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The current work investigates how turbulence affects the mass transfer rate between
inertial particles and fluid in a dilute, polydisperse particle system. Direct numerical
simulations are performed in which all scales of turbulence are fully resolved and
particles are represented in a Lagrangian reference frame. The results show that,
similarly to a monodisperse system, the mass transfer rate between particles and fluid
decreases as a result of particle clustering. This occurs when the flow time scale
(based on the turbulence integral scale) is long relative to the chemical time scale,
and is strongest when the particle time scale is one order of magnitude smaller than
the flow time scale (i.e. the Stokes number is around 0.1). It is also found that for
larger solid mass fractions, the clustering of the heavier particles is enhanced by the
effect of drag force from the particles on the fluid (momentum back-reactions or
two-way coupling). In particular, when two-way coupling is accounted for, locations
of particles of different sizes are much more correlated, which leads to a stronger
effect of clustering, and thus a greater reduction of the particle–fluid mass transfer
rate.

Key words: combustion, reacting multiphase flows, turbulent reacting flows

1. Introduction
Numerical simulations of multiphase systems in which small particles react

with the embedding turbulent fluid are very complex. However, such systems are
frequently encountered, especially in industry. Two excellent examples of this are
pulverised coal combustion and fluidised bed combustion, which are two of the
most popular technologies for thermal power generation. Given their popularity, it
is not surprising that a lot of research is devoted to optimise and improve these
processes. Representative examples of recent numerical studies are the works of Choi
& Kim (2009) aimed at reduction of NOx emission from pulverised coal combustion,
Al-Abbas, Naser & Dodds (2012) who focused on oxy-fuel combustion of low-rank
coal, Gubba et al. (2012) who investigated pulverised coal and biomass co-firing
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and Adamczyk et al. who examined different combustion technologies in fluidised
bed (Adamczyk et al. 2015) and pulverised coal (Adamczyk et al. 2017) boilers. In
all of the aforementioned publications, the focus is on industrial-scale simulations,
which would not be feasible without the aid of modelling. Heat and momentum
exchange between phases as well as all the stages of coal conversion, such as
drying, devolatilisation and char burnout, are usually taken into account. All of these
processes can be strongly influenced by turbulence and these interactions have to be
modelled. Thus, it is apparent that the accuracy of such simulations depends on the
completeness of the models and their capability of reflecting real-life phenomena.

On the other hand, the amount of modelling can be greatly reduced by using
an extremely fine computational grid such that the entire range of turbulent scales,
together with the associated effects on mass, momentum and heat transfer, are
resolved. Such an approach, called a direct numerical simulation (DNS), has lately
been applied in studies of pulverised coal combustion by Luo et al. (2012, 2017),
Brosh & Chakraborty (2014), Brosh et al. (2015), Hara et al. (2015) and Muto,
Yuasa & Kurose (2017), allowing for very detailed examination of coal ignition,
flame stabilisation or interactions between vortices and coal particles. However, the
DNS technique is restricted in its use to small-scale simulations (or very low Reynolds
numbers) since its application to industrial-scale problems is prohibitively expensive
in terms of computational power. It should also be mentioned that the smallest fluid
scale that is resolved in the simulations presented in the literature cited above is
the Kolmogorov scale. The Kolmogorov scale is defined as the scale of the smallest
turbulent eddies, i.e. the scale where the kinetic energy is dissipated into heat. The
boundary layer of the particles, which are smaller than the Kolmogorov size, is,
however, not resolved. Hence, the boundary layer effects have to be modelled.

Over the years, extensive investigations of turbulent flows have been conducted,
resulting in an abundance of models accounting for the effect of turbulence on flow
transport properties. Amongst the well-established ones are the k–ε (Launder &
Spalding 1974) and k–ω (Wilcox 1988) models, which relate the Reynolds stresses
to the mean flow stresses through the eddy viscosity. There are also a number
of models suitable for homogeneously reacting turbulent flows, such as the eddy
dissipation model (Magnussen & Hjertager 1977), probabilistic descriptions relating
instantaneous scalar fluctuations to their mean values (Pope 1985) or models for
computing the turbulent flame speed (Zimont et al. 1998). In addition to this, there
is much more modelling required when dealing with reacting multiphase flows; for
example, the particle dispersion caused by the turbulence in particle-laden flows can
be described using stochastic transport models (Baxter & Smith 1993; Graham 1996).

The above models are mature and well-tested, and most of them have numerous
extensions. However, until very recently, no models existed that represent the impact
of turbulence on heterogeneous reactions, such as char conversion. Therefore, in all
industrial-scale simulations of pulverised coal combustion this effect is not captured.
This knowledge gap was addressed by Krüger et al. (2017a) who proposed the
first model to account for the mass transfer rate modifications due to turbulence
for isothermal reactions. This work was later extended to non-isothermal reactions
(Krüger, Haugen & Løvås 2017b). The numerical studies of Krüger et al. showed
that under some circumstances, turbulence may cause the particles to form clusters,
inside which the reactant is quickly consumed. As a result, there exist regions that
are rich in reactants but lack particles, and regions where the particle density is
very high but the reactant concentration is low. This leads to a considerable decrease
in the overall mass transfer rate, which should not be neglected when performing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.493


Effect of turbulence on mass transfer between inertial particles and fluid 1149

simulations of turbulent flows containing reacting particles. The work of Krüger et al.
(2017a) was further extended by Haugen et al. (2018) who showed that turbulence
may also enhance the mass transfer since it causes an increase in the relative velocity
between phases. They proposed a model that accounts for both effects of turbulence
on the reactant consumption rate. It was shown that which effect dominates depends
on the Damköhler number, which is given by Da= τL/τc, where τL and τc are typical
fluid (turbulence) and chemical time scales, respectively. For the remainder of this
paper, τL is set to be equal to the turnover time of the integral-scale eddies. In these
studies, monodisperse particle systems were studied, but in real situations, such as
in pulverised coal-fired boilers, particles with different sizes are present. The current
work aims to verify the previous findings of Krüger et al. (2017a) and Haugen et al.
(2018) for polydisperse systems and to further investigate how the mass transfer is
affected by the turbulence under different conditions.

