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Abstract

Our main point of focus is the set of closed geodesics on hyperbolic surfaces. For any
fixed integer k, we are interested in the set of all closed geodesics with at least k (but possibly
more) self-intersections. Among these, we consider those of minimal length and investigate
their self-intersection numbers. We prove that their intersection numbers are upper bounded
by a universal linear function in k (which holds for any hyperbolic surface). Moreover, in
the presence of cusps, we get bounds which imply that the self-intersection numbers behave
asymptotically like k for growing k.

2010 Mathematics Subject Classification: 32G15 (Primary); 30F10, 30F45, 53C22
(Secondary)

1. Introduction

Closed geodesics play an important part in describing the geometry and dynamics of
hyperbolic surfaces and their moduli. In particular, the length spectrum of a hyperbolic sur-
face is closely related to analytic problems on surfaces as it determines the spectrum of
the Laplacian. Among the closed curves, the simple ones play a particular role and are
related to geometric and topological problems on moduli spaces including the study of
homeomorphism groups and metrics on Teichmüller space.

Among all closed geodesics, the shortest one is somewhat special and is called the systole
of the surface. Unless a hyperbolic surface X (with non-trivial fundamental group of finite
type) is homeomorphic to a thrice punctured sphere, its systole is a simple closed geodesic.
With this in mind, we are interested in the following problem introduced and studied by
Basmajian and Buser. Given a fixed integer k, we consider the set of closed geodesics of X
that self-intersect at least k times. Since the length spectrum is discrete, among them there is
one of minimal length, say γ . By definition, γ self-intersects at least k times. The question
is to find an upper bound on the number of self-intersection points of γ .

As mentioned before, for k = 0, this is asking for the number of self-intersections of the
systole of X and so unless X contains no simple closed geodesics, the answer is 0. For k = 1,
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Buser [8, theorem 4·2·4] solved the problem by showing that among all non-simple closed
geodesics of X , the shortest one has a single intersection point (it is a so-called figure eight
geodesic). The proof is an involved cut and paste type argument based on the observation
that a non-simple closed geodesic contains a simple loop as a subset. Perhaps surprisingly,
as far as exact values go, there are no further results known.

A general result, due to Basmajian [3], provides a first answer to the question in the case
where X is complete, finite area and finite type. He shows that there exists a constant (that
can be made explicit) which depends on k and the topology of X (but not its geometry) such
that the number of self-intersections of γ is upper bounded by this constant. If one works
out the explicit bound, the dependence on k is exponential. The bound on the topology is
used to bound the lengths of curves in a pair of pants decomposition via a theorem of Bers
[7], quantified by Buser and others [2, 8, 12]. For general surfaces (those not necessarily of
finite area), the methods proposed by Basmajian provide a bound which this time depends
on the geometry of the surface, and in particular on a bound on the length of curves in a
pants decomposition.

Let Ik(X) denote the maximum number of self-intersections of a shortest geodesic on X
with at least k self-intersections. We prove the following:

THEOREM 1·1. Let X be an orientable complete hyperbolic surface with non-abelian
fundamental group. Then

Ik(X) ≤
(

32

√
k + 1

4
+ 1

)(
16

√
k + 1

4
+ 1

)
.

The two main features of our result is that the growth is linear in k (for instance the
upper bound is less that 613 k for all k ≥ 2) and that there is no dependence on the geometry
or the topology of the surface. In particular, it holds for any hyperbolic surface where the
question makes sense (meaning with non-abelian fundamental group, including infinite area
or infinite type surfaces, although this is not our focus point). While the final result does
not depend on the geometry of the surface, one of the main ideas of our proof is to use the
specific geometry of the surface to find appropriate decompositions of candidate curves.

Although the proof is mostly self-contained, it is certainly inspired by a flurry of
recent results [1, 9, 10, 11, 13, 14] focused on understanding the relationship between
self-intersection and the length of closed geodesics. One of the tools we do use is the
upper bounds of Basmajian [4, 5] on the length of the shortest curve with at least k self-
intersections. We note that these length bounds can be used directly to find a linear upper
bound on Ik(X) but the bound depends on the geometry of X (see Section 2 for more details).

Basmajian also shows that there is a considerable difference in the length growth depend-
ing on whether surfaces have a cusp or not: the growth rate for closed surfaces is roughly

√
k

whereas it is log(k) if the surface has cusps. We are able to exploit that growth difference to
prove an asymptopically optimal result for cusped surfaces.

