (see above), and of course on
Gentzen’s sequent calculus [31,32].Analogous concepts have beendeveloped
before by Lorenzen [47–50], who has even listed [48, pp. 84–85] counterparts
of the axioms (R), (T), and (M) for single- and multi-conclusion entailment
[22, 23].4 The relevance of the notion of entailment relation to point-free
topology and constructive algebra has been pointed out in [11]; this has
been used e.g., in [16, 17, 20, 24, 25, 58, 62]. Consequence and entailment
have caught interest from various angles [6, 29, 30, 37, 38, 59,72,77].
It is in order to point out a major virtue Scott’s treatment of entailment
[69] has in comparison with the ones of his predecessors: the base set S
may be any set whatsoever, and especially need not consist of formulas.
The recommended reading of U 	 V still is as a sequent à la Gentzen, or
rather as ∧

b∈U
v(b)→

∨
c∈V
v(c),

where v is a distinguished predicate onS, normally the one that is of primary
interest in the given context. Inmore logical terms onemay view the elements
of S as propositional variables and v as a valuation. Although this can be
made precise by semantics, as we recall in Section 5, let us stress that—
apart from heuristics—it is by no means constituent for our syntactical
considerations, i.e., for all but Section 5.
Just as for sequents, it is common to abbreviate ∅ � a by �a, and to
use 	 V and U 	 as shorthands of ∅ 	 V and U 	 ∅, respectively. One
occasionally even writes 	 in place of ∅ 	 ∅.
2.3. Generation. Let E ⊆ P(X × Y ) be a class of relations between sets
X and Y . We order E by inclusion ⊆, and call every R ∈ E an E -relation.
Let R ⊆ X × Y , and (xi , yi) ∈ X × Y with i ∈ I . We say that R is the
E -relation generated by the axioms xiRyi with i ∈ I if R is the least
E -relation to which (xi , yi ) belongs for every i ∈ I . Note that we thus
do not incur circularity inasmuch as we suppose R to be given.
We will apply this in the two cases in which E either consists of all
single-conclusion entailment relations on a given set S, or else of all multi-
conclusion entailment relations on S. In these cases the axioms rather are

3We have adopted this notation from Giovanni Sambin.
4Stefan Neuwirth has hinted us at this circumstance.
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axiom schemes in the sense that every parameter is tacitly understood as
ranging over its domain. For example, if ◦ is a binary operation on S, then
by saying that � is generated by the axiom a, b � a ◦ b we mean that � is
generated by all axioms a, b � a ◦ b with a, b ∈ S.
To actually construct an entailment relation generated by axioms, in a
noncircular way, one can inductively generate it from the axioms by closing
up with respect to (R), (T), and (M). This anyway is how we deal with
our applications (Section 4), but is not always necessary for making proofs
work. For example, for proving our main result (Theorem 3.3) it is enough
to know that the entailment relations under consideration literally are the
least entailment relations that satisfy the required axioms.

§3. Conservation. Let� and 	 stand for a single-conclusion and a multi-
conclusion entailment relation, respectively.

3.1. Back and forth. Given 	, its trace �� is defined by

U �� a ≡ U 	 a
and in fact is a single-conclusion entailment relation.
Given � and 	, it makes sense to say that
1. 	 is an extension of � if � ⊆ ��;
2. 	 is conservative over � if � ⊇ ��.

By the very definitions, every 	 is a conservative extension of its trace ��.
Given �, there are 	min� and 	max� as follows [69]:5

U 	min� V ≡ ∃b ∈ V (U � b)
U 	max� V ≡ ∀W ∈ P�(S)∀c ∈ S

(∀b ∈ V (W,b � c)→W,U � c
)
.

These 	min� and 	max� indeed are multi-conclusion entailment relations, and
	min� ⊆	max� . As � is the trace of either relation, both 	min� and 	max� are
conservative extensions of �.
For later use we notice that a1, . . . , ak 	max� b1, . . . , b� is tantamount to
the validity of the rule

W,b1 � c . . . W, b� � c
W, a1, . . . , ak � c

(2)

for all finiteW ⊆ S and c ∈ S.
3.2. Unfolding sandwiches. Given �, the 	 which are extensions of �
(respectively, which are conservative over �) are closed upwards (respec-
tively, closed downwards) with respect to ⊆. Hence the 	 which are con-
servative extensions of � form an interval. This interval has endpoints 	min�
and 	max� by the following ‘sandwich criterion’ for conservative extension by
Scott [69]:

5This definition of �max� is not identical but equivalent to the one given in [69].
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Theorem 3.1. A multi-conclusion entailment relation 	 is a conservative
extension of the single-conclusion entailment relation � if and only if 	 lies
between 	min� and 	max� , which is to say that

� = �� ⇐⇒ 	min� ⊆ 	 ⊆ 	max� .

