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Abstract. This article provides an algebraic study of the propositional system InqB of
inquisitive logic. We also investigate the wider class of DNA-logics, which are negative variants of
intermediate logics, and the corresponding algebraic structures, DNA-varieties. We prove that the
lattice of DNA-logics is dually isomorphic to the lattice of DNA-varieties. We characterise maximal
and minimal intermediate logics with the same negative variant, and we prove a suitable version
of Birkhoff’s classic variety theorems. We also introduce locally finite DNA-varieties and show that
these varieties are axiomatised by the analogues of Jankov formulas. Finally, we prove that the
lattice of extensions of InqB is dually isomorphic to the ordinal� + 1 and give an axiomatisation
of these logics via Jankov DNA-formulas. This shows that these extensions coincide with the so-
called inquisitive hierarchy of [9].1

§1. Introduction. Inquisitive logic was introduced a decade ago as a formal
framework to analyse questions. More specifically, inquisitive semantics originates
from the so-called “partition semantics” of Groenendijk and Stokhof [25, 26] and was
formally developed by Ciardelli et al. in [9, 11–12, 14, 27]. In the last decade inquisitive
semantics has been widely studied both from the linguistics point of view as well as
from the perspective of logic. In particular, inquisitive propositional logic InqB has
been thoroughly investigated in [9, 21, 38–40]. The recent textbook [13] gives the state
of the art in the field.

It is only recently, however, that an algebraic approach to inquisitive logic has been
developed. In [5] algebraic and topological semantics for InqB are introduced and
investigated (see also [42] for a different algebraic approach to inquisitive logic).
Algebraic semantics plays a crucial role in the study of intermediate, modal and
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other non-classical logics [6, 8, 20, 22]. A development of an algebraic semantics
for inquisitive logic is thus an important milestone for better understanding the
mathematics behind inquisitive semantics.

In this article we continue the study started in [5] and develop a full algebraic
apparatus for inquisitive logic InqB and related systems. Using this machinery we give,
among other things, a full description of the lattice of extensions of InqB. Using this
algebraic semantics for InqB we also study the relation between inquisitive logic and
intermediate logics.

While inquisitive logic is now widely known and recognized, the related class of
DNA-logics has not been well investigated yet. In this article we introduce DNA-logics as
negative variants of intermediate logics. A DNA-logic Λ is thus a set of propositional
formulas such that, for some intermediate logic L,ϕ ∈ Λ if and only ifϕ[¬p/p] ∈ L. The
name DNA stands for double negation atoms, since every DNA-logic Λ proves the formula
¬¬p → p for every atomic formula p ∈ AT. The relation between InqB and negative
variants of intermediate logics was already pointed out in [9]. Also [37] establishes
several properties of these systems. In this article we provide a systematic study of
DNA-logics and we investigate the corresponding classes of Heyting algebras, which we
call DNA-varieties.

The original contributions of this article are therefore twofold. On the one hand, we
develop a general algebraic semantics for DNA-logics and we prove some fundamental
results concerning DNA-logics and DNA-varieties. In particular, we show that the lattice of
DNA-logics is dually isomorphic to the lattice of DNA-varieties. We characterise maximal
and minimal intermediate logics with the same negative variant, and we prove a suitable
version of Tarski’s and Birkhoff’s classic variety theorems for DNA-varieties. We also
introduce locally finite DNA-varieties and show that these varieties are axiomatised by
the analogues of Jankov formulas.

On the other hand, we apply this general algebraic setting to inquisitive logic:
we study the lattice of extensions of InqB and show that it forms a countable
descending chain with an extra bottom element dually isomorphic to the ordinal
� + 1. We also give an axiomatisation of these logics via the analogues of Jankov
formulas. This shows that these extensions coincide with the so-called inquisitive
hierarchy considered in [9]. It thus follows from our results that the inquisitive
hierarchy comprises all the possible ways in which InqB can be extended to other
DNA-logics.

This article is structured as follows. In Section 2 we recall the preliminary notions
about varieties, Heyting algebras, intermediate logics and inquisitive semantics which
we will make use of in the course of this article. In Section 3 we introduce DNA-
logics and their algebraic semantics, and we prove that the lattice of DNA-logics
is dually isomorphic to the lattice of DNA-varieties. In Section 4 we employ this
duality result to make the first steps in the study of DNA-logics and DNA-varieties: we
characterise maximal and minimal intermediate logics with the same negative variant,
we prove a suitable version of Birkhoff’s theorems about varieties and we introduce
Jankov formulas to axiomatise locally finite DNA-varieties. Finally, in Section 5, we
continue the work done in [5] and we use the methods developed in this article
to show that the extensions of InqB form a countable descending chain with an
extra bottom element. Finally, we provide an axiomatisation of each of these logics
and we show that they coincide with the so-called inquisitive hierarchy considered
in [9].
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§2. Preliminaries. In this section we briefly discuss some of the basic facts that will
be used throughout the article. We use [8] as our main reference for the basic theory
of intermediate logics. We also use [7] for universal algebra, and [18, 44] for Heyting
and Boolean algebras, respectively. Finally, we refer the reader to Ciardelli’s original
presentation in [9, 13] for more details about inquisitive semantics and its applications
in linguistics.

2.1. Universal algebra. We write f : A� B if f is a surjective homomorphism
between A and B and we say that B is homomorphic image of A. We denote by B � A
that B is a subalgebra of A and by

∏
i∈I Ai the product of the family of algebras

{Ai}i∈I . If I is finite, we also write A0 × ··· × An for the product
∏
i∈I Ai . For every

i ∈ I we also have a projection function �i :
∏
i∈I Ai → Ai such that �i : α �→ α(i). It

is easy to show that every such projection function is a surjective homomorphism. We
introduce the following closure maps.

Definition 2.1. Let K be a set of algebras of the same similarity-type, we then define
the following:

A ∈ I (K) iff A is isomorphic to some algebra in K
A ∈ S(K) iff A is a subalgebra of some algebra in K
A ∈ H (K) iff A is homomorphic image of some algebra in K
A ∈ P(K) iff A is product of a nonempty family of algebras in K.

The following proposition provides a characterisation of how the previous maps
interact with one another.

Proposition 2.2. Let K be an arbitrary class of algebras, we then have that SH (K) ⊆
HS(K), PS(K) ⊆ SP(K) and PH (K) ⊆ HP(K). Moreover, the operators I, S,H,P
are all idempotent, i.e., I 2(K) = I (K), S2(K) = S(K), H 2(K) = H (K) and P2(K) =
P(K).

A variety is defined as a class of algebras V of the same similarity type which is closed
under homomorphic images, subalgebras and products. If K is an arbitrary class of
algebras of the same similarity type, then we write V(K) for the variety generated by K,
i.e., for the smallest class of algebras containing K which is closed under subalgebras,
homomorphic images and products. An important theorem by Birkhoff establishes
that varieties are exactly the classes of algebras which are definable by equations [7,
Theorem 11.9].

Finally, we recall the following important theorems, which provide an internal
characterisation of algebraic varieties. The first theorem, due to Tarski, characterizes
the variety generated by a set of algebras in terms of the closure maps defined above.
The second theorem is an important result by Birkhoff which shows that subdirectly
irreducible algebras play an important role as generators of varieties. We use VSI to
denote the collection of subdirectly irreducible algebras of a variety V . For a proof of
these results see [7, Theorems 9.5 and 9.7].

Theorem 2.3 (Tarski). Let K be a class of algebras of some similarity type, we then
have that V(K) = HSP(K).

Theorem 2.4 (Birkhoff). Varieties are generated by their subdirectly irreducible
members, i.e., for every variety V , we have V = V(VSI ).
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2.2. Heyting algebras. A Heyting algebra is a bounded lattice H such that for
every a, b ∈ H there is some element a → b ∈ H such that for all c ∈ H we have that
c ≤ a → b ⇔ c ∧ a ≤ b. Given an element a ∈ H of a Heyting algebra, we define
its pseudocomplement ¬a as ¬a := a → 0. In case for all a ∈ H it is the case that
a ∧ ¬a = 0 and a ∨ ¬a = 1 we say that H is a Boolean algebra. It is well known that a
Heyting algebra H is subdirectly irreducible iff H has a second greatest element sH .

A power-set algebra is a Boolean algebra B = (℘(X ),∪,∩, \, ∅, X ), where the
universe is a power-set, the algebraic operations of join and meet are the set-
theoretic operations of union and intersection and complementation is the set-theoretic
complement. We recall that every finite Boolean algebra B is isomorphic to a power-
set algebra, i.e.,B ∼= ℘(X ) for some finite set X, see e.g., [16, Chapter 5]. Thus it follows
that finite Boolean algebras are always equivalent up to isomorphism to ℘(n) for some
n ∈ N. It is easy to show that if n ≤ m, then ℘(n) � ℘(m). Then, by identifying
every ℘(n) by 2n, it follows that finite Boolean algebras form an ordered chain of
subalgebras:

20 � 21 � 22 � 23 � 24 � ···

2.3. Intermediate logics. Intermediate logics are a well-studied class of logics with
many applications in mathematics and computer science. Fix a countable set AT

of atomic propositional formulas, we define the set of propositional formulas LP
inductively as follows.

Definition 2.5. The language LP is defined as follows, where p ∈ AT:

ϕ ::= p | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ.

Negation is defined as ¬ϕ := ϕ → ⊥. If ϕ is a formula, then we write ϕ(x) or
ϕ(x0, ... , xn) to specify that the atomic formulas in ϕ are among those of x or
respectively of x0, ... , xn. A substitution is a function � : AT → LP which naturally
lifts by induction to formulas by setting, for every connective �, the map (� � 	) �→
�(�) � �(	). If ϕ is a formula and q occurs in ϕ, we write ϕ[p/q] for the formula
obtained by the substitution � : q �→ p. Similarly, if q = q0, ... , qn are variables in ϕ,
then we write ϕ[p/q] for the formula obtained by the substitution � : qi �→ pi for all
i ≤ n.

We denote by IPC the intuitionistic propositional calculus and by CPC the classical
propositional calculus. Now, given a propositional language LP , we say that a set
of formulas L ⊆ LP is a superintuitionistic logic if IPC ⊆ L and in addition L is
closed under modus ponens and uniform substitution. An intermediate logic is a
superintuitionistic logic L which is also consistent, namely ⊥ /∈ L. We thus identify
every logical system with the sets of its theorems.

It can be proven that CPC is the maximal intermediate logic and that intermediate
logics are all the logics L such that IPC ⊆ L ⊆ CPC. We denote by L+ ϕ the closure
under substitution and modus ponens of the set of formulas L ∪ {ϕ} and by L+ Γ
the closure under substitution and modus ponens of the set of formulas L ∪ Γ. If L
is an intermediate logic and ϕ ∈ L then we write �L ϕ or L � ϕ. Moreover, if ϕ can
be obtained by closing the set L ∪ Γ under modus ponens, then we write Γ �L ϕ and
we say that ϕ is derivable from Γ in L. It is a well-know fact [8, Chapter 4.1] that
intermediate logics form a bounded lattice Λ(IPC) with IPC = ⊥ and CPC = � and
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where meet and join are defined as follows

L0 ∧ L1 = L0 ∩ L1,

L0 ∨ L1 = L0 + L1.

We list here some intermediate logics that will be useful for us in this article:

KC = IPC + ¬p ∨ ¬¬p,
KP = IPC + (¬p → q ∨ r) → (¬p → q) ∨ (¬p → r),
ND = IPC + {(¬p →

∨
i≤k ¬qi) →

∨
i≤k(¬p → ¬qi) : k ≥ 2}.

The logic ND was introduced by Maksimova in [34]. The logic KP was introduced by
Kreisel and Putnam in [33]. The logic KC is also know as the logic of the weak excluded
middle and was introduced by Jankov in [30]. While the previous logics are defined
in axiomatic terms, one can also define logics by specifying the class of structures
they correspond to. The logic ML is the logic of so-called Medvedev frames and it was
introduced by Medvedev in [36]. A relational structure F is a Medvedev frame if F ∼=
(℘+(W ),⊇), where W is a finite set and ℘+(W ) = {X ⊆W : X �= ∅}. A Medvedev
model is then defined as a relational model over a Medvedev frame. Let C be the class
of all Medvedev frames, then we have that ML = {ϕ ∈ LP : C � ϕ}, i.e., ML is the set of
formulas valid in all Medvedev frames (here we assume the reader’s familiarity with
the standard Kripke semantics of intuitionistic logic).

We will now briefly recall the algebraic semantics of intermediate logics.

Definition 2.6 (Algebraic Model). An algebraic model is a pair M = (H,V ) where
H is a Heyting algebra and V : AT → H is a valuation of propositional atoms over the
elements of H.

Given an algebraic modelM = (H,V ), we define by induction the interpretation of
any formula ϕ ∈ LP .

Definition 2.7 (Interpretation of Arbitrary Formulas). Given an algebraic model M
and a formula ϕ ∈ L, its interpretation �ϕ�M is defined as follows:

�p�M =V (p) ���M = 1H �⊥�M = 0H

�ϕ ∧ ��M = �ϕ�M ∧H ���M �ϕ ∨ ��M = �ϕ�M ∨H ���M �ϕ → ��M = �ϕ�M →H ���M.

When the valuation V is clear from the context, we simply write �ϕ�H for the
interpretation of ϕ in H under V. We say that a formula ϕ is true under V in H or
true in the model M = (H,V ) and writeM � ϕ if �ϕ�M = 1. We say that ϕ is valid in
H and write H � ϕ if ϕ is true in every algebraic model M = (H,V ) over H. Given
a class of Heyting algebras C, we say that ϕ is valid in C and write C � ϕ if ϕ is valid
in every Heyting algebra H ∈ C. Finally, we say that ϕ is a validity if ϕ is valid in any
Heyting algebra H.

We denote by HA the collection of all Heyting algebras. Let Λ(HA) be the lattice
of varieties of Heyting algebras and Λ(IPC) the lattice of intermediate logics, we then
define the two maps Var : Λ(IPC) → Λ(HA) and Log : Λ(HA) → Λ(IPC) as follows:

Var : L �→ {H ∈ HA : H � L};

Log : V �→ {ϕ ∈ LP : V � ϕ}.
That the two former functions are well defined follows from Var(L) being a variety
of Heyting algebras and Log(V) being an intermediate logic. Also, one can prove that
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both these maps are order-reversing homomorphisms. We say that a variety of Heyting
algebras V is defined by a set of formulas Γ if V = Var(Γ) and we say V is definable if
there exists one such Γ. We say that an intermediate logic L is algebraically complete
with respect to a class of Heyting algebras C if L = Log(C).

Theorem 2.8 (Definability Theorem). Every variety of Heyting algebras V is defined
by its validities, i.e., for every Heyting algebra H,

H ∈ V ⇔ H � Log(V).

Theorem 2.9 (Algebraic Completeness). Every intermediate logic L is complete with
respect to its corresponding variety of Heyting algebras, i.e., for every ϕ ∈ LP ,

ϕ ∈ L⇔ Var(L) � ϕ.

We refer the reader to [8, Section 7] for a full proof of the aforementioned two results
and the related constructions. Here let us only remark that the first of these two results
is an immediate application of the fact that varieties and equational classes coincide.
The second result relies essentially on the free-algebra construction, namely on the
Lindenbaum–Tarski algebra of intermediate logics. These results together give us the
following theorem.