THEOREM 1·2. Let X be an orientable complete finite type hyperbolic surface with at
least one cusp. Then there exists constants D(X), K (X), depending on X, such that

Ik(X) ≤ k + D(X) log(k)

for all k > K (X).
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Exactly where the constants D(X) and K (X) come from can be found in Section 4. Unlike
in the previous theorem, the bounds here depends on the geometry of X . Although we do
not want to dwell on it here, the condition on X being of finite type can be relaxed to there
being a positive lower bound on the systole length of X . Note that Theorem 1·2 implies that

lim
k→∞

Ik(X)

k
= 1

when X has a cusp. We conjecture that the above limit is always equal to 1, regardless of
whether X has a cusp or not, but our methods do not seem to extend easily to more general
surfaces. Furthermore, we conjecture that when X has at least one cusp, one should be able
to prove a stronger statement, namely that, for large enough k, Ik(X) = k. (Said differently,
we suspect that the constant D(X) should be 0.)

Our proof of Theorem 1·2 requires a generalisation of Basmajian’s lower bounds on
lengths [4]. In particular, we need to be able to control the relationship between length and
intersection in the ε-thick part of a surface (which we denote XT ). As our result may be of
independent interest, we state it here.

THEOREM 1·3. For ε ≤ 1/2, the intersection γT = γ ∩ XT satisfies

�(γT ) >
ε

12

√
i(γT , γT ).

Note that a closed surface is ε-thick for sufficiently small ε, so we recuperate theorem 1·1
from [4] with a somewhat different proof.

We end the introduction by addressing the very natural question of lower bounds on Ik(X).
By definition, Ik(X) ≥ k with equality for infinitely many k. In fact, it is not a priori obvious
that equality does not hold for all k ≥ 1. However, there is a heuristic argument, inspired by
results from [4], for why this should not always be the case. We illustrate it with a pair of
pants P , say with three cuff lengths of length 1. The local behavior of a closed geodesic
is to either loop around one of the three boundary curves, or to follow some trajectory
in the middle portion of the pair of pants, for instance that of a figure eight geodesic. If
a closed geodesic closely follows a figure eight geodesic n times, this creates roughly n2

self-intersection points. On the other hand, a curve that loops n times around a cuff creates
roughly n self-intersection points. Now assume there is a minimal length curve realising
Ik(P) that has exactly k self-intersections. Suppose you want to modify it to get a candi-
date for Ik+k0(P) for some k0 relatively small compared to k. Each loop around a boundary
costs you roughly 1 in length, but although this is less than taking an extra copy of a figure
eight curve, you are only getting one extra intersection point per loop. Thus, in terms of
length, it would be more efficient to take (quasi) copies of a figure eight to generate self-
intersection points than by looping around a boundary. Making the above argument rigorous
would require a more delicate analysis of curves in pairs of pants, very different in nature
from the methods used in this paper, but nonetheless, we expect that

lim sup
k→∞

(Ik(X) − k) = ∞

for any compact X .
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2. Closed curves and their lengths

2·1. Setup and known results

Let X be an orientable complete hyperbolic surface with non-abelian fundamental group.
Said differently, we ask that X is not the hyperbolic plane and is not topologically a cylinder.
We want X to have an interesting set of closed geodesics.

We will denote by G(X) the set of closed geodesics, by Gk(X) the subset of those that
self-intersect exactly k times, and by G≥k(X) those that intersect at least k times. Basmajian
studied the following quantity [4, 5]:

sk(X) := inf{�(γ ) : γ ∈ Gk(X)}
showing that

sk(X) ≤ 2C8(X)

√
k + 1

4
,

where C8(X) is the length of the shortest figure eight closed geodesic on X . (As mentioned
above, Buser showed that C8(X) is also the length of the shortest non-simple closed geodesic
of X .) The general gist of the proof of the above inequality is to construct a closed geodesic
which follows the figure eight curve multiple times. The number of self-intersections of such
a curve is roughly the square of the number of copies of the figure eight curve. To create
a primitive closed curve, and to get the correct intersection number on the nose, require
more delicate arguments. We remark that the above bound, from [5], is an improvement on
previous bounds in [4] where lower bounds on sk(X) are also explored. A fact about sk(X)

that we will use in the sequel is the discrepancy between the growths when X has cusps or
not. The growth is logarithmic in k when X has a cusp.

By discreteness of the length spectrum (for finite type surfaces), the value sk(X) is realised
by the length of at least one closed geodesic. In particular, for k = 0 this is the systole which,
unless X is a three holed sphere, is realised by a simple closed curve since the shortest non-
trivial curve is always simple. If X is a three holed sphere, the systole is a figure eight
geodesic.

A related quantity is the following:

s≥k(X) := inf{�(γ ) : γ ∈ G≥k(X)}
and again it must be realised by the length of certain closed geodesics which may or may not
have k self-intersections. The actual number of self-intersections is our main concern in this
article, and we will denote this number by Ik(X). As s≥k(X) ≤ sk(X), the inequality stated
above for sk(X) also holds for s≥k(X).

