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Abstract

In this paper we introduce two new classes of stationary random simplicial tessellations,
the so-called β- and β ′-Delaunay tessellations. Their construction is based on a space–
time paraboloid hull process and generalizes that of the classical Poisson–Delaunay
tessellation. We explicitly identify the distribution of volume-power-weighted typical
cells, establishing thereby a remarkable connection to the classes of β- and β ′-polytopes.
These representations are used to determine the principal characteristics of such cells,
including volume moments, expected angle sums, and cell intensities.
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1. Introduction

Random tessellations in Euclidean space are among the most central objects studied in
stochastic geometry. Their analysis is motivated by their rich inner mathematical structures,
but in equal measure also by the wide range of applications in which they arise. For example,
tessellations, and especially triangulations of a space, play a prominent role in finite element
methods in numerical analysis, for example in computer vision, material science, ecology,
chemistry, astrophysics, machine learning, network modelling, and computational geometry;
we refer the reader to the monographs [1, 3, 7, 8, 12, 23, 26, 27, 28, 31, 33] as well as the
references cited therein for an extensive overview. However, there are very few mathematically
tractable models for which rigorous results are available and which do not require an analysis
purely by computer simulations. Among these models are the Poisson–Voronoi tessellations
and their duals, the Poisson–Delaunay tessellations. Their construction can be described as
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The β-Delaunay tessellation 1253

FIGURE 1. Poisson point processes in Rd with d = 3 used to construct the tessellations on the plane. Left:
ηβ with β = 2. Right: η′

β with β = 3. The plane h = 0 in which the tessellation is constructed is shown in
yellow.

follows. Given a stationary Poisson point process X in Rd−1, we define for any point v ∈ X the
Voronoi cell C(v, X) of v as

C(v, X) := {
w ∈R

d−1 : ‖w − v‖ ≤ ‖w − v′‖ for all v′ ∈ X
}
;

that is, C(v, X) contains all points that are closer to v than to any other point from X. In appli-
cations, C(v, X) might represent the domain of influence of a point v, for example the area in
a communication network that a base station placed at v may cover. All such Voronoi cells are
random convex polytopes, and the collection of all Voronoi cells is the Poisson–Voronoi tessel-
lation of Rd−1. To define the dual tessellation we say that the convex hull conv(v1, . . . , vd) of d
distinct points from X is a Delaunay simplex provided that X has no points in the interior of the
ball containing v1, . . . , vd on its boundary. The collection of all Delaunay simplices is what
is known as the Poisson–Delaunay tessellation. It is easy to observe that conv(v1, . . . , vd) is a
Delaunay simplex if and only if the Voronoi cells of the points v1, . . . , vd meet at a common
point, which is then the center of the circumscribed sphere of the simplex.

It is the purpose of this series of papers to introduce and to initiate a systematic study
of a generalization of Poisson–Delaunay tessellations, the so-called β-Delaunay tessellations,
denoted by Dβ . This is a one-parametric family of random tessellations of Rd−1, where the
parameter β satisfies −1<β <∞. We will also introduce the dual tessellations of Dβ , which
are denoted by Vβ and called the β-Voronoi tessellations. The classical Poisson–Delaunay and
Poisson–Voronoi tessellations arise as the limiting cases of these tessellations when β → −1.

As for the classical Poisson–Delaunay tessellation, the construction of the β-Delaunay tes-
sellation is based on a Poisson point process as well. However, while the Poisson point process
for the Poisson–Delaunay tessellation is located in Rd−1, for the β-Delaunay tessellation we
start with a Poisson point process ηβ in the product space Rd−1 × [0,∞) whose intensity mea-
sure has the form const · hβ dvdh, where v ∈Rd−1 stands for the spatial coordinate and h> 0
for the height coordinate of a point x = (v, h) ∈Rd−1 × [0,∞). A realization of this Poisson
point process for d = 3 is shown in the left panel of Figure 1. In the next step, we construct
the paraboloid hull process associated with ηβ . This is a particular germ–grain process with
paraboloid grains which in stochastic geometry was introduced by Schreiber and Yukich [32],
and was further developed in Calka, Schreiber and Yukich [5] and Calka and Yukich [6] in
order to study the asymptotic geometry of random convex hulls near their boundary. We shall
use the same paraboloid hull process to construct a random tessellation Dβ of Rd−1 with only
simplicial cells as follows. Given d points x1 = (v1, h1), . . . , xd = (vd, hd) of ηβ with affinely
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1254 A. GUSAKOVA ET AL.

FIGURE 2. Construction of the β-Delaunay tessellation Dβ for d = 2. The figure shows the Poisson point
process ηβ and the corresponding paraboloid hull. Top: β = 0. Bottom: β = 2. Points on the horizontal
axis are the vertices of the β-Delaunay tessellation of R.

independent spatial coordinates v1, . . . , vd, there is a unique shift of the standard downward
paraboloid

�↓ := {
(v, h) ∈R

d−1 ×R : h ≤ −‖v‖2}
containing x1, . . . , xd on its boundary. We declare conv(v1, . . . , vd) to be a β-Delaunay sim-
plex in Rd−1 if and only if the interior of the downward paraboloid determined by x1, . . . , xd is
void of points of ηβ . The collection of all β-Delaunay simplices is called the β-Delaunay tes-
sellation of Rd−1. Two realizations of the paraboloid hull process in the case d = 2 are shown
in Figure 2. It should be mentioned at this point that one can alternatively think of Dβ as the
dual to the Laguerre diagram Vβ of ηβ , where each point x = (v, h) ∈ ηβ represents a sphere
with center v and (imaginary) radius

√−h; see Section 3.2 for more details. We will call Vβ
the β-Voronoi tessellation. The tessellations Dβ and Vβ are dual to each other in the following
sense. A simplex conv(v1, . . . , vd) is a cell of the β-Delaunay tessellation if and only if the
cells generated by x1, . . . , xd in the β-Voronoi tessellation are non-empty and meet at a com-
mon point. The two constructions of the β-Delaunay tessellation are equivalent, and each of
them plays a role in the study of the properties of Dβ .

Let us present a simple description of the β-Voronoi tessellation Vβ . Imagine that each
atom x = (v, h) ∈Rd−1 × [0,∞) of the Poisson point process ηβ gives rise to a crystallization
process in Rd−1 which starts at the spatial position v ∈Rd−1 at time h> 0. The speed of the
crystallization process is not constant and is assumed to be such that the process reaches a
point w ∈Rd at time h + ‖w − v‖2. Then, the cell generated by (v, h) is just the set of all points
w ∈Rd−1 that are reached by the crystallization process started at (v, h) not later than by a
crystallization process started at any other point (v′, h′). It should be emphasized that the cell
may be empty and that in the case when it is non-empty, it need not contain the point v (which
is different from the case of the classical Poisson–Voronoi tessellation). The set of cells with
non-empty interior forms the β-Voronoi tessellation Vβ .

The goal of the present paper (which is the first in a series of papers) is to show that
these constructions do indeed lead to well-defined stationary random tessellations of Rd−1,
and to study their geometric properties. Moreover, and in parallel to the construction of the
β-Delaunay tessellation, we introduce the concept of a β ′-Delaunay tessellation D′

β

(
together
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FIGURE 3. Construction of the β ′-Delaunay tessellation D′
β for d = 2. The figure shows the Poisson point

process η′
β and the corresponding paraboloid hull. Top: β = 2, bottom: β = 3.

with its dual β ′-Voronoi tessellation V ′
β

)
, whose construction is based on a Poisson point pro-

cess η′
β on the product space Rd−1 × (−∞, 0) with intensity measure const · (−h)−β dvdh for

β > (d + 1)/2. A realization of the Poisson point process η′
β for d = 3 is shown in the right

panel of Figure 1, while the paraboloid hull process in the case d = 2 is shown in Figure 3.
Whenever possible, we will develop our results for both random tessellation models, β and

β ′, in parallel. In particular, we are interested in what is known as the typical cell of Dβ and
D′
β . Intuitively, one can think of such a cell as a randomly chosen cell, which is selected inde-

pendently of its size and shape. More generally, we shall study volume-power-weighted typical
cells, where the weight is a certain power ν of the volume. One of our main contributions is
Theorem 1, which gives a precise distributional characterization of the weighted typical cell
of Dβ and D′

β . In particular, we will prove that the weighted typical cell of Dβ (respectively,
D′
β ) is a randomly rescaled volume-power-weighted β-simplex (respectively, β ′-simplex) (see

Remark 5), which also explains the names of the models. Very remarkably, this provides a
new link between the β- and β ′-Delaunay tessellations and the classes of β-polytopes and β ′-
polytopes, which has recently been under intensive investigation; see, for example, [10, 14,
15, 17], and also Remark 8 below. This opens a way to study the geometry and the combina-
torial properties of the typical cells of Dβ and D′

β . Among our results are explicit formulas
for the moments of the volume as well as probabilistic representations in terms of indepen-
dent gamma- and beta-distributed random variables. We also compute explicitly the j-face
intensities and determine the expected angle sums of weighted typical cells.

Finally, we prove that, as β → ∞, the expected angle sums of the volume-power-weighted
typical cells tend to those of a regular simplex in Rd−1. We will pick up this topic in detail in
Part II of this series of papers, where we describe the common limiting tessellation D := D∞
of Dβ and D′

β , as β → ∞, after suitable rescaling. This will provide an explanation of the limit
behavior of the expected angle sums just described. In Part III we will prove various high-
dimensional limit theorems for the volume of weighted typical cells in Dβ , D′

β , and D, that is,
limit theorems where d → ∞ (potentially in a coupled way with other parameters). We will
also describe there the shape of large weighted typical cells in the spirit of Kendall’s problem,
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generalizing thereby results of Hug and Schneider [13] on the classical Poisson–Delaunay
tessellation. Finally, in Part IV we study mixing properties of the tessellations Dβ , D′

β , and D,
and as a consequence we derive central limit theorems for the number of k-dimensional faces
of Dβ and D in a growing window.

The remaining parts of this text are structured as follows. In Section 2 we recall the neces-
sary notions and notation from random tessellation and point process theory, which are used
throughout the paper. The detailed construction of β-Delaunay tessellations is presented in
Section 3. The explicit distributions of their volume-power-weighted typical cells is the content
of Section 4. These results are used in Section 5 to derive explicit formulas and probabilistic
representations for the moments of the volume of such cells. The final Section 6 discusses
expected angle sums of weighted typical cells as well as formulas for face intensities.

2. Preliminaries

2.1. Frequently used notation

Let d ≥ 1 and A ⊂Rd. We denote by int A the interior of A and by ∂A its boundary.
A centered closed Euclidean ball in Rd with radius r> 0 is denoted by Bd

r , and we put
Bd := Bd

1. The volume of Bd is given by

κd := πd/2

	
(
1 + d

2

) .

By σd−1 we denote the spherical Lebesgue measure on the (d − 1)-dimensional unit sphere
Sd−1 = ∂Bd, normalized in such a way that

ωd := σd−1
(
S

d−1)= 2π
d
2

	
(

d
2

) .

Given a set C ⊂Rd−1, we denote by conv(C) its convex hull. For points v0, . . . , vk ∈Rd−1

we write aff(v0, . . . , vk) for the affine hull of v0, . . . , vk, which is an at most k-dimensional
affine subspace of Rd−1, k ∈ {0, 1, . . . , d − 1}.

In what follows we shall represent points x ∈Rd in the form x = (v, h) with v ∈Rd−1 (called
the spatial coordinate) and h ∈R (called the height, weight, or time coordinate).

We will often use the following notation. Let � (respectively, �+) be the standard
downward (respectively, upward) paraboloid, defined as

� := {(
v′, h′) ∈R

d−1 ×R : h′ = −‖v′‖2},
�+ := {(

v′, h′) ∈R
d−1 ×R : h′ = ‖v′‖2}.

Further, let �x be the translation of � by a vector x := (v, h) ∈Rd, that is,

�x := {(
v′, h′) ∈R

d−1 ×R : h′ = −‖v′ − v‖2 + h
}
.

Moreover, given a set A ⊂Rd, we define the hypograph and the epigraph of A as

A↓ := {(
v, h′) ∈R

d−1 ×R : (v, h) ∈ A for some h ≥ h′},
A↑ := {(

v, h′) ∈R
d−1 ×R : (v, h) ∈ A for some h ≤ h′}.

The point x is the apex of the paraboloid �x, and we write apex�↓
x = apex�x := x.
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2.2. (Poisson) point processes

Let (X,X ) be a measurable space supplied with a σ -finite measure μ. By N(X) we denote
the space of σ -finite counting measures on X. The σ -field N (X) is defined as the smallest σ -
field on N(X) such that the evaluation mappings ξ �→ ξ (B), B ∈X , ξ ∈ N(X) are measurable.
A point process on X is a measurable mapping with values in N(X) defined over some fixed
probability space (,A, P). By a Poisson point process η on X with intensity measure μ we
understand a point process with the following two properties:

(i) for any B ∈X , the random variable η(B) is Poisson distributed with mean μ(B);

(ii) for any n ∈N and pairwise disjoint sets B1, . . . , Bn ∈X , the random variables
η(B1), . . . , η(Bn) are independent.

We refer the reader to [20, 31] for the existence and construction of Poisson point processes
and for further details.

2.3. Tessellations

In this subsection we recall the concept of a random tessellation and include a brief overview
of its basic properties. For more detailed discussion we refer the reader to [31, Chapter 10].
Roughly speaking, a tessellation (or a mosaic) is a system of polytopes that cover the whole
space and have disjoint interiors. We fix a space dimension d ≥ 2. Since the tessellations we
construct in Section 3 are driven by a Poisson point process in Rd and induce a tessellation in
Rd−1, we consider this set-up in what follows.

