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In the second-moment-closure (SMC) method of turbulence modelling, measures to
ensure a realizable turbulence model are currently limited to constraining the Reynolds
stress to physically plausible values. These constraints address neither the realizability
of the other statistical moments (e.g. pressure–strain correlation) nor the underlying
causes of unrealizable Reynolds stress. For achieving increased consistency with flow
physics in SMC, we propose the additional requirement that the closure model
for each of the unclosed statistical moments in the Reynolds stress equation be
individually realizable. We then proceed to derive two realizability constraints on
the rapid-pressure statistics: (i) the rapid pressure-gradient variance must be positive
which leads to the requirement that the Mijkl tensor must be positive semi-definite, and
(ii) the rapid pressure–strain correlation closure must satisfy the Schwarz inequality.
Calculations with currently popular models show that unrealizable rapid-pressure–
strain correlation precedes unrealizable Reynolds stress. It is also demonstrated that
when the Launder, Reece and Rodi (LRR) rapid-pressure–strain correlation model
is modified (truncated) to satisfy the new constraints, Reynolds stress realizability is
always preserved. These findings clearly indicate that an unrealizable closure model
is the cause of Reynolds stress realizability violation and highlight the importance of
the new constraints.

1. Introduction
The realizability requirement enunciates the rudimentary expectation that an

acceptable turbulence closure expression be based on the statistics of a velocity field
that is physically achievable or realizable. The covariance tensor, or the Reynolds
stress, of any velocity field governed by the Navier–Stokes equations is positive semi-
definite exhibiting two important characteristics: the diagonal components (energies)
are non-negative and the off-diagonal components satisfy the Schwarz inequality.
For second-moment closures (SMC), the realizability constraint as proposed by
Schumann (1977) requires that a turbulence model yield Reynolds stresses that satisfy
these conditions (see also Lumley 1978). Over the last two decades, the Schumann
realizability constraint has served as the theoretical basis for several turbulence
models (e.g. Johansson & Hallback 1994; Ristorcelli, Lumley & Abid 1995; Sjögren &
Johansson 2000). Realizability is also of great practical importance, for it can lead to
computationally more robust models (Sjögren & Johansson 2000). In this paper, we
revisit the realizability issue and present a new perspective.

We suggest that realizability is a broader issue than requiring that the Reynolds
stress be a positive semi-definite tensor. While realizable Reynolds stress is a necessary
condition for a physically plausible model, it is not sufficient. We propose that the
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192 S. S. Girimaji

physical accuracy of a turbulence model can be improved by requiring that all
statistical moments directly modelled with closure expressions (e.g. pressure–strain
correlation) and those implied by the closures must all be realizable. While the
theoretical justification for this extended or comprehensive realizability condition is
to achieve improved consistency with turbulence physics, there is also an important
practical consideration. In second-moment closure (SMC) methodology, Reynolds
stress is calculated from an evolution equation. The evolution rate is composed
of contributions from production, pressure–strain correlation, turbulent transport,
dissipation and other processes. Most of these terms require closure modelling. It is
logical then that the most probable cause of unrealizable calculated stress is unphysical
models for the individual terms contributing towards the evolution rate. One of the
most fundamental prerequisites of a physically acceptable closure model is that it
be realizable. Each unclosed SMC term is a statistical moment, the closure model
for which must satisfy certain realizability constraints. For example, an unrealizable
pressure–strain correlation model is one in which the closure expression cannot
possibly be obtained from any physically permissible (real) pressure and velocity
fields. Closure models not satisfying the appropriate realizability constraints (given in
§ 2) must be considered unphysical and unacceptable.

The traditional approaches attempt to enforce realizability of Reynolds stress
without due consideration of the realizability of the underlying closure models.
Although such a method may lead to apparently plausible Reynolds stresses, the
dynamics of such SMC models will certainly be inconsistent with turbulence physics.
Such realizability enforcement will defeat the ultimate goal which is to develop
turbulence models with a high degree of fidelity to the Navier–Stokes equation.