Clustering of particles due to turbulence in an embedding fluid has been studied in
a large number of papers (Eaton & Fessler 1994; Bec et al. 2007; Calzavarini et al.
2008; Toschi & Bodenschatz 2009; Baker et al. 2017; Haugen et al. 2018). It has
been shown that for turbulence with a sufficient scale separation, clustering will occur
for a range of Stokes numbers (Baker et al. 2017; Haugen et al. 2018). Conceptually,
one can argue that particle clusters should be found at least for τη6 τp 6 τL, where τη
is the Kolmogorov time scale and τp is the response time of the particles. Or, in other
words, particle clusters should be found when Stη= τp/τη>1 and StL= τp/τL<1. With
this being said, it is clear that the sharpest clusters are found for Stη ≈ 1 (Bec et al.
2007; Calzavarini et al. 2008; Toschi & Bodenschatz 2009). Even though the sharpest
clusters are found at scales around the Kolmogorov scale, this does not necessarily
mean that these clusters have the most influence on the mass transfer coefficients. The
reason for this is that in order for the clustering to slow down the mass transfer, the
life time of the clusters should be longer than the time it takes for the particles to
consume most of the reactants within the cluster. This is typically not the case for
these smallest clusters since their life times are too short.

2. Governing equations and numerical methods
As mentioned before, there is a large number of applications where heavy inertial

particles are embedded in a turbulent flow. For many of these applications, there is
also mass transfer between the particles and the fluid. The mass transfer may yield
a net molar production (e.g. char oxidation to carbon monoxide or the reduction of
a metal oxide by natural gas to produce steam and carbon dioxide), a net molar
reduction (e.g. oxidation of a metal oxide) or it may be molar neutral (e.g. oxidation
of char to carbon dioxide). On top of this, the reactions may be exothermic (e.g.
oxidation of char or a metal oxide) or endothermic (e.g. gasification of char). The
mass transfer rate may also be dependent on temperature, through the kinetic reaction
rates at the particle surface. An example of the complexity can be seen in the detailed
conversion model for single point particle char as described in, for example, Haugen,
Tilghman & Mitchell (2014) and Haugen, Mitchell & Tilghman (2015). In order to
make the results obtained in the following as general as possible, and to be able to
isolate the effects of the turbulence alone, we will here use a simplified description
of the chemical reactions. The main simplifications made in this work are that (1)
heterogeneous reaction kinetics is assumed to be infinitely fast, (2) the reaction occurs
only on the external surface of the spherical particles, (3) the reaction is of one step,
unimolar and isothermal and (4) the evolution of particle size and density is not
accounted for, i.e. the particle acts as a catalyst.
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2.1. Fluid-phase equations
Fluid motion is governed by the continuity

Dρ
Dt
+ ρ∇ · u= 0 (2.1)

and the momentum equation

ρ
Du
Dt
=∇ · σ + ρf −F, (2.2)

where D/Dt= ∂/∂t+ u · ∇ is the advective derivative, ρ is the density of the fluid, u
is the velocity vector and σ is the total stress tensor, which is defined as

σ =−pI + 2µS− 2
3µ(∇ · u)I, (2.3)

when p and µ are pressure and dynamic viscosity, respectively. The rate of strain
tensor is given by

S= 1
2 [∇⊗ u+ (∇⊗ u)T]. (2.4)

The remaining terms in (2.2) are f and F. The former is a forcing function, which
is responsible for injecting kinetic energy into the domain (see Haugen et al. (2012)
for details), while the latter represents momentum exchange between the fluid and
particles and will be introduced in the next section.

Thermodynamic properties are coupled through the ideal gas equation:

p= ρc2
s , (2.5)

in which cs is the isothermal speed of sound. Additionally, the equation governing the
reactant is given as

∂X
∂t
+ u · ∇X =D∇2X − R, (2.6)

where X stands for the reactant mole fraction, D is its diffusivity and R represents the
rate of reaction occurring on the particle surface.

2.2. Dispersed-phase equations
Particles are represented as point sources and are tracked in a Lagrangian reference
frame. For the point particle approach to be applicable, the particle size cannot be
greater than the size of a fluid grid cell. Furthermore, a two-way coupling is applied,
i.e. there are mutual interactions between particles and the fluid phase. Since the
particle distribution is assumed to be dilute, particle collisions are neglected. The ith
particle obeys the following equations of motion:

dxi

dt
= vi, (2.7)

mi
dvi

dt
=miai, (2.8)

where mi denotes its mass while xi and vi are its position and velocity vectors,
respectively. Assuming that no forces other than drag act on the particle, its
acceleration can be expressed as

ai =
1
τi
(u(xi)− vi), (2.9)
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where the particle response time is given by

τi =
1

1+ fi
τp,i, (2.10)

and the correction factor to account for the Reynolds number effect, as given by the
empirical correlation of Schiller & Naumann (1933), is fi = 0.15Re0.687

i . Here, Rei =

ρ|u(xi) − vi|dp,i/µ is the particle Reynolds number. The Stokesian particle response
time is given by