Theorem 2.10 (Dual Isomorphism). The lattice of intermediate logics is dually
isomorphic to the lattice of varieties of Heyting algebras, i.e., Λ(IPC) ∼=op Λ(HA).

Here, the isomorphisms between Λ(IPC) and Λ(HA) are the two maps Log and Var.
We sometimes refer to the previous theorem as a duality result concerning Λ(IPC)
and Λ(HA). Notice that we are implicitly excluding from the lattice Λ(HA) the trivial
variety generated by a singleton set, for it dually corresponds to the inconsistent logic
containing all the formulas of LP .

2.4. Inquisitive semantics. Inquisitive logic is a formalism extending the repertoire
of (classical) propositional logic with questions, in order to study their logical relations.
The term question in this context refers to the expressions whose semantics is not
completely determined by their truth-conditions (i.e., which evaluations make it true),
as it is the case for questions in natural language. And in fact the idea to define the
semantics for this logic is to shift from a semantics based on truth-conditions to a
semantics based on information (e.g., what pieces of information allow to resolve the
question or entail the formula).

In this section we recall the basic definitions of inquisitive logic, which follow
the intuition presented above. For an extended exposition on the logic and the idea
underlying it we refer to [11, 13].

Though sometimes inquisitive logic is introduced in a signature containing special
question-forming operators—most notably the inquisitive disjunction

�

, see e.g.,
[11]—here we follow [9] and present InqB in the same language LP of intermediate
logics. The intended interpretation of the logical operators is the same as for
propositional logic (e.g., p ∧ q stands for “both p and q hold”), with one exception:
the disjunction operator ∨ is used to introduce alternative questions. For example, the
formula p ∨ ¬p is intuitively interpreted as the question “whether p holds,” requesting
information on which of the two alternatives holds.

As mentioned above, the semantics of InqB is defined in terms of information to
properly characterize the logical relations between questions. The usual (classical) val-
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uations (i.e., binary functionsw : AT → {0, 1}) are interpreted as complete descriptions
of the current state of affairs. We refer to the set 2AT of all classical valuations over AT
as the evaluation space over AT. To represent pieces of information, inquisitive logic
uses information states (or simply states), that is, subsets of the evaluation space. So
for example, the information that “the atomic formula p is true” is represented by the
set of all and only the evaluations satisfying p: {w ∈ 2AT|w(p) = 1}. This allows us to
define the notion of support at a state, as follows.

Definition 2.11 (Support at a State). Let ϕ be a formula of LP and s ∈ ℘(2AT) a state.
We say that s supports ϕ and we define s � ϕ inductively as follows:

s � p ⇐⇒ ∀w ∈ s (w(p) = 1)
s � � always
s � ⊥ ⇐⇒ s = ∅
s � � ∧ 	 ⇐⇒ s � � and s � 	
s � � ∨ 	 ⇐⇒ s � � or s � 	
s � � → 	 ⇐⇒ ∀t (if t ⊆ s and t � � then t � 	).

For p ∈ AT and a state s, we introduce the notation �p�s = {w ∈ s : w(p) = 1}, that
is, �p�s is the set of classical valuations in s that make p true. Since ¬ϕ = ϕ → ⊥, the
semantic clause of negation is then the following:

s � ¬ϕ ⇐⇒ ∀t (if t ⊆ s then t � ϕ or t = ∅).

The valid formulas of inquisitive logic (which with a slight abuse of notation we denote
by InqB) are the formulas ϕ ∈ LP which are supported in every evaluation state:

InqB = {ϕ ∈ LP : ∀s ∈ ℘(2AT), s � ϕ}.

We present a simple example to show that the support semantics works as intended:
let us determine which states support the formula p ∨ ¬p.

s � p ∨ ¬p ⇐⇒ s � p or s � ¬p
⇐⇒ ∀w ∈ s (w(p) = 1) or ∀t ⊆ s (t � p or t = ∅)
⇐⇒ ∀w ∈ s (w(p) = 1) or ∀w ∈ s (w(p) = 0).

That is, the formula p ∨ ¬p is supported by s if either all the valuations in s satisfy p or
all the valuations in s do not satisfy p. This is in line with the intended interpretation of
these objects: the question “whether p holds” (represented by p ∨ ¬p) is resolved by
the pieces of information (represented by the states s) from which we can either infer
that p is true (w(p) = 1 for every w ∈ s) or that p is false (w(p) = 0 for every w ∈ s).

§3. DNA-logics and their algebraic semantics. In this section we introduce the class
of DNA-logics and we show that these logics are complete with respect to DNA-varieties,
a suitably defined class of Heyting algebras.

3.1. DNA-logics. We proceed by introducing the negative variant of an intermediate
logic. Negative variants were first introduced by Miglioli et al. in [37] and later employed
by Ciardelli in [9]. The account of [37] is slightly different than the one adopted in [9]
and in the current paper, since the focus of [37] is mainly the study of Medvedev’s logic
and its properties. The main result of [37] is, in fact, a new proof of the maximality of
Medvedev’s logic among the intermediate logics with the disjunction property.
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If ϕ ∈ LP is an arbitrary formula, we often say that the formula ϕ[¬p/p] obtained
by replacing all the atomic letters in ϕ with their negation is its negative variant.

Definition 3.1 (Negative Variant). For every intermediate logic L, its negative variant
L¬ is defined as follows:

L¬ = {ϕ ∈ LP : ϕ[¬p/p] ∈ L}.
A DNA-logic is then defined as the negative variant of some intermediate logic L. The
name DNA stands for double negation atoms, which refers to the fact that, as we will see,
DNA-logics prove ¬¬p → p for all atomic formulas p ∈ AT. We will use the notationL¬

to refer to the negative variant of an intermediate logic L. If not specified otherwise,
we reserve uppercase greek letters Γ and Δ to denote arbitrary sets of formulas and Λ
and Π to denote DNA-logics. As for an example of this kind of logics, Ciardelli showed
in [9, Theorem 3.4.9] that inquisitive logic is indeed a DNA-logic: he proved that InqB
is the negative variant of all and only the intermediate logics extending Maksimova’s
logic ND and contained in Medvedev’s logic ML. A well-known example of intermediate
logic in this interval is the Kreisel–Putnam logic KP. We refer to [9, Section 3] for an
overview of these logics and for further discussion on these results.

Remark 3.2. Negative variants appear under a different guise in [37]. Miglioli et al.
introduce the class of nonstandard intermediate logics (nsils) as families of formulas
extending IPC, closed under modus ponens and closed under negative substitutions (i.e.,
substitutions mapping atoms to negated formulas). They then define and study different
operators on nsils, among which the extension operator E mapping a nsil L to the closure
of the setL ∪ {¬¬p → p | p ∈ AT} under modus ponens. It is easy to prove that negative
variants as defined in the current paper are exactly the nsils that are fixpoints of the
operator E.

The following proposition provides us with an axiomatisation for every DNA-logic.

Proposition 3.3. Let Λ be a DNA-logic and L an intermediate logic with Λ = L¬.
Then Λ is the least set of formulas such that:

1. L ⊆ Λ.
2. For all atomic propositional formulas p ∈ AT we have that ¬¬p → p ∈ Λ.
3. Λ is closed under the modus ponens rule: if ϕ ∈ Λ and ϕ → � ∈ Λ, then � ∈ Λ.

Proof. It is trivial to show that Λ satisfies the three conditions; what remains to
prove is that Λ is the least such set. So suppose X also validates the three conditions
above. What we need to show is that Λ ⊆ X . To this end, consider a formula ϕ ∈ Λ =
L¬. Then by the definition of negative variant ϕ[¬p/p] ∈ L. Therefore, by uniform
substitution, ϕ[¬¬p/p] ∈ L, and since L ⊆ X we also have ϕ[¬¬p/p] ∈ X . Now, since
for every p ∈ AT we have ¬¬p → p ∈ X , and since (¬¬p → p) → (p ↔ ¬¬p) is a
theorem of intuitionistic logic, by closure under modus ponens X contains p ↔ ¬¬p
for every p ∈ AT. By a straightforward induction argument on the complexity of ϕ we
deduce that ϕ[¬¬p/p] ↔ ϕ ∈ X . Given that X is closed under modus ponens we obtain
that ϕ ∈ X . �
As an immediate consequence, we obtain an Hilbert-style axiomatization for InqB,
based on the fact that InqB = KP¬. This system was originally presented and proved
to be sound and complete for InqB in [9] (see [9, Definition 3.2.13] and [9, Theorem
3.4.9]). The current formulation was presented in [5].
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Axioms All tautologies of IPC

(¬ϕ → � ∨ 	) → (¬ϕ → �) ∨ (¬ϕ → 	) for all ϕ,�, 	 ∈ LP
¬¬p → p for all p ∈ AT

Rule ϕ,ϕ → � ⇒ �.
As we will see later, DNA-logics give rise to a lattice structure ordered by the set-theoretic
inclusion. The meet of twoDNA-logics Λ0,Λ1 is just their intersection and their join is the
closure of their union under modus ponens. We will thus write Λ0 ∧ Λ1 := Λ0 ∩ Λ1

and Λ0 ∨ Λ1 := (Λ0 ∪ Λ1)MP , where we denote by (Γ)MP the closure under modus
ponens of a set Γ of formulas. If ϕ can be obtained by closing the set Γ of formulas
under modus ponens, then we write Γ � ϕ and we say that ϕ is derivable from Γ. One
can show by standard reasoning that Γ � ϕ if and only if there is a finite set of formulas
{�i}i≤n ⊆ Γ such that {�i}i≤n � ϕ. We often write �0, ... , �n � ϕ for {�i}i≤n � ϕ.

Proposition 3.4. Let Λ0 and Λ1 be two DNA-logics, then: (i) Λ0 ∧ Λ1 is a DNA-logic
and it is the infimum of Λ0 and Λ1; (ii) Λ0 ∨ Λ1 is a DNA-logic and it is the supremum of
Λ0 and Λ1.

Proof. Assume without the loss of generality that Λ0 = L¬
0 and Λ1 = L¬

1 .
(i) It is straightforward to verify that:

(L0 ∧ L1)¬ = (L0 ∩ L1)¬

= {ϕ ∈ LP : ϕ[¬p/p] ∈ L0 ∩ L1}
= {ϕ ∈ LP : ϕ[¬p/p] ∈ L0} ∩ {ϕ ∈ LP : ϕ[¬p/p] ∈ L1}
= L¬

0 ∩ L¬
1

= L¬
0 ∧ L¬

1

= Λ0 ∧ Λ1.

Hence Λ0 ∧ Λ1 is the least set of formulas satisfying the conditions in Proposition 3.3
with respect to the intermediate logic L0 ∩ L1.

(ii) We show that Λ0 ∨ Λ1 = (Λ0 ∪ Λ1)MP is the least set of formulas satisfying
the conditions in Proposition 3.3 with respect to the intermediate logic L0 ∨ L1 :=
(L0 ∪ L1)MP .

It suffices to show that (L0 ∨ L1)¬ = (L¬
0 ∪ L¬

1 )MP . By definition we have that (L0 ∨
L1)¬ = ((L0 ∪ L1)MP)¬ and L¬

0 ∨ L¬
1 = (L¬

0 ∪ L¬
1 )MP . It suffices to show that ((L0 ∪

L1)MP)¬ = (L¬
0 ∪ L¬

1 )MP . (⊆) Suppose ϕ ∈ ((L0 ∪ L1)MP)¬. It follows that ϕ[¬p/p] ∈
(L0 ∪ L1)MP , hence for some formulas �0, ... , �n ∈ L0 ∪ L1 we have �0, ... , �n �
ϕ[¬p/p]. We immediately obtain that �0[¬p/p], ... , �n[¬p/p] � ϕ[¬¬p/p]. It follows that
{�0[¬p/p], ... , �n[¬p/p]} ∪ {¬¬p → p : p ∈ AT} � ϕ and, since ¬¬p → p ∈ L¬

0 ∪ L¬
1

for all p ∈ AT, we obtain ϕ ∈ (L¬
0 ∪ L¬

1 )MP . (⊇) Suppose that ϕ ∈ (L¬
0 ∪ L¬

1 )MP .
It follows that for some formulas �0, ... , �n ∈ L¬

0 ∪ L¬
1 we have that �0, ... , �n � ϕ,

that is, there is a derivation of ϕ from �0, ... , �n. Therefore, �0[¬p/p], ... , �n[¬p/p] ∈
L0 ∪ L1 and by substituting each �i with �i [¬p/p] in the previous derivation, we
obtain �0[¬p/p], ... , �n[¬p/p] � ϕ[¬p/p]. So ϕ[¬p/p] ∈ (L0 ∪ L1)MP and consequently
ϕ ∈ ((L0 ∪ L1)MP)¬. �
We denote by Λ(IPC¬) the lattice of DNA-logics. Since intermediate logics also form a
lattice Λ(IPC), we can then show that the map (–)¬ : Λ(IPC) → Λ(IPC¬) which assigns
each intermediate logic to its negative variant is a lattice homomorphism.
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Proposition 3.5. The map (–)¬ : Λ(IPC) → Λ(IPC¬) is a bounded lattice homomor-
phism.

Proof. Obviously (–)¬ sends ⊥Λ(IPC) to ⊥Λ(IPC¬) and �Λ(IPC) to �Λ(IPC¬). Preserva-
tion of meets and joins follows from the proof of Proposition 3.4 above. �

3.2. Algebraic semantics for DNA-logics. In the existing literature, negative variants
have been considered from a syntactic point of view [9, 37]. An algebraic semantics
for inquisitive logic was introduced in [5]. Here we extend this algebraic approach to
DNA-logics.

Recall that, if H is a Heyting algebra, then we say that an element x ∈ H is regular
if x = ¬¬x. For any Heyting algebra H we then denote byH¬ the set:

H¬ = {x ∈ H : x = ¬¬x}.
So H¬ consists of all regular elements of the Heyting algebra H. Note that since in
every Heyting algebras we have that ¬x = ¬¬¬x, the set of regular elements of H
can also be specified as H¬ = {y ∈ H : ∃x ∈ H (y = ¬x)}. We define DNA-models as
follows.

Definition 3.6 (DNA-Model). A DNA-model is a pairM = (H,
) where H is a Heyting
algebra and 
 : AT → H¬ is a valuation of propositional atoms over the regular elements
of H.

We then say that 
 is a DNA-valuation over the Heyting algebra H. Given a DNA-model
M = (H,
), we define by induction the interpretation of any formula ϕ ∈ LP .

Definition 3.7 (Interpretation of Arbitrary Formulas). Given aDNA-modelM = (H,
)
and a formulaϕ ∈ LP , its interpretation �ϕ�M is defined by the following recursive clauses:

�p�M = 
(p) ���M = 1H �⊥�M = 0H

�ϕ ∧ ��M = �ϕ�M ∧H ���M �ϕ ∨ ��M = �ϕ�M ∨H ���M �ϕ → ��M = �ϕ�M →H ���M.

