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The stability of oceanic fronts in a
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We investigate mechanisms through which energy cascades from the mesoscale,
O(100 km), to the submesoscale, O(10 km), for oceanic fronts in a reduced gravity
shallow water model using two different profiles. The first idealization of an ocean
front has an interfacial depth that is a smooth hyperbolic tangent profile and is an
extension of the piecewise constant potential vorticity profile studied in Boss et al.
(J. Fluid Mech., vol. 315, 1996, pp. 65–84). By considering a range of minimum
depths, all of which have the same velocity profile, we are better able to isolate the
effect of vanishing layer depths. We find that the most unstable mode exists in a
one-layer model and does not need two layers, as previously speculated. Moreover,
we find that even without a vanishing layer depth there are other modes that appear at
both larger and smaller length scales that have a gravity wave structure. The second
profile is the parabolic double front from Scherer & Zeitlin (J. Fluid Mech., vol. 613,
2008, pp. 309–327). We find more unstable modes than previously presented and also
categorize them based on the mode number. In particular, we find there are pairs of
unstable modes that have equal growth rates. We also study the nonlinear evolution
of these oceanic fronts. It is determined that vanishing layer depths have significant
effects on the unstable dynamics that arise. First, stronger gravity wave fields are
generated. Second, cyclonic fluid that moves into the deeper waters is stretched
preferentially more in comparison to the deep water scenario and destabilizes more
easily. This results in smaller scale vortices, both cyclones and anticyclones, that
have length scales in the submesoscale regime. Our results suggest that the nonlinear
dynamics of a front can be very efficient at generating submesoscale motions.

Key words: nonlinear instability, ocean processes, shallow water flows

1. Introduction
In the oceans and atmosphere there are a range of physical mechanisms that

cascade energy to smaller length scales. Together, they play a pivotal role in the
global energy budget and are far from well understood. The direct energy cascade in
geophysical flows can occur after the perturbations have reached a state of nonlinear
equilibration through wave-mean-flow or wave-wave interactions. Alternatively, it has
been postulated that energy can be transferred to smaller length scales through weaker
linear instabilities that occur at higher wavenumbers compared with the most unstable
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mode. In this paper, we use the reduced gravity one-layer rotating shallow water
(SW) model to study the dynamics of oceanic fronts in both the linear and nonlinear
regimes using high-resolution numerical models. By considering two important case
studies, we investigate the dynamics that are efficient in generating motions at the
submesoscale.

The SW model describes geophysical fluids with strong ambient rotation and small
aspect ratios (Pedlosky 1987). Shallow water theory is more versatile than simpler
models, such as quasi-geostrophy (QG), in that it allows for a wide range of Rossby
numbers and it admits layer depths that can vary significantly in magnitude and
even vanish. Even though SW is computationally more expensive to solve than QG,
it is used a great deal by the geophysical community since it gives us a relatively
simple paradigm to explore rather complex motions; see Zeitlin (2007) for a range of
examples. One classical example is to study the interaction of slow vortical motions
and fast gravity waves (Warn 1986; Ford 1994; Bartello 1995). However, numerical
solution of this set of equations in the case of an outcropping/incropping front is more
challenging, and many standard methods can become numerically unstable and fail.

Paldor (1983), Killworth, Paldor & Stern (1984) and Boss, Paldor & Thompson
(1996) explain how to deal with an outcropping in the context of a one- and a two-
layer SW model in the case of an active surface layer. In the one-layer case, they state
that one enforces the conservation of momentum and mass at the boundaries. This
simplifies matters in that one does not need to do anything differently at the boundary
of the fluid compared with the interior. With two active layers, where in the mean state
the lower layer is motionless, the only difference is that they impose a condition at the
outcropping such that the pressure in the lower layer exponentially decays away from
the front. This has been demonstrated to work efficiently in the context of a linear
stability analysis using a pseudo-spectral collocation method (Scherer & Zeitlin 2008;
Gula, Plougonven & Zeitlin 2009; Gula & Zeitlin 2010). In the context of bottom
trapped flows, Teigen (2011) and Teigen et al. (2011) looked at incroppings that can
occur along steep shelves in coastal regions. There, they imposed no-normal flow in
both layers at the location of the solid boundaries.

The pioneering work of Boss et al. (1996) compared the stability of a front with
that of a jet with non-zero minimum depth and obtained some interesting results. First,
they showed that there is a direct connection between the most unstable frontal SW
mode and the corresponding unstable QG mode. This dispelled the myth that was
widely held about whether these modes were non-QG in nature. Second, in addition
to the classical long-wave QG instability (the most unstable mode), there are also
ageostrophic short-wave baroclinic instabilities that occur due to a resonance between
a gravity wave and a vortical wave. They claimed that both are observed in oceanic
fronts, but it is not evident that the shorter-wave instability has been observed in
oceanic data. Furthermore, they stated that the most unstable modes in question cannot
exist in a one-layer model, but could only exist with two active layers. Dritschel &
Vanneste (2006) demonstrated that the one-layer profile is in fact unstable due to an
exponentially small growing instability.

To establish these findings, Boss et al. (1996) considered a surface layer with
piecewise constant potential vorticity (PV). This is a popular approach that has also
been used by others to study oceanic fronts (Iga 1993, 1999; Iga & Ikazaki 2000).
What is peculiar about this choice is that the velocity profile is dependent on the
mean depths far away from the front. Consequently, as the minimum depth vanishes
the velocity profile changes shape and therefore the profiles differ much more than
simply changing their minimum depths. In this work, we consider a geostrophic
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Bickley jet profile and examine a range of minimum depths. Since the velocity
profile is always the same in each case we argue that this case study can better
illustrate the effect of only changing the minimum depth. However, because these
profiles do not have constant PV profiles we need to solve the problem numerically.
We find that the case of vanishing layer depth requires very high spatial resolution
because of the high-frequency structure of some of the unstable modes. We do this
by first using a spectral collocation method to guess the frequencies of the modes
and then a much finer finite difference method to correct the results (Irwin & Poulin
2014). Even though we cannot find analytical solutions, the fact that the profiles are
smooth makes them a very attractive paradigm in which to study the stability of
observable oceanic currents.