τp,i =
ρp,id2

p,i

18µ
, (2.11)

where dp,i is the particle diameter and the particle material density is ρp,i. Momentum
exchange is incorporated in the fluid-phase equations through the last term on the
right-hand side of (2.2):

F=
1
Vc

∑
i

miai, (2.12)

in which Vc is the volume of the relevant grid cell and the summation is over all
particles located inside the same grid cell. Similarly, the term representing the rate of
reaction in (2.6) is given as

R=
1
Vc

∑
i

AiκiX, (2.13)

where X is the reactant mole fraction in the cell in which the particle is located,
Ai =πd2

p,i is the particle surface area and

κi =DShi/dp,i (2.14)

stands for the mass transfer coefficient, while

Shi = 2+ 0.6Re1/2
i Sc1/3 (2.15)

is the Sherwood number, as given by the empirical correlation of Ranz & Marshall
(1952), and Sc = µ/(Dρ) is the Schmidt number. In obtaining (2.13) it has been
assumed that the particle reactions are diffusion controlled, i.e. that a reactant will
react instantly when it reaches the particle surface.

2.3. Characteristic scales and non-dimensional numbers
Before presenting the results, it is worthwhile introducing some relevant dimensionless
numbers. There are two characteristic time scales for turbulent flows: the turnover time
of the integral scale

τL =
L

urms
(2.16)

and the time scale of the Kolmogorov scale eddies at which energy is dissipated

τη =
(ν
ε

)1/2
. (2.17)
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FIGURE 1. (Colour online) Kinetic energy spectrum; black: Reλ ≈ 350, red: Reλ ≈ 150
(cases A and M in table 1). The wavenumbers kL, kλ and kη correspond to the integral,
Taylor and Kolmogorov scales, respectively.

Here, urms is the root-mean-square velocity and the integral length scale of turbulence
is given by (Pope 2000)

L=
k2

urmsε
=

u3
rms

4ε
, (2.18)

where ν=µ/ρ represents kinematic viscosity and ε is the dissipation rate of turbulent
kinetic energy. Note that the above definition of the integral scale is different from
the one employed by Krüger et al. (2017a) and Haugen et al. (2018). In their work,
a turbulent forcing scale Lf = Lx/(2πkf ), where Lx is the domain size and kf is the
forcing wavenumber, was used as the integral scale. The two scales, L and Lf , are not
the same. Indeed, L≈ 2πLf , which means that also several non-dimensional numbers,
such as the Damköhler number and the Stokes number based on the integral scale,
are roughly a factor 2π different from the ones used by Krüger et al. (2017a) and
Haugen et al. (2018). The reason for defining the integral scale differently from what
was done in Krüger et al. (2017a) and Haugen et al. (2018) was that Lf was not
really an integral scale but merely a scale that was used to define a suitable Reynolds
number. It can be seen from comparing the integral wavenumber, kL= 2π/L, with the
energy spectrum, which is what is done in figure 1, that the current integral scale does
indeed represent a size that is reasonably close to the real integral scale. In the figure,
also the Taylor microscale and the Kolmogorov scales are shown, for both Reλ= 150
(red) and Reλ = 350 (black).

Under the assumption of Stokes flow, the particle time scale (τp) is given by (2.11).
Yet another scale, characteristic for reacting flows, is the chemical time scale. The
reactant consumption rate for homogeneous reactant and particle distributions can be
defined as

αhom = R/X = ShπnpDdp, (2.19)

where overline means volume averaging and (2.13) and (2.14) have been employed. If
we assume that the relative velocity between the particles and the fluid is negligible,
such that Sh= 2 (see (2.15)), the reactant consumption rate then becomes

αqsc = 2πnpDdp. (2.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.493


Effect of turbulence on mass transfer between inertial particles and fluid 1153

Case dp ρp Lx Sh Reλ StL αc Da2 Range of StL Range of Stη τL/τη

Compensated distribution
A 0.013 1.0 2π 2.4 150 0.005 1.11 38.6 0.0013–0.013 0.04–0.4 28
B 0.013 2.5 2π 2.5 150 0.01 0.67 22.2 0.0035–0.035 0.1–1.0 28
C 0.013 10 2π 2.8 150 0.05 0.38 11.9 0.014–0.14 0.39–3.9 28
D 0.013 25 2π 2.9 150 0.1 0.29 8.5 0.035–0.35 0.98–9.8 28
E 0.013 75 2π 3.1 150 0.35 0.34 9.25 0.1–1.0 2.9–29.9 28
F 0.013 250 2π 3.3 150 1.2 0.52 13.3 0.34–3.4 9.7–96.9 28
G 0.013 750 2π 3.4 150 3.5 0.70 17.4 1.0–10.2 28.8–288 28
L 0.021 1.3 8π 2.6 350 0.005 0.31 30.5 0.001–0.018 0.07–1.2 69
M 0.021 3.3 8π 2.8 350 0.01 0.19 17.7 0.0026–0.044 0.17–3.0 69
N 0.021 10 8π 3.0 350 0.04 0.13 10.9 0.0079–0.13 0.53–9.2 69
O 0.021 25 8π 3.2 350 0.09 0.11 8.6 0.02–0.34 1.36–23.2 69
P 0.021 332 8π 3.9 350 1.2 0.19 12.8 0.26–4.4 18–98.9 69

Uniform distribution
Q 0.010 202 8π 3.0 350 0.26 n/a n/a 0.034–0.85 2.0–49.4 69
H 0.00047 33567 2π 2.2 150 0.29 n/a n/a 0.038–0.96 0.93–23.3 28
I 0.015 10 2π 2.8 150 0.06 0.37 11.0 0.014–0.14 0.39–3.9 28
J 0.015 20 2π 2.9 150 0.1 0.32 9.1 0.028–0.28 0.78–7.8 28

Gaussian distribution
K 0.015 20 2π 3.0 150 0.1 0.31 8.9 0.027–0.27 0.78–7.8 28

TABLE 1. Simulation parameters. The total number of grid points varies between 643 and
5123, depending on Reλ and Da. In all cases, the Schmidt number is equal to 0.2. The
parameter Da2 quantifies the effect of particle clustering and is explained in a later sub-
section.