Definition 1. A tessellation M in Rd−1 is a countable system of subsets of Rd−1 satisfying the
following conditions:

1. M is a locally finite system of non-empty closed sets, where local finiteness means that
every bounded subset of Rd−1 intersects only finitely many sets from M;

2. the sets m ∈ M are compact and convex, and they have interior points;

3. the sets of M cover the space, meaning that⋃
m∈M

m =R
d−1;

4. if m1,m2 ∈ M and m1 �= m2, then int m1 ∩ int m2 =∅.

The elements of M are called cells of M, and they are convex polytopes by [31, Lemma
10.1.1]. Given a polytope P, for k ∈ {0, 1, . . . , d − 1} we denote by Fk(P) the set of its
k-dimensional faces, and we let F(P):= ⋃d−1

k=0 Fk(P). A tessellation M is called face-to-face
if for all P1, P2 ∈ M we have

P1 ∩ P2 ∈ (F(P1) ∩F(P2)) ∪ {∅}.
A face-to-face tessellation in Rd−1 is called normal if each k-dimensional face of the tessel-
lation is contained in precisely d − k cells for all k ∈ {0, 1, . . . , d − 2}. We denote by M the
set of all face-to-face tessellations in Rd−1. By a random tessellation in Rd−1 we understand
a particle process X in Rd−1 (in the usual sense of stochastic geometry; see [31]) satisfying
X ∈M almost surely. Implicitly, we assume here and for the rest of this paper that all the
random objects we consider are defined on a probability space (,A, P).
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3. Construction of β(′)-Voronoi and β(′)-Delaunay tessellations

3.1. Underlying point processes

Let us start by defining the β- or β ′-Voronoi tessellation and its dual, the β- or β ′-Delaunay
tessellation. We will give two alternative definitions using the concept of Laguerre tessellations
and the notion of paraboloid hull processes introduced by Schreiber and Yukich [32], Calka,
Schreiber and Yukich [5], and Calka and Yukich [6]. As an underlying process for the β-
Voronoi and the β-Delaunay tessellations we consider a space–time Poisson point process
η= ηβ in Rd−1 ×R+, where R+ := [0,+∞) denotes the set of non-negative real numbers,
with intensity measure having density

(x, h) �→ γ cd,β · hβ, cd,β :=
	
(

d
2 + β + 1

)
π

d
2	(β + 1)

, γ > 0, β >−1, (3.1)

with respect to the Lebesgue measure on Rd−1 ×R+. Here, γ > 0 is the intensity parameter
(which will usually be suppressed in our notation), β >−1 is the shape parameter, and the
normalizing constant cd,β has been introduced to simplify some of the computations below.
See Figure 1 (left panel) and Figure 2 for realizations of these point processes with d = 3 and
d = 2, respectively.

For the β ′-Voronoi and the β ′-Delaunay tessellations we consider a space–time Poisson
point process η′ = η′

β in Rd−1 ×R∗−, where R∗− := (−∞, 0) denotes the set of negative real
numbers, with intensity measure having density

(x, h) �→ γ c′
d,β · (−h)−β, c′

d,β := 	(β)

π
d
2	

(
β − d

2

) , γ > 0, β >
d + 1

2
, (3.2)

with respect to the Lebesgue measure on Rd−1 ×R∗−. Again, γ > 0 and β > (d + 1)/2 are the
parameters of the process. See Figure 1 (right panel) and Figure 3 for realizations of η′

β with
d = 3 and d = 2, respectively.

As we will see later, the β- and β ′-tessellations can often be treated in a unified way. To
make this explicit and in order to shorten and simplify the presentation of the paper, we intro-
duce the following variable notation. We put κ := 1 if the β model is being considered and
κ := −1 if we are working with the β ′ model. Moreover, throughout the paper we will use
almost the same notation for β- and β ′-tessellations, the only difference being the use of the
symbol ′ in the case of the β ′ model. When the formulas for the β and β ′ model are close
enough to be joined into one expression, we will indicate this by(′), meaning that this sign
should be omitted when a β model is being considered.

Using the convention just introduced, we can consistently represent the density of the
Poisson point process η(′) on Rd−1 ×R as

(x, h) �→ γ c(′)
d,β · (κh)κβ · 1{κh> 0},

with β >−1 for the β model and β > (d + 1)/2 for the β ′ model.

3.2. General Laguerre diagrams

Let us start by defining a Laguerre tessellation, which can be considered as a generalized
(or weighted) version of a classical Voronoi tessellation. For two points v,w ∈Rd−1 and h ∈R

we define the power of w with respect to the pair (v, h) as

pow(w, (v, h)) := ‖w − v‖2 + h.

https://doi.org/10.1017/apr.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.6


The β-Delaunay tessellation 1259

In this situation h is referred to as the weight of the point v. A closely related concept is known
from elementary geometry, where for h< 0 the value pow(w, (v, h)) describes the square length
of the tangent through a point w at a circle with radius

√−h around v.
Let X be a countable set of marked points of the form (v, h) in Rd−1 ×R. Then the Laguerre

cell of (v, h) ∈ X is defined as

C((v, h), X) := {
w ∈R

d−1 : pow(w, (v, h)) ≤ pow(w, (v′, h′)) for all (v′, h′) ∈ X
}
.

Let us mention an intuitive interpretation of the notions introduced above in terms of a crys-
tallization process. Imagine that v ∈Rd−1 denotes a point at which a certain crystallization
process starts at time h ∈R. Then X is a collection of centers of crystallization together with
the corresponding initial times. Suppose further that after a crystallization process has started
at some point v ∈Rd−1, it needs time R2 to cover a ball of radius R> 0 around v. In partic-
ular, the spreading speed of the crystallization is non-constant and decreases with time. Then
pow(w, (v, h)) is just the time at which the point w is covered by the crystallization process
that started at (v, h). Moreover, the Laguerre cell of (v, h) is just the crystal with ‘center’ v, that
is, the set of points which are covered by the crystallization process that started at (v, h) before
they are covered by any other crystallization process. It should be pointed out that in our model
we assume that crystallization starts at the point (v, h) ∈ X even if this point has already been
covered by another crystallization process which started earlier.

Note that Laguerre cells can have vanishing topological interior and that in our case most of
them will actually be empty. The collection of all Laguerre cells of X which have non-vanishing
topological interior is called the Laguerre diagram:

L(X) := {C((v, h), X) : (v, h) ∈ X,C((v, h), X) �=∅}.
Also, let us emphasize that the Laguerre cell generated by (v, h), even if it is non-empty,
need not contain the point v. Indeed, the cell of (v, h) does not contain v if at time h the
point v has been already covered by a crystallization process that started at some other point
(v′, h′) �= (v, h).

Laguerre diagrams play an important role in computational geometry, where it is more
common to use the following interpretation of L(X) as a vertical projection of a d-dimensional
polyhedral set to Rd−1; see [4, Chapters 17–18]. Assuming that h = −r2 for some complex
number r ∈C, to every point (v,−r2) ∈ X we assign a (d − 2)-dimensional sphere S(v, r) ⊂
Rd−1 with center v ∈Rd−1 and (potentially imaginary) radius r. Two spheres S(v1, r1) and
S(v2, r2) are orthogonal if ‖v1 − v2‖2 = r2

1 + r2
2 or, equivalently, pow(v2, (v1,−r2

1)) = r2
2. Thus,

for a point w ∈Rd−1, the value pow
(
w, (v,−r2)

)
is the squared radius of the sphere centered at

w and orthogonal to S(v, r). Consider the transformation φ : S(v, r) �→ (v, ‖v‖2 − r2) that maps
(d − 2)-dimensional spheres to points in Rd. Considering a point w ∈Rd−1 as a sphere of zero
radius, the above transformation maps Rd−1 to the standard upward paraboloid �+ in Rd.
Moreover, each vertical line in Rd passing through (v,0) represents the set of spheres centered
at v, and real spheres are mapped to points below �+, while imaginary spheres correspond to
points above�+. Treating the paraboloid�+ as a quadric, for each point x ∈Rd we can define
the polar hyperplane xo of x with respect to �+. Then [4, Lemma 17.2.1] implies that the set
of spheres orthogonal to a given sphere S(v, r) is mapped by φ to φ(S(v, r))o. Moreover, [4,
Lemma 17.2.3] shows that pow

(
w, (v,−r2)

)
is the signed vertical distance between the point

φ(w) and the hyperplane φ(S(v, r))o, i.e. the difference of the dth coordinates of φ(w) and the
unique point y ∈ φ(S(v, r))o with (y1, . . . , yd−1) = w. Using this interpretation and writing

P(X) :=
⋂

(v,h)∈X

φ
(
S
(
v,

√−h
))o,↑

,
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it is clear that the Laguerre diagram L(X) arises as the vertical projection (setting the dth
coordinate to zero) of the boundary of P(X) to Rd−1. Thus, each non-empty Laguerre cell is a
vertical projection of a face of P(X). For a more detailed overview of the above interpretation
we refer the reader to [4, Chapters 17–18].

3.3. Random Laguerre tessellations

It should be mentioned that a Laguerre diagram is not necessarily a tessellation, at least
as long as we do not impose additional assumptions on the geometric properties of the set X.
We also note that the case when all weights are equal corresponds to the case of the classical
Voronoi tessellation. The first formal description of geometric properties of the set X ensur-
ing that the Laguerre diagram L(X) becomes a tessellation is due to Schlottmann [29], and a
thorough investigation of the case when all weights are negative has been made by Lautensack
and Zuyev [21, 22]. In our situation we are interested in the cases of positive, negative, and
general weights h ∈R. More precisely, and in view of the applications in Part II of this series
of papers, we consider a point process ξ in Rd−1 × E, where E ⊂R is a possibly unbounded
interval, satisfying the following properties:

(P1) For every (w, t) ∈Rd−1 × E, there are almost surely only finitely many (v, h) ∈ ξ
satisfying

pow(w, (v, h)) = ‖w − v‖2 + h ≤ t.

In words, at the time when a crystallization process starts at some (w, t), the point w has
already been reached by at most finitely many crystallization processes.

(P2) With probability 1 we have

conv(v : (v, h) ∈ ξ ) =R
d−1.

(P3) With probability 1, no d + 1 points (v0, h0), . . . , (vd, hd) from ξ lie on the same
downward paraboloid of the form{

(v, h) ∈R
d−1 × E : ‖v − w‖2 + h = t

}
with (w, t) ∈Rd−1 × E. In words, with probability 1 it is not possible that d + 1
crystallization processes reach the same point in space simultaneously.

In the following two lemmas we prove that the Laguerre diagram constructed on the Poisson
point process ξ is a random face-to-face normal tessellation in Rd−1.

Lemma 1. Let ξ be a point process satisfying Properties (P1) and (P2). Then L(ξ ) is a random
face-to-face tessellation in Rd−1.

Proof. The proof follows directly from [29, Proposition 1]. In this context, it should be
noted that in [29] the function

pow∗(w, (v, h)) = ‖w − v‖2 − h = ‖w − v‖2 + (−h) = pow(w, (v,−h))

was considered. However, this does not influence the proof, and in this paper we prefer to use
the function pow( · ), which is more convenient for our purposes. �
Lemma 2. Let ξ be a point process satisfying Properties (P1)–(P3). Then the random
tessellation L(ξ ) is normal with probability 1.
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Proof. The statement follows directly from the interpretation of the Laguerre diagram L(ξ )
as the boundary of the polyhedral set P(ξ ). Let ξ ′ be the image of the point process ξ under
the transformation (v, h) �→ (

v, ‖v‖2 + h
)
. Property (P3) is equivalent to the fact that with

probability 1 no d + 1 points (w0, s0), . . . , (wd, sd) from ξ ′ lie on the same hyperplane in
Rd. From this it also follows that for any k = 1, . . . , d, with probability 1 no k + 1 points
(w0, s0), . . . , (wk, sk) lie on the same (k − 1)-dimensional hyperplane. Thus, using polarity
with respect to the paraboloid �+, we conclude that any (d − k)-dimensional face of P(ξ ),
k = 1, . . . , d, is contained in exactly k facets, which implies the normality of L(ξ ). �
Remark 1. It is easy to see that if the point process ξ satisfies Properties (P1)–(P3), then with
probability 1 there is no non-empty Laguerre cell with vanishing interior. To see this, we again
use the correspondence between the Laguerre tessellation L(ξ ) and the boundary of P(ξ ). First
of all we note that every Laguerre cell with vanishing interior corresponds to a face F of P(ξ )
with dimension k ≤ d − 2. Thus, there are at least d − k facets of P(ξ ) containing F, and hence,
using the polarity relation between hyperplanes with respect to the paraboloid�+, there are at
least d − k + 1 points in ξ ′ lying on the same (d − 1 − k)-dimensional hyperplane. According
to (P3) this happens with probability 0.

3.4. Definition of β(′)-Voronoi tessellations

The β(′)-Voronoi tessellations we are interested in are defined as random Laguerre tes-
sellations driven by the Poisson point processes ηβ and η′

β with intensities given by (3.1)
and (3.2).

Lemma 3. The point processes ηβ for β >−1 and η′
β for β > (d + 1)/2 satisfy Properties

(P1)–(P3) with E = [0,∞) in the β case and E = (−∞, 0) in the β ′ case.