Boss et al. (1996) also briefly discussed the case of a parabolic height profile,
which we refer to as a parabolic double front, but this has since been investigated
in great detail in Scherer & Zeitlin (2008). They determined that there was a range
of instabilities and further illustrated some aspects of the nonlinear evolution of
the primary and secondary instabilities. These instabilities were deemed to be due
to a resonance of so-called frontal modes (Killworth et al. 1984), and their work
has since been extended into a two-layer model (Ribstein & Zeitlin 2013). Using
similar methods, we illustrate a slightly wider range of unstable modes and show
how they can be nicely categorized based on the number of nodes on each side of
the current. We show that there is a doubling up of these modes that did not seem
to be mentioned in the literature previously.

Furthermore, we present the nonlinear evolution of unstable modes to study the
effect of vanishing layer depths. This employs a new higher-order finite volume
method that uses a weighted essentially non-oscillatory (WENO) scheme for advection
(Shu & Osher 1988) combined with Zhang limiting (Zhang & Shu 2011) to preserve
the order of accuracy of the method where possible. We are able to simulate a
high spatial resolution in a reasonable amount of time due to the fact that the code
is parallelized using the message passing interface (MPI) in both dimensions. We
determine that gravity waves are radiated from the resulting vortices, as previously
observed in Ford (1994). Moreover, by using a fine enough resolution we find that
the elliptical rings that develop in the parabolic double front become unstable and
create many small submesoscale features.

The structure of this paper is as follows. In § 2, we present the linear and nonlinear
methods we use to investigate the stability of oceanic fronts. Then, in § 3, we study
the linear stability and nonlinear evolution of the Bickley jet front and compare it
with scenarios where the depths do not vanish. In § 4, we complete a similar analysis
in the context of the parabolic double front for different Burger numbers. Section 5
analyses the characteristics of the nonlinear simulations in some detail. Finally, in § 6,
we conclude our findings.

2. Numerical techniques
We begin by considering a reduced gravity SW model in which the top layer

overlies a deep quiescent lower layer. We consider two different jet profiles in the
upper layer and consider both outcropping and non-outcropping fronts. In this set-up,
the nonlinear governing equations are

Du
Dt
+ f k̂× u= g′∇η, (2.1)

Dh
Dt
+ h∇ · u= 0. (2.2)
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We follow convention and use u = (u, v) to denote the horizontal velocity; h is the
total depth of the layer, f is the Coriolis parameter, k̂ is the unit vector in the z
direction and g′ is the reduced gravity. It should be noted that η is the interfacial
height between the active surface layer and the passive lower layer. Using typical
oceanic values, we take g′ = 0.02 m s−2 and f = 10−4 s−1 (Talley et al. 2011).

2.1. Basic states
In this paper, we examine two different geostrophic velocity profiles. One correspond-
ing to a Bickley jet front and the other to a parabolic double front. We choose the
domain to be a periodic channel aligned in the x direction with a meridional extent
of y ∈ [0, L].

In the case of a Bickley jet, we define the layer depth and velocity to be

H(y)= 75 tanh
(−y+ L/2

Lj

)
− (75+ d), (2.3)

U(y)=−g′

f
Hy, (2.4)

where d is the minimum depth of the layer and the parameter Lj determines the width
of the jet. Throughout, we assume Lj = 5 km. Figure 1(a) depicts the depths of the
layers in the two extreme cases and figure 1(b) shows the velocity profile that is
common to each. It should be noted that the hyperbolic tangent profile is of fixed
shape that can easily be shifted from a non-outcropping to an outcropping state simply
by varying d.

In the second case, our profile takes a parabolic form and is defined as

H(y)= H0

2

(
1− 4

(
y− L/2

L

)2
)
, (2.5)

U(y)=−g′

f
Hy. (2.6)

We define the Burger number such that Bu= 4g′H0/( fL)2. It should be noted that the
factor of four is included to aid our later comparison with Scherer & Zeitlin (2008),
where a domain of length L̃= 2L is used. Here, H0 represents the maximum height of
the dynamic layer as shown in figure 2(a). The interfacial displacements and velocities
are shown in figures 2(a) and 2(b) respectively, for Bu= 1, 2. It should be noticed that
while the Bickley jet profile has an outcropping front only at the right-hand boundary,
the parabolic double front outcrops at both edges of the domain.

2.2. Linear methods
To perform our linear stability analysis, we first assume a steady basic state satisfying
{u, v, h} = {U(y), 0, H(y)} and, following Poulin & Flierl (2003), consider harmonic
perturbations of the form {u′, v′, h′} = {û(y), ikv̂(y), ĥ(y)}eik(x−ct). Given each of these
profiles as our basic state, we can apply our normal mode decomposition for u′, v′
and h′ to the equations of motion and then linearize in order to obtain the following
eigenvalue problem:
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FIGURE 1. (a) The depth of the one-layer hyperbolic tangent profile in the two extreme
cases: the solid line has a minimum depth of 150 m and the dashed line has a minimum
depth of exactly 0 m. (b) The velocity profile for this entire family of profiles.