When X is compact the upper bounds on s≥k(X) are matched by lower bounds [4] of
the form C(X)

√
k. Here the constant depends on the geometry of X in such a way that

C(X) tends to 0 when X approaches the boundary of moduli space. These bounds, when
appropriately put together, give a linear upper bound on Ik(X) of type U (X)k but where
U (X) this time goes to infinity as X approaches the boundary of moduli space. In constrast,
Basmajian’s upper bounds [3] on Ik(X), when X is complete and of finite area, only depend
on the topology of X :

Ik(X) ≤ F(g, n, k).
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Here g is the genus of X , n the number of cusps and F an explicit function. The proof is
based on a generalisation of the classical collar lemma for simple closed geodesics to closed
geodesics. This generalised collar lemma implies that (self-)intersection points must create
length, and as there is a bound on the length of the shortest curves with given lower bound
on number of self-intersections, there cannot be arbitrarily many self-intersection points.

2·2. Intersections and length

We begin with the following lemma which relates lengths of simple closed geodesics and
lengths of figure eight geodesics.

LEMMA 2·1. Let α, β be simple closed geodesics on X with i(α, β) = 1 and �(α),

�(β) ≤ L. Then

C8(X) < 4L .

Proof. We think of α and β as oriented loops based in their intersection point. The geodesic
in the homotopy class of the closed curve obtained by the following concatenations

α ∗ β ∗ α−1 ∗ β

is a figure eight geodesic whose length is strictly less than 2�(α) + 2�(β) which is at most
4L .

As a corollary we have the following.

COROLLARY 2·2. For any p ∈ X and for all r0 ≤ C8(X)/8, the set Br0(p) is topologically
either a disk or a cylinder.

Proof. If not, then there is a point p which is the base point of at least two distinct (and
thus non-homotopic) simple geodesic loops α and β of length at most 2r0. These two loops
could generate a pair of pants in which case the geodesic in the homotopy class of α ∗ β is
a figure eight geodesic of length at most 4r0 ≤ C8/2 which is impossible. Otherwise they
generate a one-holed torus in which case we refer to the previous lemma to conclude that
C8(X) < 8C8/2, again a contradiction.

The above observation will be crucial in the sequel.

3. Bounding intersection numbers

We can now turn our attention to the problem at hand, namely the proof of Theorem 1·1.
For clarity of exposition, we suppose that X is of finite type. What we really use is the
discreteness of the length spectrum which may fail if X is of infinite type. In Remark 3·1
below, we discuss how to adapt the argument to when X has a non-discrete length spectrum.
However, we insist on the fact that this is not our focus point and the remark can be ignored
by the reader only interested in finite type surfaces.

Let γ ∈ G≥k(X) be of minimal length. We seek to find an upper bound on i(γ, γ ). Once
and for all, set r0 to be the quantity

r0 := C8(X)

8
.
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We cut γ into segments c1, c2, . . . , cm , all of length r0 except possibly cm which may be
shorter. Note that by Basmajian’s inequality

�(γ ) < 2C8(X)

√
k + 1

4
= 16r0

√
k + 1

4

and as such

m ≤
⌈

16

√
k + 1

4

⌉
< 16

√
k + 1

4
+ 1.

Remark 3·1. When the length spectrum of X is not discrete, we cannot guarantee that γ of
minimal length exists (see [6] for results about infinite type surfaces with non-discrete length
spectra). However, Basmajian’s inequality above continues to hold as we will briefly explain.
The inequality depends only on C8(X), which may or may not be realised by a figure eight
geodesic on X . Suppose it is not. Then there is a sequence of figure eight geodesics whose
lengths Li tend to C8(X). Thus, for each i ∈N, there is a geodesic γi with self-intersection
at least k satisfying the inequality

�(γi ) < 2Li

√
k + 1

4
.

From this we can deduce the existence of a γ with self-intersection k such that

�(γ ) ≤ 2C8(X)

√
k + 1

4
= 16r0

√
k + 1

4
.

The arguments presented in what follows can all be adapted to the the non-discrete case by
suitably replacing a minimal length γ by a curve γ of length arbitrarily close to the infimum
of lengths. However, for clarity, we will not continually refer to how to adapt the arguments
in this more general setting in the sequel.

Note that due to our choice of r0 and Corollary 2·2, any pair of intersecting segments ci , cj

(not necessarily distinct) all live in either disks or cylinders. If they live in a disk, then they
are simple and can pairwise intersect at most once. We observe therefore that if all pairs
of segments lived in disks, there would be an immediate upper bound on self-intersection
given by

m2

2
− m.

Replacing m with the upper bound in terms of k proves the main theorem in this case, but of
course we cannot a priori suppose this to be the case.

We use the word strand for a segment in a cylinder which has both its endpoints on the
boundary of the cylinder. In general this is not always the case for our segments ci , however,
we will often extend segments to strands. By abuse of notation, we denote the strand also
by ci .