Lorenzen [47, Satz 14, Satz 15] already had 	min� and 	max� as well as⇒ of
Theorem 3.1 [22, 23].6

By proof inspection we could make Scott’s criterion slightly more precise,
as follows:

Lemma 3.2.
1. 	 is an extension of � if and only if 	min� ⊆ 	.
2. If 	 is an extension of �, then 	 is conservative over � if and only if

	 ⊆ 	max� .
To have that conservation follows from 	 ⊆ 	max� it is not necessary that 	
be an extension of�. In fact, ifU 	 a, then by 	 ⊆ 	max� we haveU 	max� a,
from which we get U � a in view of a � a by (R).
Remembering the recommended disjunctive reading of the conclusion V
of any sequent U 	 V , in the light of Lemma 3.2 a possible interpretation
of extension and conservation is as follows:
1. extension as that disjunctions introduced from � can be expressed as
sequents of 	;

2. conservation as that disjunctions expressed as sequents of 	 can be
eliminated in terms of �.

3.3. Adding axioms. Let the single-conclusion entailment relation � be
generated by axioms. Let the multi-conclusion entailment relation 	 be
generated by the axioms of �, of course with 	 in place of �, and by
additional axioms of the form

ϕ : a1, . . . , ak 	 b1, . . . , b� ,
where k, � � 0. In any such situation we say that 	 extends �, and list the
additional axioms if needed. This is legitimate inasmuch as if 	 extends �,
then 	 is an extension of � in the sense of Section 3.1. By the conservation
criterion of an axiom ϕ as above we understand the rule

W,b1 � c . . . W, b� � c
W, a1, . . . , ak � c

(Eϕ),

whereW is a finite subset of S and c ∈ S.
Theorem 3.3. If 	 extends�, then 	 is conservative over� precisely when,
for every additional axiom ϕ of 	, the conservation criterion Eϕ is satisfied
for �.
Proof. As 	 is an extension of �, the former is conservative over the
latter if and only if 	 ⊆ 	max� (Lemma 3.2). Now recall that 	 is the least
multi-conclusion entailment relation that satisfies not only the axioms of
� but also the additional axioms of 	; and that 	max� as an extension of �
6Stefan Neuwirth has hinted us at this circumstance.
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already satisfies the former axioms. Hence 	 ⊆ 	max� is tantamount to 	max�
too satisfying all additional axioms, i.e.,

a1, . . . , ak 	max� b1, . . . , b�

for every additional axiomϕ as above.Bydefinitionof	max� , this is equivalent
to Eϕ being valid for �. �
Given an axiom such as ϕ above, let 	ϕ denote the multi-conclusion
entailment relation that extends � with the single additional axiom ϕ. If 	ϕ
is conservative over �, we say—par abus de langage—that ϕ is conservative
over �. The related special case of Theorem 3.3 reads as follows:
Corollary 3.4. An axiom ϕ is conservative over � if and only if the rule
Eϕ is valid for �.
By reduction to the corresponding rule we can thus eliminate from proof
trees occurrences of an additional axiom, roughly as follows; note that the
result of this conversion does not contain 	 at all:
W � a1 . . . W � ak ϕ : a1, . . . , ak � b1, . . . , bl

W � b1, . . . , bl W, b1 � c . . . W, bl � c
W � c

W � a1 . . . W � ak
W, b1 � c . . . W, bl � c (Eϕ)
W, a1, . . . , ak � c

W � c
.

The following is an equivalent formulation of Theorem 3.3; of course also
a direct proof is possible.

Corollary 3.5. If 	 extends �, then 	 is conservative over � precisely
when every additional axiom ϕ of 	 is conservative over �.
The next lemma will prove useful for modifying the base of an instance of
conservation.