Here, np is the particle number density and dp is the average particle diameter. The
chemical time scale is now defined as

τc =
1
αqsc

. (2.21)

By combining the above time scales, one can define several dimensionless numbers,
such as the Damköhler number

Da=
τL

τc
, (2.22)

the Stokes number based on the integral scale

StL =
τp

τL
(2.23)

and the Kolmogorov-based Stokes number

Stη =
τp

τη
. (2.24)

Naturally, in a polydisperse system, a range of Stokes numbers can be identified
since the Stokes number is a function of the particle diameter. However, to make the
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analysis clear, the mean Stokes number will in the following be calculated based on
a mean particle diameter, such that

StL = τ p/τL (2.25)

when

τ p =
ρpd

2
p

18µ
. (2.26)

While it is generally accepted that the particle clustering is strongest when Stη ≈ 1,
we chose to present the results in terms of StL. This is, as already discussed in the
introduction, because we expect these larger-scale clusters (i.e. clusters formed by the
larger eddies) to have a greater influence on the mass transfer rate due to their longer
life times.

2.4. Reactant decay rate
It has been confirmed by numerous numerical and experimental studies that particles
embedded in a turbulent flow have a tendency to cluster (Eaton & Fessler 1994;
Yoshimoto & Goto 2007; Monchaux, Bourgoin & Cartellier 2012). The formation of
such clusters is primarily due to the turbulent eddies that have time scales that are
comparable to the particle response time. From this, it follows that also the cluster
size depends on the Stokes number, as shown by Haugen et al. (2018). For very low
St, mainly the smallest eddies lead to clustering, which results in many small clusters
present in the flow. When the Stokes number is close to or above unity, clustering is
caused by the integral scale eddies, and thus the clusters are larger.

As Krüger et al. (2017a) demonstrated, the extent to which particle clustering
affects the rate of mass transfer depends on the Damköhler number. If τc > τL, i.e.
Da is low, the amount of reactant inside the particle clusters is similar to what it is
outside of the clusters; thus, the effect of the clustering is negligible and the reactant
consumption rate is similar to what is found for homogeneous particle and reactant
distributions, and as such, can be computed from (2.19). However, if τc < τL, which
corresponds to high Da, a significant fraction of the reactant inside the clusters is
consumed during the life time of the cluster. In this situation, clustering plays an
important role as it leads to a decrease of the rate at which the reactant is consumed
because the average particle sees a reactant concentration that is significantly lower
than the average reactant concentration in the fluid. Krüger et al. (2017a) proposed
to incorporate this effect in a formulation of the reactant decay rate, such that the
real decay rate is given by

αmod = 1
/(

1
αhom
+

1
αc

)
, (2.27)

where αc may be interpreted as a cluster characteristic decay rate. This parameter is
generally dependent on the cluster properties, such as size, shape and number density.

While clustering of particles will decrease the mass transfer rate between particles
and fluid, there is another turbulence-induced effect that will enhance the mass transfer
rate. This effect is due to the fact that particles will not be significantly accelerated
by turbulent eddies that have time scales that are shorter than the response time of
the particles. This means that such fast turbulent eddies will yield a relative velocity
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difference between the particles and the fluid. Haugen et al. (2018) demonstrated the
effect of this and described how it can be modelled (see their equation (3.14)).

Finally, Haugen et al. (2018) showed that the combined effect of turbulence on
the mass transfer rate between particles and fluid can be expressed solely through a
modified Sherwood number, which is given by

Shmod = 2α̃ = 2
αmod

αqsc
. (2.28)

Using the above while employing (2.19)–(2.22) together with (2.27) yields

α̃ =
Sh
2

αcτL

αcτL +DaSh/2
. (2.29)

In the following, the predictions of (2.29) will be compared with the time-averaged
reactant decay rate obtained from the DNS

〈α〉 =
1

t− t0

∫ t

t0

α(t) dt, (2.30)

where 〈·〉 represents time averaging,

α(t)=−
1
X

dX
dt

(2.31)

is the volume-averaged decay rate and the integration starts at t0, which is when the
statistically stationary state is reached and X is initialised to unity.

2.5. Computational methods and simulation set-up
A cubic computational domain with sides of length 2π and periodic conditions
prescribed for all boundaries is considered. Initially, particles are randomly distributed
in a turbulent flow field. This is achieved by performing simulations only of the fluid
phase until the turbulence is statistically stationary before inserting the particles. Also,
the turbulent field is statistically invariant under translations and rotations, i.e. it is
homogeneous and isotropic.

The modelling approach employed in the current work is almost identical to the one
used by Krüger et al. (2017a) and Haugen et al. (2018) with the difference that now
a polydisperse particle system is considered. The key points of the approach are as
follows. The DNS technique is applied, which means that the flow is resolved on the
numerical grid down to the smallest turbulent scales. Therefore, since all the scales
of the turbulence are resolved on the numerical mesh, only the interactions between
phases (such as mass and momentum exchange between fluid and particles) require
modelling due to the point-particle approximation. The accuracy of results is ensured
by using high-order numerical methods, i.e. a third-order Runge–Kutta scheme for
time advancement and a sixth-order finite-difference scheme for spatial derivatives, as
implemented in the Pencil Code (Pencil Code), which is the software used for all
simulations.