If a segment ci lives in a cylinder C, it can be one of two types. Consider δ+ and δ− the
two boundary curves of C. If the strand ci intersects both δ+ and δ− in its endpoints, it is a
simple geodesic segment as there is no topology to create self-intersection. We refer to this
type as a crossing strand (an example is the leftmost strand in Figure 1).
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Fig. 1. A crossing strand and two returning strands.

The other type, which we will call a returning strand, has both its endpoints on the same
boundary curve, say δ−. In this case, it may have self intersection points which appear as a
result of it wrapping around the core curve of the cylinder. In Figure 1, the middle and right
strands have 1 and 2 self-intersection points.

If the cylinder C has core curve δ we define the winding number ω(ci ) of a strand ci in C
(with respect to C) in the following way. Every point of ci projects to a well-defined point
of δ. The winding number of ci is given by the length of the projection of ci (thought of as a
parameterised segment) divided by the length of δ.

Understanding the behavior of segments lying in embedded cylinders will be crucial. Here
we record a fact about the intersection numbers of segments lying in the same cylinder.

LEMMA 3·2. Let s1, s2 be two distinct crossing strands, r1, r2 two distinct returning
strands, all lying in the same cylinder, with ω(s1) ≤ ω(s2) and ω(r1) ≤ ω(r2). Then:

(i) i(s1, r1) ≤ �ω(r1)�;
(ii) i(r1, r1) ≤ �ω(r1)�;

(iii) i(r1, r2) ≤ 2�ω(r1)�;
(iv) i(s1, s2) ≤ �ω(s1)�.

Proof. Suppose the cylinder C has boundary curves δ− and δ+ and core curve δ. For each
strand ci in C we will construct a representative c′

i homotopic to ci (relative its endpoints
on δ− and δ+) and use it to get an upper bound on the intersection numbers. Suppose ci has
endpoints p and q on δ− or δ+. Note that if r1 has both its endpoints on δ− and r2 has both
its endpoints on δ+ then i(r1, r2) = 0. Hence we can assume with out loss of generality that
ci has at least one endpoint on δ−. We construct c′

i the following way. Choose a simple loop
δci in the interior of C such that every point is on it is equidistant to δ. Let c′

i be the curve
consisting of the perpendicular segment between p and δci , a segment winding around δci

according to ω(ci), and finally the perpendicular segment between δci and q. Moreover, if ci

is a returning strand, chose δci to be closer to δ− than δ+, and if its a crossing strand chose
it closer to δ+. Finally, if ci and c j are of the same type and ω(ci ) < ω(c j ) choose δci to be
closer to the boundary of C than δc j is (and when they have the same winding number, make
an arbitrary choice). Clearly c′

i is homotopic to ci .
For i = 1, 2, let s ′

i and r ′
i be the representatives of si and ri obtained as above. It is clear

that |s ′
1 ∩ r ′

1| ≤ �ω(r1)� and since i(s1, r1) ≤ |s ′
1 ∩ r ′

1| we have proved the first part of the
lemma. The remaining parts follow similarly.
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Fig. 2. The half cylinder containing ci .

3·1. Unwinding curves

We begin by finding a bound on i(γ, γ ) in the case where a segment ci self-intersects
more than 2 times. Note that if this happens it necessarily lives inside a cylinder and is a
returning strand.

LEMMA 3·3. If there exists ci with i(ci , ci ) ≥ 2, then

i(γ, γ ) ≤ k − 1 + 16

√
k + 1

4
.

Proof. The segment ci contains a point of self-intersection p and a geodesic simple loop
based in p as a subset. This loop generates a cylinder C of core geodesic δ (or possibly
a cusp - in this case we set δ to be a small horocyclic neighborhood of the cusp disjoint
and very far away from ci ). We observe that the parallel line h p to δ passing through p is
embedded in X and moreover, the line parallel to h p consisting of points distance r0 from h
is also embedded and is the boundary of an embedded cylinder. This is because otherwise
there would be a point p′ with two geodesic loops of length at most 2r0. As before, this
would imply the existence of a figure eight geodesics of length strictly less than C8(X)

which is not possible.
We extend this cylinder maximally by boundary lines parallel to δ (both ‘up’ and ‘down’)

and so that it remains embedded. The resulting cylinder we denote C and we extend (if
necessary) the segment ci so that both its endpoints lie on the other boundary curve of C
which we’ll denote δ−. Note that ci is entirely contained in the half cylinder with boundary
curves δ and δ− (see Figure 2).

An important feature of this cylinder, which we will need below, is the following: any
geodesic arc a which essentially crosses C and has endpoints on ∂C, has length at least 2r0.

To see this consider a point q which is the base point of a simple geodesic loop of length
at most 2r0 (p is such a point). By repeating the argument above, the parallel line hq to δ at
the level of q is embedded in C, as is the cylinder consisting of all points at distance at most
r0 from hq . In particular, the width of C is at least 2r0.