Proof. Property (P2) holds because the projections of the Poisson point processes ηβ and
η′
β to the space component Rd−1 are everywhere dense sets, with probability 1. Indeed, the

integrals of the intensities of these processes over any set of the form B ×R, where B ⊂Rd−1

is a non-empty ball, are infinite, which means that infinitely many points project to B almost
surely.

Property (P3) holds for any Poisson point process η in Rd−1 × E whose intensity measure
�η is absolutely continuous with respect to the Lebesgue measure with density �, say (see, for
example, [26, Proposition 4.1.2] for a closely related result in the setting of a stationary Poisson
point process). Let us verify (P3) by applying the multivariate Mecke formula [31, Corollary
3.2.3]. Write ηd+1

�= for the set of (d + 1)-tuples of distinct points of η and�(x1, . . . , xd) for the

unique downward paraboloid on which the points x1, . . . , xd ∈Rd lie. With this notation we
have that

E
∑

(x1,...,xd+1)∈ηd+1
�=

1
(
x1, . . . , xd+1 lie on the same paraboloid

)

= 1

(d + 1)!
∫
Rd−1

. . .

∫
Rd−1

∫
E
. . .

∫
E

d∏
i=1

�(hi, vi)dv1 . . . dvd dh1 . . . dhd

×
∫
Rd−1

∫
E

1
((

vd+1, hd+1
) ∈�((

v1, h1
)
, . . . ,

(
vd, hd

)))
�
(
hd+1, vd+1

)
dvd+1 dhd+1 = 0,

since the inner integral is equal to 0.
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Verification of Property (P1) requires additional computations. To consider the case of ηβ ,
fix w ∈Rd−1 and t> 0. The inequalities in (P1) describe the bounded domain

D := {
(v, h) ∈R

d−1 ×R+ : ‖v − w‖2 + h ≤ t
}

lying below the paraboloid h = t − ‖v − w‖2 and above the hyperplane h = 0. Since the inten-
sity measure of the Poisson point process ηβ is locally integrable because of the condition
β >−1, there are only finitely many points (v, h) of ηβ in D, and Property (P1) holds.

In order to check (P1) for η′
β , we fix w ∈Rd−1 and t< 0. We need to show that the downward

paraboloid

D := {
(v, h) ∈R

d−1 ×R
∗− : ‖v − w‖2 + h ≤ t

}
contains only finitely many points of η′

β almost surely. Using the stationarity of the process η′
β

in the space coordinate, we can put w = 0 without loss of generality. The expected number of
points of η′

β in D is then given by

E
∑

(v,h)∈η′
β

1
(‖v‖2 + h ≤ t

)= γ c′
d,β

∫
Rd−1

∫ ∞

0
1
(‖v‖2 − s ≤ t

)
s−βds dv

= γ c′
d,β

1 − β

∫
Rd−1

(‖v‖2 + |t|)1−βdv

= γ c′
d,β

1 − β
(d − 1)κd−1

∫ ∞

0

(
r2 + |t|)1−β

rd−2 dr

= γ c′
d,β

(1 − β)c′
d−1,β−1

|t| d+1−2β
2 <∞,

where we have introduced spherical coordinates in Rd−1, applied the definition of the constants
κd−1 and c′

d−1,β−1, and used the condition that β > (d + 1)/2 to ensure the finiteness of the

integral over Rd−1. This completes the proof. �
Summarizing, we conclude that the Laguerre tessellations L(ηβ ) and L(η′

β ) are with prob-

ability 1 stationary and normal random tessellations in Rd−1. We can thus state the following
definition.

Definition 2. The random tessellation Vβ := L(ηβ ) is called the β-Voronoi tessellation and
the random tessellation V ′

β := L(η′
β ) is called the β ′-Voronoi tessellation in Rd−1.

Let us emphasize that even though the Poisson point processes ηβ
(
respectively η′

β

)
are

actually well-defined on Rd−1 × (0,∞) (respectively Rd−1 × (−∞, 0)) for every β ∈R, the
corresponding tessellations are well-defined only under the conditions β >−1 (respectively
β > (d + 1)/2) (because otherwise Property (P1) is not satisfied).

Remark 2. We would like to stress the fact that what we call the β-Voronoi tessellation is
not a Voronoi tessellation in the classical sense; see [4]. However, the β-Voronoi tessella-
tion is a deformation of a Voronoi tessellation, because it converges to the latter as β → −1.
The situation is similar for the β-Delaunay tessellation defined in the next section, which is a
deformation of a Delaunay tessellation and converges to it as β → −1.
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3.5. Definition of β(′)-Delaunay tessellations

Given a Laguerre diagram L(ξ ) we can associate to it a so-called dual Laguerre dia-
gram L∗(ξ ), which can be defined in the same spirit as a classical Delaunay diagram for a
given Voronoi construction. Let ξ be a Poisson point process in Rd−1 × E, E ⊂R satisfying
Properties (P1)–(P3). Then L(ξ ) is a random normal face-to-face tessellation and we denote
by F0(L(ξ )) the set of its vertices. Further, given a point z ∈F0(L(ξ )) we construct a Delaunay
cell D(z, ξ ) as a convex hull of those v for which (v, h) ∈ ξ and z ∈ C((v, h), ξ ), namely

D(z, ξ ) := conv(v : (v, h) ∈ ξ, z ∈ C((v, h), ξ )).

Since the tessellation L(ξ ) is normal with probability 1, for every vertex z ∈F0(L(ξ )) there
exist exactly d points x1, . . . , xd of ξ such that the corresponding cells C(x1, ξ ), . . . ,C(xd, ξ )
of the Laguerre tessellation L(ξ ) contain z. Thus, D(z, ξ ) is a simplex with probability 1. We
define the dual Laguerre diagram L∗(ξ ) as the collection of all Delaunay simplices

L∗(ξ ) := {D(z, ξ ) : z ∈F0(L(ξ ))}.
From the above construction it follows that for any z ∈F0(L(ξ )) there exists a number Kz ∈R

such that with probability 1 there exist exactly d points (v1, h1), . . . , (vd, hd) of ξ with

pow(z, (v1, h1)) = . . .= pow(z, (vd, hd)) = Kz

and there is no (v, h) ∈ ξ with pow(z, (v, h))<Kz. Consider the set

ξ∗ := {
(z,−Kz) ∈R

d−1 ×R : z ∈F0(L(ξ ))
}
. (3.3)

It turns out that the dual Laguerre diagram L∗(ξ ) is a Laguerre diagram constructed for the
set ξ∗ and that ξ∗ satisfies Properties (P1) and (P2) if ξ satisfies them (for the proof of these
facts see [29, Proposition 2]). Thus, by Lemma 3 we conclude that L∗(ξ ) =L(ξ∗) is a random
face-to-face simplicial tessellation.

As for the usual Laguerre diagram L(X), where X is some countable set, there is an alterna-
tive construction of the dual Laguerre diagram L∗(X), which is more common in computational
geometry; see [4, Chapters 17–18]. It can be described as follows. Interpreting points of
(v, h) ∈ X as spheres with center v and radius

√−h ∈C, and applying the transformation φ
introduced in Section 3.2, we obtain a set of points X′ := {(

v, ‖v‖2 + h
)

: (v, h) ∈ X
}

in Rd.
Then the dual Laguerre diagram L∗(X) is the vertical projection along the dth coordinate of
the boundary of the polyhedral set P∗(X′) := conv(X′)↑. It is also common in computational
geometry to call L∗(X) a ‘regular triangulation’.

We will be interested in the case when ξ is one of the Poisson point processes ηβ or η′
β .

Definition 3. The random tessellation Dβ := L∗(ηβ ) is called the β-Delaunay tessellation
in Rd−1, while the random tessellation D′

β := L∗(η′
β

)
is called the β ′-Delaunay tessellation

in Rd−1. For the realization of the tessellation Dβ in dimension 2, see Figure 4, and for D′
β in

dimension 2 see Figure 5.

3.6. Paraboloid hull process

The paraboloid hull process was first introduced in [5, 32] in order to study the asymp-
totic geometry of the convex hull of Poisson point processes in the unit ball. It is designed to
exhibit properties analogous to those of convex polytopes, with the paraboloids playing the
role of hyperplanes, the spatial coordinates v playing the role of spherical coordinates, and the
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FIGURE 4. Realization of β-Delaunay tessellation in R2. Left: β = 5. Right: β = 15. The pictures above
were created with the help of the Computational Geometry Algorithms Library (CGAL) [34].

FIGURE 5. Realization of β
′
-Delaunay tessellation in R2. Left: β = 2.1. Right: β = 2.5. The pictures

above were created with the help of CGAL [34].

height coordinates h playing the role of the radial coordinate. The numerous properties of the
paraboloid hull process, which are analogous to standard statements of convex geometry, have
been developed in [5, Section 3], and we refer the reader to this paper for further information
and background material. At this point let us mention, without making the statement precise
or proving it, that the β-Delaunay tessellation we are interested in describes the local asymp-
totic structure (near the boundary of the unit sphere) of the so-called beta random polytope
[17] in the d-dimensional unit ball generated by n points, as n → ∞. After rescaling, the unit
sphere looks locally like Rd−1, while the boundary of the beta random polytope (projected to
the sphere) looks locally like the β-Delaunay tessellation.
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The idea is that the shifts of the hypographs of the standard paraboloid �↓ are, in
some sense, analogous to the half-spaces in Rd not containing the origin 0 in their bound-
ary. For any collection x1 := (v1, h1), . . . , xk := (vk, hk) of k ≤ d points in Rd−1 ×R with
affinely independent coordinates v1, . . . , vk, we define �(x1, . . . , xk) as the intersection of
aff(v1, . . . , vk) ×R with a translation of� containing all of the points x1, . . . , xk. It should be
noted that the set �(x1, . . . , xk) is well-defined, although for k< d the translation of � con-
taining all x1, . . . , xk is not unique. Nevertheless, for k = d and all tuples x1, . . . , xd with
affinely independent spatial coordinates v1, . . . , vd, such a translation is unique. Then we
define �[x1, . . . , xk] as

�[x1, . . . , xk] := �(x1, . . . , xk) ∩ (conv(v1, . . . , vk) ×R) .

We will say that a set A ⊂Rd has the paraboloid convexity property if for each y1, y2 ∈ A
we have �[y1, y2] ⊂ A. Clearly, �[x1, . . . , xk] is the smallest set containing x1, . . . , xk and
having the paraboloid convexity property. Next, we say the set A ⊂Rd is upwards paraboloid
convex if and only if A has the paraboloid convexity property and if for each x = (v, h) ∈ A we
have {x}↑ ⊂ A.

Finally, given a locally finite point set X ⊂Rd, we define its paraboloid hull �(X) to be
the smallest upwards paraboloid convex set containing X. In particular, given a Poisson point
process ξ in Rd−1 × E, E ⊂R, we define the paraboloid hull process �(ξ ) in Rd−1 × E as
the paraboloid hull of ξ .

Using arguments analogous to those of [5, Lemma 3.1], it is easy to derive an alternative
and more convenient way to represent �(ξ ); namely, with probability 1 we have that

�(ξ ) =
⋃

(x1,...,xd)∈ξd�=

(�[x1, . . . , xd])↑ ,

where ξd�= is the collection of all d-tuples of distinct points of ξ .

For (x1, . . . , xd) ∈ ξd�=, the set �[x1, . . . , xd] is called a paraboloid sub-facet of �(ξ )
if �[x1, . . . , xd] ⊂ ∂�(ξ ). Two paraboloid sub-facets �[x1, . . . , xd] and �[y1, . . . , yd] are
called co-paraboloid provided that �(x1, . . . , xd) =�(y1, . . . , yd), and by paraboloid facet
of �(ξ ) we understand a collection of co-paraboloid sub-facets. Since ξ is a Poisson point
process, each paraboloid facet of �(ξ ) with probability 1 consists of exactly one sub-
facet. Thus we can say that �[x1, . . . , xd] is a paraboloid facet of �(ξ ) if and only if
ξ ∩ (�(x1, . . . , xd))↓ = {x1, . . . , xd}.

Using the paraboloid hull processes�(ξ ), we now construct a diagram D(ξ ) on Rd−1 in the
following way: for any collection x1 := (v1, h1), . . . , xd := (vd, hd) of pairwise distinct points
from ξ , we say that the simplex conv(v1, . . . , vd) belongs to D(ξ ) if and only if �[x1, . . . , xk]
is a paraboloid facet of �(ξ ). Thus, if ξ satisfies Properties (P1)–(P3), then D(ξ ) =L∗(ξ ) is a
random simplicial tessellation.

It is clear now that the tessellations D(ηβ ) and D(η′
β ) coincide with β–Delaunay and β ′–

Delaunay tessellations (respectively), defined in the previous subsection.

4. Weighted typical cells in β- and β ′-Delaunay tessellations

4.1. Definition of the ν-weighted typical cell

In this section we derive an explicit representation of the distribution of typical cells in a
β-Delaunay tessellation Dβ with parameter β >−1 and a β ′-Delaunay tessellation D′

β with
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parameter β > (d + 1)/2 as described in the previous sections, and, more generally, of the
distribution of typical cells weighted by the νth power of their volume, with ν ≥ −1. On the
intuitive level, the construction presented below can be understood as follows. Consider the
collection of all cells of Dβ or D′

β and assign to each cell a weight equal to the νth power
of its volume. Then pick one cell at random, where the probability of picking a given cell is
proportional to the νth power of its volume. The resulting random simplex is denoted by Zβ,ν(
respectively, Z′

β,ν

)
, and its probability distribution on the space of compact convex subsets of

Rd−1 is denoted by Pβ,ν
(
respectively, P′

β,ν

)
. Since the number of cells in the tessellation is

infinite, some work is necessary to define these objects in a mathematically rigorous way. The
reader should keep in mind the following two important special cases:

(i) ν = 0: Zβ,0
(
respectively, Z′

β,0

)
coincides with the classical typical cell of Dβ(

respectively, D′
β

)
;

(ii) ν = 1: Zβ,1
(
respectively, Z′

β,1

)
coincides with the volume-weighted typical cell of Dβ(

respectively, D′
β

)
(which has the same distribution as the almost surely unique cell

containing the origin, up to translation; see Theorem 10.4.1 in [31]).