[U − c]û+ [Uy − f ]v̂ + [g′]ĥ= 0, (2.7a)

[−f /k2]û+ [U − c]v̂ + [(−g′/k2)∂y]ĥ= 0, (2.7b)

[H]û+ [Hy +H∂y]v̂ + [U − c]ĥ= 0. (2.7c)

In order to solve this set of equations, we start by employing a spectral collocation
method on a Chebyshev grid (Trefethen 2000). While this is sufficient for the
parabolic double front, we find that the Bickley jet front requires a very fine grid in
order to achieve convergence. As this is computationally expensive when using dense
Chebyshev differentiation matrices, we instead opt for a second-order finite difference
technique due to the main advantage of being able to solve sparse matrices. In order
to preserve some of the benefits of spectral accuracy, we use the Chebyshev method
on a coarse grid first and then use our solution as a seed for the higher-resolution
finite difference approach. One difference between our low-order method and that
used in Irwin & Poulin (2014) is that we use a staggered C-grid. This proved to
remove a class of spurious modes that otherwise persisted for zonal wavenumbers
beyond a critical value.
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FIGURE 2. (a) The depth of the one-layer parabolic profile in the two extreme cases: the
solid line has a maximum depth of 625 m and the dashed line has a maximum depth of
exactly 1250 m. (b) The velocity profile in the two cases.

2.3. Nonlinear methods

The nonlinear equations, (2.1) and (2.2), are solved numerically using a finite volume
method. The advection in the momentum equations is discretized using a WENO
algorithm on a staggered C-grid that maintains fifth-order accuracy where possible
and a fourth-order centre differencing scheme for the pressure gradients. Fourth-order
interpolations are also applied to the Coriolis terms due to the staggered grid. In
the continuity equation we use a WENO method (Shu & Osher 1988) with a Zhang
limiter to ensure positivity throughout the simulation (Zhang & Shu 2011). The
staggered velocity components coincide with the WENO interpolations and, therefore,
we do not require the interpolation of velocity components when time-stepping the
continuity equation. We use an SSP-RK3 time-stepping approach ubiquitous with the
WENO methodology (Liu, Osher & Chan 1994), which was originally developed by
Shu & Osher (1988). To ensure numerical convergence, we conducted simulations
on varying resolutions from 642 to 10242 by successive doubling of the resolution in
the zonal and meridional directions. The increased resolution, coupled with the fast
surface gravity waves, poses strict conditions on the time step. We use the MPI with
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FIGURE 3. (a,b) The PV and the derivative of the PV for four different cases where
the minimum depth is 150, 50, 10, 0 m. It is clear that the PV is negative in each
of the cases and therefore the front is susceptible to inertial instability. Furthermore, the
derivative of the PV changes sign at least once, which implies that it satisfies the criteria
for BT instability.

our computational grid split in two dimensions, varying the processor count from 2
to 64 processors, and have ensured computational efficiency of the parallelization.

3. Bickley jet front
Our choice of the Bickley jet front depicted in figure 1 has several advantages over

that presented in Boss et al. (1996): (1) as we change the minimum depth the velocity
profile does not change, (2) both the height and the depth profiles are C∞ and (3) it
seems to be a natural way to idealize oceanic flows rather than picking the PV profile.
The issue that arises is that constant PV profiles are attractive for analytical treatment,
but are not necessarily good idealizations of the real world and can cause problems in
numerical methods because of kinks that tend to occur. Our analysis in this section
will attempt to determine how the results of Boss et al. (1996) generalize to more
realistic oceanic flows.

3.1. Necessary conditions for instability
There are several necessary criteria for SW instability. Ripa (1983) shows that these
are related to (1) shear or barotropic (BT) instability (the gradient in the PV changes
sign) (Poulin & Flierl 2003) and (2) supersonic flow (the speed exceeds the gravity
wave speed), but there is also the possibility of (3) inertial instability (the PV changes
sign) (Bouchut, Ribstein & Zeitlin 2011). A good summary of this can be found in
Ford (1993).

Figure 3(a) shows that the PV is negative for the four different profiles that
are plotted, allowing for the possibility of an inertial instability. The corresponding
figure 3(b) shows that typically the PV gradient changes sign twice, but when the layer
depth vanishes this only happens once. This reduces the possibilities of instabilities

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

64
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.640


Oceanic fronts in SW 469

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

k k k

(a) (b) (c)

FIGURE 4. Plots of the growth rates for three different cases where the minimum depth is
d= 150 (a), 50 (b) and 0 m (c). The wavenumber is multiplied by Lj = 5 km, the width
of the jet, and the growth rates are in units of per day.

and therefore can be interpreted as a stabilization in the flow; however, all profiles
are susceptible to BT instability. It should be noted that there is an asymmetry that is
evident in terms of the minimum value of this field, which is present because of the
large Rossby number. This would not occur in the QG limit. Furthermore, the inertial
instability could occur where the PV is negative, which is to the left of the jet axis.
These criteria are quite valuable, but only suggest where instabilities could occur;
they do not give us any information on the growth rates when they do occur. As we
will demonstrate, numerical techniques are a very powerful means by which we can
determine the stability of a hydrodynamic system. This allows us to determine the
stability characteristics of the basic state with some degree of accuracy.

Boss et al. (1996) considered a profile with two regions of constant PV, and they
state that the one-layer profiles are stable by Ripa’s two criteria. Clearly, the PV
gradient is either zero or undefined in the middle of the domain and therefore does not
violate Ripa’s first criterion concerning BT instability. However, they misinterpreted
Ford (1993)’s explanation of the subsonic condition and deduced that it was also
stable by the second condition (Jacques Vanneste (2014) personal communication).
Subsequently, Dritschel & Vanneste (2006) showed that this is not in fact the case and
that an exponential weak instability is possible. Since the one-layer continuous Bickley
jet is susceptible to both barotropic and inertial instabilities, it is more unstable than
the constant PV profile presented in Boss et al. (1996).

3.2. Linear stability analysis
We compute the growth rates of three different profiles where the minimum depth is
d = 150, 50, 0 m and present the results in figure 4. We emphasize that the velocity
profiles are identical in each case and therefore the differences that arise must be due
entirely to the reduction in depth. The growth rates are calculated with a resolution
of Ny = 1000 and Ny = 20 000 on the Chebyshev and uniform grids respectively.