Now consider an essential arc a on C. If it is simple and goes across the cylinder it has
length at least the width of the cylinder, thus at least 2r0. If it is non-simple with both
endpoints on δ−, then it must have a point at distance at least r0 from δ− and so it must
be of length at least 2r0.
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Fig. 3. A lift of the cylinder.

Fig. 4. The arcs c′ and α′.

Fig. 5. Unwinding a crossing strand.

Because i(ci , ci) ≥ 2, we have w(ci) ≥ 2. It will be convenient to think of C as the quo-
tient of its universal cover C̃ by the standard action of Z and look at copies of ci in this
“unwrapped” version of C (see Figure 3).

Let ci (t), t ∈ [0, 1] be a parametrisation of ci and note that by standard hyperbolic geom-
etry, the distance function dC(ci(t), δ) is strictly convex. (The function dC is the intrinsic
distance function of C.)

Let p be the closest self-intersection point of ci to δ. It is the base point of a geodesic
simple loop α, which is a subset of ci . We consider the closed geodesic γ ′ in the homotopy
class of the curve obtained from γ by removing the loop α from γ . Note that necessarily
�(γ ′) < �(γ ) and because of our choice of loop removal, γ ′ is not only non-trivial, we will
be able to lower bound its self-intersection number. We begin by noting however that
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i(γ ′, γ ′) ≤ k − 1

otherwise γ would not be minimal among elements of G≥k(X).
To get a lower bound we will construct a representative of γ from the geodesic γ ′. Begin

by observing that there is an arc of γ ′ which lives on C and which corresponds to the
truncated strand ci .

We’ll denote it c′ and assume that it is oriented following some orientation of γ ′. Consider
its closest point p′ to δ and the loop α′ formed by all points of C of equal distance to δ (see
Figure 4). Note that α′ is freely homotopic to δ and thus to the loop α previously considered.
We orient α′ following the same orientation as c′. We consider the arc c′′ obtained by
following c′ from its orientation point until p′, then following α′ and then continuing
along c′. The important observation is that by replacing c′ with c′′, we’ve recuperated the
homotopy class of γ .

The number of self-intersection points of this representative of γ is at least i(γ, γ ), but
we’ll be able to find an upper bound on this intersection number as well, which in turn will
give us a bound on i(γ, γ ).

We consider all the arcs of γ ′ which are contained in the connected components of γ ′ ∩ C
that might possibly intersect α′. They must of course be essential strands that intersect
C, and as observed above, must hence be of length at least 2r0. We can thus bound their
number using our upper bound on the length of γ ′. As

�(γ ′) ≤ 16r0

√
k + 1

4

we have that the number of strands is at most

8

√
k + 1

4
.

Because distance from points in C to δ is strictly convex along parametrised geodesics, each
strand can intersect α′ at most twice. We thus have that

i(α′, γ ′) ≤ 16

√
k + 1

4
.

Therefore

i(γ, γ ) ≤ i(γ ′, γ ′) + ı(α′, γ ′) < k − 1 + 16

√
k + 1

4
,

as desired.

Observe that we can thus suppose in what follows that all of our segments are either
simple or satisfy i(ci , ci ) = 1. A segment of the latter type we will call of α-type, for obvious
reasons.

The same “unwinding” technique from the proof of Lemma 3·3 can be used to bound
i(γ, γ ) when we have two simple arcs ci , c j that intersect at least twice. First we need the
following fact.

LEMMA 3·4. Suppose there exists a crossing strand ci lying in a cylinder C with ω(ci ) >

1/2. Then

i(γ, γ ) ≤ k − 1 + 16

√
k + 1

4
.
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Proof. Suppose ci lies in the cylinder C with core curve δ. We extend the cylinder max-
imally in parallel directions so that it remains embedded to obtain cylinder C ′, still with
core curve δ. Note that the winding number of the corresponding strand ci still satisfies
ω(ci ) > 1/2 with respect to C ′. Also, by the same argument as in the proof of Lemma 3·3
any geodesic arc that essentially crosses C and has endpoints on ∂C has length at least 2r0

and hence there are at most

8

√
k + 1

4

such strands.
We now unwind ci once (by applying a single Dehn twist around δ to ci , in such a way

that the winding number of ci decreases) as in Figure 5. Let γ ′ be the geodesic representative
in the homotopy class of the resulting curve. Since ω(ci ) > 1/2 it follows that �(γ ′) < �(γ )

and hence, by the definition of γ , i(γ ′, γ ′) ≤ k − 1.
We proceed in a manner similar to the proof of Lemma 3·3: we will reconstruct a repre-

sentative of γ from γ ′ and use it to bound the self-intersection number of γ . Note that there
is a strand c′ in a component of γ ′ ∩ C corresponding to ci . Let p be the intersection point
between c′ and δ. We choose some orientation of γ ′ and orient δ in the ‘winding’ direction.
Consider the arc c′′ obtained by following c′ from one of its endpoints until p, then the loop
δ, and then continuing along c′ to its other endpoint. Let γ ′′ be the curve obtained from γ ′

by replacing c′ with c′′. Clearly γ ′′ is homotopic to γ and hence i(γ, γ ) ≤ i(γ ′′, γ ′′). By the
exact same argument as in Lemma 3·3 we have

i(γ, γ ) ≤ i(γ ′, γ ′) + i(α, γ ′) ≤ k − 1 + 16

√
k + 1

4
,

as desired.