Lemma 3.6. Let � be a single-conclusion entailment relation on S that is
generated by axioms. For any subsetD of S, let�′ be generated by the axioms
of �, and by the extra axioms �d with d ∈ D.
1. We have U �′ a if and only if U,V � a for a finite subset V ⊆ D.
2. If an axiom

ϕ : a1, . . . , ak 	 b1, . . . , b�
is conservative over �, then it is conservative over �′.

§4. Application.
4.1. Szpilrajn’s Theorem. Our approach subsumes the existing syntacti-
cal treatment [58] of order extension, the semantics of which is that every
(proper) quasiorder can be extended to a linear one [33, 73].

4.1.1. Quasi-orders. As a binary relation � on a set X is a quasiorder
if � is reflexive and transitive, the single-conclusion entailment relation �
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of quasiorder on S = X × X is generated by the corresponding axioms of
reflexivity and transitivity:

� : �(a, a) � : (a, b), (b, c) � (a, c).
The multi-conclusion entailment relation 	� of linear quasiorder extends �
with the single additional axiom of linearity:

� : 	 (a, b), (b, a).
The conservation criterion of � reads as follows:

W, (a, b)� (r, s) W, (b, a)� (r, s)
W � (r, s) (E�).

The closure operator corresponding to � assigns to a subset T of S its
reflexive-transitive closure T ∗. With this at hand, or following the proof of
[58, Theorem 5.1], one readily verifies that E� is valid for �; whence 	� is
conservative over � (Theorem 3.3). This can equally be seen by restricting
to single-conclusion instances an alternative description of 	� in terms of
cycles [58, Section 7]. Reflexivity � is necessary for conservation, by way of
the special case a = b = r = s of E�.

4.1.2. Bounded quasi-orders. We say that a quasiorder (X,�) with distin-
guished elements 0, 1 is bounded if 0 � s and r � 1 for all r, s ∈ X ; and that
� is proper if 1 �� 0. Accordingly, the single-conclusion entailment relation
�′ of bounded quasiorder on S = X ×X is generated by the axioms � and �
as above plus the following:

�0 : �(0, s) �1 : �(r, 1).
The multi-conclusion entailment relation 	′ of linear proper bounded
quasiorder extends �′ with the additional axioms of linearity � and
properness:

	 : (1, 0) 	
The conservation criterion of 	 reads as follows:

W, (1, 0)� (r, s) (E	).

By transitivity � it is easy to see that E	 is valid for �′. As E� is valid for
� (Section 4.1.1), E� is valid for �′ too (Corollary 3.4, Lemma 3.6). In all,
	′ is conservative over �′ (Theorem 3.3).

4.1.3. Discussion. A proof-theoretic analysis of order relations is carried
out in [58], with sequent calculi GPO and GLO which correspond to the
theories of quasiorder and linear quasiorder, respectively. It is shown that
a single-conclusion sequent derivable in GLO is derivable already in GPO
[58, Theorems 5.1].
This conservation result is then carried over to nondegenerate nontrivial
quasiorders [58, Theorem 5.2]. While nondegeneratemeans 1 �� 0, i.e., what
we have called ‘proper’, a quasiorder � with distinguished elements 0 and 1
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is said nontrivial if 0 � 1. In terms of the single-conclusion entailment
relation of quasiorder, nontrivialitymeans to add the axiom

�(0, 1)
to reflexivity � and transitivity �. With this add-on, conservation of linear-
ity � carries over (Lemma 3.6), whereas the conservation of properness 	
depends on the presence of �0 and �1.
The conservation of linearity for quasiorders is an instance of the
UniversalKrull–Lindenbaumprinciple, towhichwe now turn our attention.

4.2. Universal Krull–Lindenbaum. In the sequel � and 	 always stand for
a single-conclusion and a multi-conclusion entailment relation, respectively.

4.2.1. Universal Krull. Let S come with a (partial) binary operation
∗ : S × S → S and with a distinguished element e ∈ S. Given �, let 	
extend � with additional axioms


 : a ∗ b 	 a, b 	 : e 	 .
In this situation Theorem 3.3 reads as follows:
Corollary 4.1. 	 is a conservative extension of � precisely when the
following rules hold :

W,a � c W, b � c
(E
)

W,a ∗ b � c (E	)
W, e � c

.