In each of the three cases we observe that the most unstable mode has a typical
growth curve that is an inverted U profile, which is well known to occur as a result of
a BT instability in a Bickley jet (Flierl, Malanotte-Rizzoli & Zabusky 1987; Poulin &
Flierl 2003; Perret, Dubos & Stegner 2011) and was observed by Boss et al. (1996).
As the minimum depth decreases, the maximum growth rate is reduced and the high
and low wavenumbers on this curve are stabilized. At large scales, we also notice
another mode of instability that is much weaker and is only marginally affected
by a decrease in depth. Another consequence of reducing the minimum depth is to
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FIGURE 5. Contour plots of the perturbation height field that corresponds to the two most
unstable modes for the Bickley jet profile for the case with d = 50 m. Panels (a–c) and
(d–f ) correspond to the most unstable and second most unstable modes respectively; (a,d),
(b,e) and (c,f ) are for kLj = 0.1, 0.8 and 1.7 respectively. The axes are in kilometres.

alter the stability at smaller scales. We see that the decay pattern of growth rates
in the high-wavenumber regime varies in each case. For d = 150 m, the growth rate
decreases linearly before it vanishes. For d = 50 m, the intermediate case, we see
that oscillations develop at small scales. Finally, for the vanishing-layer case, we see
that the modes seem to separate.

To better understand the nature of the unstable modes, we discuss the spatial
structure of the two most unstable modes and how they are affected by the decrease
in layer depth. In figure 5, we present the perturbation height field for different modes
in the case with d= 50 m. Colour bars are not shown since the magnitudes of these
linear waves are not important. Panels (a–c) correspond to the most unstable mode
and panels (d–f ) to the next most unstable mode; (a,d), (b,e) and (c,f ) correspond
to kLj = 0.1, 0.8 and 1.7 respectively. The most unstable mode over the range of
wavenumbers is depicted in (b) and is a sinuous mode as typically appears in a
Bickley jet, as recently discussed by Irwin & Poulin (2014). The mode in (d) is an
extension of this mode, but at small enough wavenumbers that it is subdominant. It
has a similar structure, but is more symmetric. We find that even when the layer
depth vanishes, the most unstable mode is almost identical in terms of its spatial
structure to what appears in (b).

The mode that dominates at large scales is illustrated in (a). This mode does have a
strong structure in the centre of the channel where the PV gradient of the basic state
is strongest, but it also has a trapped structure near the coast where the fluid layer is
deepest. The deformation radius is largest in the deepest part of the domain, where
it is approximately 17 m, and it subsequently decreases moving towards shallower
waters. The lateral extent of the structures in the upper part of the domain is smaller
than 17, which suggests that perhaps this mode of instability is a vortical Kelvin
mode. In (e) at kLj = 0.8, we see that there is a very weak mode with a growth
rate of 0.11/day that has a strong wave structure in the deeper water and a relatively
weaker wave structure of smaller meridional length scale in the shallower water. This
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is presumably due to gravity waves, but given the weakness of this mode it is not clear
what physical significance it would have on the overall dynamics. In (c) at kLj = 1.7,
we have that the most unstable mode has a varicose structure near the centre, but then
a highly oscillatory wave structure in the deeper waters. The secondary mode depicted
in (f ) looks very similar, but with a larger wave structure in the deeper waters. The
growth rate of this mode is extremely weak at 0.01/day. It is important to state that
the model structure indicated in (c) typifies the branch of the most unstable mode
with kLj larger than 1.3. That is to say that the peak is well described by the classical
sinuous mode, but at small enough length scales it changes. This is again in contrast to
Boss et al. (1996), who did not find that the modes changed significantly throughout
the main branch of instability.

In figure 4, we also see the existence of subdominant modes that appear
predominantly in the k = 0.5 to k = 1 range. For the d = 150, 50 m cases these are
very weak compared with the primary instability peaks, and the lack of smoothness
in the curves indicates that they are not sufficiently well resolved. However, when
d= 0 m the growth rates are stronger and convergence is more readily achieved. This
indicates that a decrease in minimum depth favours the generation of these secondary
modes. We note a shortcoming of our numerical approach in that the curve starts
abruptly at approximately k = 0.5. One could resolve this by implementing multiple
seed solutions for the finite difference algorithm; however, given the small growth
rates of these modes, they are unlikely to be significant in an oceanic context.

Next, we explore the nature of the small-scale linear instabilities in the regime
where the minimum layer depths vanish or nearly vanish. In figure 6, we plot the
height field of the most unstable mode using pcolor for d = 0, 1 m in (a,c) and
(b,d) respectively; (a,b) depict the entire mode, and we see that these modes have
a Poincaré-like structure in the bottom half of the domain and this does not change
significantly in the two panels. However, we find that the solution in the shallower
water has a very high meridional variability. In the case with d = 1 m, it extends to
the solid wall, but in the case of vanishing layer depth, it levels out before the wall.
In panels (c,d) we plot closeups of the fields in panels (a,b). It should be noted that
in the d = 0, 1 m scenarios the meridional wavelength changes from approximately
200 m to 2 km. We emphasize that for the finite difference method these are well-
resolved spatial structures with over 10 grid points per crest. The spectral method that
we have used cannot resolve the vanishing layer depth, which might be the explanation
of why so many spurious modes appear and why they increase in growth rate with
increasing wavenumber.