If ci is a crossing strand in some cylinder C with ω(ci) ≤ 1/2, it follows from Lemma 3·2
that it can intersect any other simple segment at most once. Hence we have:

COROLLARY 3·5. If there exists crossing strands ci , c j with i(ci , c j ) ≥ 2, then

i(γ, γ ) ≤ k − 1 + 16

√
k + 1

4
.

3·2. α-type segments and final estimates

We now place ourself in the situation where all of our segments are either simple or
of α-type. Furthermore, by Corollary 3·5, we can suppose that any two simple segments
intersect at most once.

We begin with a lemma about how an α-type segment can intersect another segment:

LEMMA 3·6. Let ci , c j be two of our segments and suppose that ci is of α-type. Then

i(ci , c j ) ≤ 4.

Proof. Since ci is α-type we must have ω(ci ) ≤ 2 (with respect to the cylinder for which it
is α-type). It follows from Lemma 3·2 that i(ci , c j ) ≤ 2 if c j is simple and i(ci , c j ) ≤ 4 if c j

is α-type.
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We can now bound the intersection number of γ . Recall that the only cases left to consider
are when i(ci , ci ) ≤ 1 and i(ci , c j ) ≤ 4 for all i, j . Hence we have:

i(γ, γ ) ≤ 1

2

m∑
i, j=1,i �= j

i(ci , c j ) +
m∑

l=1

i(cl, cl) ≤ 2m2 − m ≤
(
32

√
k + 1

4
+ 1

)(
16

√
k + 1

4
+ 1

)
,

which proves the theorem.

4. Intersections in the thick part and surfaces with cusps

The main goal of this section is to prove Theorem 1·2 but before doing so we study
thick-thin decompositions of surfaces.

4·1. Thick parts of closed curves

Given a hyperbolic surface X and fixed ε > 0, we define the ε-thick part XT of X to be
the subset of X consisting of points with injectivity radius at least ε. The ε-thin part Xt is the
subset of X with injectivity radius at most ε. Now given a curve γ ⊂ X , we can decompose
it into γT := XT ∩ γ and γt := Xt ∩ γ .

Note that γ might go in and out of the thick part, so γT is not necessarily the continuous
image of an interval. Nonetheless γT can be broken into arcs that are continuous images of
intervals with endpoints lying on the boundary of the thick part and we will denote these
components by γ1, . . . , γr . Our first observation is that, provided ε is small enough, each γi

has a certain length.

LEMMA 4·1. If ε ≤ 1/2, then

�(γi) ≥ 3

4
,

for i = 1, . . . , r

Proof. The boundary of XT consists of points of injectivity radius exactly ε and, in particu-
lar, for any point of the boundary there is a simple geodesic loop of length 2ε based in that
point. Suppose that γi joins points p, q on the boundary of XT and denote by α and β the
simple loops of length 2ε based in p and q, respectively. Note that α and β are either disjoint
or freely homotopic. We orient γi , α and β such that α and β have opposite orientations. We
now obtain a homotopy class of curve given by the concatenation

α ∗ γi ∗ β ∗ γi .

The main observation is that the geodesic δ in the homotopy class of the above concatenation
is a non-simple closed geodesic and thus has length at least 4 log(1 + √

2) (see for instance
[8]). Now as �(α) + �(β) + 2�(γi ) is a strict upper bound for �(δ), we have the inequality

2�(γi ) > 4 log(1 + √
2) − 2 >

3

2

and the result follows.

The constants in the above proof are clearly not optimal, and the choice of ε ≤ 1/2 is
somewhat arbitrary.
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We now turn our attention to finding a lower bound on �(γT ) in terms of i(γT , γT ), proving
Theorem 1·3 of the introduction which gives a lower bound on length in terms of intersection
number.

Proof of Theorem 1·3. We begin by considering a set of points {p j } j∈I which form an ε-net
for XT (I is just an index set). Specifically, the points all belong to XT , are pairwise at least
distance ε apart and are maximal for inclusion. In particular, any x ∈ XT is distance at most
ε from at least one p j . As such we can consider the Voronoi cells {Vj } j∈I around each of
the pi . As ε ≤ 1/2, each of the Voronoi cells are (topological) disks.