To formally present the definition of volume-power-weighted typical cells, we use the
concept of generalized center functions and Palm calculus for marked point processes as out-
lined in [31, p.116] and [30, Section 4.3]. Following the arguments from Subsection 3.3 and
Subsection 3.6, a random tessellation D(ξ ), where ξ is a point process in Rd−1 × E, E ⊂R

satisfying (P1)–(P3), coincides with the Laguerre tessellation of the random set ξ∗ described
by (3.3). In this section we additionally assume that ξ is stationary with respect to the shifts
of the Rd−1-component, which implies stationarity of the tessellation D(ξ ). Observe that ξ∗
can alternatively be described via the set of apexes of paraboloid facets of the paraboloid hull
process �(ξ ); that is,

ξ∗ = {(v, h) : (v,−h) = apex�(x1, . . . , xd), xi ∈ ξ, 1 ≤ i ≤ d, conv(v1, . . . , vd) ∈D(ξ )}.

Let C′ denote the space of non-empty compact subsets of Rd−1 endowed with the usual
Hausdorff metric and the corresponding Borel σ -field B(C′). The random tessellation D(ξ )
(which is defined as a random subset of C′) can be identified with the particle process∑

c∈D(ξ ) δc; see [31, Chapter 4]. Formally, this is a simple point process on C′, or equivalently,
a random element in the space Ns(C′) of σ -finite simple counting measures on C′ (a counting
measure ζ on C′ is simple if ζ ({K}) ∈ {0, 1} for all K ∈ C′). Next, we define the measurable set
C′ ◦ N(C′) := {(K, ζ ) ∈ C′ × Ns(C′) : K ∈ ζ } and recall that a generalized center function is any
Borel-measurable map z : C′ ◦ N(C′) →Rd−1 such that z(K + t, ζ + t) = z(K, ζ ) + t for every
t ∈Rd−1 and (K, ζ ) ∈ C′ ◦ N(C′). In our case we take

z(K, ζ ) :=
{

v if K = C
(
(v, h), ξ∗), ζ =D(ξ ),

0 otherwise,

where we recall that C
(
(v, h), ξ∗) is the Laguerre cell of (v, h) ∈ ξ∗.

Next we consider the random marked point process μξ on Rd−1 with mark space C′, formed
as follows:

μξ :=
∑

(v,h)∈ξ∗
δ(v,M), M := C

(
(v, h), ξ∗)− v.
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It is evident from the construction that the point process μξ is stationary and that the inten-
sity measure � of μξ is locally finite. Thus, according to [31, Theorem 3.5.1] it admits the
decomposition

�= λ
[
Leb

(
R

d−1)⊗ Pξ,0
]
,

where 0<λ<∞, Leb
(
Rd−1

)
is the Lebesgue measure on Rd−1, and Pξ,0 is a probability

measure on C′, the so-called mark distribution of μξ . By [31, p.84] it can be represented as

Pξ,0(A) := 1

λ
E

∑
(v,M)∈μξ

1A(M)1[0,1]d−1 (v),

where [0, 1]d−1 denotes the (d − 1)-dimensional unit cube. The probability measure Pξ,0
describes the mark attached to the typical point of μξ , that is, the typical cell of the tessellation
D(ξ ). This motivates the following definition.

For a given ν we define a probability measure Pξ,ν on C′ by

Pξ,ν(A) := 1

λξ,ν
E

∑
(v,M)∈μξ

1A(M)1[0,1]d−1 (v) Vol(M)ν (4.1)

for A ∈B(C′), where λξ,ν is the normalizing constant given by

λξ,ν := E
∑

(v,M)∈μξ
1[0,1]d−1 (v) Vol(M)ν . (4.2)

It should be mentioned that for some values of ν the value λξ,ν can be equal to infinity. This is
the reason why for any point process ξ one needs to specify possible values of ν.

Definition 4. A random simplex Zβ,ν , where ν ≥ −1 and β >−1, with distribution Pβ,ν :=
Pηβ ,ν is the Volν-weighted (or just ν-weighted) typical cell of the β-Delaunay tessellation
Dβ .

Definition 5. A random simplex Z′
β,ν , where β > (d + 1)/2 and 2β − d> ν ≥ −1, with distri-

bution P′
β,ν := Pη′

β ,ν
is the Volν-weighted typical cell of the β ′-Delaunay tessellation D′

β .

Remark 3. That the constants λβ,ν := ληβ,ν and λ′
β,ν := λη′

β ,ν
are in fact finite for the ranges

of d, β, and ν mentioned in the previous definition will be established in the proof of
Theorem 1.

Remark 4. We also conjecture that it is possible to enlarge the diapason of possible values for
the parameter ν to ν >−2.

4.2. Stochastic representation of the ν-weighted typical cell

After having introduced the concept of weighted typical cells, we are now going to develop
an explicit description of their distributions. In fact, the following theorem may be considered
our main contribution in this paper, since it is the principal device on which most of the results
in this part, as well as in Parts II and III of this series of papers, are based. To present it, let us
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recall our convention that κ = 1 if we consider the β model and that κ = −1 in the case of the
β ′ model.

Theorem 1. Fix d ≥ 2, ν ≥ −1, and β >−1 for the β model, or 2β − d> ν ≥ −1, β > (d +
1)/2 for the β ′ model. Then for any Borel set A ⊂ C′ we have that

P
(′)
β,ν(A) = α

(′)
d,β,ν

∫(
Rd−1

)d dy1 . . . dyd

∫ ∞

0
dr 1A(conv(ry1, . . . , ryd))r2κdβ+d2+ν(d−1)

× e−m(′)
d,β rd+1+2κβ

�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
,

where �d−1(y1, . . . , yd) is the volume of conv(y1, . . . , yd), and αd,β,ν , α′
d,β,ν , md,β , and m′

d,β
are constants given by

m(′)
d,β = γ c(′)

d,β

(
πc(′)

d+1,β

)−1
, (4.3)

αd,β,ν = π
d(d−1)

2

(d − 1)!ν+1(d + 1 + 2β)	
(

d(d+ν+2β)−ν+1
2

)
	
( d(d+ν+2β)

2 + 1
)
	
(

d + (ν−1)(d−1)
d+2β+1

) 	
( d+ν

2 + β + 1
)d

	(β + 1)d

×
(

γ 	
( d

2 + β + 1
)

√
π	

( d+1
2 + β + 1

)
)d+ (ν−1)(d−1)

d+2β+1 d−1∏
i=1

	
( i

2

)
	
( i+ν+1

2

) , (4.4)

α′
d,β,ν = π

d(d−1)
2

(d − 1)!ν+1(d + 1 − 2β)	
(

d(2β−d−ν)
2

)
	
(

d(2β−d−ν)+ν+1
2

)
	
(

d + (ν−1)(d−1)
d−2β+1

) 	(β)d

	
(
β − d+ν

2

)d

×
(
γ 	

(
β − d+1

2

)
√
π	

(
β − d

2

)
)d+ (ν−1)(d−1)

d−2β+1 d−1∏
i=1

	
( i

2

)
	
(

i+ν+1
2

) . (4.5)

Remark 5. In more probabilistic terms, the ν-weighted typical cell of the β-Delaunay
tessellation Dβ has the same distribution as the random simplex conv(RY1, . . . , RYd), where

(a) R is a random variable whose density is proportional to r2dβ+d2+ν(d−1)e−md,β rd+1+2β
on

(0,∞);

(b) (Y1, . . . , Yd) are d random points in the unit ball Bd−1 whose joint density is propor-
tional to

�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − ‖yi‖2)β, y1 ∈B

d−1, . . . , yd ∈B
d−1;

(c) R is independent of (Y1, . . . , Yd).

In other words this means that the ν-weighted typical cell of the β-Delaunay tessellation
coincides in distribution with the randomly rescaled (ν + 1)-volume-weighted β-simplex
conv(Y1, . . . , Yd).

In the same way, the ν-weighted typical cell of the β ′-Delaunay tessellation D′
β has the

same distribution as the random simplex conv(RY1, . . . , RYd), where
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(a′) R is a random variable whose density is proportional to r−2dβ+d2+ν(d−1)e−m′
d,β rd+1−2β

on
(0,∞);

(b′) (Y1, . . . , Yd) are d random points in Rd−1 whose joint density is proportional to

�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 + ‖yi‖2)−β, y1 ∈R

d−1, . . . , yd ∈R
d−1;

(c′) R is independent of (Y1, . . . , Yd).

Alternatively we say that the ν-weighted typical cell of the β ′-Delaunay tessellation
coincides in distribution with the randomly rescaled (ν + 1)-volume-weighted β ′-simplex
conv(Y ′

1, . . . , Y ′
d).

Exact formulas for the constants needed to normalize the density of (Y1, . . . , Yd) appearing
in (b) and (b′) will be given in (4.9) and (4.10).

Remark 6. Let us point out that in the limiting case β → −1 the beta distribution with
density cd−1,β

(
1 − ‖x‖2

)β1Bd−1 (x) weakly converges to the uniform distribution on the unit
sphere Sd−2, denoted by σd−2. Thus, Pβ,ν for fixed ν ≥ −1 and γ > 0 weakly converges to a
probability measure P−1,ν with

P−1,ν(A) = α∗
d,ν

∫
(Sd−2)d

σd−2(du1) . . . σd−2(dud)
∫ ∞

0
dr 1A(conv(ru1, . . . , rud))

× rd2−2d+ν(d−1)e
− 2γ κd−1

ωd
rd−1

(�d−1(u1, . . . , ud))ν+1,

where

α∗
d,ν = (

2γω−1
d

)d+ν−1 (d − 1)(d − 1)!ν+1π
(ν−1)(d−1)

2

2d	(d + ν − 1)

	
( (d+ν−1)(d−1)

2

)
	
( d(d+ν−2)

2 + 1
)

× 	
( d+ν

2

)d

	
( d+1

2

)d+ν−1

d−1∏
i=1

	
( i

2

)
	
( i+ν+1

2

) .

This coincides with the formula for the distribution of the ν-weighted typical cell of a Poisson–
Delaunay tessellation in Rd−1 corresponding to the intensity 2γω−1

d of the underlying Poisson
point process; see [11, Theorem 2.3] for general ν and [25] or [26, Proposition 4.3.1] for the
case ν = 0.

Remark 7. It should be mentioned that in the case of the classical Poisson–Delaunay and
Poisson–Voronoi tessellations many more results regarding the distribution of typical cells and
faces are available. For example, in [24, Lemma 1] a precise measure-theoretic description of
the Palm distribution of the original Poisson point process with respect to the vertex process
of the Poisson–Voronoi tessellation is given. It characterizes the distribution of the Poisson–
Delaunay tessellation around its typical cell. A further generalization, providing an explicit
description of the Palm distribution of the Poisson–Voronoi tessellation around a uniform
random point on the typical k-face, is obtained in [2].

In our situation it is also possible to characterize the Palm distribution of ηβ and η′
β with

respect to the vertex process of the β- and β ′-Voronoi tessellations, respectively, in the spirit of
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[24, Lemma 1]. To formulate the corresponding result, let G = {
gw : w ∈Rd−1

}
be the group

of translations acting on Rd−1 ×R by shifts in the spatial coordinate
(
the Rd−1-coordinate

)
;

that is, gw(v, h) := (v + w, h) for (v, h) ∈Rd−1 ×R, w ∈Rd−1. Next, we denote by

χ
(′)
β := χ

(
η

(′)
β

)=
∑

v∈F0

(
V (′)
β

) δv

the point process of vertices of the β(′)-Voronoi tessellation V (′)
β . According to the properties

of the Poisson point process η(′)
β , the pair

(
χ

(′)
β , η

(′)
β

)
is jointly G-stationary. This allows us to

define the Palm distribution P
0,χ
β(′) of η(′)

β with respect to χ (′)
β as

P
0,χ
β(′) (A) := 1

γ0
E

∑
v∈χ (′)

β

1(v ∈ [0, 1]d−1, g−vη
(′)
β ∈ A), A ∈N

(
R

d),

where γ0 := γ0
(
V (′)
β

)
is the intensity of the vertices of β(′)-Voronoi tessellation, whose exact

value can be derived from the results of Subsection 6.3; see [19, Section 7.2].
Given a point set X, let us denote by �↓(X) the shift of the standard downward paraboloid

�
↓
(0,a) along the height (time) coordinate, such that �↓

(0,a) does not contain any points from

X in its interior and that for any b> a we have int�↓
(0,b) ∩ X �= ∅. Now, if P

β(′) denotes the

distribution of the Poisson point process η(′)
β , then for any measurable function u : N

(
Rd

)→
[0,∞) we have that∫

N
(
Rd
)u(ϕ)P0,χ

β(′) (dϕ)

=
∫

N
(
Rd
) ∫

N
(
Rd
) u

((
ϕ1 ∩�↓(ϕ1)

)∪ (ϕ2 ∩ (�↓(ϕ1))c)
)
P

0,χ
β(′) (dϕ1)P

β(′) (dϕ2).