To test the effect of imposing or not imposing no-normal flow boundary conditions,
we only needed to change the boundary condition at y = L. We recall that the
depth only vanishes at the boundary on the top. We found that whether we used a
high-order spectral collocation method on a Chebyshev grid or a low-order finite
difference method, both reproduced virtually identical growth rates and spatial
structure. This brings us to conclude that the lack of difference is because of the
nature of the basic state. The height and velocity fields decay exponentially on
approaching y= L. Therefore, the perturbation necessarily must vanish as well. It is
because the perturbation is negligible near the vanishing boundary that our results
are independent of what boundary conditions we impose. We will find in the next
section that when we have a frontal mode that does not vanish rapidly enough near
the boundary, there is a strong dependence on the choice of boundary conditions.
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FIGURE 6. Plots of the perturbation height field that corresponds to the most unstable
mode for the Bickley jet profile at kLj = 1.7. Panels (a,c) and (b,d) are for d = 0, 1 m
respectively; (a,b) show the entire mode whereas (c,d) show a closeup around where the
solution changes rapidly. The axes are in kilometres.

3.3. Nonlinear simulations
We investigated the nonlinear evolution of the Bickley jet profile with d = 150, 0 m
for a variety of spatial resolutions: 642, 1282, 2562, 5122, 10242. In all cases the initial
conditions are chosen to be our basic state (either a Bickley jet or a parabolic front)
with white random Gaussian noise superimposed onto the height field which is several
orders of magnitude smaller than the basic state itself. The relative error in the energy
is plotted for the three finest resolutions in figure 7. Figure 7(a) indicates that for a
simulation with a relatively deep minimum depth, the total energy is conserved within
a fraction of a percent over the time span that it takes for nonlinear equilibration to
occur (approximately 20 days). This is in contrast to the frontal regime, depicted in
figure 7(b), where we see that even the finest-resolution calculation does not conserve
energy nearly as well. Over the first few days, when the perturbations are very small,
the energy is nearly conserved in all of the cases. However, after a few days the
energy starts to decrease, and this corresponds to when the perturbations start to
mature. The finest-resolution calculation does the best job early on in conserving
energy, and after six days approximately 2 % of the energy is dissipated in the
vanishing-depth test case. Subsequently, we have large meanders in the jet, and this
corresponds to significant and rapid dissipation of energy. In fact, the finest-resolution
calculation eventually dissipates its energy more than almost all of the simulations
except for the very coarsest (approximately 6 %).
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FIGURE 7. Plots of the relative error in the total energy in the Bickley jet profile with
d= 150 m (a, total energy non-vanishing test case) and d= 0 m (b, total energy vanishing
test case) from the nonlinear simulations over the first 20 days for a variety of spatial
resolutions.

This indicates that the regime of exponential growth is well captured by the
numerical methods and an increase in resolution is advantageous to conserve
energy for early times. However, after the stage of nonlinear equilibration, many
vortical structures have formed, and they interact with each other creating a rather
turbulent two-dimensional field. It is due to the dynamics at the front that the
motion is dissipative, presumably due to the Zhang limiter that dissipates the
flow to ensure positivity. We do not claim that this reduced gravity SW model
is capturing precisely the correct physics of the ocean at a front, but it is known that
fronts dissipate energy preferentially more than other regions of the ocean (Capet
et al. 2008a,b,c), and at least this feature is well captured in our relatively simple
model. Further details can be found in the supplementary materials provided at
http://dx.doi.org/10.1017/jfm.2015.640, which contain animations of the fluid depth,
vorticity and divergence of mass flux for all the numerical simulations discussed in
this paper.

In figure 8(a,b), we present the vorticity field of the Bickley jet simulation with
d= 150 m at days 2.87 and 6.90. This is similar to what has been previously found
in Poulin & Flierl (2003) and is presented as a reference simulation. However, even
in this case there are some differences because of the relative shallowness of our
parameters. In (a), we see that the vortex street is starting to develop and there are
dipoles that are ejected on the bottom and top, but they have different shapes because
of the different ambient depths. At later times, we see that the flow is dominated by
a large dipole near the bottom boundary and some smaller-scale features.

Figure 9 shows snapshots of the vorticity field of the Bickley jet simulation with
d = 0 m at days 3.52, 3.98, 4.72 and 6.39. These were chosen to illustrate certain
interesting processes that occurred and to highlight some of the distinctions from the
previous case we just mentioned. After the most unstable mode becomes sufficiently
large, we see that the jet starts to meander. Figure 9(a) shows that large anticyclones
have formed in the bottom of the domain and very thick cyclonic filaments have
formed near the top, where the layer depth is shallow. In the intermediate region, we
see that both cyclonic and anticyclonic fluid has been advected into deeper waters.
This creates a long and narrow cyclonic region that becomes unstable and develops
into several vortical components, with a very thin anticyclonic strip around it. Shortly
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FIGURE 8. Plots of the vorticity from the numerical simulation of the nonlinear evolution
of the Bickley jet profile with non-vanishing layer depth. (a) The evolution after 2.87 days;
(b) the evolution at a later time of 6.90 days.
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FIGURE 9. Plots of the vorticity from the numerical simulation of the nonlinear evolution
of the Bickley jet profile with vanishing layer depth. (a–d) The evolution after 3.52, 3.98,
4.72 and 6.39 days respectively.

afterwards, in (b), we see that the cyclonic fluid, which is left after the cyclones have
pinched off, becomes unstable and forms a line of small anticyclones. These have
lengths that are close to 1 km and therefore are in the submesoscale regime. Less than
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FIGURE 10. Plots of the growth rates for the parabolic case with Bu=1. The wavenumber
is multiplied by Lj, the width of the parabola, and the growth rates are in units of per
day. The dashed lines indicate a single unstable mode whereas the solid line denotes that
there are two unstable modes.

a day later, (c) shows how the thin cyclonic filaments destabilized into vortices once
again. In the final snapshot, (d), we have that there is an abundance of cyclonic
features in the shallower part of the domain. There are also small anticyclones that
occur throughout the domain.