Various particle size distributions are studied, where the upper and lower particle
diameter cut-offs are given by dmax and dmin, respectively. The first distribution is
referred to as the ‘uniform distribution’ and corresponds to the situation when the
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FIGURE 2. (Colour online) Particle size distributions used in the current work (for
Reλ = 150, StL = 0.1).

probability of picking a random particle with a given diameter is equal for all
diameters between dmax and dmin. Since the Damköhler number associated with a
given particle size is proportional to the particle diameter, it follows that for this
particle size distribution, the contribution to the total Damköhler number is larger for
the larger particles. To see the effect when the contribution to the total Damköhler
number is the same for all particle sizes, the particles are distributed such that
the particle number density is given by np(dp) ∼ 1/dp, which is referred to as the
‘compensated distribution’. Finally, a Gaussian distribution (with a standard deviation
σ = 1/12(dmax − dmin)) is considered. The above-mentioned particle size distributions
are shown in figure 2. A Dirac distribution is also included, which corresponds to a
single particle size, as used by Haugen et al. (2018) for simulations of monodisperse
systems.

Although we characterise the polydisperse system using the Stokes number defined
based on the average-sized particle, it is important to remember that a broad range
of Stokes numbers is contained in such a system. Figure 2 shows the normalised
particle number density as a function of the Stokes numbers computed based on the
integral (StL, middle axis) and the Kolmogorov (Stη, top axis) time scales. (The values
of Stokes numbers on the axes are relevant to the case in which the compensated
distribution was used and the average Stokes number was approximately equal to 0.1.)
It can be seen that for the smallest particles Stη is close to unity, while for large
particles StL is around 0.3. In order for particles to cluster, the time scale of the
particles must be similar to some of the time scales in the flow (i.e. τη 6 τp 6 τL).
This means that in the case of these polydisperse systems, a wide range of eddies
can contribute to clustering. Furthermore, since the size of the cluster depends on the
Stokes number, clusters of various sizes may be present.
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3. Results
In this section, the influence of turbulence on the mass transfer in polydisperse

particle systems is studied by numerical simulations and the results are discussed
and compared with previous results for monodisperse systems (Krüger et al. 2017a;
Haugen et al. 2018). Simulation parameters are presented in table 1. For each case,
a series of simulations with different Damköhler numbers were performed. The
Damköhler number was altered by changing the particle number density. To control
the Stokes number, the particle material density was varied. In most cases, the Taylor
microscale Reynolds number, defined as Reλ = u′λ/ν, where the Taylor microscale
is given by λ = u′

√
15ν/ε and u′ = urms/

√
3, is approximately 150. Additionally,

for selected cases the domain size and the root-mean-square velocity (urms) were
increased, resulting in a higher Reynolds number (Reλ ≈ 350). This was done in
order to obtain a larger-scale separation in the flow in order to better understand
the effect of a polydisperse particle size distribution. Kinetic energy spectra for both
Reynolds numbers are shown in figure 1. It can be seen that for the higher Reynolds
number the spectra extends to lower wavenumbers, while the wavenumbers of the
Kolmogorov scale (kη) are similar for both Re.

3.1. Shape of size distribution
The normalised reactant decay rate (α̃=〈α〉/αqsc) obtained from the DNS for different
particle size distributions is shown in figure 3 as a function of Damköhler number.
Since the normalising factor is the decay rate computed as if the flow was quiescent,
α̃ shows the range of Da for which the mass transfer is enhanced (α̃ > 1) or
decreased (α̃ < 1) due to turbulence. For the purpose of comparison, the equivalent
results obtained by Haugen et al. (2018) with monodisperse particles are included
as well (‘Dirac distr.’). The error bars in figure 3, as well as in all of the following
figures, represent the standard deviation of the results. In the model (2.29), the
reactant consumption rate for high Da is controlled by the cluster decay rate (αc).
This parameter is generally unknown; therefore, it was used as a fit parameter to
make the model predictions (2.29) fit the simulation results (2.30). Its values are
listed in table 1.

From figure 3, it can be seen that there is no significant difference between
the normalised decay rates computed for StL = 0.1 with Gaussian, uniform and
compensated distributions (cases K, J and D, respectively). The effect of the Dirac
distribution will be discussed in a later sub-section.

3.2. Particle clustering and the effect of momentum back-reactions
It is not possible to change the Damköhler number while maintaining Reλ and St
constant, since variations in particle mass loading will influence the root-mean-square
velocity. Indeed, as was shown by Krüger et al. (2017a), urms, and consequently also
the Reynolds and Stokes numbers, decrease when the mass loading is high. In order
to verify if this impacts the results, a series of simulations without back-reaction from
the particles to the fluid, i.e. where F= 0 in (2.2), were performed. Without particle
feedback, the results are less representative in terms of physics but urms remains
unchanged irrespective of Da. Figure 4 compares the obtained normalised reactant
consumption rate as a function of Da. It can be seen that as long as the Stokes
number is low, the difference between the results with and without back-reactions
from particles to fluid is almost negligible. However, this is not the case for higher
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FIGURE 3. (Colour online) Normalised decay rate as a function of Damköhler number
obtained for different particle size distributions for StL = 0.1 (cases D, J, K).

Da
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No back-reaction
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Da

0.1 1.0 10.0

FIGURE 4. (Colour online) Comparison of the normalised decay rate obtained with and
without particle back-reaction for simulations with StL = 0.05 (a), 0.35 (b) and 1.2 (c)
(cases C, E, F).

StL, for which the difference becomes significant at high Damköhler numbers. This is
because the mass loading is proportional to the Stokes number for a given Damköhler
number. An expression for the mass loading as a function of non-dimensional numbers
is given in appendix A.