This identity explains what the β(′)-Delaunay tessellation looks like in a neighborhood of the
typical cell. Namely, it is generated by a Poisson point process which is restricted to the com-
plement of the paraboloid defining the typical cell and which is unaffected by the shape of
the typical cell. The proof of this formula is a straightforward modification of the proof of
Lemma 1 in [24], and we omit the details here in order to keep our presentation short.

Remark 8. There exists an interesting and very useful connection between the boundary of
the convex hull generated by a Poisson point process inside the unit ball, and the boundary of
the paraboloid hull process. It was shown in [5] that by applying a particular scaling transfor-
mation, the boundary of the convex hull can be mapped into a random surface, which locally
converges to the boundary of the paraboloid hull process as the intensity of the underlying
Poisson point process tends to infinity. This fact proved to be very useful for investigation of
the local properties of the convex hull of Poisson point processes.

In our case, the Poisson point process with intensity measure having density

fγ (x) = γ cd,β
(
1 − ‖x‖2)β1Bd (x)
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generates a convex hull, whose boundary will converge after a suitable transformation locally,
as γ → ∞, to the boundary of paraboloid hull process�(ηβ ). This is evidence that there exists
a way to build a bridge between β-polytopes and β-Delaunay tessellations. In particular, the
β-Delaunay tessellation describes the local limit of β-polytopes as the number of generating
points tends to infinity.

Proof of Theorem 1. Let us recall that for any collection of points

x1 := (v1, h1) ∈R
d−1 ×R, . . . , xd := (vd, hd) ∈R

d−1 ×R

with affinely independent spatial coordinates vi, we denote by �↓(x1, . . . , xd) the unique
translation of the standard downward paraboloid �↓ containing x1, . . . , xd on its bound-

ary. If x1, . . . , xd are distinct points of the Poisson point process η(′)
β , then the simplex K :=

conv(v1, . . . , vd) belongs to the tessellation D(′)
β if and only if int

(
�↓(x1, . . . , xd)

)∩ η(′)
β =∅,

that is, if there are no points of η(′)
β strictly inside �↓(x1, . . . , xd). Let us denote the apex of

the paraboloid �↓(x1, . . . , xd) by (w, t) ∈Rd−1 ×R. We then have

t − ‖vi − w‖2 = hi, i ∈ {1, . . . , d}.

As the center of the simplex conv(v1, . . . , vd) we choose the point w and therefore put

z(x1, . . . , xd) := z
(

conv(v1, . . . , vd),D(′)
β

)
= w.

We are now ready to begin the essential part of the proof of Theorem 1. Fix some Borel
set A ⊂ C′. From (4.1) and the definition of the generalized center function for the tessellation

D(′)
β , we get

S
η

(′)
β

(A) := E
∑

(v,M)∈μ
η

(′)
β

1A(M)1[0,1]d−1 (v)(Vol(M))ν

= 1

d! E
∑

(x1,...,xd)∈
(
η

(′)
β

)d

�=

1A(conv(v1, . . . , vd) − z(x1, . . . , xd))

× 1[0,1]d−1 (z(x1, . . . , xd))1
{

int (�↓(x1, . . . , xd)) ∩ η(′)
β =∅

}
×�d−1(v1, . . . , vd)ν .

Here,
(
η

(′)
β

)d
�= denotes the collection of all tuples of the form (x1, . . . , xd) consisting of pair-

wise distinct points x1, . . . , xd of the Poisson point process η(′)
β . We write Sβ (A) := Sηβ (A)

and S′
β (A) := Sη′

β
(A). Note that S(′)

β (A) is in fact the same as λ(′)
β,ν P

(′)
β,ν(A), but since at the

present moment we do not know whether the normalizing constants λβ,ν and λ′
β,ν , given by

(4.2), are finite, we prefer to use the notation S(′)
β (A). Applying the multivariate Mecke formula
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[31, Corollary 3.2.3] to the Poisson point process η(′)
β and taking into account (3.1) and (3.2),

we obtain

S(′)
β (A) = γ d

(
c(′)

d,β

)d

d!
∫
Rd−1

dv1 . . .

∫
Rd−1

dvd

∫ ∞

0
dh1 . . .

∫ ∞

0
dhd

1A
(
conv(v1, . . . , vd) − z

(
x̃1, . . . , x̃d

))
× 1[0,1]d−1

(
z
(
x̃1, . . . , x̃d

))
P

(
int (�↓(x̃1, . . . , x̃d

)
) ∩ η(′)

β =∅

)
× hκβ1 . . . hκβd �d−1(v1, . . . , vd)ν, (4.6)

where x̃i = (vi, κhi) for i = 1, . . . , d. In the above integral, we are going to pass from integra-
tion over the variables (v1, . . . , vd, h1, . . . , hd) ∈ (

Rd−1
)d × (

R∗+
)d, where R∗+ = (0,∞), to

integration over certain new variables (w, r, y1, . . . , yd) ∈Rd−1 ×R∗+ × (
Rd−1

)d
introduced

as follows. Take some tuple (v1, . . . , vd, h1, . . . , hd) ∈ (
Rd−1

)d × (
R∗+

)d and assume that
v1, . . . , vd are affinely independent. Denote the apex of the unique downward paraboloid
�↓(x̃1, . . . , x̃d

)
whose boundary passes through the points (v1, κh1), . . . , (vd, κhd) by

(w, κr2) ∈Rd−1 ×R, and note that w = z
(
x̃1, . . . , x̃d

)
. Observe that in the β ′ case the sec-

ond coordinate of the apex can be positive, but since such a downward paraboloid contains
infinitely many points of the Poisson point process η′

β

(
because any point (w, 0) with vanishing

second coordinate is an accumulation point for the atoms of η′
β

)
, we can ignore this possibility

in the following. We can write vi = w + ryi with some uniquely defined and pairwise distinct
y1, . . . , yd ∈Rd−1. The condition that the boundary of the paraboloid passes through the point
(vi, κhi) reads as κr2 − ‖vi − w‖2 = κhi, or hi = r2(1 − κ‖yi‖2). In the β case it follows that

y1, . . . , yd ∈Bd−1. Let us therefore introduce the transformation T : Rd−1 ×R∗+ × (
Bd−1

)d →(
Rd−1 ×R∗+

)d
(in the β case) or T : Rd−1 ×R∗+ × (

Rd−1
)d → (

Rd−1 ×R∗+
)d

(in the β ′ case),
defined as

(w, r, y1, . . . , yd) �→(ry1 + w, r2(1 − κ‖y1‖2), . . . , ryd + w, r2(1 − κ‖yd‖2))

= (v1, h1, . . . , vd, hd).

This transformation is bijective (up to sets of Lebesgue measure zero and provided that in the
β ′ case we agree to exclude from the image set all combinations (v1, h1, . . . , vd, hd) which
lead to a paraboloid whose apex has positive height). The absolute value of the Jacobian of T
is the absolute value of the determinant of the block matrix

J(T) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ed−1 y1 rEd−1 0 . . . 0

0 2r
(
1 − κ‖y1‖2

) −2r2κy�
1 0 . . . 0

Ed−1 y2 0 rEd−1 . . . 0

0 2r
(
1 − κ‖y2‖2

)
0 −2r2κy�

2 . . . 0

...
...

...
...

. . .
...

Ed−1 yd 0 0 . . . rEd−1

0 2r
(
1 − κ‖yd‖2

)
0 0 . . . −2r2κy�

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where Ek is the k × k unit matrix, the vectors y1, . . . , yd are considered to be column vectors,
and |M| stands for the absolute value of the determinant of the matrix M. We can compute J(T)
as follows:

J(T)

2drd2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ed−1 y1 Ed−1 0 . . . 0

0 1 − κ‖y1‖2 −κy�
1 0 . . . 0

Ed−1 y2 0 Ed−1 . . . 0

0 1 − κ‖y2‖2 0 −κy�
2 . . . 0

...
...

...
...

. . .
...

Ed−1 yd 0 0 . . . Ed−1

0 1 − κ‖yd‖2 0 0 . . . −κy�
d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 Ed−1 0 . . . 0

κy�
1 1 −κy�

1 0 . . . 0

0 0 0 Ed−1 . . . 0

κy�
2 1 0 −κy�

2 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . Ed−1

κy�
d 1 0 0 . . . −κy�

d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ∣∣κd
∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

0 Ed(d−1)

y�
1 1

...
...

y�
d 1

0

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
1 . . . 1

y1 . . . yd

∣∣∣∣∣ .

Thus, J(T) = 2drd2
(d − 1)!�d−1(y1, . . . , yd). Applying the transformation T in (4.6), we

derive

S(′)
β (A) =

(
2γ c(′)

d,β

)d

d

∫
Rd−1

dy1 . . .

∫
Rd−1

dyd

∫
Rd−1

dw
∫ ∞

0
dr

× 1A(conv(ry1, . . . , ryd))1[0,1]d−1 (w)r2κdβ+d2+ν(d−1)

× P

({
(v, κh) ∈R

d−1 × κR∗+ : κh<−‖v − w‖2 + κr2}∩ η(′)
β =∅

)

×�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
. (4.7)

Now using the stationarity of the Poisson point processes ηβ and η′
β with respect to the

v-coordinate, we conclude that, for any w ∈Rd−1,

P(′) := P

({
(v, κh) ∈R

d−1 × κR∗+ : κh<−‖v − w‖2 + κr2}∩ η(′)
β =∅

)
= P

({
(v, κh) ∈R

d−1 × κR∗+ : κh<−‖v‖2 + κr2}∩ η(′)
β =∅

)
= exp

(
−γ c(′)

d,β

∫ ∞

0

∫
Rd−1

1
(
κh<−‖v‖2 + κr2)hκβdv dh

)
.

https://doi.org/10.1017/apr.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.6


1274 A. GUSAKOVA ET AL.

For the further computations we need to distinguish the β case and the β ′ case. For the β
model we have

P := exp

(
−γ cd,β

∫ r2

0

∫{
v : ‖v‖≤

(
r2−h

)1/2} hβdv dh

)

= exp

(
−γ κd−1cd,β

∫ r2

0

(
r2 − h

) d−1
2 hβdh

)

= exp

(
−γ κd−1cd,βrd+1+2β

∫ 1

0

(
1 − h′) d−1

2 h′βdh′
)

= exp
(
−md,βrd+1+2β

)
,

where md,β = γ cd,β
πcd+1,β

. For the β ′ model we obtain

P′ := exp

(
−γ c′

d,β

∫ ∞

r2

∫{
v : ‖v‖≤

(
h−r2

)1/2} h−βdv dh

)

= exp

(
−γ κd−1c′

d,β

∫ ∞

r2

(
h − r2) d−1

2 h−βdh

)

= exp

(
−γ κd−1c′

d,βrd+1−2β
∫ 1

0

(
1 − h′) d−1

2 h′β−(d+1)/2−1dh′
)

= exp
(
−m′

d,βrd+1−2β
)
,

with m′
d,β = γ c′

d,β

πc′
d+1,β

. Substituting this into (4.7) leads to

S(′)
β (A) =

(
2γ c(′)

d,β

)d

d

∫
Rd−1

dy1 . . .

∫
Rd−1

dyd

∫ ∞

0
dr 1A(conv(ry1, . . . , ryd))

× r2κdβ+d2+ν(d−1)e−m(′)
d,β rd+1+2κβ

�d−1(y1, . . . , yd)ν+1

×
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
. (4.8)

We are now in position to determine the normalizing constants λβ,ν and λ′
β,ν from (4.2). To

this end, we plug A = C′ (the set of non-empty compact subsets of Rd−1
)

into the expression

(4.8) for S(′)
β . Doing this and using the substitution s = m(′)

d,βrd+1+2κβ , we obtain

λ
(′)
β,ν = S(′)

β (C′)

=
(

2γ c(′)
d,β

)d

d

∫(
Rd−1

)d

∫ ∞

0
r2κdβ+d2+ν(d−1)e−m(′)

d,β rd+1+2κβ

×�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
dr dy1 . . . dyd
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=
(

2γ c(′)
d,β

)d

d(d + 1 + 2κβ)

(
m(′)

d,β

)−d− (ν−1)(d−1)
d+2κβ+1

∫ ∞

0
sd+ (ν−1)(d−1)

d+2κβ+1 −1e−sds

×
∫(

Rd−1
)d �d−1(y1, . . . , yd)ν+1

d∏
i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
dy1 . . . dyd

=
(

2γ c(′)
d,β

)d
	
(
d + (ν−1)(d−1)

d+2κβ+1

)
d(d + 1 + 2κβ)

(
m(′)

d,β

)−d− (ν−1)(d−1)
d+2κβ+1

×
∫(

Rd−1
)d �d−1(y1, . . . , yd)ν+1

d∏
i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
dy1 . . . dyd.