When the valuation 
 is clear from the context, we simply write �ϕ�H for the
interpretation of ϕ in H under 
. From the former definitions it is straightforward
to adapt the usual definitions of truth at a model and validity. We say that a formula ϕ
is true under
 in H or true in the modelM = (H,
) and writeM �¬ ϕ if �ϕ�M = 1. We
say that ϕ is DNA-valid in H and write H �¬ ϕ if ϕ is true in every modelM = (H,
)
over H. Given a class C of Heyting algebras, we say that ϕ is DNA-valid in C and write
C �¬ ϕ if ϕ is DNA-valid in every Heyting algebra H ∈ C. Finally, we say that ϕ is a
DNA-validity if ϕ is valid in any Heyting algebra H. When the context is clear, we drop
the qualification DNA from the definitions above and talk simply of validity.
DNA-validity and standard validity are closely intertwined. To see how, we first

introduce the notion of negative variant of a valuation.

Definition 3.8 (Negative Variant of a Valuation). Let H be a Heyting algebra and V
an arbitrary valuation over H. Then we say that V ¬ is the negative variant of V if for all
p ∈ AT we have that V ¬(p) = ¬V (p).

The following lemma, which is easy to prove, shows that the set of DNA-valuations and
the set of negative variants of standard valuations coincide.

Lemma 3.9. A valuation 
 is a DNA-valuation if and only if it is the negative variant of
some valuation V.
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By the previous lemma, a generic DNA-valuation is always of the form V ¬ for some
valuation V. We will henceforth write V ¬ for an arbitrary DNA-valuation. We can now
prove the following important lemma.

Lemma 3.10. For every Heyting algebra H, for every valuation V and any formula ϕ,
we have

�ϕ�(H,V¬) = �ϕ[¬p/p]�(H,V ).

Proof. The proof goes by induction on the complexity of ϕ. The only non-trivial
case is ϕ = p ∈ AT:

�p�(H,V¬) = V ¬(p) = ¬V (p) = ¬�p�(H,V ) = �¬p�(H,V ).

�
From this we can derive the following result.

Proposition 3.11. For any Heyting algebra H we haveH �¬ ϕ iffH � ϕ[¬p/p].

Proof. We prove both directions by contraposition. (⇒) Suppose �ϕ[¬p/p]�(H,V ) �=
1 for some valuation V. Then, given V ¬ the negative variant of V, it follows by
Lemma 3.10 that �ϕ�(H,V¬) �= 1. (⇐) Suppose �ϕ�(H,μ) �= 1 for some DNA-valuation 
.
By Lemma 3.9, there exists a valuation V whose negative variant V ¬ is 
. Then, by
Lemma 3.10, we have that �ϕ[¬p/p]�(H,V ) �= 1. �
Thus we end up with the following proposition: if a Heyting algebra validates an
intermediate logic, then it also validates its negative variant.

Corollary 3.12. Let H be a Heyting algebra and L an intermediate logic. Then we
have that H � L entails H �¬ L¬

Notice that it is not true in general that H �¬ L¬ entails H � L. DNA-valuations
form a subclass of all valuation and it might very well be that a formula is true in a
Heyting algebra under all DNA-valuations but not under all valuations. However, the
next proposition is a weaker version of this fact which we will need later. Let 〈H¬〉 be
the subalgebra of H generated by H¬. First we prove the following lemma.

Lemma 3.13. For any Heyting algebra H we have that H �¬ ϕ iff 〈H¬〉 �¬ ϕ.

Proof. Clearly H¬ = 〈H¬〉¬. So we have that V ¬ is a DNA-valuation over H iff it
is a DNA-valuation over 〈H¬〉. Since 〈H¬〉 is a subalgebra of H, it readily follows that
H �¬ ϕ iff 〈H¬〉 �¬ ϕ. �
This allows us to prove the following result.

Proposition 3.14. Let H be a Heyting algebra and L an intermediate logic. Then we
have that H �¬ L¬ entails 〈H¬〉 � L.

Proof. Consider any Heyting algebra H, and suppose that 〈H¬〉 � L, then there
is some formula ϕ ∈ L and some valuation V such that (〈H¬〉, V ) � ϕ. Now, since
〈H¬〉 is the subalgebra generated by H¬, we can express every element x ∈ 〈H¬〉
as a polynomial �xH of elements of H¬. We thus have x = �xH (y), where for each
yi we have that yi ∈ H¬. By writing for the variables p1, ... , pn occuring in ϕ and
�xH (y) for the polynomials of the elements x1 = V (p1), ... , xn = V (pn), we get that
�ϕ(p)�(〈H¬〉,V ) = ϕH (�xH (y)). Since all the elements y in the polynomials �xH are regular
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elements, we can define a DNA-valuation U¬ : AT → H¬ such that U¬ : qi �→ yi for all
i ≤ n. Then it follows immediately that �ϕ[�x (q)/p]�(〈H¬〉,U¬) = ϕH (�xH (y)). But then,
since we also had �ϕ(p)�(〈H¬〉,V ) = ϕH (�xH (y)), it follows that �ϕ[�x (q)/p]�(〈H¬〉,U¬) =
�ϕ(p)�(〈H¬〉,V ). So since (〈H¬〉, V ) � ϕ, we also get that (〈H¬〉, U¬) �¬ ϕ[�x (q)/p]. So
it then follows by Lemma 3.13 that (H,U¬) �¬ ϕ[�x (q)/p], henceH �¬ ϕ[�x (q)/p]. Now,
since L is an intermediate logic, it admits free substitution and so, since ϕ ∈ L, we
also get that ϕ[�x (q)/p] ∈ L and therefore as L ⊆ L¬ also ϕ[�x (q)/p] ∈ L¬. Finally, this
means thatH �¬ L¬, thus proving our claim. �

3.3. DNA-varieties. The algebraic semantics for DNA-logics that we have defined
in the previous section motivates the introduction of DNA-varieties. We will define
DNA-varieties as varieties of algebras which are additionally closed under so-called
core-superalgebras. This notion plays an important role in the algebraic semantics of
DNA-logics and is defined as follows.

Definition 3.15. We say that a Heyting algebra K is a core superalgebra of H ifH¬ = K¬
and H � K .

A core superalgebra K of a Heyting algebra H is thus a subalgebra of H such that K
and H share the same regular elements. DNA-varieties are then defined as follows.

Definition 3.16. A class of Heyting algebras C is a DNA-variety if it is closed under
subalgebras, homomorphic images, products and core superalgebras.

Moreover, as DNA-logics can be seen also as negative variants of intermediate logic, one
can regard DNA-varieties as special kinds of closure of standard varieties.

Definition 3.17 (Negative Closure of a Variety). For every variety of Heyting algebras
V , its negative closure V↑ is defined as follows:

V↑ = {H ∈ HA : ∃A ∈ V such that A¬ = H¬ and A � H}.

We use the notation V↑ to refer to the negative variant of a variety V and we generally
write X for DNA-varieties. If not specified otherwise, we reserve C to denote arbitrary
classes of Heyting algebras, V or U to denote standard varieties and X or Y to denote
DNA-varieties.

The following proposition establishes that every DNA-variety is the negative closure
of a standard variety.

Proposition 3.18. A class of Heyting algebras C is a DNA-variety if and only if it is
the negative closure of a variety.

Proof. (⇒) If a set of algebras X is a DNA-variety, then it is closed under subalgebras,
homomorphic images and products and thus it is a variety. Moreover, since it is also
closed under core superalgebras, it is straightforward to see that X = X ↑, so that we
can see X as the negative variant of itself and thus as a DNA-variety.

(⇐) Let V↑ be the negative variant of some standard variety V . To prove that V↑ is
a DNA-variety we need to check that V↑ is closed under the above four operations.

(1) We check closure under subalgebras. Suppose H ∈ V↑ and K � H . Then by
definition of DNA-variety it follows that there is some H ′ ∈ V such that H ′

¬ = H¬ and
H ′ � H . Now consider K ′ = H ′ ∩K , since K ′ is the intersection of two subalgebras
of H, it will also be closed under the Heyting algebra operations. Thus we have that
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K ′ is also a Heyting algebra and K ′ � H ′ and K ′ � K . Therefore, by the fact that
H ′ ∈ V and V is closed under subalgebras, it then follows that K ′ ∈ V . Moreover,
sinceH ′

¬ = H¬ ⊇ K¬, we have thatK ′
¬ = H ′

¬ ∩K¬ = K¬. Finally, we showed that for
K ′ ∈ V we have K ′ � K and K ′

¬ = K¬, which entails K ∈ V↑.
(2) We check closure under homomorphic images. SupposeH ∈ V↑ andf : H � K ,

then by the definition of DNA-variety we have that for someH ′ ∈ V thatH ′
¬ = H¬ and

H ′ � H . Consider K ′ = f[H ′]. Since homomorphic images preserve subalgebras, we
have K ′ � K and, by the closure of standard varieties under homomorphic images
K ′ ∈ V . Moreover, since by assumption H¬ = H ′

¬, we have K¬ = f[H¬] = f[H ′
¬] =

K ′
¬. Thus for K ′ ∈ V we have K ′ � K and K ′

¬ = K¬, which yields K ∈ V↑.
(3) We check closure under products. SupposeHi ∈ V↑ for all i ∈ I of some index-

set I. Then we need to check that
∏
i∈I H

i ∈ V↑. By the definition of DNA-variety
it immediately follows that there is, for every i ∈ I , a Heyting algebra Ki ∈ V such
that Hi¬ = Ki¬, and Ki � Hi . Then by the closure under products of V , we have that∏
i∈I K

i ∈ V . Now, since Ki � Hi holds for every i ∈ I , it follows immediately that∏
i∈I K

i �
∏
i∈I H

i . Similarly, we have that:(∏
i∈I
H i

)
¬

=
∏
i∈I
H i¬ =

∏
i∈I
Ki¬ =

(∏
i∈I
Ki

)
¬

.

Hence, by the fact that
∏
i∈I K

i ∈ V and the definition of DNA-variety, it follows that∏
i∈I H

i ∈ V↑.
(4) We check closure under core superalgebras. SupposeH ∈ V↑ and for some K we

have thatH¬ = K¬ andH � K . By the definition of DNA-varieties we have that there is
someH ′ � H such thatH ′ ∈ V andH ′

¬ = H¬. SinceH ′ � H andH � K we then have
H ′ � K by the transitivity of subalgebra relation. Moreover, sinceH ′

¬ = H¬ = K¬ and
H ∈ V , it finally follows that K ∈ V↑. �

As in the case of standard varieties, DNA-varieties give rise to a lattice structure ordered
by the set-theoretic inclusion. As it is customary doing, we implicitly exclude from
the lattice of DNA-varieties the trivial DNA-variety of one-element algebras. The meet
of two DNA-varieties X0,X1 is just their intersection and their join is the smallest class
containing their union and closed under the DNA-variety operations.

For any class C of Heyting algebras we say thatX is generated by the class C ⊆ X and
we write X = X (C) if X is the least class of Heyting algebras such that C ⊆ X and X is
closed under subalgebras, homomorphic images, products and core superalgebras. It
is then clear that X (C) is the smallest DNA-variety containing C and that X (C) = V(C)↑.
We will thus define X0 ∧ X1 := X0 ∩ X1 and X0 ∨ X1 := X (X0 ∪ X1). We proceed to
prove the following proposition.

Proposition 3.19. Let X0 and X1 be two DNA-varieties. Then: (i) X0 ∧ X1 is a DNA-
variety and it is the infimum of X0 and X1; (ii) X0 ∨ X1 is a DNA-variety and it is the
supremum of X0 and X1.

Proof. (i) By definition X0 ∧ X1 := X0 ∩ X1. That this is a DNA-variety follows
immediately from the fact that, since both X0 and X1 are closed under subalgebras,
homomorphic images, products and core superalgebras, then also their intersection
is closed under these operations. Moreover, since X0 ∧ X1 := X0 ∩ X1, it follows that
X0 ∧ X1 is the infimum of X0 and X1.
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(ii) By definitionX0 ∨ X1 = X (X0 ∪ X1) = V(X0 ∪ X1)↑, which is aDNA-variety. Now
supposeY is also aDNA-variety andX0 ∪ X1 ⊆ Y . Then sinceY is also a variety it follows
that V(X0 ∪ X1) ⊆ Y and since Y is also closed under core superalgebras it follows that
V(X0 ∪ X1)↑ = X (X0 ∪ X1) ⊆ Y and in turn gives us X (X0 ∪ X1) = X0 ∨ X1 is the
supremum of X0 and X1. �
We denote the lattice of DNA-varieties by Λ(HA↑). As varieties of Heyting algebras
also form a lattice Λ(HA), one can then show that the map (–)↑ : Λ(HA) → Λ(HA↑)
which assigns every variety of Heyting algebras to its negative closure is a lattice
homomorphism.

Proposition 3.20. The map (–)↑ : Λ(HA) → Λ(HA↑) is a bounded lattice homomor-
phism.

Proof. Obviously (–)↑ sends ⊥Λ(HA) to ⊥Λ(HA↑) and �Λ(HA) to �Λ(HA↑), so it
suffices to check that (–)↑ preserves meets and joins.

(i) Consider two standard varieties V0 and V1. Notice that if there are A ∈ V0 and
B ∈ V1 such that A¬ = H¬, B¬ = H¬ and A � H , B � H , then A ∩ B ∈ V0 ∩ V1,
(A ∩ B)¬ = H¬ and A ∩ B � H .

(V0 ∧ V1)↑ = {H : ∃A ∈ V0 ∩ V1 such that A¬ = H¬ and A � H}
= {H : ∃A ∈ V0(A¬ = H¬, A � H )} ∩ {H : ∃A ∈ V1(A¬ = H¬, A � H )}
= V↑

0 ∧ V↑
1 .

which shows that (–)↑ preserves the meet operator.
(ii) Consider two standard varieties V0 and V1, then we have by definition that (V0 ∨

V1)↑ = (V(V0 ∪ V1))↑ and V↑
0 ∨ V↑

1 = X (V↑
0 ∪ V↑

1 ) = V(V↑
0 ∪ V↑

1 )↑. It thus suffices to
show that V(V0 ∪ V1)↑ = V(V↑

0 ∪ V↑
1 )↑.

(⊆) Let us supposeH ∈ (V(V0 ∪ V1))↑ which implies that there is someK ∈ V(V0 ∪
V1) such that K¬ = H¬ and K � H . Then clearly K ∈ V(V↑

0 ∪ V↑
1 ) and thus H ∈

V(V↑
0 ∪ V↑

1 )↑. (⊇) Suppose nowH ∈ V(V↑
0 ∪ V↑

1 )↑, then for some K ∈ V(V↑
0 ∪ V↑

1 ) we
have that K¬ = H¬ and K � H . In turn, this means that there exists a family of
algebras {Ai : i ∈ I } ⊆ V↑

0 ∪ V↑
1 such that K ∈ V({Ai : i ∈ I }). Since each Ai is in

V↑
0 ∪ V↑

1 , there exists algebras Bi ∈ V0 ∪ V1 such that Bi � Ai and Ai¬ = Bi¬ for every
i ≤ n. Consequently Ai ∈ V(V0 ∪ V1)↑ for every i ≤ n; and K ∈ V({Ai : i ∈ I }) ⊆
V(V0 ∪ V1)↑. Since V(V0 ∪ V1)↑ is a DNA-variety and H is a core superalgebra of K, we
conclude thatH ∈ V(V0 ∪ V1)↑. �

We can already give a characterisation of DNA-varieties by adapting Tarski’s variety
theorem to the case of DNA-varieties.