The assumption has been that particles cluster purely due to turbulent eddies that
are associated with a time scale that is similar to the particle response time. Then,
if the location of turbulent eddies of different sizes were not correlated, particles of
different sizes should cluster in uncorrelated positions. This is however not the case,
as can be seen from the particle number density plots in figure 5. Here, the three
upper (lower) panels present the results of a single simulation in which particle back-
reactions were (were not) included, and the reported Stokes numbers correspond to
different particle sizes. The strength of the dependency between particle locations can
be demonstrated in a quantitative manner using correlation numbers. The correlation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

49
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.493


Effect of turbulence on mass transfer between inertial particles and fluid 1159

StL = 0.04, St˙ = 0.9
(a) (b) (c)

(d) (e) (f)

2-
w

ay
1-

w
ay

StL = 0.2, St˙ = 4.7 StL = 1.0, St˙ = 23.3

FIGURE 5. (Colour online) Particle number density for different Stokes numbers (case H).
(a–c) Simulations with two-way coupling between particles and fluid; (d–f ) only one-way
coupling (no back-reactions from particles on fluid) is accounted for. White corresponds
to zero particle number density, while black represents a particle number density that is
23 times larger than the average.

number of the number density of particles with different sizes is given as

Cij =
ñiñj√
ñ2

i

√
ñ2

j

, (3.1)

where ñi = ni − ni and ni is the particle number density of particles with size i.
The corresponding values are presented in table 2 for simulations with and without
back-reactions (i.e. one-way and two-way coupling). The Stokes numbers of the
three different particle sizes are 0.04, 0.2 and 1, the same as in figure 5. It is clear
from the table that the clusters of particles with different particle sizes are more
correlated when the fluid can feel the presence of the particles (two-way coupling).
The exception is the correlation between the two largest particle sizes, which is
independent of back-reactions.

It is also clear, however, that there is still some correlation between the position
of clusters of different sizes also for the case with only one-way coupling. This
correlation is due to the fact that the locations of turbulent eddies of different sizes
are (weakly) correlated, even for isotropic turbulence that does not feel the presence
of the particles.

By inspecting the ‘strength’ or ‘sharpness’ of the clusters in figure 5 it can be
observed that for the one-way coupling the sharpest structures are found for the
smallest Stokes number. This is as expected since this case has a Kolmogorov-based
Stokes number of Stη ≈ 1, which is known to yield the sharpest clustering (Bec et al.
2007). For the one-way coupling, the sharpness of the clusters is decreasing with
increasing Stokes numbers. If we now consider the case with two-way coupling, we
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StL = 0.03, St˙ = 2.0 StL = 0.2, St˙ = 9.9 StL = 0.9, St˙ = 49.4

1-
w

ay

FIGURE 6. (Colour online) Particle number density for different Stokes numbers (case Q),
one-way coupling, Reλ ≈ 350.

C12 C13 C23

One-way 0.29 0.10 0.26
Two-way 0.35 0.22 0.25

TABLE 2. The correlation number between different Stokes numbers (St= 0.04, 0.2
and 1), for simulations with and without back-reactions.

see that the trends are different. For the two-way coupling, the sharpest clusters are
found for the intermediate Stokes number (Stη ≈ 5), while also the largest Stokes
number has sharper structures than is the case for the largest Stokes number with
one-way coupling.

It is now interesting to see what happens if the Reynolds number is increased while
StL is kept unchanged. In figure 6 a contour plot of the particle number density is
shown for Reλ ≈ 350 when particle back-reactions are turned off (one-way coupling).
This is comparable to what is shown for Reλ ≈ 150 in figure 5(d–f ). In figure 6,
the integral-based Stokes numbers are the same as they are in figure 5, but the
Kolmogorov-based Stokes numbers are different. From the figure, we see that for the
case with Reλ ≈ 350 the clusters for the smallest Stokes number are not as sharp
as for Reλ ≈ 150. This difference is actually not due to the difference in Reynolds
number, but rather due to the fact that the Kolmogorov-based Stokes number is
2 for the case with Reλ ≈ 350 while it is 1 for the smallest Stokes number case
with Reλ ≈ 150. This difference in sharpness when increasing the Kolmogorov-based
Stokes number slightly beyond unity is consistent with previous findings by Bec et al.
(2007). For the larger Stokes numbers we see that, within error bars, the clustering is
independent of Reλ. This is reasonable since the particles with τp� τη are essentially
independent of what happens at the Kolmogorov scale.

It can also be observed from figure 5 that cluster size and strength depend on the
Stokes number and the way the fluid–particle coupling is handled. These features can
be analysed using the auto-correlation function of the particle number density, which
is given by

Ci(r)= 〈ñi(x)ñi(x+ r)〉 (3.2)

and is shown in figure 7. The faster the auto-correlation function decreases the more
compact are the clusters. The distance at which C(r) crosses the x-axis indicates the
cluster length scale. Thus, for the smallest particles the clusters are larger and more
diffusive in the case of two-way coupling, whereas the opposite is true for larger
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FIGURE 7. (Colour online) The auto-correlation function of the particle number density
for simulations with and without back-reactions and for different particle sizes (case H).

particles. It is also interesting to note that for the larger particle sizes, the clustering
is stronger when two-way coupling is invoked. The reason for the stronger clustering
with two-way coupling is most likely that turbulence inside the heavy clusters will
be suppressed by the presence of the particles, which means that the clusters will
be relatively stable, while more particles can still be transported to the cluster. This
transport of particles from volumes of high turbulence intensity to volumes of low
turbulence is similar to the turbophoretic transport that is experienced for isotropic
and non-homogeneous turbulence (Mitra, Haugen & Rogachevskii 2018).