The last integral (which is finite for ν ≥ −1) is equal—up to a constant—to the (ν + 1)th
moment of the volume of a random simplex with vertices having a β- or β ′-distribution. The
exact values are calculated in [10, Theorem 2.3] or [15, Proposition 2.8] and are given (in the
cases κ = +1 and κ = −1) as follows:∫(

Bd−1
)d �d−1(y1, . . . , yd)ν+1

d∏
i=1

(
1 − ‖yi‖2)βdy1 . . . dyd

= 1

(d − 1)!ν+1cd
d−1,β

	
(

d+1
2 + β

)d

	
(

d+ν
2 + β + 1

)d

	
(

d(d+ν+2β)
2 + 1

)
	
(

d(d+ν+2β)−ν+1
2

) d−1∏
i=1

	
( i+ν+1

2

)
	
( i

2

) , (4.9)

∫(
Rd−1

)d �d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 + ‖yi‖2)−βdy1 . . . dyd

= 1

(d − 1)!ν+1
(
c′

d−1,β

)d

	
(

d(2β−d−ν)+ν+1
2

)
	
(

d(2β−d−ν)
2

) 	
(
β − d+ν

2

)d

	
(
β − d−1

2

)d

d−1∏
i=1

	
(

i+ν+1
2

)
	
(

i
2

) . (4.10)

We have thus shown that

λβ,ν =
	
(

d + (ν−1)(d−1)
d+2β+1

)
m

−d− (ν−1)(d−1)
d+2β+1

d,β

d(d + 1 + 2β)(d − 1)!ν+1

(
2γ cd,β	

( d+1
2 + β

)
cd−1,β	

( d+ν
2 + β + 1

)
)d

×
	
(

d(d+ν+2β)
2 + 1

)
	
(

d(d+ν+2β)−ν+1
2

) d−1∏
i=1

	
(

i+ν+1
2

)
	
(

i
2

) ,

λ′
β,ν =

	
(

d + (ν−1)(d−1)
d−2β+1

)(
m′

d,β

)−d− (ν−1)(d−1)
d−2β+1

d(d + 1 − 2β)(d − 1)!ν+1

(
2γ c′

d,β	
(
β − d+ν

2

)
c′

d−1,β	
(
β − d−1

2

)
)d

×
	
(

d(2β−d−ν)+ν+1
2

)
	
(

d(2β−dν
2

) d−1∏
i=1

	
( i+ν+1

2

)
	
( i

2

) .
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In particular, this implies that λβ,ν, λ′
β,ν <∞ provided ν ≥ −1 in the β case and 2β − d> ν ≥

−1 in the β ′ case. From (4.8) we conclude

P
(′)
β,ν(A) = S(′)

β

λ
(′)
β,ν

= α
(′)
d,β,ν

∫(
Rd−1

)d dy1 . . . dyd

∫ ∞

0
dr

× 1A(conv(ry1, . . . , ryd))r2κdβ+d2+ν(d−1)e−m(′)
d,β rd+1+2κβ

×�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
,

with αd,β,ν and α′
d,β,ν given by (4.4) and (4.5) respectively. This completes the argument. �

5. The volume of weighted typical cells

5.1. Moment formulas

In this section we apply Theorem 1 to compute all moments of the random variables
Vol

(
Zβ,ν

)
and Vol

(
Z′
β,ν

)
. These explicit formulas will be the basis of some of the results in

Part III of this series of papers. In particular, they generalize the moment formulas in [11] for
weighted typical cells in classical Poisson–Delaunay tessellations.

Theorem 2. Let Zβ,ν be the ν-weighted typical cell of a β-Delaunay tessellation with β ≥ −1
and ν ≥ −1, and let Z′

β,ν be the ν-weighted typical cell of the β ′-Delaunay tessellation with
β > (d + 1)/2 and 2β − d> ν ≥ −1. Then, for any s>−ν − 1, we have

E Vol
(
Zβ,ν

)s = 1

(d − 1)!s
(√

π	
( d+1

2 + β + 1
)

γ	
( d

2 + β + 1
) ) s(d−1)

d+2β+1 	
(

d(d+2β)+ν(d−1)+1
2

)
	
(

d(d+2β)+(ν+s)(d−1)+1
2

)

×
	
(

d+ν
2 + β + 1

)d

	
(

d+ν+s
2 + β + 1

)d

	
(

d(d+ν+s+2β)
2 + 1

)
	
(

d(d+ν+2β)
2 + 1

) 	
(

d + (ν+s−1)(d−1)
d+2β+1

)
	
(

d + (ν−1)(d−1)
d+2β+1

) d−1∏
i=1

	
( i+ν+s+1

2

)
	
( i+ν+1

2

) ,
and for any 2β − d − ν > s>−ν − 1 we have

E Vol
(
Z′
β,ν

)s = 1

(d − 1)!s
(√

π	
(
β − d

2

)
γ	

(
β − d+1

2

))
s(d−1)

d−2β+1 	
(

d(2β−d−ν)
2

)
	
(

d(2β−d−ν−s)
2

) 	
(
β − d+ν+s

2

)d

	
(
β − d+ν

2

)d

×
	
(

d(2β−d)−(ν+s)(d−1)+1
2

)
	
(

d(2β−d)−ν(d−1)+1
2

) 	
(

d + (ν+s−1)(d−1)
d−2β+1

)
	
(

d + (ν−1)(d−1)
d−2β+1

) d−1∏
i=1

	
(

i+ν+s+1
2

)
	
(

i+ν+1
2

) .

Proof. Applying Theorem 1 we get

E Vol
(

Z(′)
β,ν

)s = α
(′)
d,β,ν

∫(
Rd−1

)d dy1 . . . dyd

∫ ∞

0
dr

× Vol(conv(ry1, . . . , ryd))sr2κdβ+d2+ν(d−1)e−m(′)
d,β rd+1+2κβ

×�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − κ‖yi‖2)κβ1

(
1 − κ‖yi‖2 ≥ 0

)
.
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Then from Fubini’s theorem we obtain

E Vol
(

Z(′)
β,ν

)s = α
(′)
d,β,ν

∫ ∞

0
r2κdβ+d2+ν(d−1)+s(d−1)e−m(′)

d,β rd+1+2κβ
dr

×
∫(

Rd−1
)d �d−1(y1, . . . , yd)ν+1+s

d∏
i=1

(
1 − κ‖yi‖2)κβ

× 1
(
1 − κ‖yi‖2 ≥ 0

)
dy1 . . . dyd

= α
(′)
d,β,ν

	
(

d + (ν−1)(d−1)
d+2κβ+1 + s(d−1)

d+2κβ+1

)
(d + 1 + 2κβ)

(
m(′)

d,β

)−d− (ν−1)(d−1)
d+2κβ+1 − s(d−1)

d+2κβ+1

×
∫(

Rd−1
)d �d−1(y1, . . . , yd)ν+1+s

d∏
i=1

(
1 − κ‖yi‖2)κβ

× 1
(
1 − κ‖yi‖2 ≥ 0

)
dy1 . . . dyd.

Finally, using (4.9), (4.10), and the definition of the constants αβ,d,ν , α′
β,d,ν , md,β , and m′

d,β ,
we complete the proof. �

5.2. Probabilistic representations

Based on the formulas for the moments of the volume of the random simplices Zβ,ν and

Z′
β,ν , we can obtain probabilistic representations for the random variables Vol

(
Zβ,ν

)2 and

Vol
(
Z′
β,ν

)2, which are similar in spirit to the ones for Gaussian or beta random simplices
[10, 11].

Let us first recall some standard distributions. A random variable has a gamma distribution
with shape α ∈ (0,∞) and rate λ ∈ (0,∞) if its density function is given by

gα,λ(t) = λα

	(α)
tα−1e−λt, t ∈ (0,∞).

A random variable has a beta distribution with shape parameters α1, α2 ∈ (0,∞) if its density
function is given by

gα1,α2 (t) = 	(α1 + α2)

	(α1)	(α2)
tα1−1(1 − t)α2−1, t ∈ (0, 1).

A random variable has a beta-prime distribution with shape parameters α1, α2 ∈ (0,∞) if its
density function is given by

gα1,α2 (t) = 	(α1 + α2)

	(α1)	(α2)
tα1−1(1 + t)−α1−α2 , t> 0.

We will use the notation ξ ∼ Gamma(α, λ), ξ ∼ Beta(α, β), and ξ ∼ Beta′(α, β) to indicate
that the random variable ξ has a gamma distribution with shape α and rate λ, a beta distribu-
tion with shape parameters α1, α2, or a beta-prime distribution with shape parameters α1, α2,

respectively. Moreover, ξ
D= ξ ′ will indicate that two random variables ξ and ξ ′ have the same

distribution.
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Theorem 3. The following assertions hold:

(a) for β ≥ −1, ν ≥ −1, d ≥ 2, one has that

ξ (1 − ξ )d−1 (
(d − 1)!Vol

(
Zβ,ν

))2 D=
(

ρ

mβ,d

) 2(d−1)
d+2β+1

(1 − η)d−1
d−1∏
i=1

ξi, (5.1)

(b) and for β > (d + 1)/2, 2β − d> ν ≥ −1, d ≥ 2, one has that

(
1 + η′)d−1

(
(d − 1)!Vol

(
Z′
β,ν

))2 D=
(
ρ′

m′
β,d

) 2(d−1)
d−2β+1

(ξ ′)−1(1 + ξ ′)d
d−1∏
i=1

ξ ′
i , (5.2)

where

ξ ∼ Beta

(
d + ν

2
+ β + 1,

(d − 1)(d + ν + 2β)

2

)
,

ξ ′ ∼ Beta′
(
β − d + ν

2
,

(d − 1)(2β − d − ν)

2

)
,

η∼ Beta

(
d + 2β + 1

2
,

(d − 1)(d + ν + 2β)

2

)
,

η′ ∼ Beta′
(
β − d − 1

2
,

(d − 1)(2β − d − ν)

2

)
,

ρ ∼ Gamma

(
d + (ν − 1)(d − 1)

d + 2β + 1
, 1

)
,

ρ′ ∼ Gamma

(
d + (ν − 1)(d − 1)

d − 2β + 1
, 1

)
,

ξi ∼ Beta

(
ν + i + 1

2
,

d − 1 − i

2
+ β + 1

)
,

and

ξ ′
i ∼ Beta′

(
ν + i + 1

2
, β − d + ν

2

)
,

for i ∈ {1, . . . , d − 1}, are independent random variables, independent of Vol
(
Zβ,ν

)
and

Vol
(
Z′
β,ν

)
, and where mβ,d, m′

β,d are defined in (4.3).

Remark 9. The equality (5.1) generalizes [11, Theorem 2.6] for β = −1 to general values of
β ≥ −1 and [10, Theorem 2.5(b)] for ν = −1 to general ν ≥ −1. The equality (5.2) generalizes
[10, Theorem 2.5(c)] for ν = −1 to general 2β − d> ν ≥ −1.

Proof. First of all let us recall that for ξi with s>− ν+1
2 and for ξ ′

i with − ν+1
2 < s<β −

d+ν
2 we have

E
[
ξ s

i

]=
	
(

d+ν
2 + β + 1

)
	
(

i+ν+1
2 + s

)
	
(

i+ν+1
2

)
	
(

d+ν
2 + β + 1 + s

) , E
[(
ξ ′

i

)s]= 	
(
β − d+ν

2 − s
)
	
( i+ν+1

2 + s
)

	
(
β − d+ν

2

)
	
( i+ν+1

2

) ,
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respectively, and for ρ and ρ′ with s> 0 we have

E

[
ρ

2s(d−1)
d+2β+1

]
=
	
(

d + (ν−1)(d−1)+2s(d−1)
d+2β+1

)
	
(

d + (ν−1)(d−1)
d+2β+1

) , E

[
(ρ′)

2s(d−1)
d−2β+1

]
=
	
(

d + (ν−1)(d−1)+2s(d−1)
d−2β+1

)
	
(

d + (ν−1)(d−1)
d−2β+1

) ,

respectively. Moreover, for s>− ν+1
2 we compute that

E

[
ξ s(1 − ξ )(d−1)s

]
=
	
(

(d−1)(d+ν+2β)
2 + s(d − 1)

)
	
(

d+ν
2 + β + 1 + s

)
	
(

d(d+2β+ν)
2 + 1

)
	
(

(d−1)(d+ν+2β)
2

)
	
(

d+ν
2 + β + 1

)
	
(

d(d+2β+ν)
2 + 1 + sd

)
and

E
[
(1 − η)(d−1)s]=

	
(

d(d+2β)+ν(d−1)+1
2

)
	
(

(d−1)(d+ν+2β)
2 + s(d − 1)

)
	
(

d(d+2β)+ν(d−1)+1
2 + s(d − 1)

)
	
(

(d−1)(d+ν+2β)
2

) .

Combining this with Theorem 2 we conclude that, for all s>− ν+1
2 ,

(d − 1)!2s
E

[
ξ s(1 − ξ )(d−1)s Vol

(
Zβ,ν

)2s
]
= m

− 2s(d−1)
d+2β+1

β,d E

[
ρ

2s(d−1)
d+2β+1 (1 − η)(d−1)s

d−1∏
i=1

ξ s
i

]
,

which finishes the proof of (5.1). Analogously, for − ν+1
2 < s<β − d+ν

2 we have

E

[
(ξ ′)−s(1 + ξ ′)ds

]
=
	
(

(d−1)(2β−d−ν)
2 − s(d − 1)

)
	
(
β − d+ν

2 − s
)
	
(

d(2β−d−ν)
2

)
	
(

(d−1)(2β−d−ν)
2

)
	
(
β − d+ν

2

)
	
(

d(2β−d−ν)
2 − sd

)
and

E

[(
1 + η′)(d−1)s

]
=
	
(

d(2β−d)−ν(d−1)+1
2

)
	
(

(d−1)(2β−d−ν)
2 − s(d − 1)

)
	
(

d(2β−d)−ν(d−1)+1
2 + s(d − 1)

)
	
(

(d−1)(2β−d−ν)
2

) .