Theorem 3.21 (DNA-Tarski). Let C be a class of Heyting algebras, then we have that
X (C) = HSP(C)↑.2

Proof. By definition we have that X (C) = V(C)↑ and by Tarski’s theorem 2.3 we
have that V(C) = HSP(C). Therefore X (C) = HSP(C)↑. �

Let us remark that we have given to both DNA-logics and DNA-varieties a twofold
characterisation. On the one hand, they can be described in terms of negative variants

2 We consider the operator (–)↑ to have the least priority, that is, HSP(C)↑ stands for
(HSP(C))↑.
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of some intermediate logics or in terms of negative closure of some variety of Heyting
algebras. On the other hand, we can also consider DNA-logics and DNA-varieties as sets
of formulas closed under some conditions or as classes of algebras closed under some
operations.

3.4. The maps Log¬ and Var¬. There are two obvious ways to relate formulas
and algebras. We define the map Var¬ sending sets of formulas to the class of Heyting
algebras in which they are DNA-valid and the map Log¬ sending classes of Heyting
algebras to the set of their DNA-validities. We have:

Var¬ : Γ �→ {H ∈ HA : H �¬ Γ};

Log¬ : C �→ {ϕ ∈ LP : C �¬ ϕ}.

We say that a DNA-variety of Heyting algebras X is DNA-defined by a set of formulas
Γ if X = Var¬(Γ). A class of Heyting algebras C is DNA-definable if there is a set
Γ of formulas such that C = Var¬(Γ). When the context is clear, we often drop
the qualification DNA and talk simply of definability. We say that a DNA-logic Λ is
algebraically complete with respect to a class of Heyting algebras C if Λ = Log¬(C).
We will prove in the next section a definability theorem and an algebraic completeness
theorem for DNA-logics. We will thus establish that every DNA-variety is defined by
its validities and that every DNA-logic is complete with respect to its corresponding
DNA-variety.

We will next show that Var¬(Γ) is always a DNA-variety and Log¬(C) is always a
DNA-logic. First we prove the following important lemma showing that the DNA-validity
of a formula is preserved by the key operations of a DNA-variety.

Lemma 3.22 (Preservation of DNA-Validity). The DNA-validity of a formula ϕ is
preserved by the operations of subalgebras, homomorphic images, products and core
superalgebras, i.e.,

(i) ifH �¬ ϕ and K � H , then K �¬ ϕ;
(ii) ifH �¬ ϕ and H � K , then K �¬ ϕ;
(iii) ifAi �¬ ϕ for all i ∈ I of a family {Ai}i∈I of algebras, then

∏
i∈I Ai �¬ ϕ; and

(iv) if H �¬ ϕ and for some K such that K¬ = H¬ we have that H � K , then
K �¬ ϕ.

Proof. (i) By contraposition: If (K,V ¬) �¬ ϕ for some DNA-valuation V ¬, then
H,V ¬ �¬ ϕ.

(ii) Let f : H � K be a surjective homomorphism. By contraposition: If K �¬ ϕ,
then by Proposition 3.11 it follows that K � ϕ[¬p/p]. Since validity is preserved by
homomorphic images, it follows that H � ϕ[¬p/p] and therefore, by Proposition 3.11,
H �¬ ϕ.

(iii) The claim follows readily by noticing
(∏
i∈I Ai

)
¬ =

∏
i∈I (Ai)¬, and so DNA-

valuations over
∏
i∈I Ai are all and only the functions of the form V ¬(p) =

〈V ¬
i (p) : i ∈ I 〉 where every V ¬

i is some DNA-valuation over Ai .
(iv) Suppose by reductio ad absurdum that K �¬ ϕ. Then for some valuation V ¬

we have (K,V ¬) �¬ ϕ. Since H¬ = K¬ and H � K , V ¬ is a valuation over H and
�ϕ�(H,V¬) = �ϕ�(K,V¬) �= 1. �

It follows immediately that for every set of formulas Γ the class of Heyting algebras
Var¬(Γ) is a DNA-variety.
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Proposition 3.23. The class of Heyting algebras Var¬(Γ) is a DNA-variety.

Proof. Consider any set of formulas Γ, then by the previous Lemma 3.22 it
follows that the corresponding set Var¬(Γ) is closed under the operations of taking
subalgebras, homomorphic images, products and core superalgebras. Therefore, it
follows by Proposition 3.18 that it is a DNA-variety. �
It is a straightforward consequence of Proposition 3.23 that every DNA-definable class
of Heyting algebras is also a DNA-variety. The next proposition shows that for every
class C of Heyting algebras its set of validities Log¬(C) is a DNA-logic.

Proposition 3.24. The class of formulas Log¬(C) is a DNA-logic.

Proof. We check that for any class C of Heyting algebras the corresponding set of
formulas Log¬(C) is a DNA-logic. In particular, we show that Log¬(C) = Log(C)¬. We
have:

ϕ /∈ Log¬(C) ⇔ ∃H ∈ C such thatH �¬ ϕ

⇔ ∃H ∈ C such thatH � ϕ[¬p/p] (by Proposition 3.11)

⇔ ϕ[¬p/p] /∈ Log(C)

⇔ ϕ /∈ Log(C)¬.

This shows that Log¬(C) is the negative variant of Log(C). �
3.5. Duality between DNA-logics and DNA-varieties. We will now prove our main

result about DNA-logics and DNA-varieties, showing that their lattices are dually
isomorphic. Notice that, so far, we have considered Log¬ as a map defined over
arbitrary classes of Heyting algebras and Var¬ as a map defined over arbitrary sets of
propositional formulas. Now we restrict our attention to the case in which the domain
of Var¬ is the lattice of DNA-logics Λ(IPC¬) and the domain of Log¬ is the lattice of
DNA-varieties Λ(HA↑).3

Since we have shown above that Var¬(Γ) is always a DNA-variety and Log¬(C) is
always a DNA-logic it follows that we have two maps:

Var¬ : Λ(IPC¬) → Λ(HA↑);

Log¬ : Λ(HA↑) → Λ(IPC¬).

We will now prove that these two maps describe a dual isomorphism between the
lattice of DNA-logics and the lattice of DNA-varieties. Our proof essentially relies on
the standard isomorphism between the lattice of intermediate logics and the lattice
of varieties of Heyting algebras. An alternative proof, making use of Lindenbaum–
Tarski algebras for DNA-logics, was given in [41]. Let us introduce the following

3 Technically, this means that the lattice of DNA-varieties is a lattice of proper classes—exactly
as the lattice of varieties of Heyting algebras. This becomes an issue if we work in the standard
ZFC theory of sets, since classes cannot belong to other classes. We can avoid this problem by
picking a set of special representatives from each variety (e.g., the free algebras of countable
rank [35, Section 14.2]) and using them to define the lattice.
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diagram:

Λ(IPC) Λ(IPC¬)

Λ(HA) Λ(HA↑)

¬

∼=op

↑

∼=op

where the four objects in the diagram are the following:

Λ(IPC) is the lattice of intermediate logics;

Λ(HA) is the lattice of varieties of Heyting algebras;

Λ(IPC¬) is the lattice of DNA-logics;

Λ(HA↑) is the lattice of DNA-varieties.

And the arrows are the following. Firstly, (–)¬ : Λ(IPC) → Λ(IPC¬) is the map we
introduced above that assigns to every intermediate logic L its negative variant L¬.
Secondly, (–)↑ : Λ(HA) → Λ(HA↑) is the map that assigns to each variety of Heyting
algebras V its negative closure V↑. The isomorphism Λ(IPC) ∼=op Λ(HA) is given by
the standard duality for intermediate logics and varieties of Heyting algebras. The
two maps of this bijection are Log : Λ(HA) → Λ(IPC) and Var : Λ(IPC) → Λ(HA),
which we have defined in the preliminaries. By using the fact that Λ(IPC) ∼=op Λ(HA)
we show now that also Λ(IPC¬) ∼=op Λ(HA↑) holds. We proceed as follows. First
we show that the diagram that we have described commutes, then we show that
Var¬ and Log¬ are inverse maps of each other and finally we prove they are order-
reversing homomorphisms between Λ(IPC¬) and Λ(HA↑). Thus we will obtain a dual
isomorphism Λ(IPC¬) ∼=op Λ(HA↑).

3.5.1. Commutativity of the diagram. We first prove the two following propositions,
thereby establishing that our diagram commutes.

Proposition 3.25. For every intermediate logic L we have Var¬(L¬) = Var(L)↑.

Λ(IPC) Λ(IPC¬)

Λ(HA) Λ(HA↑)

Var

¬

Var¬

↑

Proof. (⊆) Consider any Heyting algebraH ∈ Var¬(L¬). We haveH �¬ L¬ and so
by Proposition 3.14 that 〈H¬〉 � L. So we have 〈H¬〉 ∈ Var(L) and since 〈H¬〉¬ = H¬
and 〈H¬〉 � H also H ∈ Var(L)↑. (⊇) Consider any Heyting algebra H ∈ Var(L)↑,
then there is some K ∈ Var(L) such that K � H and H¬ = K¬. Then K � L and by
Lemma 3.12 we obtain K �¬ L¬, which entails K ∈ Var¬(L¬). Finally, since DNA-
varieties are closed under core superalgebra, it follows that H ∈ Var¬(L¬). �
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Proposition 3.26. For every variety V of Heyting algebras Log¬(V↑) = Log(V)¬.

Λ(IPC) Λ(IPC¬)

Λ(HA) Λ(HA↑)

¬

↑

Log Log¬

Proof. We prove both directions by contraposition. (⊆) Supposeϕ /∈ Log(V)¬, then
ϕ[¬p/p] /∈ Log(V), so there is some Heyting algebraH ∈ V such thatH � ϕ[¬p/p]. By
Proposition 3.11 this means that H �¬ ϕ and so, since H ∈ V ⊆ V↑, we also have
ϕ /∈ Log¬(V↑). (⊇) Suppose ϕ /∈ Log¬(V↑). It follows that there is some Heyting
algebra H ∈ V↑ such that H �¬ ϕ, hence by Lemma 3.13 we have that 〈H¬〉 �¬ ϕ. It
follows by Proposition 3.11 that 〈H¬〉 � ϕ[¬p/p]. Now, sinceH ∈ V↑, we have for some
K ∈ V that K � H and K¬ = H¬. Therefore 〈H¬〉 � K and 〈H¬〉 ∈ V . Finally, since
〈H¬〉 � ϕ[¬p/p] we get that ϕ[¬p/p] /∈ Log(V) and hence ϕ /∈ Log(V)¬. �

In particular, when V is itself a DNA-variety we obtain the following corollary.

Corollary 3.27. For every DNA-variety X we have Log¬(X ) = Log(X )¬.

3.5.2. Definability theorem and algebraic completeness. By relying on the commu-
tativity result described above, we can now prove that the two maps Var¬ and Log¬

are inverse of one another. It is then easy to see that suitable versions of the definability
theorem and algebraic completeness follow from this result.

Proposition 3.28. Var¬ ◦ Log¬ = 1Λ(HA↑).

Proof. For any DNA-variety X we have:

Var¬(Log¬(X )) = Var¬(Log(X )¬) (by Corollary 3.27)

= Var(Log(X ))↑ (by Proposition 3.25)

= X ↑ (by standard duality)

= X .

And thus Var¬ ◦ Log¬ = 1Λ(HA↑). �

Theorem 3.29 (Definability Theorem). Every DNA-variety X is defined by its DNA-
validities, i.e., for every Heyting algebra H,

H ∈ X ⇔ H �¬ Log¬(X ).

We then have that every DNA-variety is DNA-definable. Moreover, by Proposition 3.23
we have that every DNA-definable class is also a DNA-variety, the following corollary also
follows.

Corollary 3.30 (Birkhoff Theorem for DNA-Varieties). A class of Heyting algebras
C is a DNA-variety if and only if it is DNA-definable by some set of formulas.

The algebraic completeness of DNA-logics is proved as follows.
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Proposition 3.31. Log¬ ◦ Var¬ = 1Λ(IPC¬).

Proof. For any DNA-logic Λ such that Λ = L¬ we have:

Log¬(Var¬(Λ)) = Log¬(Var¬(L¬))

= Log¬(Var(L)↑) (by Proposition 3.25)
= Log(Var(L))¬ (by Proposition 3.26)
= L¬ (by standard duality)
= Λ.

And thus Log¬ ◦ Var¬ = 1Λ(IPC¬). �
Theorem 3.32 (Algebraic Completeness). Every DNA-logic Λ is complete with respect

to its corresponding DNA-variety, i.e., for every ϕ ∈ LP ,

ϕ ∈ Λ ⇔ Var¬(Λ) �¬ ϕ.

3.5.3. Dual isomorphism. Finally, by relying on the standard dual isomorphism
Λ(HA) ∼=op Λ(IPC) and the commutative square above, it is easy to show that Var¬

and Log¬ are order-reversing homomorphisms that invert the lattice structure of
Λ(IPC¬) and Λ(HA↑).

Proposition 3.33. Var¬ is an order-reversing homomorphism.

Proof. It suffices to check that Var¬ inverts meet and join. Let Λ0,Λ1 be two DNA-
logics such that Λ0 = L¬

0 and Λ1 = L¬
1 . The case for ∧ is as follows:

Var¬(Λ0 ∧ Λ1) = Var¬(L¬
0 ∧ L¬

1 )
= Var¬((L0 ∧ L1)¬) (by Proposition 3.5)

= Var(L0 ∧ L1)↑ (by Proposition 3.25)

= (Var(L0) ∨ Var(L1))↑ (by standard duality)

= Var(L0)↑ ∨ Var(L1)↑ (by Proposition 3.20)
= Var¬(L¬

0 ) ∨ Var¬(L¬
1 ) (by Proposition 3.25)

= Var¬(Λ0) ∨ Var¬(Λ1).

The case for ∨ is analogous. �
Proposition 3.34 Log¬ is an order-reversing homomorphism.

Proof. It suffices to check that Log¬ inverts meet and join. Let X0,X1 be two DNA-
varieties such that X0 = V↑

0 and X1 = V↑
1 . The case for ∧ is as follows:

Log¬(X0 ∧ X0) = Log¬(V↑
0 ∧ V↑

1 )

= Log¬((V0 ∧ V1)↑) (by Proposition 3.20)
= Log(V0 ∧ V1)¬ (by Proposition 3.26)
= (Log(V0) ∨ Log(V1))¬ (by standard duality)
= Log(V0)¬ ∨ Log(V1)¬ (by Proposition 3.5)

= Log¬(V↑
0 ) ∨ Log¬(V↑

1 ) (by Proposition 3.26)
= Log¬(X0) ∨ Log¬(X1).

The case for ∨ is analogous. �
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It is a consequence of the previous results thatVar¬ andLog¬ are two order-reversing
homomorphisms between Λ(IPC¬) and Λ(HA↑) which are inverse of one another. The
following duality theorem follows.

Theorem 3.35 (Duality). The lattice of DNA-logics is dually isomorphic to the lattice
of DNA-varieties of Heyting algebras, i.e., Λ(IPC¬) ∼=op Λ(HA↑).