In order to understand this effect better, we plot the probability density function
(p.d.f.) of the particle number density for simulations with different mean Stokes
numbers and for realisations with and without momentum back-reactions in figure 8.
By inspecting the figure, it can be seen that the p.d.f. of the particle number density
for simulations with StL = 1.2 (figure 8a,c) is significantly wider for the case with
back-reactions (figure 8a,b) than for the case without back-reactions (figure 8c,d). In
particular we see that for the smallest particle sizes, there is a much higher probability
of finding sub-volumes where there are no particles. Likewise, the probability of
finding sub-volumes with high particle number densities is also higher. This means
that the particle clustering is stronger for cases with back-reactions. It can also be
seen that back-reactions have a stronger effect for large StL (figure 8a,c), while the
effect is much less pronounced for smaller StL (figure 8b,d). This is due to the fact
that the mass loading scales with the Stokes number, which means that for small
Stokes numbers the effect of back-reactions on the fluid is negligible.

3.3. Effect of back-reactions on reactant concentrations
From figure 4 it is seen (through the fact that α̃ is above unity for larger Da) that
the effect of clustering is less when momentum back-reactions from the particles to
the fluid are neglected, i.e. when F in (2.2) is set to zero. The reason for this can
be understood from the previous sub-section, which showed that particle clustering is
stronger due to momentum back-reactions. More insight into this can be gained from
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FIGURE 8. (Colour online) The p.d.f. of np/np for different particle sizes, Reλ ≈ 150,
compensated distr., (a,b) with back-reaction, (c,d) no back-reaction, (a,c) StL = 1.2, (b,d)
StL = 0.05, in all cases Da≈ 35 (cases C and F).

figure 9, which shows the p.d.f. of the reactant mole fraction normalised by its mean
value. Here, the curves referred to as ‘constrained’ are given by

fC(z)=
1

Npart

Npart∑
j=1

δ(z− X(rj)), (3.3)

and represent the p.d.f. obtained if data are collected at the position of the particles,
δ is the Dirac delta function, Npart is the total number of particles in the domain and
X(rj) is the reactant concentration at the position of particle j. The ‘not constrained’
curves are obtained based on the reactant mole fraction present in the entire domain
and are given by

fNC(z)=
1

Ngrid

Ngrid∑
i=1

δ(z− Xi) (3.4)

when Ngrid is the total number of grid points and Xi is the reactant concentration in
grid cell i. It becomes clear from figure 9 that the reactant distribution is significantly
narrower when F = 0, which is particularly pronounced for StL = 1.2 (figure 9a).
A narrow distribution means that all particles have access to a similar amount of
reactant. Hence, the clustering does not slow down the conversion rate so much.
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FIGURE 9. (Colour online) The p.d.f. of X/X, (a) StL = 1.2, (b) StL = 0.005,
compensated distribution, Da≈ 35 (cases C and F).
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FIGURE 10. (Colour online) The p.d.f.s of (a) np/np and (b) X/X for different particle
sizes, Reλ ≈ 350, compensated distr., with back-reaction, StL = 0.04, Da= 25 (case N).

3.4. The effect of turbulence on the overall mass transfer rate
Having gained an understanding of the interactions between differently sized particles
in a polydisperse system, we can now study how the mass transfer rate is influenced
due to turbulence. We begin by analysing p.d.f.s of particle number density and
reactant mole fraction for different particle sizes for case N, in which StL = 0.04
and Reλ ≈ 350. These results, presented in figure 10, are the most representative for
the considered polydisperse particle system since τp,min ≈ τη and τp,max < τL, which
means that for all particle time scales there exists a turbulent flow time scale of the
same order. Hence, turbulence can potentially make all particle sizes cluster. Despite
the fact that the range of flow scales was significantly narrower for cases studied in
previous sections (with Reλ≈ 150), the p.d.f. of the particle number density presented
in figure 10(a) verifies previous findings for the smaller Reynolds number. Here,
again, the broadest p.d.f. is obtained for particles with StL of the order of 0.1 (which
corresponds to the largest particles in this simulation). As a consequence, we expect
that the mass transfer rate will be mostly affected by clustering of these largest
particles. The corresponding p.d.f.s of the reactant mole fraction (figure 10b) show
that there is indeed slightly less reactant available at the locations of the largest
particles. This is not surprising since they are more clustered and the clusters are
larger, yielding longer cluster life times.

Normalised reactant decay rates for a compensated particle size distribution,
Reλ≈ 150 and different mean Stokes numbers (corresponding to cases A, B, D and F)
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FIGURE 11. (Colour online) Normalised decay rate as a function of Damköhler number
obtained for different StL using a compensated distribution for (a) Reλ≈ 150 (cases A, B,
D, F) and (b) Reλ ≈ 350 (cases L, M, O, P).

are shown in figure 11(a). The tendency here is the same as previously observed by
Haugen et al. (2018). As long as the Damköhler number is low (or, in other words,
as long as the mass transfer is not affected by the particle clustering), a higher
normalised reactant decay rate is obtained for higher St, which is a consequence of
the fact that the mean Sherwood number increases with Stokes number (see table 1).
For higher Damköhler numbers, the reactant consumption rate starts to be dependent
on the cluster decay rate. As expected, in the case of StL=0.005, α̃ begins to decrease
only for relatively high Da, which can be interpreted as a weak effect of particle
clustering due to the fact that for smaller Stokes numbers the corresponding clusters
have shorter life times. As the Stokes number increases, the effect of clustering leads
to a fast decrease of the normalised decay rate. This effect is again less when StL
is further increased beyond unity since these heavy particles are less sensitive to the
flow. The equivalent results for Reλ ≈ 350 (cases L, M, O and P) are presented in
figure 11(b) from which it can be seen that the conclusions drawn for Reλ ≈ 150 are
also true for the higher Reynolds number.