The first and second conservation criterion above have occurred [63]
as ‘� satisfies Encoding’ and as ‘e is convincing for �’, respectively. It is
noteworthy that the axiom of contraction

a ∗ a � a
is necessary for conservation, by the special case a = b = c of E
.
Corollary 4.1 can be compared with disjunction elimination and ex falso
quodlibet, especially if S is a bounded distributive lattice such as an intu-
itionistic Lindenbaum algebra, with ∨ as ∗ and ⊥ as e. In these cases � is
the single-conclusion entailment relation of filter or theory, see 4.2.4.

4.2.2. Universal Lindenbaum. Let S come with a (partial) unary opera-
tion ∼. Given �, let 	 extend � with additional axioms

� : 	 a,∼a � : a,∼a 	 .
In this situation Theorem 3.3 reads as follows:
Corollary 4.2. 	 is a conservative extension of � precisely when

W,a � c W,∼a � c
(E�)

W � c
(E�)

W,a,∼a � c .

Corollary 4.2 can be compared with excluded middle and noncontradiction,
especially ifS is a Boolean algebra such as a Lindenbaum algebra in classical
logic, with complement or negation ¬ as ∼. In these cases � again is the
entailment relation of filter or theory, see 4.2.4. Further applications of
Corollary 4.2 include Artin and Schreier’s theorem, see 4.2.6 below.
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4.2.3. Order extension revisited. Some proof-theoretic variants of
Szpilrajn’s theorem may also be viewed as instances of Universal Krull–
Lindenbaum. In order to see this, consider once more the single-conclusion
entailment relation � of bounded quasiorder on S = X × X . The swap
operation

∼(a, b) = (b, a)
on S fits Universal Lindenbaum in parts, giving rise to Section 4.1.1 above.
In fact, the axiom � becomes linearity � and thus E� can be proved valid,
whereas E� does not hold in general.
We consider next, on the same S = X ×X , the partial binary operation ◦
of composition defined by

(a, b) ◦ (b, d ) = (a, d ).
With ◦ in place of ∗, the axiom 
 becomes cotransivitity

κ : (a, d ) 	 (a, b), (b, d ),
the conservation criterion of which reads

W, (a, b)� (r, s) W, (b, d )� (r, s)
(Eκ)

W, (a, d ) � (r, s)
and can be proved by transitivity � only. By reflexivity �, (conservation of)
linearity � is a special case of (conservation of) cotransitivity κ. With (1, 0)
as e, Section 4.1.2 above is an instance of Universal Krull as a whole.
An interesting variant is given by the total binary operation

(a, b) ∗ (c, d ) = (a, d )
with additional axiom

(a, d ) 	 (a, b), (c, d )
and conservation criterion

W, (a, b)� (r, s) W, (c, d ) � (r, s)
W, (a, d ) � (r, s)

.

This rule can be shown valid for the single-conclusion entailment relation
of quasiorder, over which by reflexivity � it yields conservation of strong
linearity [51]:

	 (a, b), (c, a).
4.2.4. Distributive lattices. Krull’s Lemma for distributive lattices says
that every proper filter (respectively, proper ideal) can be extended to a
proper prime filter (respectively, proper prime ideal). To view the corre-
sponding conservation statement, letL be a bounded lattice withmeet∧ and
join∨, andwithbottomand top element 0 and1, respectively. The entailment
relation � of filter on S = L is generated by the axioms

�1 a, b � a ∧ b a � a ∨ b.
The multi-conclusion entailment relation 	 of proper prime filter extends �
with additional axioms


 : a ∨ b 	 a, b 	 : 0 	
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for which the conservation criteria read as follows:
W,a � c W, b � c

(E
)
W,a ∨ b � c (E	)

W, 0 � c
.

The closure operator corresponding to� assigns to a subset T of S the filter
generated by T . Thus 0 is convincing, while the validity of E
, i.e., Encoding
for �, follows from L being distributive [63, 4.2]. Therefore, with ∨ as ∗ and
0 as e, Universal Krull implies that the multi-conclusion entailment relation
of proper prime filter on a distributive lattice is a conservative extension of
the single-conclusion entailment relation of filter.
Dually, the single-conclusion entailment relation �′ of ideal on S = L is
generated by the axioms

�′0 a, b �′ a ∨ b a �′ a ∧ b.
This �′ extends to the multi-conclusion entailment relation 	′ of proper
prime ideal by adding the following axioms:


′ : a ∧ b 	′ a, b 	′ : 1 	′ .