§4. DNA-varieties. In this section we prove some further results on DNA-varieties.
Firstly, we investigate the relation between DNA-logics and the intermediate logics they
are a negative variant of, and we characterize maximal and minimal elements in the
sublattice of intermediate logics which have the same negative variant. We introduce
regularly generated Heyting algebras and we use them to characterize the maximal
logics with a negative variant. We prove for DNA-varieties a suitable version of two
key results of universal algebra, namely the Tarski and Birkhoff variety theorems. We
introduce a suitable notion of local finiteness for DNA-varieties and of local tabularity
for DNA-logics. Finally, we introduce Jankov DNA-formulas and we prove a version of
Jankov’s theorem for our setting.

4.1. Connections to intermediate logics. In the previous section we have introduced
DNA-logics as negative variants of intermediate logics under the map (–)¬ : Λ(IPC) →
Λ(IPC¬). Now we will investigate the relation between intermediate logics and DNA-
logics in more detail. We will first show that the map (–)¬ which sends every
intermediate logic to its negative variant is not injective. The following proposition was
proved by Ciardelli in [9, Lemma 5.2.20] and exemplifies how different intermediate
logics can share the same negative variant. We recall that KC is the logic of the weak
excluded middle, i.e., KC = IPC + ¬p ∨ ¬¬p.

Lemma 4.1. Let L be any intermediate logic such that KC ⊆ L, then L¬ = CPC.

Proof. Suppose L is an intermediate logic such that KC ⊆ L. One can show that for
every formula ϕ we have ϕ ∨ ¬ϕ ∈ L¬. We prove this by induction on the complexity
of ϕ. For the base case, suppose that p ∈ AT, then since KC ⊆ L we have for all p ∈ AT

that ¬p ∨ ¬¬p ∈ L and therefore that p ∨ ¬p ∈ L¬. The induction steps follow easily
by observing that for every formulas � and 	 we have

(� ∨ ¬�) ∧ (	 ∨ ¬	) → ((� � 	) ∨ ¬(� � 	)) ∈ IPC for � ∈ {∧,∨,→}.
This shows that L¬ = IPC + ϕ ∨ ¬ϕ = CPC. �
Therefore, for intermediate logics L0, L1 such that KC ⊆ L0, L1 and L0 �= L1 we have
that L¬

0 = L¬
1 = CPC, hence (–)¬ is clearly not injective. Every DNA-logic Λ thus

determines a subset of the lattice Λ(IPC) of those logics which have Λ as their negative
variant. It is easy to see that this subset is also a sublattice, since the map (–)¬ is a
homomorphism. Similarly, since also (–)↑ is a homomorphism, we can also consider
the sublattice of all varieties V in Λ(HA) whose negative closure is X . We then define
the preimage of a DNA-logic and the preimage of a DNA-variety as follows.

Definition 4.2. Let Λ be a DNA-logic and X be a DNA-variety. The preimage of Λ is the
sublattice I(Λ) of all intermediate logics L such that L¬ = Λ. The preimage of X is the
sublattice I(X ) of all varieties V such that V↑ = X .

By the duality Λ(IPC) ∼=op Λ(HA) and the fact that the square introduced in Section
3.5 commutes, we then immediately have the following proposition.
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Proposition 4.3. For every DNA-logic Λ and every DNA-variety X , we have that if
X = Var¬(Λ) and Λ = Log¬(X ) then I(Λ) ∼=op I(X ).

The isomorphism I(Λ) ∼=op I(X ) above is the restriction of the dual isomorphism
Λ(IPC) ∼= Λ(HA). We will now use this duality to characterize the two lattices I(Λ)
and I(X ).

First, we prove that the preimage I(Λ) of some DNA-logic Λ has a greatest element
and we provide a characterisation of it. The following notion of schematic fragment
of a DNA-logic was first introduced under the name of standardization in [37, Section 3]
and later considered by Ciardelli in [9, Section 3.4].

Definition 4.4 (Schematic Fragment). Let Λ be a DNA-logic, we define its schematic
fragment Schm(Λ) as:

Schm(Λ) := {ϕ ∈ Λ : ∀� ∈ LP, ϕ[�/p] ∈ Λ}.

Schm(Λ) is the set of all schematic formulas in Λ, namely those formulas for which
Λ is closed under uniform substitution. One can easily check that Schm(Λ) is an
intermediate logic and thatSchm(Λ)¬ = Λ. Moreover, the following proposition show
that Schm(Λ) is the maximal intermediate logic whose negative variant is Λ.

Proposition 4.5. Let Λ be any DNA-logic. Then, for every intermediate logic L such
that L¬ = Λ we have L ⊆ Schm(Λ).

Proof. By Proposition 3.3 L ⊆ L¬ = Λ. Since L is closed under uniform substitu-
tion, for anyϕ ∈ Lwe have that any substitution instanceϕ[�/p] ofϕ is also in L. Hence,
by the definition of Schm(Λ), we obtain ϕ ∈ Schm(Λ). Therefore, L ⊆ Schm(Λ). �

The following theorem immediately follows by the previous propositions.

Theorem 4.6. Let Λ be a DNA-logic. The schematic fragment Schm(Λ) is the greatest
intermediate logic whose negative variant is Λ.

Therefore, the preimage I(Λ) of a DNA-logic Λ has always a greatest element. By
Theorem 3.35 we also obtain a dual characterisation of the correspondingDNA-varieties.
In fact, we have that Var(Schm(Λ)) is the least variety whose negative closure is
Var¬(Λ). We define the map leastV : Λ(HA↑) → Λ(HA) as follows:

leastV : X �→ Var(Schm(Log¬(X ))).

The following proposition follows easily.

Proposition 4.7. The following diagram commutes in both directions, i.e., Var ◦
Schm = leastV ◦ Var¬ and Log ◦ leastV = Schm ◦ Log¬.

Λ(IPC) Λ(IPC¬)

Λ(HA) Λ(HA↑)

∼=op ∼=op

Schm

leastV
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Proof. By the definition of leastV and the dual isomorphism Λ(IPC¬) ∼=op
Λ(HA↑) we have leastV ◦ Var¬ = Var ◦ Schm ◦ Log¬ ◦ Var¬ = Var ◦ Schm and
Log ◦ leastV = Log ◦ Var ◦ Schm ◦ Log¬ = Schm ◦ Log¬. �
Therefore, for every DNA-logic Λ we have that Schm(Λ) is the greatest logic in I(Λ)
and leastV (Var¬(Λ)) is the least variety in I(Var¬(Λ)).

Similarly, one can show that the lattice I(Λ) has always a least element, which has
so far been neglected in the literature. That this holds follows directly from the fact that
for every DNA-variety X , there is a greatest variety whose negative closure is exactly X .

Proposition 4.8. For every DNA-variety X , there is a greatest variety V such that
V↑ = X .

Proof. By Proposition 3.18 we have that DNA-varieties are also varieties and,
moreover, X ↑ = X for every DNA-variety X . Hence X is clearly the greatest variety
V such that V↑ = X . �
The following theorem immediately follows by the previous propositions and DNA-
duality.

Theorem 4.9. Let X be a DNA-variety. The logic Log(X ) is the least among the
intermediate logics whose negative variant is Log¬(X ).

We thus define a map leastL : Λ(IPC¬) → Λ(IPC) as follows:

leastL : Λ �→ Log(Var¬(Λ)).

The following proposition follows easily.

Proposition 4.10. The following diagram commutes in both directions, i.e., Var ◦
leastL = id ◦ Var¬ and Log ◦ id = leastL ◦ Log¬.

Λ(IPC) Λ(IPC¬)

Λ(HA) Λ(HA↑)

∼=op ∼=op

leastL

id

Proof. By the definition of leastL and the dual isomorphism Λ(IPC¬) ∼=op Λ(HA↑)
we have Var ◦ leastL = Var ◦ Log ◦ Var¬ = id ◦ Var¬ and leastL ◦ Log¬ = Log ◦
Var¬ ◦ Log¬ = Log ◦ id . �
Therefore, it is the case that for every DNA-logic Λ we have that leastL(Λ) is the smallest
logic in I(Λ) and Var¬(Λ) is the greatest variety in I(Var¬(Λ)).

By the former results above it thus follows that the sublattices I(Λ) and I(X ) are
bounded sublattices of Λ(IPC) and Λ(HA). We introduce the following definitions.

Definition 4.11 (DNA-maximality and DNA-minimality). Let L be an intermediate logic.
(i) We say that L is DNA-maximal if it is the greatest logic in I(L¬). (ii) We say that L
is DNA-minimal if it is the least logic in I(L¬).

In [37, Section 3] and [9, Section 5.2] intermediate logics L such that L = Schm(L¬)
are called stable. The following proposition thus establishes that a logic is DNA-maximal
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iff it is stable. However, we will not use here this terminology, as the notion of stable
logic has been employed e.g., in [28] with a rather different meaning. The following
proposition is an immediate consequence of our definition and the previous results.

Proposition 4.12. Let L be an intermediate logic, then:

(i) L is DNA-maximal iff L = Schm(L¬) and
(ii) L is DNA-minimal iff Var(L) = Var¬(L¬).

4.2. Regular Heyting algebras. The previous characterisation of DNA-maximal and
DNA-minimal logics is in a sense asymmetrical: we have a syntactic criterion for
maximality and a semantic one for minimality. We are now after a semantic criterion
for maximality. To this sake, we will now define regular Heyting algebras, which also
play a major role in the context of DNA-logics in general.

Definition 4.13 (Regular Heyting Algebras). A Heyting algebra H is regular if H =
〈H¬〉.
These algebras have been introduced in [5] to provide an algebraic semantics to
propositional inquisitive logic. A regular Heyting algebra is an algebra generated
by its setH¬ of regular elements. For this reason we call regular Heyting algebras also
regularly generated. Already in the previous section we have described some important
properties of regular algebras in Lemma 3.13 and Proposition 3.14. Now we prove two
further results showing that varieties V with the same negative closure X have the same
collection of regular Heyting algebras. We first show the following proposition.

Proposition 4.14. Let H be a regular Heyting algebra such that for some DNA-logic
Λ we have thatH �¬ Λ. Then, for every intermediate logic L such that L¬ = Λ we have
that H � L.

Proof. Suppose that H �¬ Λ, then since Λ = Schm(Λ)¬ it follows that H �¬

Schm(Λ)¬ and so by Proposition 3.14 H � Schm(Λ). Finally, by Proposition 4.5
we have that L ⊆ Schm(Λ) and thusH � L. �
By the dual isomorphism Λ(IPC¬) ∼=op Λ(HA↑) we then obtain the following
proposition.

Proposition 4.15. Let H be a regular Heyting algebra. If H ∈ X , then for every
variety V such that V↑ = X we have that H ∈ V .

Proof. Suppose H ∈ X , then H �¬ Log¬(X ). Then, since V↑ = X , it follows by
Corollary 3.27 thatLog(V)¬ = Log¬(X ). SoH �¬ Log(V)¬ and by Proposition 4.14,
H � Log(V), which entails H ∈ V . �
We thereby have that all standard varieties whose negative closure is the same DNA-
variety contain exactly the same regularly generated Heyting algebras. Interestingly, by
Proposition 4.15 in order to check whether a regular Heyting algebra H validates an
intermediate logic L, it is sufficient to check whetherH DNA-validates L¬ (i.e., whether
H validates L¬ under DNA-valuations).

Finally, we can strengthen the previous results and show that regular Heyting
algebras provide a semantic characterisation of DNA-maximal logics. In [10, Section
5.2] a sufficient criterion for DNA-maximality was given in the context of Kripke frames:
Ciardelli established that if L is the logic of a class of finite, everywhere branching trees,
then it is DNA-maximal. We propose here a criterion in terms of regular algebras which
is both sufficient and necessary.
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Theorem 4.16. An intermediate logic L is the logic of a class of regularly generated
Heyting algebras if and only if it is DNA-maximal.

Proof. (⇒) By Proposition 4.12 this is equivalent to the statement that if an
intermediate logic L is such that L = Log(C), where C is a class of regularly generated
Heyting algebras, then L = Schm(L¬). So, suppose that C is a class of regularly
generated Heyting algebras, we need to show that Log(C) = Schm(Log(C)¬). Since
Schm(Log(C)¬) is DNA-maximal it follows that Log(C) ⊆ Schm(Log(C)¬), so that we
only need to show that Schm(Log(C)¬) ⊆ Log(C). Now suppose by contraposition
that ϕ /∈ Log(C), then we have that for someH ∈ C and for some valuation V, we have
that (H,V ) � ϕ. Now, since H is regularly generated, every element xi ∈ H can be
written out as a polynomial �i(yki ) of regular elements of H. Then we define the DNA-

valuation 
 : pki �→ yki so that we then get ��i(pki )�(H,
) = �i(yki ) = xi . Let q1, ... , ql
be a list of the distinct variables appearing in ϕ, and define indexes j1, ... , jl such
that V (qi) = xji . Moreover, define � = ϕ[�j1 (pkj1 )/q1, ... , �jl (pkjl )/ql ]. We then have that
�ϕ�(H,V ) = ���(H,
), and consequently (H,
) � �. Since H ∈ C ⊆ C↑, it follows that
� /∈ Log¬(C↑) = Log(C)¬. Finally, since � is a substitution instance of ϕ, it follows
that ϕ /∈ Schm(Log(C)¬).

(⇐) Suppose that L is a DNA-maximal logic and consider its corresponding variety
Var(L). We let VarR(L) be the subclass of Var(L) consisting of regular Heyting
algebras only. Now, we have that Var(L) ⊆ VarR(L)↑, since for every H ∈ Var(L),
we have 〈H¬〉 ∈ VarR(L), hence H ∈ VarR(L)↑. As obviously VarR(L) ⊆ Var(L), it
immediately follows that Var(L)↑ = VarR(L)↑. We thus obtain:

L¬ = Log(Var(L))¬

= Log¬(Var(L)↑) (by Proposition 3.26)

= Log¬(VarR(L)↑) (by Var(L)↑ = VarR(L)↑)

= Log¬(V(VarR(L))↑) (since V(VarR(L))↑ = VarR(L)↑)

= Log(V(VarR(L)))¬ (by Proposition 3.26)

= Log(VarR(L))¬.

The last move is justified by the well-known fact that if K is a class of Heyting algebras
and V(K) the variety generated by it, thenLog(K) = Log(V(K)) (see, e.g., [8, Chapter
7]). It follows by the DNA-maximality of L that Log(VarR(L)) ⊆ L. Moreover, since
we clearly have that L ⊆ Log(VarR(L)) it follows that L = Log(VarR(L)), yielding
that L is the logic of a class of regularly generated Heyting algebras. �

Hence we can restate Proposition 4.12 in purely semantical terms.

Proposition 4.17. Let L be an intermediate logic, then:

(i) L is DNA-maximal iff L = Log(C), for some class C of regular Heyting algebras
and

(ii) L is DNA-minimal iff Var(L) = Var¬(L¬).

4.3. Birkhoff’s theorem for DNA-varieties. We will prove in this section a version of
Birkhoff’s theorem for DNA-varieties. While in the standard setting Birkhoff’s theorem
states that varieties are generated by their subdirectly irreducible algebras, in our
context we will prove that DNA-varieties are generated by their regular, subdirectly
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irreducible members. Interestingly, another method to generate DNA-varieties is by
constructing the Lindenbaum–Tarski algebra of their corresponding DNA-logic, see for
details [41, Section 3.3.2].