In order to assess if the effect of particle clustering is significant for a given set of
parameters we employ the following quantitative description. It follows from (2.29)
that when Shmod/Sh = 1/2, i.e. when the effect of particle clustering has reduced
the mass transfer rate to half of what it would have been if particle clustering was
neglected, the Damköhler number is given by

Da2 =
2αcτL

Sh
. (3.5)

This is presented in figure 12, from which it is seen that in all of the investigated cases
the effect of turbulence is at its strongest when StL ≈ 0.1, which is where Da2 takes
the lowest value (note that the lower the value of Da2, the greater the influence of
particle clustering). This is due to the fact that this yields a combination of relatively
large and sharp clusters. For StL< 0.1 the clusters are smaller, while for StL� 0.1 the
clusters are weaker because StL > 1 for the largest particles, meaning that the particle
concentrations are more homogeneous. For Reλ ≈ 350 (figure 12b), there is almost
no difference between mono- and polydisperse particle systems. The same trend is
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FIGURE 12. (Colour online) Damköhler number Da2 as a function of Stokes number, all
cases with compensated and Dirac distributions.

also seen for Reλ≈ 150 (figure 12a), although slightly lower values of Da2 indicate a
stronger tendency to clustering of the monodisperse system. It can also be observed
that the effect of turbulence is slightly stronger for higher Reλ. This is probably due to
the fact that in this case a broader range of flow scales contribute to particle clustering,
i.e. there are more particles for which τη < τp < τL. While for StL < 0.1, Da2 is not
much affected when the back-reaction from particles is neglected, there is a significant
difference in the results when StL > 0.1, which is in line with the conclusions already
drawn in previous sections.

We have shown that the effect of turbulence on reactive particles is due to a
modified mass transfer coefficient, i.e. a modified Sherwood number. Chemical
kinetics, however, is not directly affected by the turbulence, only indirectly through
the reactant concentration. For purely kinetics-controlled reactions, this means that
turbulence would not affect the conversion rate at all. The results presented in this
work are formally applicable only to cases with diffusion-controlled reactions (fast
kinetics). In reality, however, using the modified Sherwood number as described in
this work will be correct also when the reactions are not diffusion-controlled. That
is, for all kinetic rates, the correct rate of the reactions is obtained by using the
traditional approach, which combines both kinetics and diffusion (see e.g. Haugen
et al. 2015), as long as the diffusion is described with the use of the modified
Sherwood number.

4. Conclusions

The effect of turbulence on the mass transfer rate in a dilute, polydisperse particle
system was analysed over a range of conditions. We show that for polydisperse
systems, the reaction rate is affected by particle clustering in the same way as for
monodisperse systems. Even though particles of various sizes differ in the way they
are distributed in the domain, this effect can be as strong as in a monodisperse system,
provided that the scale separation in the flow is sufficiently large, or in other words,
the Reynolds number is sufficiently high. When StL is of the order of 10−1, the rate
of mass transfer can be reduced by 50 % even for Da lower than 10. It is therefore
clear that, when studying real systems, the effect of turbulence on the overall mass
transfer rate should be accounted for. The model given by (2.28) and (2.29) allows
the incorporation of this effect directly in Reynolds-averaged Navier–Stokes-based
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codes so that the model can be applied in simulations of large-scale reactors and
boilers. It is found that the mass transfer rate is not very dependent on the shape of
the particle size distribution, it is the width that matters.

We also observed that, despite having different sizes and hence different Stokes
numbers, particles cluster in correlated positions. This correlation is greater when
momentum transfer between fluid and particles is two-way. Both the distribution of
reactant and particle number density are found to be broader when two-way coupling
is applied. A direct consequence of this is that the mass transfer rate between the
particles and the fluid is reduced due to the back-reaction of particle momentum to
the fluid when the mass loading is significant.

Finally, it is worth pointing out that in reality the particle diameter (and/or material
density) decreases as the surface reaction progresses. This will cause the Stokes
number and the Damköhler number to decrease since Da ∼ dp and St ∼ d2

p. As a
result, the effect of turbulence may be different at initial and final stages of particle
conversion. If the particle shrinkage model is used in a simulation, the effect it has
on the particle conversion rate will be automatically included by recomputing the
reactant decay rate every time step, such that α̃ = α̃(dp(t)).
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Appendix A. Mass loading

The mass loading is given by

M =
ρ̃p

ρ
, (A 1)

when
ρ̃p =

∑
i

Vp,inp,iρp, (A 2)

and Vp,i = (π/6)d3
p,i, np,i and dp,i are the volume, radius and particle number density

of particles with size i. The chemical time scale is now given by

τc =
1

2πD
∑

dp,inp,i
, (A 3)

such that
Da= 2πDτf npdp, (A 4)

when

d j
p =

1
np

∑
np,id

j
p,i. (A 5)
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By this, the average Stokes number becomes

StL =
ρpd2

p

ρτf 18ν
. (A 6)

Combining the above equations yields

M =
3
2

ScDaStL
d3

p

d2
pdp
=

3
2

ScDaStη
√

Re

d3
p

d2
pdp
, (A 7)

since StL = Stη/
√

Re. One can also avoid all reference to any turbulence property by
introducing the non-dimensional number

γ =DaStL =
τp

τc
, (A 8)

such that

M =
3
2

Scγ
d3

p

d2
pdp
. (A 9)
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