By Theorem 2, for all − ν+1
2 < s<β − d+ν

2 we obtain

(d − 1)!2s
E

[(
1 + η′)(d−1)s Vol

(
Z′
β,ν

)2s
]

= (
m′
β,d

)− 2s(d−1)
d−2β+1 E

[
ρ

2s(d−1)
d−2β+1 (ξ ′)−s(1 + ξ ′)ds

d−1∏
i=1

(ξ ′
i )s

]
,

and (5.2) follows. �
The next result specifies, for integer values of ν, the connection between the distributions

of Vol
(
Zβ,ν

)
and Vol

(
Z′
β,ν

)
and those of the volume of a β-simplex and the volume of a

β ′-simplex as studied in [10], respectively.
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Proposition 1.

(a) For d ≥ 2, β ≥ −1 and integers ν ≥ −1 we have

(1 − ξ )d−1 Vol
(
Zβ,ν

)2 D= (m−1
β,d ρ)

2(d−1)
d+2β+1 Vol (conv(X0, . . . , Xd−1))2 ,

where X0, . . . , Xd−1 are independent and identically distributed (i.i.d.) random points
in Bd+ν whose distribution has density

cd+ν,β (1 − ‖x‖)β, x ∈B
d+ν,

ξ ∼ Beta
(ν + 1

2
,

d(d + 2β) + ν(d − 1) + 1

2

)
is independent of Vol

(
Zβ,ν

)
, and

ρ ∼ Gamma
(

d + (ν − 1)(d − 1)

d + 2β + 1
, 1

)
is independent of X0, . . . , Xd−1.

(b) For d ≥ 2, β > (d + 1)/2 and integers 2β − d> ν ≥ −1 we have

(
1 + ξ ′)d−1 Vol

(
Z′
β,ν

)2 D= ((
m′
β,d

)−1
ρ′) 2(d−1)

d−2β+1 Vol
(
conv

(
X′

0, . . . , X′
d−1

))2
,

where X′
0, . . . , X′

d−1 are i.i.d. random points in Rd+ν whose distribution has density

c′
d+ν,β (1 + ‖x‖)−β, x ∈R

d+ν,

ξ ′ ∼ Beta′(ν + 1

2
,

d(2β − d − ν)

2

)
is independent of Vol

(
Z′
β,ν

)
, and

ρ′ ∼ Gamma
(

d + (ν − 1)(d − 1)

d − 2β + 1
, 1

)

is independent of X′
0, . . . , X′

d−1.

Proof. From [10, Theorem 2.3(b)] we have

(d − 1)!2s
E
[
Vol (conv(X0, . . . , Xd−1))2s ]

= 	( d+2β+ν+2
2 )d

	
(

d+2β+ν+2
2 + s

)d

	
(

d(d+2β+ν)+2
2 + ds

)
	
(

d(d+β+ν)+2
2 + (d − 1)s

) d−1∏
i=1

	
(
ν+1+i

2 + s
)

	
(
ν+1+i

2

)

for any β − d+ν
2 > s> 0. Using the equality

E
[
(1 − ξ )(d−1)s]=

	
(

d(d+2β+ν)
2 + 1

)
	
(

d(d+2β)+ν(d−1)+1
2 + (d − 1)s

)
	
(

d(d+2β+ν)
2 + 1 + (d − 1)s

)
	
(

d(d+2β)+ν(d−1)+1
2

)
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and combining this with Theorem 2, we conclude that, for all β − d+ν
2 > s> 0,

E

[
(1 − ξ )d−1 Vol

(
Zβ,ν

)2
]
=E

[(
m−1
β,d ρ

) 2(d−1)
d+2β+1

Vol (conv(X0, . . . , Xd−1))2
]
,

and (a) is proven. Analogously, from [10, Theorem 2.3(b)–(c)] we have

(d − 1)!2s
E

[
Vol

(
conv

(
X′

0, . . . , X′
d−1

))2s
]

=
	
(
β − d+ν

2 − s
)d

	
(
β − d+ν

2

)d

	
(

d(2β−d−ν)
2 − (d − 1)s

)
	
(

d(2β−d−ν)
2 − ds

) d−1∏
i=1

	
(
ν+1+i

2 + s
)

	
(
ν+1+i

2

) ,

and using the fact that

E

[(
1 + ξ ′)(d−1)s

]
=
	
(

d(2β−d−ν)
2 − (d − 1)s

)
	
(

d(2β−d)−ν(d−1)+1
2

)
	
(

d(2β−d−ν)
2

)
	
(

d(2β−d)−ν(d−1)+1
2 − s(d − 1)

) ,
together with Theorem 2, we have for all s> 0

E

[(
1 + ξ ′)d−1 Vol

(
Z′
β,ν

)2
]
=E

[((
m′
β,d

)−1
ρ′) 2(d−1)

d−2β+1
Vol

(
conv

(
X′

0, . . . , X′
d−1

))2]
,

which finishes the proof of (b) and of the theorem. �
Remark 10. The formula for Vol

(
Zβ,ν

)
is the extension of [11, Proposition 2.8] to general

β ≥ −1.

Remark 11. In [10, Theorem 2.7] it is shown that the random variable ξ (respectively, ξ ′) in
the previous proposition is equal in distribution to the squared distance from the origin to the
(d − 1)-dimensional affine subspace spanned by the random vectors X0, . . . , Xd−1(
respectively, X′

0, . . . , X′
d−1

)
.

6. Angle sums and face intensities

The aim of this section is to compute the intensity of j-dimensional faces in the β-Delaunay
tessellations Dβ and D′

β , for all j ∈ {0, . . . , d − 1}. Intuitively, the face intensities can be under-
stood as follows. In a stationary random tessellation T , the expected number of j-dimensional
faces in a large cube of volume V is asymptotically equivalent to γj(T )V , as V → ∞, for a
certain constant γj(T ), called the intensity of j-dimensional faces of T . A precise definition,
using Palm calculus, will be given below. To evaluate these constants for the tessellations Dβ
and D′

β , we will first compute the expected angle sums of the volume-power-weighted typical
cells of Dβ and D′

β .

6.1. Expected angle sums of weighted typical cells

Let us recall that Zβ,ν and Z′
β,ν denote the typical cells of Dβ and D′

β weighted by the
νth power of their volume. Our aim is to compute the expected angle sums of these random
simplices. First we need to introduce the necessary notation.
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Given a simplex T := conv(Z1, . . . , Zd) ⊂Rd−1, we denote by σk(T) the sum of internal
angles of T at all its k-vertex faces of the form conv

(
Zi1 , . . . , Zik

)
; that is,

σk(T) =
∑

1≤i1<...<ik≤d

F := conv
(

Zi1 ,...,Zik

)
β(F, T), k ∈ {1, . . . , d}.

Here, β(F, T) is the internal angle of T at its face F, normalized in such a way that the angle of
the full space is 1; see [31, p.458]. If Z1, . . . , Zd are d i.i.d. random points in Bd−1 distributed
according to the beta density

fd−1,β (z) = cd−1,β
(
1 − ‖z‖2)β, z ∈B

d−1,

then conv(Z1, . . . , Zd) is called the β-simplex with parameter β >−1. The β-simplex with
parameter β = −1 is defined as conv(Z1, . . . , Zd), where Z1, . . . , Zd are i.i.d. uniform on the
unit sphere Sd−2. The expected angle sums of these simplices, denoted by

Jd,k(β) := Eσk(conv(Z1, . . . , Zd)), k ∈ {1, . . . , d},
are computed in [14]; see Theorem 1.2 and the discussion thereafter. According to this formula,
we have

Jd,k

(
α− d + 1

2

)
=

(
d

k

) ∫ +∞

−∞
c αd

2
( cosh u)−αd−2

×
(

1

2
+ 1

∫ u

0
c α−1

2
( cosh v)αdv

)d−k

du (6.1)

for all d ≥ 3, k ∈ {1, . . . , d}, and α ≥ d − 3, where

cγ := c1,γ =
	
(
γ + 3

2

)
√
π 	(γ + 1)

, γ >−1.

Similarly, let Z′
1, . . . , Z′

d be d i.i.d. random points in Rd−1 distributed according to the beta-
prime density

f ′
d−1,β (z) = c′

d−1,β

(
1 + ‖z‖2)−β, z ∈R

d−1.

Then conv
(
Z′

1, . . . , Z′
d

)
is called the β ′-simplex with parameter β > d−1

2 . The expected angle
sums of the β ′-simplices, denoted by

J
′
d,k(β) := Eσk

(
conv

(
Z′

1, . . . , Z′
d

))
, k ∈ {1, . . . , d},

are computed in [14] (see Theorem 1.7 and the discussion thereafter):

J
′
d,k

(
α + d − 1

2

)
=

(
d

k

) ∫ +∞

−∞
c′
αd
2

( cosh u)−(αd−1)

×
(

1

2
+ 1

∫ u

0
c′
α+1

2
( cosh v)α−1dv

)d−k

du
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for all d ∈N, k ∈ {1, . . . , d}, and for all α > 0 such that αd> 1. Here,

c′
γ := c′

1,γ = 	(γ )
√
π 	

(
γ − 1

2

) , γ >
1

2
.

We are now going to state a formula for the expected angle sums of the typical cells Zβ,ν
and Z′

β,ν . Note that we include the case of Z−1,ν , which is interpreted as the ν-weighted typical
cell in the classical Poisson–Delaunay tessellation; see Remark 6.

Theorem 4. Let Zβ,ν be the ν-weighted typical cell of the β-Delaunay tessellation with β ≥ −1
and integer ν ≥ −1. Also, let Z′

β,ν be the ν-weighted typical cell of the β ′-Delaunay tessellation
with β > (d + 1)/2 and integer ν such that 2β − d> ν ≥ −1. Then, for all k ∈ {1, . . . , d},

Eσk
(
Zβ,ν

)= Jd,k

(
β + ν + 1

2

)

=
(

d

k

) ∫ +∞

−∞
c αd

2
( cosh u)−αd−2

(
1

2
+ 1

∫ u

0
c α−1

2
( cosh v)αdv

)d−k

du,

Eσk
(
Z′
β,ν

)= J
′
d,k

(
β − ν + 1

2

)

=
(

d

k

) ∫ +∞

−∞
c′
α′d
2

( cosh u)−(α′d−1)
(

1

2
+ 1

∫ u

0
c′
α′−1

2

( cosh v)α
′−1dv

)d−k

du,

where α = 2β + ν + d and α′ = 2β − ν − d.

Proof. We consider the β-Delaunay case. First, let β >−1. Since rescaling does not change
angle sums, it follows from Remark 5 that

Eσk
(
Zβ,ν

)=Eσk(conv(Y1, . . . , Yd)),

where (Y1, . . . , Yd) are d random points in the unit ball Bd−1 whose joint density is
proportional to

�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − ‖yi‖2)β, y1 ∈B

d−1, . . . , yd ∈B
d−1.

On the other hand, let Y∗
1 , . . . , Y∗

d be d i.i.d. random points in Bd−1 with joint density
proportional to

d∏
i=1

(
1 − ‖y∗

i ‖2)β+ ν+1
2 .

By Remark 4.2 of [17], we have

Eσk(conv(Y1, . . . , Yd)) =Eσk
(
conv

(
Y∗

1 , . . . , Y∗
d

))
.

The expected angle sums of conv
(
Y∗

1 , . . . , Y∗
d

)
are

Eσk
(
conv

(
Y∗

1 , . . . , Y∗
d

))= Jd,k

(
β + ν + 1

2

)
,

https://doi.org/10.1017/apr.2022.6 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.6


1284 A. GUSAKOVA ET AL.

which is given by (6.1) with α = 2β + ν + d. Taking everything together proves the theorem
in the β-Delaunay case with β >−1.

For the β-Delaunay case with β = −1 (where Z−1,ν is interpreted as the ν-weighted cell in
the classical Poisson–Delaunay tessellation), the starting point is Remark 6, which implies that

Eσk(Z−1,ν) =Eσk(conv(Y1, . . . , Yd)),

where (Y1, . . . , Yd) are d random points in the unit sphere Sd−2 whose joint probability law is
proportional to

�d−1(y1, . . . , yd)ν+1σd−2(dy1) . . . σd−2(dyd), y1 ∈ S
d−2, . . . , yd ∈ S

d−2.

The rest of the proof is similar to the case β >−1. The β ′ case is similar as well. �
We stated Theorem 4 for integer ν only because this assumption is required by the method

of proof of Remark 4.2 in [17]. Specializing Theorem 4 to ν = 0 (respectively, ν = 1), we
obtain the expected angle sums of the typical cell (respectively, the cell containing the origin)
of the β-Delaunay tessellation, for β ≥ −1. For the typical cell (ν = 0) of the classical Poisson–
Delaunay tessellation in Rd−1 (corresponding to β = −1), the angle sum is given by

Eσk(Z−1,0) = Jd,k

(
−1

2

)
, k ∈ {1, . . . , d}.

Applying to the quantity on the right-hand side Theorem 1.3 of [14], we arrive at the following
result.

Theorem 5. Let Z = Z−1,0 be the typical cell of the classical Poisson–Delaunay tessellation
D−1 in Rd−1. Then, for all k ∈ {1, . . . , d} such that (d − 1)(k − 1) is even, we have

Eσk(Z) =
(

d

k

)(
	
( d

2

)
√
π 	

( d−1
2

)
)d−k

·
√
π 	

(
(d−1)2+2

2

)
	
(

(d−1)2+1
2

) · Res
x=0

⎡
⎢⎣
( ∫ x

0 (sin y)d−2dy
)d−k

(sin x)(d−1)2+1

⎤
⎥⎦ .

In the case when both d and k are even, Proposition 1.4 of [14] yields a formula for Eσk(Z)
which is more complicated than the one given in Theorem 5.