Recall that if X is a DNA-variety, then we say that X is generated by the class C ⊆ X
if X = X (C) = V(C)↑. We firstly prove the following useful theorem.

Theorem 4.18. Let X be a DNA-variety, then X = X (C) iff Log¬(X ) = Log¬(C).

Proof. (⇒) Since C ⊆ X , the inclusion from left to right is straightforward. Suppose
now that X �¬ ϕ then there is some Heyting algebra H ∈ X such that H �¬ ϕ.
Then since X = X (C), it follows by Theorem 3.21 that H ∈ HSP(C)↑. Thus, since
DNA-validities are preserved under homomorphisms, subalgebras, products and core
superalgebras, it follows that there is some Heyting algebra A ∈ C such that A �¬ ϕ.

(⇐) Suppose now that Log¬(X ) = Log¬(C). Then by the Duality Theorem
3.35 it follows Var¬(Log¬(X )) = Var¬(Log¬(C)) and thus X = Var¬(Log¬(C)).
Now, since Log¬(X (C)) = Log¬(C)) it follows by Proposition 3.22 and Duality that
Var¬(Log¬(C)) =Var¬(Log¬(X (C))). ThusVar¬(Log¬(X )) =Var¬(Log¬(X (C))),
which by duality means X = X (C). �

A first approximation of a Birkhoff’s theorem for DNA-varieties is given by the
following result, stating that every DNA-variety X is generated by its collection of
regular Heyting algebras. If X is a DNA-variety, then we denote by XR its subclass of
regular Heyting algebras.

Proposition 4.19. Every DNA-variety is generated by its collection of regular elements,
i.e., X = X (XR).

Proof. Let X be a DNA-variety, then for any non-regularH ∈ X we have that 〈H¬〉 �
H and H¬ = 〈H¬〉¬. So since 〈H¬〉 ∈ XR it follows H ∈ X (XR). �
We thus have, by the standard version of Birkhoff’s theorem, that every DNA-variety
is generated by its subdirectly irreducible elements and, by the previous proposition,
that every DNA-variety is generated by its regular elements. We can actually prove
more, namely that DNA-varieties are generated by their regular, subdirectly irreducible
elements. Now if X is a DNA-variety, we denote by XRSI its subset of regular subdirectly
irreducible Heyting algebras. We will thus show that for every DNA-variety we have
X = X (XRSI ). Let us first recall the following result from the literature, originally due
to Wronski [45].

Lemma 4.20. Let B ∈ HA. Then if b �= 1B there is a subdirectly irreducible algebra C
and a surjective homomorphism h : B � C such that f(b) = sC , where sC is the second
greatest element of C.

By using this fact we can prove Birkhoff theorem for DNA-varieties.

Theorem 4.21 (DNA-Birkhoff). Every DNA-variety is generated by its collection of
regular subdirectly irreducible elements: X = X (XRSI ).

Proof. By the dual isomorphism between DNA-logics and DNA-varieties it suffices
to show that Log¬(X ) = Log¬(X (XRSI )), which is equivalent by Theorem 4.18 to
Log¬(X ) = Log¬(XRSI ). The directionLog¬(X ) ⊆ Log¬(XRSI ) follows immediately
from the inclusion XRSI ⊆ X . It thus suffices to show that Log¬(XRSI ) ⊆ Log¬(X ).

Suppose by contraposition that ϕ /∈ Log¬(X ), then for some H ∈ X and some
DNA-valuation V ¬, we have that (H,V ¬) �¬ ϕ and so, by reasoning as in the proof of
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Lemma 3.13, that (〈H¬〉, V ¬) �¬ ϕ. Then, since x = �ϕ�(〈H¬〉,V¬) �= 1H it follows by
Lemma 4.20 that there is a subdirectly irreducible algebra C such that there is surjective
homomorphism h : 〈H¬〉 � C with h(x) = sC . Then, since homomorphisms preserve
regular elements, the valuation U¬ = h ◦ V ¬ is a DNA-valuation. Now let p0, ... , pn be
the variables in ϕ, it follows by the properties of homomorphisms that:

�ϕ(p0, ... , pn)�(C,U¬) = ϕC [U¬(p0), ... , U¬(pn)]

= ϕC [h(V ¬(p0)), ... , h(V ¬(pn))]

= h�ϕ(p0, ... , pn)�(〈H¬〉,V¬)

= sC .

From which it immediately follows that (C,U¬) � ϕ and so that C �¬ ϕ. Now, since
H ∈ X , we have that 〈H¬〉 ∈ X and so since h : 〈H¬〉 � C also thatC ∈ X . Moreover,
we have that C is subdirectly irreducible and regular, as it is homomorphic image of
〈H¬〉. Finally, this means that C ∈ XRSI and so that ϕ /∈ Log¬(XRSI ), which proves
our claim. �

4.4. Locally tabular DNA-logics and DNA-varieties. The notions of local tabularity
and local finiteness play an important role in the theory of intermediate logics and in
universal algebra at large. Here we introduce a suitable notion of local finiteness for
DNA-varieties and DNA-logics, which we will later employ in our study of inquisitive
logic.

We say that a Heyting algebra H is DNA-finitely generated if there are finitely many
elements x0, ... , xn ∈ H¬ such that 〈x0, ... , xn〉 = H . We then define locally finite DNA-
varieties and locally tabular DNA-logics.

Definition 4.22. A DNA-variety X is DNA-locally finite if every DNA-finitely generated
H ∈ X is also finite. A DNA-logic Λ is DNA-locally tabular if its corresponding DNA-variety
Var¬(Λ) is locally finite.

When the context makes it clear we then drop the prefix DNA and talk simply of local
finiteness and local tabularity. The following proposition follows straightforwardly and
allows us to relate the local finiteness of intermediate logics to the local finiteness of
DNA-logics.

Proposition 4.23. Let L be any intermediate logic, if L is locally tabular, then L¬ is
locally tabular.

Proof. If L is locally tabular, then every finitely generatedH ∈ Var(L) is also finite.
Now consider any H ∈ Var¬(L¬) and suppose for some x0, ... , xn ∈ H¬ we have
〈x0, ... , xn〉 = H . Then it follows that H = 〈H¬〉 and so that H is regular. Then, we
have by Proposition 4.15 that H ∈ Var(L) and so since H is finitely generated by
x0, ... , xn it also follows that H is finite. This shows that L¬ is locally tabular. �

A property of DNA-logics which is closely connected to local finiteness is the finite model
property (FMP). We introduce it as follows.

Definition 4.24 (Finite Model Property). A DNA-variety X has the DNA-finite model
property (FMP) if X = X (C), where C is a collection of finite Heyting algebras. A DNA-
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logic Λ has the DNA-finite model property if its corresponding DNA-variety Var¬(Λ) has
the finite model property.

When the context makes it clear we drop the prefix DNA and simply talk of finite model
property. The finite model property allows, for every formula ϕ /∈ Λ, to find a finite
algebra H which validates Λ and refutes ϕ. Similarly to the case of local finiteness, the
finite model property of an intermediate logic entails the finite model property of its
negative variant.

Proposition 4.25. Let L be any intermediate logic, if L has the finite model property
then L¬ has the finite model property.

Proof. Suppose L has the finite model property, thenVar(L) = V(C) for some classC
of finite Heyting algebras. Then, we have thatVar¬(L¬) = Var(L)↑ = V(C)↑ = X (C),
which shows that L¬ also has the finite model property. �

If a DNA-variety has the finite model property we can further refine our version of
Birkhoff theorem. We denote by XRFSI the collection of finite, regular, subdirectly
irreducible elements in X .

Theorem 4.26. If a DNA-variety X has the finite model property, then it is generated
by its finite, regular subdirectly irreducible elements, i.e., X = X (XRFSI ).

Proof. By Theorem 4.18 it suffices to check that Log¬(XRFSI ) = Log¬(X ). The
direction Log¬(X ) ⊆ Log¬(XRFSI ) is obvious, for if ϕ is true in every algebra in X
it is also true in XRFSI . Now, consider the direction Log¬(XRFSI ) ⊆ Log¬(X ). First
notice that if a DNA-variety X has the finite model property, then for some class C
of finite Heyting algebras, we have that X = X (C). Suppose now by contradiction
that ϕ /∈ Log¬(X ), then by Theorem 4.18 there is some finite H ∈ C such that H �¬

ϕ. Therefore, it follows immediately by Lemma 3.11 that 〈H¬〉 �¬ ϕ. Then, by the
argument of the proof of DNA-Birkhoff Theorem 4.21, we obtain a regular subdirectly
irreducible algebra C such that h : 〈H¬〉 � C and C � ϕ. Moreover, by the fact that
C is a homomorphic image of 〈H¬〉 it also follows that C is finite. We thus obtain that
C ∈ XRFSI and since C �¬ ϕ that ϕ /∈ Log¬(XRFSI ), which finishes the proof of the
theorem. �

Moreover, we can also show that if a DNA-variety X is locally finite, then it has the
finite model property. We denote by XF the subcollection of finite Heyting algebras
in X .

Theorem 4.27. Let X be a DNA-variety. If X is locally finite, then it has the finite
model property.

Proof. By Theorem 4.18 it suffices to show that Log¬(X ) = Log¬(XF ). The
inclusion Log¬(X ) ⊆ Log¬(XF ) is obvious, so we show that Log¬(XF ) ⊆ Log¬(X ).
Suppose ϕ /∈ Log¬(X ), then there is some H ∈ X such that for some DNA-valuation
V ¬ we have that (H,V ¬) �¬ ϕ. Let p be the variables in ϕ and let V ¬(p) be
their interpretations in H. Then, since X is locally finite we have that the generated
subalgebra 〈V ¬(p)〉 is also finite. Moreover, since (H,V ¬) � ϕ and by the fact that the
interpretation ofϕ lies inside 〈V ¬(p)〉, it immediately follows that (〈V ¬(p)〉, V ¬) � ϕ.
So, since 〈V ¬(p)〉 ∈ XF , it follows that ϕ /∈ Log¬(XF ), which finishes the proof of the
theorem. �
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One may wonder whether our definition trivializes or if it captures an interesting
property that DNA-varieties may, or may not, have. That this is the case follows from
the fact that one can find DNA-logics which have the finite model property but that are
not locally tabular. Hence, exactly as in the case of intermediate logics, the property of
local tabularity is stronger than that of the finite model property. In particular, since
IPC has the finite model property, it follows immediately from Proposition 4.25 that
IPC¬ has the finite model property as well. However, similarly to the case of IPC, we
can show that IPC¬ is not locally tabular. This is done by adapting the method of the
Rieger–Nishimura ladder to the context of DNA-logics. A proof of this result can be
found in [41, Section 4.2.2].

4.5. Jankov formulas for DNA-models. Jankov formulas (or Jankov-de Jongh
formulas) play an important role in the study of intermediate logics [4, 8]. These
formulas are a sort of counterpart in algebraic logic of what diagrams are in model
theory, as they express in syntactic terms some key semantic properties of the
corresponding algebra. Jankov introduced these formulas in [29, 31], where he used
them to show that the lattice of intermediate logic has the cardinality of the continuum.
Formulas having similar properties have also been introduced around the same time
by de Jongh [17] (see also [4, Section 3.3]) and later by Fine in the context of modal
logics [19]. We refer the interested reader to [2, 8, 15] for more information on Jankov
formulas and their history.

We introduce a version of Jankov formulas which suits our setting of DNA-logics
and we show how they can be used to axiomatise locally tabular DNA-logics. We adapt
the approach originally presented by Wronski in [45]. First, we show how to decorate
a Heyting algebra H ∈ HARFSI with what we call Jankov representatives. Consider
any H ∈ HARFSI , then we have that H = 〈H¬〉 and also that H¬ is finite. We can
thus assume without loss of generality that H is generated by a finite set of regular
elements a0, ... , an and that every element x ∈ H can be expressed as a polynomial
�H (a0, ... , an) over the regular elements of H. We then associate every element x ∈ H
to a formula �x called its Jankov representative.

Definition 4.28 (Jankov Representative). Let H ∈ HARFSI and x ∈ H , then the
Jankov representative of x is a formula �x defined as follows:

(i) If x ∈ H¬, then �x = px , where px ∈ AT.
(ii) If x = �H (a0, ... , an) with a0, ... , an ∈ H¬, then �x = �(pa0 , ... , pan ).

Notice that when we decorate a Heyting algebra H with Jankov representatives we are
making a fundamental use of the fact that H is regular. Notice also that the Jankov
representative of an element x ∈ H is not unique, as there are different polynomials
over regular elements characterizing the same element of a regular Heyting algebra. The
Jankov representative is thus the formula corresponding to any of those polynomials.
Once we have the notion of Jankov representative, we can define Jankov formulas for
the setting of DNA-logics as follows.

Definition 4.29 (Jankov DNA-Formula). LetH ∈ HARFSI , let 0 be the least element of
H and s its second greatest element. Then the Jankov DNA-Formula 	DNA(H ) is defined as
follows:

	DNA(H ) = α → �,
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where α and � are the following formulas:

α = (�0 ↔ ⊥) ∧
∧

{(�a ∧ �b) ↔ �a∧b : a, b ∈ H}∧∧
{(�a ∨ �b) ↔ �a∨b : a, b ∈ H}∧∧
{(�a → �b) ↔ �a→b : a, b ∈ H}

� = �s.

When its clear from the context that we are working with Jankov DNA-formulas and
not with the standard Jankov formulas, we drop the superscript and write just 	(H )
for the Jankov DNA-formula of H. We now prove a lemma which plays an important
role in the proof of our Jankov’s theorem.

Lemma 4.30. LetH ∈ HARFSI , then H �¬ 	(H ).

Proof. Suppose H ∈ HARFSI and 	(H ) is its DNA-Jankov formula. Then we define
the DNA-valuation V ¬ such that for all atomic Jankov representative we have that
V ¬ : pa �→ a, for all a ∈ H¬. Moreover, if an element x ∈ H \H¬ is described by
a polynomial �H (a0, ... , an) over regular element of H, it follows by the definition
of Jankov representative that ��(pa, ... , pa)�(H,V¬) = �H (a0, ... , an). We then have
that for every element x ∈ H it is the case that ��x�

(H,V¬) = x. But then it
follows straightforwardly that for all a, b ∈ H and for any connective � we have
��a � �b�(H,V¬) = ��a�b�

(H,V¬) so that the antecedent of the DNA-Jankov formula is
�α�(H,V¬) = 1A and its consequent is ���(H,V¬) = ��x�

(H,V¬) = sc . Therefore, we have
that:

�	(H )�(H,V¬) = �α → ��(H,V¬) = �α�(H,V¬) → ���(H,V¬) = 1A → sA = sA �= 1A.

And, therefore, we have that (H,V ¬) �¬ 	(H ) and so thatH �¬ 	(H ). �

If A and B are two Heyting algebras, then we define A ≤ B iff A ∈ HS(B). It is easy
to show that this is indeed a partial order—modulo taking isomorphism classes of
algebras. We now prove a suitable version of Jankov’s theorem for our setting. We
adapt to our setting a similar proof given in [2].

Theorem 4.31 (Jankov’s Theorem for DNA-Models). Let A ∈ HARFSI and B ∈ HA
then:

B �¬ 	(A) ⇐⇒ A ≤ B.