From these two case studies, we deduce the following. In the case of vanishing
(or perhaps even nearly vanishing) layer depth, we have that the vortex tube strength
is much stronger, and this creates an abundance of thin cyclonic filaments that are
most unstable. Therefore, there seem to be a greater number of smaller-scale features
than what occurred in the case of a deeper minimum depth. Given that the size
of these vortices is O(1 km) and their depth is less than 100 m, we expect that
the SW approximation should still be valid. However, at these small scales one can
expect that the effect of variable stratification could be more important. We recognize
this and acknowledge that in a three-dimensional context there are bound to be
some more interesting motions that develop. However, because the SW model is so
much faster to solve numerically, this investigation is worthwhile to learn about the
barotropic dynamics, which can be thought of as the leading-order behaviour. In future
studies, we will investigate the dynamics of these fronts in a fully three-dimensional
framework.

4. Parabolic double front
Figures 2(a) and 2(b) show the parabolic depth and linear velocity profiles

respectively for Bu = 1, 2. For our choice of parameters, the larger-Burger-number
case reaches a depth of over 1 km and speeds of 10 m s−1, both of which are too
large for oceanic flows. Thus, we focus primarily on the case with Bu= 1.

4.1. Linear analysis
The corresponding plots of the growth rates in the case with Bu = 1 are presented
in figure 10. This extends figure 2 of Scherer & Zeitlin (2008) for a wider range
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FIGURE 11. Contour plot of the perturbation height field that corresponds to (a) the first
(1:1) and (b) the fourth (2:2) most unstable modes for the parabolic double front profile.

of wavenumbers to illustrate that many more unstable modes exist. We do not
claim that these are the only ones that exist, there are almost certainly others,
but presumably they are weaker because the growth rates tend to decay with the
along-front wavenumber.

In figure 10(b), we show closeups of the growth rates of the different modes. The
modes are labelled depending on the order in which they appear, and it is clear that
the maximum growth rates of a given mode do not always decrease with increasing
mode number; the seventh mode has a larger maximum growth rate than the sixth.

In figure 10, we plot the first and second unstable modes with a dashed and solid
line respectively. Therefore, a dashed line indicates that there is only one unstable
mode whereas the solid lines show that there are a pair of modes. The occurrence
of some of these unstable modes in pairs was not previously mentioned in Scherer &
Zeitlin (2008). Physically, this occurs because, as we will see, some of these modes
are concentrated on one of the fronts. By symmetry, it is possible to have one on each
front and hence we have pairs of modes.

The fact that many of these modes appear in pairs is of interest in terms of
the nonlinear evolution of these instabilities. If, for example, we choose a channel
geometry to be too small for the primary instability to grow, there will be two
exponentially growing unstable modes that grow simultaneously. If the perturbations
are initially very small in amplitude then each will grow independently, continuously
extracting energy from the basic state. However, when we reach the stage of nonlinear
equilibration, then we will have not only wave-mean flow interactions, but wave-wave
interactions as well. This allows for a wider range of nonlinear interactions that can
contribute more strongly to the cascade of energy through different wavenumbers.

To get a clearer understanding of the nature of these unstable modes, in figures 11
and 12 we present contour plots of the height fields of the various modes that we
identified. Figure 11 shows the spatial structures of the first and fourth modes together
because they are the only ones that do not appear in pairs. These modes are symmetric
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FIGURE 12. Contour plot of the perturbation height field that corresponds to the
second (a) (1:2), (f ) (2:1); third (b) (1:3), (g) (3:1); fifth (c) (1:4), (h) (4:1); sixth (d) (2:3),
(i) (3:2); and seventh (e) (1:5), (j) (5:1) most unstable mode for the parabolic double front
profile. It should be noted that panels (a–e) (panels f –j) have more (fewer) nodes on the
bottom part of the domain.

across the front and have mode-one and -two structures respectively. The waves along
the two edges of the front are out of phase. We call these (1:1) and (2:2) to denote
the numbers of modes we have at the top and bottom respectively.

Figure 12 shows the same field for two groups of waves. Group one (two) has
a higher mode structure on the top (bottom) edge of the front. The first three in
each group have a mode-one structure on one edge and then two, three and four
on the opposite edge. The seventh mode continues in this way with five nodes on
one side, but the sixth mode deviates from the pattern in having two extrema on one
side and three on the other. This in part explains why the sixth mode is weaker than
the seventh because it has a higher modal structure, which has more difficulties in
extracting energy from the front.

In the context of a parabolic double front, we have tested the imposition of
no-normal flow boundary conditions or not and have determined that it makes a
significant difference in the types of motion that can develop. Imposing walls at the
front overconstrains the motion in that region such that frontal waves cannot exist.
Certainly, this scenario can occur physically, but in that case the boundaries would
prevent the most unstable modes from developing.

4.2. Nonlinear simulations
In this section we reproduce a nonlinear calculation of the instability of a parabolic
double front with Bu= 1, as previously shown in Scherer & Zeitlin (2008), but using
our newly developed code with a higher spatial resolution. The basic state is perturbed
with a random perturbation of very small amplitude. The amplitude is 0.1 % of the
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FIGURE 13. Plots from the numerical simulation of the nonlinear evolution of the
parabolic double front with Bu = 1. Panels (a,c,e) and (b,d,f ) show the vorticity and
divergence of mass flux respectively; (a,b), (c,d) and (e,f ) correspond to days 12.50, 12.78
and 13.89 respectively.

size of the background flow times a Gaussian random variable. Figure 13 plots the
results of the numerical simulation of the nonlinear evolution of the parabolic double
front with Bu = 1. Panels (a,c,e) and (b,d,f ) show the vorticity and divergence of
mass flux respectively; (a,b), (c,d) and (e,f ) correspond to days 12.64, 13.10 and 14.26
respectively. The motivation for showing the divergence of mass flux instead of simply
the divergence of the horizontal velocity is in part because Ford (1993) argues that
this is a better measure for the presence of gravity waves. Furthermore, it has the
advantage of concentrating on the regions where the depth is non-zero.