The intersection between γT and any Voronoi cell Vj is a collection of simple geodesic
segments each of length at most 2ε. As γT is of finite length, we can decompose γT into
these simple geodesic segments that traverse Voronoi cells. Denote them by c1, . . . , cm . We
note that an immediate upper bound on i(γT , γT ) is given by

m(m − 1)

2

as any two of these segments can intersect at most once. We’ll now proceed to bound m in
terms of �(γT ).

Recall our notation of γ1, . . . , γr for the components of γT . By the previous lemma, we
have �(γi ) ≥ 3/4.

Consider the arc γi consisting of multiple c j ’s, the intersections with the Voronoi cells.
We suppose the number of them is mi and we have

r∑
i=1

mi = m.

We will now bound mi in terms of �(γi). To do so we lift to the universal cover and consider
the set of lifts of centers of Voronoi cells encountered by γi . We denote by γ̃i the lift of γi

and by q1, . . . , qmi the lifts of the centers of the Voronoi cells. Note that the (open) balls
of radius ε/2 around each q j are all pairwise disjoint. These balls are also all contained in
the 3ε/2 neighbourhood of γ̃i . The area of this neighbourhood is obtained by computing the
area of a strip of width 3ε/2 around γ̃i and by adding the area of a ball of radius 3ε/2 for
each of the two endpoints of γ̃i . The resulting area is

A := 2 (�(γi) sinh 3ε/2+ π(cosh 3ε/2− 1)).

In comparison, the total area of the balls of radius ε/2 around each q j is

B := mi 2π(cosh ε/2− 1)

and as B < A we can deduce that

mi <
�(γi ) sinh 3ε/2+ π(cosh 3ε/2− 1)

π(cosh ε/2− 1)
.
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We are not trying to optimise the constants we obtain, so we will simplify the above
expression somewhat. Seen as a linear function in �(γi), the leading coefficient can be
bounded by

sinh 3ε/2

π(cosh ε/2− 1)
<

5

ε

as ε ≤ 1/2. The second coefficient is strictly increasing in ε so, again using ε ≤ 1/2, we
bound it by 10. We thus have

mi <
5

ε
�(γi) + 10 <

5

ε
(�(γi) + 1).

Using the fact that �(γi) > 3/4, this implies the following (highly non-optimal) inequality:

mi <
12

ε
�(γi ).

We now return to γT and m.
We have

i(γT , γT ) ≤ 1

2
m(m − 1)

= 1

2

r∑
i=1

mi

(
r∑

i=1

mi − 1

)

<

(
12

ε

)2
(

r∑
i=1

�(γi )

)2

=
(

12

ε

)2

(�(γT ))2

and thus

�(γT ) >
ε
√

i(γT , γT )

12
,

as desired.

Note that if X is closed, setting ε := min{1/2, sys(X)/2} where sys(X) is the systole
length of X , then X = XT . In particular γ is entirely contained in the thick part of X and we
have a lower bound on its length that grows like the root of its intersection. This is exactly
the statement of [4, theorem 1·1]. In what follows, we will need to apply our estimate to
surfaces with cusps.

4·2. Surfaces with cusps

Armed with Theorem 1·3 and using Basmajian’s upper bounds on length for surfaces with
cusps [4], we can now prove Theorem 1·2.

Proof of Theorem 1·2. Let X be a complete hyperbolic surface with at least one cusp. If γ is
a closed geodesic on X with at least k ≥ 2 self-intersections, it is a result by Basmajian
[4, corollary 1·3] that there exists a constant C = C(k, X) such that �(γ ) < C . In fact,
C = 2 sinh−1 (k) + dX + 1 where dX is the shortest orthogonal distance from the length 1
horosphere boundary of a cusp to itself. Note that sinh−1(k) is comparable to log (k), and
therefore so is C(k, X).
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Let ε′ = 1/4 and let s be the systole length of the ε′-thick part of X . Note that 1/4 <

cosh−1
(√

10/3
)

which is the injectivity radius of a cusp with boundary horosphere of length
2/3.

Now, let ε = min {1/4, s/2}. Choose K ≥ 2 such that C(k, X) < ε
√

k/12 for all k > K .
Let k > K and γ a shortest geodesic on X with at least k self-intersections. By Theorem 1·3
γ must intersect Xt , the ε-thin part of X . By the choice of ε, γ must enter a cusp of X , and
in fact a cusp neighbourhood with boundary horosphere δ of length 2/3. This implies that γt

contains a strand c (a continuous image of an interval with endpoints lying on the boundary
horosphere) that intersects itself at least 3 times. We use a similar unwinding argument as
in Lemma 3·3 to get a bound on the intersection number of γ . Let p be the self-intersection
point of c furthest away from δ. It is the base point of a geodesic loop α. Remove this loop
from γ and consider the resulting geodesic γ ′. Clearly �(γ ′) < �(γ ) and hence, by definition
of γ , i(γ ′, γ ′) ≤ k − 1.