The closure operator corresponding to �′ assigns to a subset T of S the
ideal generated by T . Reasoning dually to the case of filters shows that the
multi-conclusion entailment relation of proper prime ideal is a conservative
extension of the single-conclusion entailment relation of ideal.
While this approach fits Universal Krull, if L is a Boolean algebra with
complement −, then we may instead add the axioms

� : 	 a,−a � : a,−a 	
to both � and �′. Now Universal Lindenbaum applies, giving rise to con-
servation over � and �′ of the multi-conclusion entailment relations of
proper complete filter and proper complete ideal, respectively. This conser-
vation corresponds to Lindenbaum’s Lemma for Boolean algebras, which
says that every proper filter (respectively, proper ideal) can be extended to a
proper complete filter (respectively, proper complete ideal).

4.2.5. Commutative rings. The original form of Krull’s Lemma, for com-
mutative rings [41], says that every proper filter can be extended to a proper
prime filter, which can be carried over from ideals to filters. In order to dis-
play the corresponding conservation results, let � be the single-conclusion
entailment relation of radical ideal (or reduced ring) on a commutative ring
S which is generated by the axioms of ideal (or zero)

�0 a, b � a + b a � ab
together with the characteristic axiom of radical ideal

a2 � a .
The corresponding closure operator assigns to every subset T of S the
radical of the ideal generated byT . The following rules are valid (see e.g., [63,
Lemma 19] for a proof of the first one):

W,a � c W, b � c
(E
)

W,ab � c
(E	)

W, 1 � c
.
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ByUniversal Krull, with multiplication as ∗ and 1 as e, the following axioms
of prime ideal (or integral domain) are conservative over �:


 : ab 	 a, b 	 : 1 	 .
The five axioms for 	 stem from [11], and conservation of 	 over � is
essentially known from dynamical algebra [26]. As the relevant case of
contraction, the characteristic axiom of radical ideal a2� a is necessary for
conservation.
Dually, the single-conclusion entailment relation of filter (or unit) on a
commutative ring S is generated by the following axioms:

�1 a, b � ab ab � a.
The corresponding closure operator assigns to every subset T of S the filter
generated by T . The following rules hold (see e.g., [63, Lemma 20] for a
proof of the first one):

W,a � c W, b � c
(E
)

W,a + b � c
(E	)

W, 0� c
.

By Universal Krull, now with addition + in place of ∗ and 0 as e, the axioms
of prime filter (or local ring) are conservative over �:


 : a + b 	 a, b 	 : 0 	 .
This again is essentially known from dynamical algebra [42].

4.2.6. Ordered fields. Artin and Schreier’s Theorem [5], saying that every
proper quadratic preorder on a field can be extended to a total order, was
used to solve Hilbert’s 17th Problem in the affirmative [4]. Towards the
corresponding conservation result in terms of entailment relations, let the
single-conclusion entailment relation � of quadratic preorder on a field S of
char �= 2 be generated by the following axioms:

�a2 a, b � a + b a, b � ab.
The corresponding closure operator assigns to every subset T of S the
quadratic preorder generated by T . The following rules are valid for � (see
[63, Lemma 24] for a proof of the first one):

W,a � c W, b � c
(E
)

W,a + b � c
(E	)

W,−1� c .

By Universal Krull, with addition + as ∗ and −1 as e, the following axioms
are conservative over �:


 : a + b 	 a, b 	 : −1 	 .
Equivalently so are the axioms of total order on S \ {0}:

� : 	 a,−a � : a,−a 	 .
We thus not only have an instance of Universal Krull but also one of Uni-
versal Lindenbaum, with minus− in place of ∼. A related set of axioms [11]
already contains 
 and �.
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Once more, this conservation statement is essentially known from dynam-
ical algebra [43]. There is vast literature on computational and continuous
aspects of the Artin–Schreier Theorem, Hilbert’s 17th Problem and related
results, see e.g., [7, 10, 27, 28, 60].

4.2.7. Valuation rings. Let R be a subring of a field K , and let R[U ]
denote the subring ofK containing R that is generated by U ⊆ K . Take the
single-conclusion entailment relation � on S = K that is generated by the
axioms of subring of K containing R

�r (r ∈ R) a, b � a + b a, b � ab
together with the following axiom of integral closure:

s1, . . . , sn � a (an + s1an−1 + · · ·+ sn = 0, n � 1).
The corresponding closure operator assigns to every subset T of S the
integral closure R[T ] of R[T ]; and the following rule can be shown valid
[63, Lemma 23]:

W,a � c W, b � c
(E
)

W,ab � c
.