Early on, the most unstable mode begins to form and grows exponentially. By
looking at the vorticity plots, we see that the vorticity is constant almost everywhere
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except for at the front where we have long narrow strips. These strips begin to roll
up because of nonlinear processes. When they do, the edges of the anticyclones have
a strong positive divergence of mass. On the opposite side of the head, we have a
long narrow region of mass convergence and increasing depth. At day 10 we see that
the front has pinched off in two different locations and has formed anticyclonic rings,
which can be thought of as idealizations of rings generated from western boundary
currents (Olson 1991). The stability of the circular analogue of these anticyclonic
rings in the context of the two-layer SW model was discussed in some detail in
Lahaye & Zeitlin (2015).

By 12.7 days, we find that the vortices have reattached but, before this happens,
there are some interesting structures that develop. Because we are studying the
same parameters as Scherer & Zeitlin (2008), we believe that this is due to the
increase in numerical resolution that allows us to resolve smaller-scale features.
We see that filaments of negative mass divergence separate from the vortex, and
two of these structures from different vortices meet. At 12.59 days, they actually
overlap. Afterwards, they continue to follow the vortex, but there seem to be arcs
that are generated inside the head of each vortex that are associated with gravity
wave radiation inside the vortices. Upon close inspection, we have verified that these
are very well-resolved features in our model. At this stage, the region of positive
divergence is rather small, but an abundance of submesoscale features are apparent.
As time evolves, we do see these arcs radiate inside the vortex, signifying gravity
waves propagating through the vortices. The depth of these disturbances is O(1 m),
which is very shallow considering that the mean depth of the vortex is several
hundred metres. Therefore, the propagation of these ripples should be well described
by linear dynamics, and we have confirmed that this is indeed the case. Furthermore,
there is no evidence of nonlinear steepening or shocks that develop.

Given that the elliptical ring is formed by day 10 and is destabilized by day 13,
we deduce that the e-folding time of this instability is of the order of hours. This
instability is much faster than the primary instability of the parabolic double front
and generates submesoscale cyclones. These vortices then reintegrate to form a ring.

Viewing the vorticity profile at the same time indicates that the ring of vorticity
goes through a substantial change. As the vortices detach and a wave propagates along
the filament and they continue to rotate, the thin strips of vorticity separate, and by
day 14 we have many distinct filamentary structures on the perimeter of the vortex.
In between there are small patches of regions with strong divergence or convergence.
This can be interpreted as a mechanism of instability that has occurred on the vortices.
It is of interest to address the details of this mechanism since it could be directly
relevant to a better understanding of western boundary current rings, but it is beyond
the scope of this work and will be investigated in future research. Throughout the
evolution, we see that ripples of gravity waves are generated and interference patterns
between them are generated from opposite parts of the vortex.

5. Analysis of nonlinear simulations
The three high-resolution nonlinear simulations that we have already presented have

each revealed that the dynamics that arise due to the primary linear instability can
generate two-dimensional turbulent flows. In this penultimate section, we tease out
the impact of having a vanishing layer depth using several different diagnostics. This
includes examining the spectral kinetic energy density and the probability density
function (PDF) of vorticity and investigating the equilibrated state after nonlinear
saturation.
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FIGURE 14. Plots of the spectral kinetic energy density (m2/s2) as a function of
wavenumber, k, obtained from the three high-resolution numerical simulations presented
in § 4. (a) The plots of the perturbation fields in the case of the two Bickley jet profiles
with d= 0 and 150 m compared with the reference line k−3. (b) A plot of the total fields,
again compared with the reference line k−3.

5.1. Spectral kinetic energy density
In a turbulent flow it can be very useful to compute the spectral kinetic energy density
since it reveals how the energy is partitioned at different length scales. This relies
on the fact that the kinetic and potential energies in the three-dimensional models
are quadratic quantities and therefore Parseval’s theory is easily applied (Frisch 1995).
Since the kinetic energy in the SW model is cubic (Warn 1986), we instead focus on
computing the spectral kinetic energy density, E (k), based on the sum of the square
of the transforms of the horizontal velocities, |û| and |v̂|,

E (k)=
∫ 2π

0

∫ k+dk/2

k−dk/2
|û|2 + |v̂|2 dA, (5.1)

where k is the wavenumber and dk is the width of a binned region in wavenumber
space. This equation integrates azimuthally in spectral space to get a one-dimensional
field, which follows traditional theory (Frisch 1995).

Figure 14 presents the spectral kinetic energy density obtained from the three
high-resolution numerical simulations presented in § 4. In (a) we depict the
perturbation fields in the case of the two Bickley jet profiles with d = 0 and 150 m,
compared with the slope of k−3. Plotting the perturbation fields has the advantage of
removing the initial condition, and therefore we know the kinetic energy density of
the perturbation that arises due to the instability. Both curves have a bump at large
scales at approximately 15 km and then have slopes that agree very well with the k−3

reference line. Qualitatively they agree, but we clearly see that with d = 0 there is
relatively more energy at smaller scales. We estimate that it is larger by a factor of 5.
This validates our previous statement that the simulations with vanishing layer depth
tend to cascade more energy to the smaller scales. It would be of interest to study
these instabilities in a primitive equation model that could more accurately describe
the dynamics of the motion generated at the submesoscale. This will be pursued in
future work.

Figure 14(b) shows the total fields in the three simulations, again compared with
the slope of −3. This shows that the two simulations with a basic state whose layer
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FIGURE 15. Plots of the PDF of vorticity in the three nonlinear simulations averaged
over the second half of the simulations. The three panels correspond to Bickley jets with
(a) d= 150 m and (b) d= 0 m and (c) the parabolic front. Positive and negative vorticity
are depicted with solid and dashed lines respectively. The magnitudes of the vorticity
values are normalized by the ambient rotation |ζ |/f .

depth vanishes have more energy at the small scales. Perhaps coincidentally, we see
that the slopes at the small length scales agree very well in the two cases where the
layer depth vanishes. We did not plot the perturbation spectral energy density for the
parabolic front because the WENO scheme diffused the basic state more in that case
and it was not possible to get a clean comparison.