Let c′ be the strand of γ ′ corresponding to the truncated strand c. Note that c′ self-
intersects at least twice, and hence enters the cusp neighbourhood (of the same cusp as c)
with boundary horosphere δ′ of length 1. Pick a point p′ on c′ in this cusp neighbourhood and
consider the simple loop α′ based at this point consisting of all points equidistant from δ′.
As in Lemma 3·3, let c′′ be the arc obtained by concatenating c′ and α′ and let γ ′′ be the
curve obtained by replacing c′ with c′′ in γ ′, and note that γ ′′ is homotopic to γ . Hence

i(γ, γ ) ≤ i(γ ′′, γ ′′) = i(γ ′, γ ′) + i(α′, γ ′).

To estimate i(α′, γ ′) note that it is bounded from above by twice the number of strands
of γ ′ that enters the cusp neighborhood with boundary horosphere of length 1 (since each
such strand can intersect α′ at most twice). Each such strand has to pass through the cylinder
of width log(2) in the cusp bounded by the horospheres of length 2 and 1, and then return.
Hence each strand has length at least 2 log(2) and since �(γ ′) < C(k, X) there are less than
C(k, X)/(2 log(2)) such strands, and i(α′, γ ′) < C(k, X)/ log(2). Therefore,

i(γ, γ ) < k − 1 + C(k, X)

log(2)

and, as noted above, C(k, X) is comparable to log(k), proving the theorem.

Acknowledgements. Both authors acknowledge support by Swiss National Science
Foundation grant number PP00P2_153024 and from U.S. National Science Foundation
grants DMS 1107452, 1107263, 1107367 RNMS: Geometric structures And Representation
varieties (the GEAR Network). The first author was also partially supported by Academy of
Finland project #297258. The second author was partially supported by ANR/FNR project
SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.

REFERENCES

[1] T. AOUGAB, J. GASTER, P. PATEL and J. SAPIR. Building hyperbolic metrics suited to closed curves
and applications to lifting simply. Math. Res. Lett. 24(3) (2017), 593–617.

[2] F. BALACHEFF and H. PARLIER. Bers’ constants for punctured spheres and hyperelliptic surfaces.
J. Topol. Anal. 4(3) (2012), 271–296.

[3] A. BASMAJIAN. The stable neighborhood theorem and lengths of closed geodesics. Proc. Amer. Math.
Soc. 119(1) (1993), 217–224.

[4] A. BASMAJIAN. Universal length bounds for non-simple closed geodesics on hyperbolic surfaces.
J. Topol. 6(2) (2013), 513–524.

https://doi.org/10.1017/S030500411900032X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411900032X


638 VIVEKA ERLANDSSON AND HUGO PARLIER

[5] A. BASMAJIAN. Short geodesics on a hyperbolic surface. In Recent advances in mathematics,
Ramanujan Math. Soc. Lect. Notes Ser. vol. 21, pages 39–43 (Ramanujan Math. Soc., Mysore, 2015).

[6] A. BASMAJIAN and Y. KIM. Geometrically infinite surfaces with discrete length spectra. Geom.
Dedicata 137 (2008), 219–240.

[7] L. BERS. An inequality for Riemann surfaces. In Differential Geometry and Complex Analysis
(Springer, Berlin, 1985), Pages 87–93.

[8] P. BUSER. Geometry and spectra of compact Riemann surfaces. Progr. Math. vol. 106. (Birkhäuser
Boston, Inc., Boston, MA, 1992).

[9] M. CHAS. Relations between word length, hyperbolic length and self-intersection number of curves
on surfaces. In Recent advances in mathematics. Ramanujan Math. Soc. Lect. Notes Ser. vol. 21, pages
45–75 (Ramanujan Math. Soc., Mysore, 2015).

[10] M. CHAS and A. PHILLIPS. Self-intersection numbers of curves on the punctured torus. Experiment.
Math. 19(2) (2010), 129–148.

[11] V. ERLANDSSON and J. SOUTO. Counting curves in hyperbolic surfaces. Geom. Funct. Anal. 26(3)
(2016), 729–777.

[12] H. PARLIER. A short note on short pants. Canad. Math. Bull. 57(4) (2014), 870–876.
[13] J. SAPIR. Bounds on the number of non-simple closed geodesics on a surface. Int. Math. Res. Not.

IMRN, 2016(24) (2020), 7499–7545.
[14] J. SAPIR. Lower bound on the number of non-simple closed geodesics on surfaces. Geom. Dedicata,

184(1) (2020), 1–25.

https://doi.org/10.1017/S030500411900032X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411900032X

	Short closed geodesics with self-intersections
	Introduction
	Closed curves and their lengths
	Setup and known results
	Intersections and length

	Bounding intersection numbers
	Unwinding curves
	-type segments and final estimates

	Intersections in the thick part and surfaces with cusps
	Thick parts of closed curves
	Surfaces with cusps