6.2. Behavior of β-Delaunay cells and their expected angle sums as β → ∞
Figure 6 shows the numerical values for the expected angle sums Eσ1

(
Zβ,ν

)
of the

ν-weighted typical β-Delaunay simplex in Rd−1 for β ∈ {−1, 0, . . . , 20}, with ν = 0 and
d = 4. It suggests that, as β grows, Eσ1

(
Zβ,ν

)
approaches the value 3

π
arccos 1

3 − 1 ≈ 0.1755,
which is the angle sum σ1(�3) of a regular simplex �3 in R3. The next proposition con-
firms this conjecture in full generality, that is, for general dimensions d, weights ν, and
k ∈ {1, . . . , d}. Moreover, it states that the weak limit of Zβ,ν as β → ∞ is the volume-
weighted Gaussian simplex whose angle sums, by coincidence, are the same as for the regular
simplex. We will come back to this behavior in Part II of this series of papers, where we shall
describe the limit of the whole β-Delaunay tessellations as β → ∞.
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FIGURE 6. Numerical values for the expected angle sums Eσk(Zβ,ν ) of the ν-weighted typical Delaunay
simplex in Rd−1 with β ∈ {−1, 0, . . . , 20}, ν = 0, d = 4, and k = 1. The corresponding angle sum of a
regular simplex is 3

π
arccos 1

3 − 1 ≈ 0.1755.

Proposition 2. Fix d ≥ 2 and ν >−1. Then, as β → ∞, the distribution of
√

2β Zβ,ν , as well
as that of

√
2β Z′

β,ν , converges weakly on the space C′ to the distribution of the volume-power-
weighted Gaussian random simplex conv(G1, . . . ,Gd), where (G1, . . . ,Gd) are d random
points in Rd−1 with the joint density given by

(d − 1)!ν+1

d
ν+1

2 2(ν+1)(d−1)/2

(
d−1∏
i=1

	
( i

2

)
	
( i+ν+1

2

)
)
�d−1(g1, . . . , gd)ν+1

(
1√
2π

)d(d−1) d∏
i=1

e−‖gi‖2/2,

for g1 ∈Rd−1, . . . , gd ∈Rd−1. Also, if ν ≥ −1 is an integer, then for all k ∈ {1, . . . , d} one has
that

lim
β→∞ Eσk

(
Zβ,ν

)= lim
β→∞ Eσk

(
Z′
β,ν

)= σk(�d−1),

where �d−1 stands for a regular simplex with d vertices in Rd−1.

Proof. For concreteness, we consider the β case. From Remark 5 and Equation (4.9) we
know that Zβ,ν has the same distribution as the random simplex conv(RY1, . . . , RYd), where

(a) R is a random variable with density proportional to r2dβ+d2+ν(d−1)e−md,β rd+1+2β
, r ∈

(0,∞),

(b) Y1, . . . , Yd are random vectors with joint density equal to

f (y1, . . . , yd)

:=
⎛
⎜⎝ 1

(d − 1)!ν+1cd
d−1,β

	
(

d+1
2 + β

)d

	
(

d+ν
2 + β + 1

)d

	
(

d(d+ν+2β)
2 + 1

)
	
(

d(d+ν+2β)−ν+1
2

) d−1∏
i=1

	
(

i+ν+1
2

)
	
( i

2

)
⎞
⎟⎠

−1

×�d−1(y1, . . . , yd)ν+1
d∏

i=1

(
1 − ‖yi‖2)β, y1 ∈B

d−1, . . . , yd ∈B
d−1,

and
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(c) R is independent from (Y1, . . . , Yd).

Let us first show that R → 1 in probability, as β → ∞. Define

α := d + (ν − 1)(d − 1)

d + 1 + 2β
,

let Z ∼ 	(α, 1), and observe that R and
(
m−1

d,βZ
)1/(d+1+2β) are identically distributed. We thus

compute that

E[R] = 1

m1/(d+1+2β)
d,β

E
[
Z1/(d+1+2β)]

= m−1/(d+1+2β)
d,β

1

	(α)

∫ ∞

0
z1/(d+1+2β)zα−1e−z dz

=
(

2
√
π	

( d
2 + β + 3

2

)
	
( d

2 + β + 1
)

) 1
d+1+2β 	

(
α + 1

d+1+2β

)
	(α)

= 1 + O
(
β−1 log β

)

and, similarly,

V[R] =
(

2
√
π	

( d
2 + β + 3

2

)
	
( d

2 + β + 1
)

) 2
d+1+2β

(
	
(
α + 2

d+1+2β

)
	(α)

−
	
(
α+ 1

d+1+2β

)2

	(α)2

)

= ψ (1)(d + 1)

4β2
+ O

(
β−3)

as β → ∞, by a multiple application of the asymptotic expansion of the gamma function
(here, ψ (1) stands for the first polygamma function, that is, the first derivative of ln 	(x)).
As a consequence, using Chebyshev’s inequality we have that, for any ε > 0,

P(|R −E[R]|> ε) ≤ V[R]

ε2
→ 0

as β → ∞. In other words, R −E[R] converges to zero in probability as β → ∞. Since
E[R] → 1, we also have that R converges in probability to the constant random variable 1,
as β → ∞, by Slutsky’s theorem.

Next, we claim that
√

2β(Y1, . . . , Yd) converges in distribution, as β → ∞, to a d-tuple
(G1, . . . ,Gd) of random vectors in Rd−1 with a certain joint density which we will compute.
Indeed, the density of

√
2β(Y1, . . . , Yd) is given by

(
1√
2β

)d(d−1)

f

(
y1√
2β
, . . . ,

yd√
2β

)
.

We now let β → ∞. Using that
(
1 − ‖y‖2/(2β)

)β → e−‖y‖2/2 and the standard asymptotics
	(β + c1)/	(β + c2) ∼ βc1−c2 , we obtain that the above density converges pointwise to

(d − 1)!ν+1

d
ν+1

2 2(ν+1)(d−1)/2

(
d−1∏
i=1

	
( i

2

)
	
( i+ν+1

2

)
)
�d−1(y1, . . . , yd)ν+1

(
1√
2π

)d(d−1) d∏
i=1

e−‖yi‖2/2.
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By Scheffé’s lemma, the tuple
√

2β(Y1, . . . , Yd) converges weakly to the tuple (G1, . . . ,Gd)
with the above joint density. A related result without the volume-power weighting can be found
in Lemma 1.1 in [17].

Now, again using Slutsky’s theorem together with the continuous mapping theorem, we
conclude that, as β → ∞, the random simplex√

2βZβ,ν =√
2β conv(RY1, . . . , RYd)

converges in distribution (on the space of convex bodies in Rd−1 supplied with the Hausdorff
distance) to a weighted Gaussian simplex conv(G1, . . . ,Gd); the continuity of the map
involved is guaranteed by [31, Theorem 12.3.5]. Using once again the continuous mapping
theorem, this implies that, as β → ∞,

σk
(√

2βZβ,ν
) d−→ σk(conv(G1, . . . ,Gd))

for all k ∈ {1, . . . , d}, since angle sums are invariant under rescaling. As they are also bounded,
the sequence of random variables σk

(√
2βZβ,ν

)
, β >−1, is uniformly integrable, and we have

that
lim
β→∞ E

[
σk

(√
2βZβ,ν

)]=E
[
σk

(
conv(G1, . . . ,Gd)

)]
.

However, by taking the limit as β → ∞ in [17, Remark 4.2], we have that the expected angle
sum of the weighted Gaussian simplex conv(G1, . . . ,Gd) coincides with the expected angle
sum of a standard (unweighted) Gaussian simplex conv(N1, . . . ,Nd), where N1, . . . ,Nd are
i.i.d. standard Gaussian random vectors in Rd−1. Finally, let�d−1 be a regular simplex in Rd−1

and recall from [9, 18] that the expected angle sum E[σk(conv(N1, . . . ,Nd))] coincides with
σk(�d−1). We have thus shown that

lim
β→∞ Eσk

(
Zβ,ν

)= lim
β→∞ E

[
σk

(√
2βZβ,ν

)]
=E

[
σk

(
conv(G1, . . . ,Gd)

)]
=E

[
σk

(
conv(N1, . . . ,Nd)

)]
= σk

(
�d−1

)
,

and the proof is complete. �

6.3. Face intensities in β-tessellations

Given a stationary tessellation T on Rd−1, one can introduce the notion of face intensities
for faces of all dimensions j ∈ {0, . . . , d − 1} as follows (see [31, p. 450 and Section 4.1]). Fix
some center function z : C′ →Rd−1. Let Fj(T ) be the set of all j-dimensional faces of the cells
of the tessellation T . By convention, each face is counted once even if it is a face of two or
more cells. Consider the point process

πj(T ) :=
∑

F∈Fj(T )

δz(F)

on Rd−1 and note that it is stationary because the center function is required to be translation-
invariant. The intensity of j-dimensional cells of T is just the intensity of this point process,
that is,

γj(T ) := E
∑

F∈Fj(T )

1[0,1]d−1 (z(F)).
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In the next theorem we compute the cell intensities in the β- and β ′-Delaunay tessellations Dβ
and D′

β on Rd−1.

Theorem 6. For all j ∈ {0, . . . , d − 1} and β ≥ −1 (in the β case) or β > (d + 1)/2 (in the β ′
case), we have

γj
(
Dβ

)=
Jd,j+1

(
β + 1

2

)
E Vol

(
Zβ,0

) , γj
(
D′
β

)=
J′

d,j+1

(
β − 1

2

)
E Vol

(
Z′
β,0

) ,

where E Vol
(

Z(′)
β,0

)
is as in Theorem 2 and

Jd,j+1

(
β + 1

2

)
=

(
d

j + 1

) ∫ +∞

−∞
c (2β+d)d

2
( cosh u)−(2β+d)d−2

×
(

1

2
+ 1

∫ u

0
c 2β+d−1

2
( cosh v)2β+ddv

)d−j−1

du,

J
′
d,j+1

(
β − 1

2

)
=

(
d

j + 1

) ∫ +∞

−∞
c′

(2β−d)d
2

( cosh u)−(2β−d)d+1

×
(

1

2
+ 1

∫ u

0
c′

2β−d−1
2

( cosh v)2β−d−1dv

)d−j−1

du.

Proof. For concreteness, we consider the β case. According to Theorem 10.1.3 of [31], the
cell intensities of Dβ satisfy

γj
(
Dβ

)= γd−1
(
Dβ

) ·Eσj+1
(
Zβ,0

)
, j ∈ {0, . . . , d − 1},

where Zβ,0 is the typical cell of the tessellation Dβ (that is, a random simplex distributed
according to Pβ,0). The intensity of the cells of maximal dimension d − 1 is known to satisfy

γd−1
(
Dβ

)= 1

E Vol
(
Zβ,0

) ;

see [31, Equation (10.4)]. On the other hand, by Theorem 4,

Eσj+1
(
Zβ,0

)= Jd,j+1

(
β + 1

2

)
,

and the same theorem yields also an explicit expression for Jd,j+1
(
β + 1

2

)
. Taking these three

equations together completes the proof in the β case. The β ′ case is similar. �
Using duality, we can also compute the face intensities of the β- and β ′-Voronoi tessella-

tions.

Proposition 3. The face intensities of D(′)
β and V (′)

β are related via

γk−1
(
D(′)
β

)= γd−k
(
V (′)
β

)
, k ∈ {1, . . . , d}.

Proof. Since the β(′)-Voronoi tessellation V (′)
β is dual to the β(′)-Delaunay tessellation D(′)

β ,

each (k − 1)-dimensional face of D(′)
β corresponds to a (d − k)-dimensional face of V (′)

β , and
the claim follows. �
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6.4. Expected face numbers of the typical β-Voronoi cell

In the next theorem we compute the expected f -vector of the typical cell of the β- and
β ′-Voronoi tessellations Vβ and V ′

β .

Theorem 7. Let Y (′)
β be the typical cell of the β(′)-Voronoi tessellation V (′)

β in Rd−1, where, as
usual, β ≥ −1 in the β case and β > (d + 1)/2 in the β ′ case. Then, for all k ∈ {1, . . . , d},

Efd−k(Yβ ) = kγk−1(Dβ ) =
kJd,k

(
β + 1

2

)
E Vol

(
Zβ,0

) , Efd−k(Y ′
β ) = kγk−1(D′

β ) =
kJ′

d,k

(
β − 1

2

)
E Vol

(
Z′
β,0

) .

Proof. Let us consider the β case. Note that the β-Voronoi tessellation Vβ is normal by
Theorem 10.2.3 of [31] (for β = −1) or by Lemmas 2 and 3 (for β >−1). Hence, Theorem
10.1.2 of [31] implies that

γd−k(Vβ ) = 1

k
Efd−k(Yβ ).

By Proposition 3, we also have γk−1
(
Dβ

)= γd−k(Vβ ). Taking these equalities together and
recalling Theorem 6 yields the claim in the β case. The β ′ case is similar. �
Remark 12. For β = −1, Y−1 is the typical cell in the classical Poisson–Voronoi tessellation
in Rd−1. The expected f -vector of Y−1 was determined in [14, Theorem 2.8], where Y−1 was
denoted by Vd−1. In [17], we showed that the expected f -vector of Y−1 is related to the angle
sums of β ′-simplices, whereas the above theorem expresses it in terms of the values Jd,k

(− 1
2

)
originating from β-simplices. For the typical Voronoi cell on the sphere, there also exist similar
representations in terms of both β- and β ′-simplices [16].
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