Proof. (⇒) Suppose that B �¬ 	(A), then for some DNA-valuation V ¬ we have
�	(A)�(B,V¬) = b �= 1B . It follows from Lemma 4.20 that there is a subdirectly
irreducible Heyting algebra C and a surjective homomorphism f : B � C such that
f(b) = sC . Hence, since f is a homomorphism, it follows that U¬ = f ◦ V ¬ is a
DNA-valuation. It thus follows that �	(A)�(C,U¬) = �α → �sA�(C,U¬) = f(b) = sC . In
particular, since sC is the second-greatest element, this implies that �α�(C,U¬) = 1C
and ��sA�

(C,U¬) = sC .
We now prove that the map h : A→ C defined as h(x) = ��x�

(C,U¬) is an embedding
of A into C. First, we show that h is a homomorphism. Since �α�(C,U¬) = 1C it follows
immediately that ��0 ↔ ⊥�(C,U¬) = 1C and for every connective � and every element
a, b ∈ C , we have �(�a � �b) ↔ �a�b�(C,U¬) = 1C . From this we immediately get that
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��0�
(C,U¬) = 0C and ��a � �b�(C,U¬) = ��a�b�

(C,U¬). So we have the following two
identities.

h(0A) = ��0�
(C,U¬) = 0C ;

h(a � b) = ��a�b�
(C,U¬) = ��a � �b�(C,U¬) = ��a�

(C,U¬) � ��b�
(C,U¬) = h(a) � h(b).

We now want to prove that h is injective. Assume that a � b. Since under this hypothesis
a → b ≤ sA—where sA is the second greatest element of A—and since ��sA�

(C,U¬) =
sC , we have that h(a → b) ≤ h(sA). Therefore,

h(a) → h(b) ≤ h(��sA�
(A,V¬)) = ��sA�

(C,U¬) = sC .

In particular h(a) � h(b), thus proving the injectivity of h.
Therefore, we have that h is an embedding and thus h[A] � C , showing that A is

a subalgebra of C up to isomorphism. Since B � C it follows that A ∈ SH (B) and,
by Proposition 2.2, that SH (B) ⊆ HS(B). Thus we obtain that A ∈ HS(B), that is,
A ≤ B .

(⇐) Suppose that A ≤ B , namely that A ∈ HS(B), then we know there is
some subalgebra B ′ � B such that there is a surjective homomorphism h : B ′ � A.
Moreover, by the previous Lemma 4.30 we have that A �¬ 	(A). Then, since
h : B ′ � A it follows immediately by the fact that the DNA-validity of a formula is
preserved by homomorphic images thatB ′ �¬ 	(A). Moreover, sinceB ′ � B it follows
by the preservation of DNA-validity under subalgebra thatB �¬ 	(A), which proves our
claim. �

Once we have shown that Jankov’s theorem holds for our setting, we can use Jankov’s
machinery to characterize the lattice of subvarieties of locally finite DNA-varieties. We
denote by Λ¬(X ) the lattice of subvarieties of some DNA-variety X and we first prove
the following useful proposition.

Definition 4.32 (Hereditary FMP). We say that a DNA-varietyX has the hereditaryDNA-
finite model property if every DNA-variety Y ∈ Λ¬(X ) has the finite model property.

As we always do, when the context is clear we drop the prefix DNA and talk simply of
the hereditary finite model property.

Proposition 4.33. If a DNA-variety X is locally finite, then X has the hereditary finite
model property.

Proof. Suppose that X is locally finite and consider any subvariety Y ∈ Λ¬(X ).
Since X is locally finite we have that every DNA-finitely generated H ∈ X is also finite
and thus since Y ⊆ X also that DNA-finitely generated H ∈ Y is finite. Hence we have
that Y is locally finite and therefore, by Proposition 4.27, it follows that Y also has the
finite model property. �
We now prove the following theorem characterising the sublattice of locally finite DNA-
varieties. We denote by Dw(XRFSI ) the downsets of XRFSI under the partial order ≤
defined above.

Theorem 4.34. Let X be a locally finite DNA-variety. Then the lattice of negative
subvarieties of X is isomorphic to the lattice of downsets over XRFSI , i.e.,

Λ¬(X ) ∼= Dw(XRFSI ).
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Proof. Consider the map α : Y �→ YRFSI which sends every subvariety Y ⊆ X to its
subclass of finite regular subdirectly irreducible elements. We claim thatα is welldefined
and also it is an isomorphism between Λ¬(V) and Dw(XRFSI ). (i) First, we show that
YRFSI ∈ Dw(XRFSI ). Suppose B ∈ YRFSI , A ∈ HS(B) and A ∈ XRFSI . As varieties
are closed under homomorphic images and subalgebras, we have that A ∈ Y and so
sinceA ∈ XRFSI also thatA ∈ YRFSI . (ii) To show injectivity, consider two subvarieties
Y ,W ∈ Λ(V) such that Y �= W . By Proposition 4.33 we have that since X is DNA-
locally finite then it has the hereditary finite model property. Therefore, it follows from
Theorem 4.26 that every subvariety of X is generated by its finite regular subdirectly
irreducible elements. So we have that Y = YRFSI and W = WRFSI and so it follows that
YRFSI �= WRFSI . (iii) For surjectivity, consider any downsetD ∈ Dw(XRFSI ). Then this
defines a DNA-variety Y = X (D). We now claim that D = YRFSI . For the left-to-right
inclusion supposeA ∈ D, then we also have thatA ∈ XRFSI andA ∈ X (D) = Y , which
together imply A ∈ YRFSI . For the other direction, suppose that A ∈ YRFSI , then we
have by Lemma 4.30 thatA �¬ 	¬(A). Then sinceA ∈ Y = X (D) it follows that there
is some B ∈ D such that B �¬ 	¬(A). Finally, it follows by the Jankov’s theorem for
DNA-varieties 4.31 that A ≤ B and thus since D is a downset that A ∈ D. �

Moreover, we can also use Jankov formulas to axiomatise subvarieties of a locally
finite DNA-varietyX . To this end, we notice that for every proper subvarietyY ∈ Λ¬(X )
we have that YRFSI is a downset and XRFSI \ YRFSI is a nonempty upset over XRFSI .
Now, since every algebra in H ∈ XRFSI \ YRFSI is finite, we cannot have infinite
descending chains of the form H0 ≥ H1 ≥ H2 ... , for |Hn| > |Hn+1| and |Hn| finite.
It follows that every set of the form XRFSI \ YRFSI has some minimal element.
We thus define the following notion of minimal counterexamples of a subvariety
of X .

Definition 4.35 (Minimal Counterexample). Let Y ∈ Λ¬(X ) be a subvariety of X
such that Y �= X . A minimal counterexample to Y is a Heyting algebraH ∈ X \ Y such
that for all K ≤ H , if K � H then K ∈ Y .

For every Y ∈ Λ¬(X ), we denote by min(X \ Y) its collection of minimal counterex-
amples in X . It follows from our previous reasoning that this collection is always
nonempty when Y is a proper subvariety of X . We prove the following theorem.

Theorem 4.36. Let X be a locally finite DNA-variety, then for every subvariety Y ∈
Λ¬(X ) such that Y �= X we have that:

Y = X{H ∈ XRFSI : H �¬ 	(A) for all A ∈ min(XRFSI \ YRFSI )}.

Proof. It suffices to show that YRFSI = {H ∈ XRFSI : H �¬ 	(A) for all A ∈
min(XRFSI \ YRFSI )}. (⊆) Suppose H ∈ YRFSI , then since XRFSI \ YRFSI is a
nonempty upset it follows that min(XRFSI \ YRFSI ) �= ∅. But then, for all A ∈
min(XRFSI \ YRFSI ) we have that A � H . Therefore, it follows by Jankov’s theorem
for DNA-varieties (Theorem 4.31) that H �¬ 	(A) and so H ∈ {H ∈ XRFSI : H �¬

	(A) for all A ∈ min(XRFSI \ YRFSI )}. (⊇) Suppose now that H ∈ {H ∈ XRFSI :
H �¬ 	(A) for all A ∈ min(XRFSI \ YRFSI )}, then for all A ∈ min(XRFSI \ YRFSI ) it
follows that H �¬ 	(A), hence by Theorem 4.31 we have that A � H . But then, since
min(XRFSI \ YRFSI ) is the set of minimal elements in XRFSI \ YRFSI , it follows that
H /∈ XRFSI \ YRFSI . And since H ∈ XRFSI , it follows thatH ∈ YRFSI . �
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The previous theorem provides a set of formulas which axiomatise the subvarieties
of a locally finite variety. By the dual isomorphism Λ(IPC¬) ∼=op Λ(HA↑) we can
extend the previous result to the corresponding DNA-logics. We say that a DNA-logic
Π is an extension of a DNA-logic Λ if Λ ⊆ Π. Theorem 4.36 thus immediately allows
us to axiomatise the extensions of a logic Λ which is locally tabular. We denote by
Var¬RFSI (Λ) the collection of finite, regular, subdirectly irreducible elements of the
DNA-variety Var¬(Λ) and by Λ + Γ the closure under modus ponens of the set of
formulas Λ ∪ Γ.

Corollary 4.37. Let Λ be a locally tabular DNA-logic. Then every DNA-logic Π such
that Λ ⊆ Π can be axiomatised as follows:

Π = Λ + {	(A) : A ∈ min(Var¬RFSI (Λ) \ Var¬RFSI (Π)}.
Proof. Since Λ is locally tabular we have that Var¬(Λ) is locally finite. Moreover,

since Λ ⊆ Π it follows by DNA-duality that Var¬(Π) ⊆ Var¬(Λ). Let K = {H ∈
Var¬RFSI (Λ) : H �¬ 	(A) for all A ∈ min(Var¬RFSI (Λ) \ Var¬RFSI (Π))}, then by The-
orem 3.32 above it follows that Var¬(Π) = X (K). Moreover, we have by Theorem
4.18 that Log¬(X (K)) = Log¬(K). By DNA-duality we then have:

Π = Log¬(Var¬(Π)) = Log¬(X (K)) = Log¬(K).

Hence, since it is easy to see that Log¬(K) = Λ + {	(A) : A ∈ min(Var¬RFSI (Λ) \
Var¬RFSI (Π)}, we finally obtain that Π = Λ + {	(A) : A ∈ min(Var¬RFSI (Λ) \
Var¬RFSI (Π)}, which proves our claim �
We will apply Corollary 4.37 and the method of Jankov formulas in next section to
axiomatize the extensions of the system InqB of inquisitive logic.

§5. Linearity of the extensions of InqB. In this section we put to work the general
theory of DNA-logics that we have developed in the previous sections and we provide a
characterisation of the extensions of the system InqB of inquisitive logic. In particular,
we use the algebraic semantics of DNA-logics to show that InqB is locally tabular and it
can therefore be studied by using the method of Jankov formulas. We thus prove that
the sublattice of DNA-logics which extend InqB is linearly ordered and that it coincides
with the inquisitive hierarchy considered by Ciardelli in [9].

5.1. The method of ND-extensions. We introduce the ND-extension of a Boolean
algebra, in analogy with the KP-extensions of [5]. Let B be any Boolean algebra and
consider the term algebra T (B) over the signature (∧̇, ∨̇, →̇, 1̇, 0̇). The algebra T (B)
consists of all propositional formulas built over the set of atomic letters B, that is, using
the elements of B as propositional formulas:

T (B) = {ϕ(b0, ... , bn) : bi ∈ B and ϕ is a formula in (∧̇, ∨̇, →̇, 1̇, 0̇)}.
Since T (B) is a term algebra, we have that its algebraic operations are exactly the
signature operations, i.e., we have thatϕ ∧T (B) � = ϕ∧̇� etc. We now quotient the term
algebra T (B) to obtain an ND-algebra. In order to do this, we define the congruence
≡eND. For any intermediate logic L, we write ϕ ≡L � if and only if ϕ ↔ � ∈ L.

Definition 5.1. Let B be an arbitrary Boolean algebra, then the congruence ≡eND is the
least congruence containing ≡ND and such that for all p, q ∈ B we have: 1B ≡eND 1̇, 0B ≡eND
0̇, p ∧B q ≡eND p∧̇q, p →B q ≡eND p→̇q.
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The ND-extension H ND(B) of B is then defined as the quotient algebra T (B)/ ≡eND.
Since ≡IPC⊆≡ND⊆≡eND, we have that H ND(B) validates all the validities of IPC and
thus is a Heyting algebra. KP-extensions are introduced analogously in [5] by using the
equivalence relation ≡KP instead of ≡ND.

Recall that a downset D over a poset (P,≤) is finitely generated if there is a nonempty,
finite set of elements x0, ... , xn such that D = ↓{x0, ... , xn}. We denote by Dwfg(B)
the set of finitely generated downsets over B and we leave to the reader to verify that
this forms a Heyting algebra with the order induced by the set-theoretic inclusion. It
was shown in [5] thatH KP(B) ∼= Dwfg(B) and in [41] thatH ND(B) ∼= Dwfg(B). Hence
we have the following result.

Theorem 5.2. Let B be a Boolean algebra, then H (B)ND ∼= H (B)KP ∼= Dwfg(B).

We will henceforth drop the superscript and denote the ND-extension of B just byH (B).
We now recall some important facts about ND-extensions. The proof of the following
claims was given in [5] for KP-extensions and in [41] for ND-extensions. The following
proposition is an important universal mapping property of such constructions.

Proposition 5.3 (Universal Mapping Property). Let B be a Boolean algebra and
H (B) its ND-extension, then for every Heyting algebra K such that K � ND and K¬ = B
there is a unique homomorphism h : H (B) → K such that h � B = idB . Moreover, if K
is regular then h is also surjective.

The following proposition gives us a description of the structure of the ND-extension
H (B) of a Boolean algebra B. In particular, we show that every element ofH (B) can
be written in a unique way as a disjunction of elements of B. Following [5] we say that
every x ∈ H (B) has a non-redundant representation. With a slight abuse of notation we
henceforth drop the square brackets and refer to elements ofH (B) as formulas rather
than equivalence classes thereof. Also, since the algebra operations ofH (B) agree with
the connectives in (∧̇, ∨̇, →̇, 1̇, 0̇), we drop the dots and use the same symbols both
for connectives and operations. The proof of the following two propositions was first
given in [5] and later adapted to the context of ND-extensions in [41].

Proposition 5.4. For every x ∈ H (B) we have that x =
∨
i≤n ai where ai ∈ B for all

i ≤ n and ai � aj for i �= j. Moreover a1, ... , an are uniquely determined.

Moreover H (B) is well-connected, i.e., we have that for any x, y ∈ H (B) it is the case
that x ∨ y = 1 entails x = 1 or y = 1.

Proposition 5.5. For any Boolean algebra B, its ND-extensionH (B) is well-connected.

We now make a short digression on Medvedev frames (to which we also refer as
ML-frames). For W a non-empty set, let ℘+(W ) be the collection of nonempty subsets
of W. A Medvedev frame is a frame of the form F ∼= (℘+(W ),⊇) for a finite W. We
recall the following two propositions on ML-frames. The first connects the validity over
a ML-frame F to the validity of its corresponding downset algebraDw(F) (see e.g., [41,
Section 5.1]), and it follows readily from the correspondence between Kripke semantics
and algebraic semantics for finite frames [8, 18]. The second connects validity in ML-
frames and validity in state models, and it was already pointed out in [9]. A proof of
both these results is contained in [41].
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Proposition 5.6. For every Medvedev frame F we have that F � ϕ iff Dw(F) � ϕ.