By Corollary 3.4, the additional axiom


 : ab 	 a, b
is conservative over �. As there is no convincing element for �, this is a
partial instance of Universal Krull, with multiplication in place of ∗.
Not only a2 � a as an instance of contraction, but even the full axiom
of integral closure is necessary for conservation, which can be seen along
the lines of the usual proof that a valuation ring is integrally closed. For
example, if c2 + s1c + s2 = 0, then s1, s2 � c follows from the instance
a = −c, b = c + s1 andW = { s1, s2 } of E
.
Up to this point everything equally works for subrings of a ring K rather
than a field K . For a field K , however, an alternative generation [11, 24] of
	 makes use of the axiom of valuation:

� : 	 a, a−1 (a �= 0).
Given the axioms of �, this � is equivalent to 
 as above whenever the field
K is discrete in the sense that the characteristic axiom of a field holds in the
form

a = 0 ∨ ∃b (ab = 1).
Hence � too is conservative over� for discrete fieldsK , andwe have a partial
instance of Universal Lindenbaum as well. This approach has been followed
in the context ofKronecker’s Theorem [44] andDedekind’s Prague Theorem
[24], and more generally to study valuations in a point-free way [19].

4.2.8. Ordered vector spaces. Let E be a vector space over the field Q

of rationals. Let the single-conclusion entailment relation � on S = E be
generated by the following axioms:

�0 a, b � a + b n · a � a (n ∈ N, n � 1).
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The corresponding closure operator assigns to everyT ⊆ S the positive cone
generated by T , and

W,a � c W, b � c
(E
)

W,a + b � c
is a valid rule for �. By Theorem 3.3, the multi-conclusion entailment
relation 	 extending � with the additional axiom


 : a + b 	 a, b
is conservative over�. The axiom n ·a�a of� follows fromE
 by induction
and thus is necessary for conservation. A different set of axioms [11] for 	
includes 
 as above and the following axiom:

� : a,−a 	 .
From this one can go to the point-free treatments [11, 12, 16, 18] of the
Hahn–Banach theorem in succession to [53, 54]. Unlike for many of the
ring-theoretic applications mentioned above, it is not clear whether one can
make computational use of the Hahn–Banach theorem itself [16].

§5. Semantics. Now we place ourselves within ZFC. As before let S be a
set, and write U,V for finite subsets of S.

5.1. Lindenbaum’sLemma and completeness theorems. According to [69],
a (multi-conclusion) entailment relation � on S is complete if for each a ∈ S
either � a or a �, and consistent if for no a ∈ S both � a and a �. Note that
[69] if � is inconsistent, then � holds in the sense that ∅ � ∅. Conversely, if �
holds, then � is inconsistent unless S = ∅.
The complete consistent entailment relations � are just the valuations on
S, i.e., predicates v ∈ 2S . More precisely, if � corresponds to v, then

U � V ⇐⇒
(∧
b∈U
v(b)⇒

∨
c∈V
v(c)

)
. (3)

The following [69] surely is one of themost general versions ofLindenbaum’s
Lemma:

Theorem 5.1. Each entailment relation 	 on a set S equals the intersection
of all complete consistent entailment relations � on S with �⊇	.
For an arbitrary subset P of S we set

U �P V ⇐⇒ (P ⊇ U ⇒ V � P) .
As the valuations v on S are just the subsets P of S, in view of (3) the
complete consistent entailment relations � are precisely the relations of the
form �P where P is a—not necessarily finite—subset of S.
Now let 	 denote an arbitrary entailment relation. If 	⊆�P , then P is said
to be an ideal element [25] of S or a model [17] of 	, for short P ∈Mod(	).
Hence Lindenbaum’s Lemma (Theorem 5.1) is tantamount to the following
Completeness Theorem [25]:
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Theorem 5.2. Every entailment relation 	 on a set S has enough models
in the sense that

U 	 V ⇐⇒ ∀P ∈Mod(	)(U �P V ) (4)

for all finite subsets U and V of S.