5.2. Distribution of vorticity
To sort out the asymmetries that develop in SW simulations due to vanishing layer
depths, we compute the PDFs of the vorticity. Figure 15 plots these PDFs in the three
nonlinear simulations considered. They are obtained by averaging over the second
half of the simulations. The three panels correspond to Bickley jets with d = 150 m
and d = 0 m and the parabolic front. The magnitudes of the positive and negative
vorticities are depicted with solid and dashed lines respectively.

Figure 15(a) shows that there are very slight differences between the cyclonic and
anticyclonic components of the fluid, which is because the surface deformations are
relatively small. We recall that if the anticyclonic fluid has a magnitude larger than 1
it is subject to inertial instabilities, which explains why the cyclonic tail is higher than
the anticyclonic one.

The Bickley jet simulation with d = 0 (b) shows a remarkable difference between
the two curves. First, the anticyclonic fluid is almost entirely constrained between 0
and 1 and has a local maximum near −f /4. If the relative vorticity decreases below
−f , inertial instabilities will develop and the net result is to reduce the magnitude of
the ambient vorticity. In contrast, the cyclonic curve is monotonically decreasing and
has a much wider tail since there is no analogue of inertial instability for positive
vorticity. This reflects the fact that a large number of strong cyclonic vortices develop
due to vortex tube stretching and possibly vortex merging.

The parabolic front case is quite different, and therefore we plot it with the y-axis
on a log scale. Initially, the vorticity is either 0 or −1. As the flow evolves, this
changes significantly. There are still local maxima at 0 and −1, but the anticyclonic
portion of the fluid has a wider range of magnitudes. The anticyclonic curve decays
very rapidly, as a result of inertial instability.

5.3. Equilibrated mean flow
When the perturbations on a linearly unstable basic state reach large enough
amplitudes they start to interact nonlinearly with the basic state. The nonlinear
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FIGURE 16. Plots of the temporal variation of the zonal average of the height (a,d), zonal
velocity (b,e) and vorticity (c,f ) fields for the two Bickley jet profiles. These are for the
nonlinear simulations of the two Bickley jet profiles: (a–c) and (d–f ) are for d = 0 and
150 m respectively.

equilibration that occurs is very complex and hard to predict. In figure 16, we plot
the temporal variation of the zonal average of the height (a,d), zonal velocity (b,e)
and vorticity (c,f ) fields for the two Bickley jet profiles. Early in each simulation
the basic state is readily observed, but when the instability develops the mean state
changes significantly. In each of the two simulations we see that the equilibrated state
has a height field that is shallower and velocity and vorticity fields that are weaker
after equilibration.

Two characteristics are readily observed from figure 16. First, in both cases the
equilibrated states have a large variance. One could compute the mean over a range of
times, but since the solution is in a two-dimensionally turbulent state we know that it
is evolving and therefore we are not convinced this is a worthwhile endeavour. Second,
the amount of variance is larger when the basic state has a vanishing layer depth. This
is not surprising since, as we have previously seen, the smaller length scales are more
energetic.

6. Conclusions
In this paper, we have revised the problem of how to model oceanic fronts in the

context of the SW model and what kind of dynamics they produce. By studying a
Bickley jet profile, which is a smooth extension of the constant PV profile in Boss
et al. (1996), we are better able to study the effect of decreasing, and vanishing,
layer depths since the velocity profile is the same in all cases. We find that the most
unstable mode is essentially the sinuous mode in the Bickley jet. As the minimum
layer depth decreases, we find that the growth rates of this mode decreases and it is
stabilized at both high and low wavenumbers. Furthermore, we verified the existence
of gravity–vortical modes, but find that they appear at both larger and smaller scales
in comparison to the primary mode. Another difference from the work of Boss et al.
(1996) is that we find these modes even with non-vanishing layer depths. However,
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given their weak growth rates it is unclear what impact they will have, if any, on
oceanic dynamics.

We have also studied the classical parabolic double front. In the process, we have
further explained the family of unstable modes previously observed by Scherer &
Zeitlin (2008). We presented a wider range of wavenumbers, showing the spatial
structure of the frontally trapped modes and how the asymmetric ones appear in
pairs, and classify the modes based on the nodal structure along each boundary.
We observe that the maximum growth rates of the different modes are not always
decreasing monotonically with wavenumber, but that the growth rate also depends on
the mode number.

We have performed some nonlinear simulations for the two different profiles in
question using a new high-order finite volume method. We have determined the
following characteristics of oceanic fronts: (1) the spectral kinetic energy density
shows that the smaller scales are relatively more energetic in comparison to scenarios
with deeper mean depths, (2) the PDF of the vorticity reveals that the magnitude of
the anticyclonic vorticity is bounded above by f , which is due to inertial instabilities
that develop, (3) the parabolic front forms into rings that radiate gravity waves when
the ellipses are aligned, which become unstable as they rotate, and (4) there is a
stronger divergent field on the periphery of the ring which corresponds to relatively
strong vertical motions. Of course, the reduced gravity SW model is limited in
terms of what it can predict about these submesoscale motions, but our investigations
illustrate some new dynamics that have not been previously appreciated and that we
believe are relevant for oceanic fronts.

In future work, it will be of interest to study the dynamics of cold pools that exist
along sloping topography that have incroppings instead of outcroppings (Poulin &
Swaters 1999; Teigen et al. 2011). Furthermore, for both surface and bottom dwelling
fronts, we will study these models in a three-dimensional non-hydrostatic model. This
will allow us to determine more precisely what kinds of motions we expect to see in
the oceans. Additionally, we should be able to better determine the limits of the SW
formulation.
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