Let (℘+(W ), V ) be a Medvedev model and s ∈ ℘+(W ). Let also XVs denote the
following set of valuations:

XVs = {wx ∈ 2AT : wx(p) = 0 ⇔ x ∈ V (p)}.

Proposition 5.7. Let M = (℘+(W ),⊇, V ) be a Medvedev model, then for any
formulaϕ ∈ LP and any s ∈ ℘+(W ) we have thatXVs � ϕ if and only ifM, s � ϕ[¬p/p].

5.2. Characterisation of Var¬(InqB). We use the results that we recalled in the
previous sections to characterise a set of generators of Var¬(InqB). First, we use
the method of the ND-extension of a Boolean algebra to show that InqB is locally
tabular. The following theorem also follows as an easy corollary of [5, Lemmas 4.1
and 4.3]. Recall that ND is the least intermediate logic whose negative variant
is InqB, hence by Proposition 4.17(ii) we have that Var¬(InqB) = Var(ND)↑ and
ND = Log(Var¬(InqB)).

Theorem 5.8. InqB is locally tabular.

Proof. We need to show that every DNA-finitely generated InqB-algebra is finite.
Consider any H ∈ Var¬(InqB) and suppose H is DNA-finitely generated, then there
are elements x0, ... , xn ∈ H¬ such that 〈x0, ... , xn〉 = H . In particular, H is regular.
Moreover, by the fact that ND = Log(Var¬(InqB)) we also have that Var¬(InqB) =
Var(ND) and so H ∈ Var(ND).

Notice thatH¬ is generated as a Boolean algebra by x0, ... , xn and so in particular it
is finite. Moreover, by Theorem 5.2,H (H¬) ∼= Dwfg(H¬) is also finite. By Proposition
5.3, f : H (H¬) � H . So it follows that H is finite, as wanted. �

Since InqB is locally tabular, we have by Theorem 4.26 that it is generated by its
collection of finite, regular, subdirectly irreducible elements. The next theorem provides
a characterisation of this class of InqB-algebras. Our proof adapts [5, Theorem 4.6].

Theorem 5.9. Let H be an Heyting algebra. Then H ∈ Var¬RFSI (InqB) iff there is
some finite Boolean algebra B such that H ∼= H (B).

Proof. (⇐) SupposeH ∼= H (B) for some finite Boolean algebra B, then we need to
show that H is finite, regular and subdirectly irreducible. Firstly, since H ∼= H (B) ∼=
Dwfg(B), it follows that H is finite. Secondly, by construction H (B) is regular and
so H is regular as well. Finally, by Proposition 5.5 H (B) is well-connected and so—
since it is finite—it has a second-greatest element, that is, it is a subdirectly irreducible
algebra.

(⇒) LetH ∈ Var¬RFSI (InqB), then since H is regular and Var¬(InqB) = Var(ND)↑,
it follows by Proposition 4.15 thatH ∈ Var(ND). From the universal mapping property
of Proposition 5.3 there is a surjective homomorphism h : H (H¬) � H , where H¬ is
a finite Boolean algebra. We prove now that this homomorphism is also injective.
Consider x, y ∈ H such that h(x) = h(y), then it follows from Proposition 5.4 that
we have non-redundant representations x =

∨
i≤n ai and y =

∨
j≤m bj . Since for all

i ≤ n, j ≤ mwe have ai , bj ∈ H¬, it follows by Proposition 5.3 that h � H¬ = idH¬ and
so that h(ai) = ai and h(bj) = bj , which means that h(aj), h(bj) ∈ H¬. Now, since
h(x) = h(y), we have that h(

∨
i≤n ai) ≤ h(

∨
j≤m bj) and h(

∨
j≤m bj) ≤ h(

∨
i≤n ai).
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From the former of these claims we have:

h

⎛
⎝∨
i≤n
ai

⎞
⎠ ≤ h

⎛
⎝ ∨
j≤m
bj

⎞
⎠

=⇒
∧
i≤n

⎡
⎣h(ai) →

∨
j≤m
h(bj)

⎤
⎦ = 1 (by properties of IPC)

=⇒
∧
i≤n

⎡
⎣¬¬h(ai) →

∨
j≤m

¬¬h(bj)

⎤
⎦ = 1 (since h(ai), h(bj) ∈ H¬)

=⇒
∧
i≤n

∨
j≤m

[
¬¬h(ai) → ¬¬h(bj)

]
= 1 (by the axioms of ND)

=⇒
∧
i≤n

∨
j≤m

[
h(ai) → h(bj)

]
= 1 (since h(ai), h(bj) ∈ H¬)

=⇒ ∀i ≤ n,∃j ≤ m such that h(ai) ≤ h(bj) (since H is well-connected)

=⇒ ∀i ≤ n,∃j ≤ m such that ai ≤ bj (since h � H¬ = idH¬)

=⇒ x ≤ y.

Similarly, starting from h(
∨
j≤m bj) ≤ h(

∨
i≤n ai) we then get that y ≤ x and so that

x = y. Finally, this means that the surjective homomorphism h : H (H¬) � H is also
injective and so H ∼= H (H¬). �

5.3. Extensions of InqB. Finally, we can prove our main result concerning
extensions of InqB. From the former theorem it is easy to prove the following important
lemma. We recall from Section 4.5 that if A and B are two Heyting algebras, the order
≤ between them is defined asA ≤ B iff A ∈ HS(B). The next lemma shows that under
this ordering the collection of regular, finite, subdirectly irreducible InqB-algebras is
isomorphic to �.

Lemma 5.10. Let Var¬RFSI (InqB) be the collection of finite, regular, subdirectly
irreducible InqB-algebras. Then we have that, modulo isomorphism:

(Var¬RFSI (InqB),≤) ∼= �.

Proof. We show that Var¬RFSI (InqB) is isomorphic to � under the order A ≤
B iff A ∈ HS(B). First, consider any algebra H ∈ Var¬RFSI (InqB), then it follows
by Theorem 5.9 that there is some finite Boolean algebra B such that H = H (B).
The representation theorem of the finite Boolean algebras entails that finite Boolean
algebras form the following chain of length �:

20 � 21 � 22 � 23 � 24 � ···

Now, we have by the definition of the ND-extension of a Boolean Algebra 2n thatH (2n)
is regular and H (2n) = 〈2n〉. Therefore, since we have that for all n ∈ N, 2n � 2n+1, it
follows thatH (2n) � H (2n+1). Finally, since everyH ∈ Var¬RFSI (InqB) is of the form
H (2n) for some n ∈ N, it follows that:

H (20) � H (21) � H (22) � H (23) � H (24) � ···
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is a chain of length � ordered by A ≤ B ⇔ A ∈ HS(B) which contains every
element H ∈ Var¬RFSI (InqB). Finally, this means that the poset (Var¬RFSI (InqB),≤)
is isomorphic to �. �
Once we have the previous lemma, we can use the method of Jankov formulas for
DNA-logics developed in Section 4.5 to show that the lattice of extensions of the system
of inquisitive logic InqB is linearly ordered and dually isomorphic to � + 1.

Theorem 5.11. Let Λ¬(InqB) be the lattice of extensions of InqB. Then there is a
dual isomorphism Λ¬(InqB) ∼=op � + 1.

Proof. By the dual isomorphism Λ(IPC¬) ∼=op Λ(HA↑) we immediately have that
Λ¬(InqB) ∼=op Λ¬(Var¬(InqB)), where Λ¬(Var¬(InqB)) is the lattice of subvarieties
of Var¬(InqB). Therefore, to show that Λ¬(InqB) ∼=op � + 1 it suffices to show
that Λ¬(Var¬(InqB)) ∼= � + 1. Now, by Proposition 5.8 we have that InqB is
locally tabular and therefore it follows by Theorem 4.34 that Λ¬(Var¬(InqB)) ∼=
Dw(Var¬RFSI (InqB)). But then, we have by Lemma 5.10 that Var¬RFSI (InqB) ∼= � and
therefore that Dw(Var¬RFSI (InqB)) ∼= Dw(�) = � + 1. To sum up, we have:

Λ¬(InqB) ∼=op Λ¬(Var¬(InqB)) ∼= Dw(Var¬RFSI (InqB)) ∼= Dw(�) = � + 1,

which proves our claim. �
The method of Jankov formulas allows us also to provide an axiomatisation for
all the extensions Λ of InqB. Then by DNA-duality and Theorem 4.34 we have that
Λ¬(InqB) ∼=op Dw(Var¬RFSI (InqB)). Therefore we have that extensions Λ of InqB are
uniquely identified by specifying a downset of elements of Var¬RFSI (InqB). For any
n ∈ N, we define by InqBn the DNA-logic InqBn = Log¬(↓ H (2n)). We now prove the
following proposition.

Proposition 5.12. Let Λ be a proper extension of InqB, i.e., Λ is a DNA-logic and
InqB � Λ. Then there is some n ∈ N such that

Λ = InqBn = InqB + 	(H (2n+1)).

Proof. Suppose that Λ is a DNA-logic and InqB � Λ, then it follows by Theorem
4.34 that Var¬(Λ) = X (D), where D ∈ Dw(Var¬RFSI (InqB)). Now, since Λ �= InqB,
it follows that D �= Var¬RFSI (InqB). Therefore, it follows immediately from Lemma
5.10 that D = ↓H (2n) for some n ∈ N and hence Λ = InqBn. Moreover, it is
easy to see that the only minimal counterexample in Var¬(InqB) \ Var¬(InqBn) is
H (2n+1). Therefore, we have by Corollary 4.37 that InqBn is equivalent to InqB +
	(H (2n+1)). �
The previous result allows us to present in an alternative way the inquisitive hierarchy
originally introduced by Ciardelli [9, Chapter 4]. We define, for every n ∈ N, the system
InqLn as follows:

InqLn = {ϕ ∈ LP : ∀s ∈ ℘(2AT), such that |s | ≤ n, s � ϕ}.
We can now show that the inquisitive hierarchy is exactly the sublattice of all the proper
extensions of InqB. Firstly, we say that a DNA-logic is tabular if it is the logic of a finite
regular Heyting algebra. Then, since for all H ∈↓ H (2n) we have that H � H (2n), it
follows immediately that InqBn = Log¬(↓ H (2n)) = Log¬(H (2n)), i.e., InqBn is the
logic of H (2n) and is thus tabular. Then we obtain the following theorem.
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Theorem 5.13. For any n ∈ N, we have that InqBn = InqLn.

Proof. For any n ∈ N, we have the following equalities:

InqBn = Log¬(↓ H (2n))

= Log¬(H (2n))

= Log(H (2n))¬ (by Proposition 3.26)

= Log(Dwfg(2n))¬ (by Theorem 5.2)

= {ϕ ∈ LP : ℘+(n) � ϕ[¬p/p]} (by Proposition 5.6)

= {ϕ ∈ LP : (℘+(n), V ) � ϕ[¬p/p] for all V :W → ℘(AT)}
= {ϕ ∈ LP : XVn � ϕ for all V :W → ℘(AT)} (by Proposition 5.7)

= {ϕ ∈ LP : ∀s ∈ ℘(2AT), such that |s | ≤ n, s � ϕ}
= InqLn.

This proves our claim. �

Therefore, by defining for every n ∈ N the logic MLn as the set of formulas valid in all
Medvedev frames F whose cardinality is |F| ≤ n, it follows from the previous theorem
that (MLn)¬ = InqBn = InqLn. The following corollary follows directly from Theorems
5.11 and 5.13 and is an extension of [9, Corollary 4.1.6].

Corollary 5.14.

InqB =
⋂
n∈N

InqBn =
⋂
n∈N

InqLn =
⋂
n∈N

(MLn)¬.

The results in this section thus provide a characterisation of the extensions of InqB
and show that they coincide precisely with the inquisitive hierarchy already studied in
the literature.

§6. Conclusion. In this article we developed algebraic semantics for DNA-logics and
we applied this general setting to inquisitive logic. This semantics allows to apply
methods of universal algebra to study DNA-logics and inquisitive logic from a novel
perspective. Let us briefly summarize our main results. In Section 3 we introduced DNA-
logics and their algebraic semantics and we proved the dual isomorphism Λ(IPC¬) ∼=op
Λ(HA↑) between DNA-logics and DNA-varieties. In Section 4 we studied closer the
relation between DNA-logics and intermediate logics and we proved a suitable version
of some classical results for the setting of DNA-varieties. In particular, we showed
that every DNA-variety is generated by its regular subdirectly irreducible members and
we introduced a suitable version of Jankov formulas in order to axiomatise locally
finite DNA-varieties. Finally, in Section 5 we used the algebraic semantics of DNA-logics
to study the inquisitive logic InqB. In particular, we showed that the sublattice of
its extensions is dually isomorphic to � + 1 and that it actually coincides with the
inquisitive hierarchy studied in [9].

In addition to these results, in our view one of the main contributions of this article
is that it provides a new setting for the study of inquisitive logic. The system InqB had
so far been considered as the logic of the evaluation states or as the negative variant
of the logics between ND and ML—here we showed that one can also consider InqB

as the logic of a specific class of Heyting algebras, under a suitable semantics. This
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new perspective at the propositional system of inquisitive logic allows us to raise new
questions and consider new issues.

One direction for future study is to consider what happens if, instead of the
negative substitution p �→ ¬p, we consider the substitution p �→ 	(p) for an arbitrary
polynomial 	 ∈ LP . In fact, it seems possible to extend at least part of the theory
of DNA-logics to this extended framework. In the case of negative variants we rely on
the fact that in intuitionistic logic ¬¬¬p = ¬p. This property however is shared in a
more general form by every polynomial 	. Ruitenberg’s Theorem [23, 43] states that
for any polynomial 	 we can find a number n ∈ N such that 	n = 	n+2. This allows to
introduce the 	-variant of an intermediate logic L as L	 = {ϕ ∈ LP : ϕ[	n(p)/p] ∈ L}
and to generalize our study of DNA-logics to arbitrary 	-variants. We refer the reader
to the upcoming [24].

Similarly, the close connection between inquisitive logic and dependence logic that
has been studied e.g., in [10–11] suggests that a similar semantics might be developed
for the system of propositional dependence logic [46]. This direction, originally hinted
at in [1], also raises the issue of possible connections between the present framework
and the setting of residuated lattices which is employed to give a semantics to separation
logic and related formalisms [32].

Finally, a last direction of further research should go towards a deeper understanding
of DNA-logics and DNA-varieties. For instance, a new topological semantics for InqB

is introduced in [5]. This raises a question whether it is possible to translate our
framework in topological terms and describe a suitable topological semantics for DNA-
logics. Moreover, such semantics could be used to give a characterisation of finite
regular subdirectly irreducible Heyting algebras. We know by Esakia duality that
a finite subdirectly irreducible Heyting algebra is the upset algebra of a finite rooted
frame. Can we obtain a similar characterisation for regular finite subdirectly irreducible
Heyting algebras? What properties should a rooted frame satisfy in order for its dual
Heyting algebra to be regular? Finally, it also seems natural to generalize Jankov
formulas for DNA-models to canonical formulas, as it is the case both for intermediate
[2] and modal logics [3]. These questions are for the moment open problems to be
addressed in future investigations.
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