The models of the converse relation � are exactly the complements of
the models of 	. For example, the prime filters of a distributive lattice or
commutative ring are exactly the complements of the prime ideals.

Constructive semantics. We hasten to add that a constructive semantics
is possible, to be expressed in ECST.7 If S is a distributive lattice, then a
natural choice of an entailment relation is

U 	 V ≡
∧
U �

∨
V

with (R) and (M) being automatic but (T) equivalent to distributivity [69].
In this case the models of 	 and � are nothing but the prime filters and prime
ideals, respectively, of S.
Conversely, in [11, Theorem 3] the following seminal theorem has been
proved, which now is already called ‘fundamental theorem of entailment
relations’ [46, XI, Theorem 5.3]:8

Theorem 5.3. For every entailment relation 	 on a set S there is a
distributive lattice D with a map i : S → D satisfying

U 	 V ⇐⇒
∧
i(U ) �

∨
i(V ) (5)

such that if L is an arbitrary distributive lattice and j : S → L is a map satis-
fying⇒ of (5) with j in place of i , then there is a unique lattice homomorphism
f : D → L such that f ◦ i = j.
This can also be seen as the constructive essence of Theorem 5.2. In fact, (4)
follows from (5) in ZFC, where every distributive lattice has enough prime
filters by the adequate variant of Krull’s Lemma.

5.2. Extension and conservation, semantically. Back to ZFC, let � and
	 be a single-conclusion and multi-conclusion entailment relation, respec-
tively. The models of � are exactly the subsets of S which are closed under
the associated algebraic closure operator (1). The corresponding counter-
part of Theorem 5.2 is trivial with � in place of 	 and for singleton V : the
closure of U equals the intersection of the closed supersets of U .
The next statements largely rely on completeness (Theorem 5.2).

7For the question whether in CZF the models of a given entailment relation form at least
a ‘set-generated class’ we refer to [1, 39, 76]. When consulting this literature we suggest to
observe that an entailment relation R on S is a specific sort of ‘set of rules’ on S, and the
models of R are exactly the subsets of S that are ‘R–closed’.
8The anonymous referee has kindly indicated this name to us, as well as the fact that

both this theorem and the analogous one for single-conclusion entailment relations, with
semilattices in place of lattices, were already known to Lorenzen [48].
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Lemma 5.4.

1. 	 is an extension of � if and only if, for every finite U ⊆ S,⋂
{P ∈Mod(	) : P ⊇ U} ⊇ U� .

2. If 	 is an extension of �, then 	 is conservative over � if and only if, for
every finite U ⊆ S,⋂

{P ∈Mod(	) : P ⊇ U} ⊆ U� .

In fact, by Theorem 5.2 for singletonV we have that, for every finiteU ⊆ S,⋂
{P ∈Mod(	) : P ⊇ U} = U�� .

Proposition 5.5.

1. 	 is an extension of � if and only if every model of 	 is a model of �.
2. If 	 is an extension of �, then 	 is conservative over � if and only if,
for every model I of �,⋂

{P ∈Mod(	) : P ⊇ I } = I .
More often than not the characterisation of conservation from Proposi-
tion 5.5.2 occurs in its contrapositive form, viz.

for every I ∈ Mod(�) and a ∈ S, if I �� a, then there is P ∈Mod(	)
with P ⊇ I and P �� a.

While this perfectly fits Zorn’s Lemma, to prove the original form of
Proposition 5.5.2 (and Theorems 5.1 and 5.2) it is perhaps more natural
[13, 63, 65, 66] to use Raoult’s Open Induction [61].
In the situation of 4.1.1 the semantics of Proposition 5.5.2 reads as

every quasiorder R on a set X equals the intersection of all linear
quasiorders on X that contain R,

the contrapositive of which is known as Szpilrajn’s Theorem [33, 58, 73]:

every proper quasiorderR on a setX can be extended to a proper linear
quasiorder on X that contains R.

More generally, if	 is to� as in 4.2.1, then the semantics of Proposition 5.5.2
is the Universal Krull–Lindenbaum Theorem (UKL) [63, Theorem 14,
Corollary 15], the crucial hypothesis of which is just Encoding recalled
in 4.2.1. This UKL has been abstracted fromKrull’s [41] and Lindenbaum’s
[74, p. 394] results in commutative algebra and formal logic, respectively.
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