In this paper, we will focus on the realizability issues of the rapid pressure–
strain correlation term. Exploiting the divergence-free character of an incompressible
flow field, we derive realizability constraints on the rapid pressure–strain correlation
term. Simple analysis shows that many popular linear and nonlinear models do not
satisfy these constraints. Detailed model calculations are performed in homogeneous
turbulence to demonstrate unequivocally that the onset of unrealizable Reynolds
stress is preceded by unrealizable rapid pressure–strain correlation. This establishes
the cause–effect relationship between the unrealizable pressure–strain correlation
model and the unrealizable Reynolds stress, highlighting the importance of the new
constraints.

An introduction to the rapid pressure–strain correlation modelling is given in § 2. In
§ 3, we discuss the current realizability approach and motivate the need for additional
constraints. The new realizability constraints on the rapid-pressure statistics are
derived in § 4. Section 5 contains results and inferences. We close with a discussion
in § 6.

2. Rapid pressure–strain correlation
The Reynolds stress evolution equation is given by:

Duiuj

Dt
= Pij − φij − εij + Tij , (2.1)

where uiuj is the Reynolds stress. The various terms in (2.1) are the time-rate-of-
change following the mean flow, production, pressure–strain correlation, dissipation
and transport. Several of these terms require closure modelling.
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Pressure–strain correlation modelling methodology for incompressible flows is
derived from the early work of Chou (1945). We start with the Poisson equation
for fluctuating pressure:

∂2p

∂xi∂xi

= −2(Sij sji + Wijwji) − (sij sji + wijwji). (2.2)

Here, and throughout the remainder of the paper, the following notation will be
used: Sij and Wij represent the strain and rotation rates of the mean flow; sij and wij

represent those of the fluctuating field. Repeated italic indices will imply summation.
The pressure fluctuations are composed of two parts:

p = p′ + ps, (2.3)

where the slow part (ps) is the pressure due to the fluctuating velocity field:

∂2ps

∂xi∂xi

= −(sij sji + wijwji). (2.4)

The rapid pressure (p′) arises from the interaction between the mean and
fluctuating velocity fields. The Poisson equation for fluctuating rapid pressure can be
written as

∂2p′

∂xi∂xi

= −2(Sij sji + Wijwji). (2.5)

Correspondingly, it is normal practice to decompose the pressure–strain correlation
into slow and rapid parts:

φij = φs
ij + φ′

ij (2.6)

and model each component separately (Launder, Reece & Rodi 1975).
Using the Green’s function solution to the Poisson equation, it can be shown

that the (rapid) pressure velocity-gradient correlation tensor can be written in the
form

p′ ∂ui

∂xj

≡ 2
∂Uk

∂xl

Miljk. (2.7)

The fourth-order tensor Miljk is given by

Miljk = − 1

4π

∫
1

|r |
∂2Ril

∂rj ∂rk

dr (2.8)

where Ril is the two-point velocity correlation: Ril(r) ≡ ui(x)ul(x + r). It is then
straightforward to show that the rapid pressure–strain correlation can be expressed
as

φ′
ij = 2p′sij ≡ 2

∂Uk

∂xl

(Miljk + Mjlik). (2.9)

Modelling rapid pressure–strain correlation is tantamount to modelling the Mijkl

tensor. Complete description of the Mijkl tensor requires knowledge of the Reynolds
stress (componentiality tensor) and the so-called dimensionality tensor (Dij ) as is
explained in Kassinos, Reynolds & Rogers (2001). The evolution of the dimensionality
tensor is governed, to a large extent, by the initial dimensionality and the mean-
velocity gradients. The dimensionality tensor is unclosed in terms of the single-point
tensors used in the conventional SMC methods. For a given Reynolds stress, the rapid
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pressure–strain correlation can take a range of values depending on the dimensionality
of the turbulence. This is the crux of the closure problem. While carrying evolution
equations for dimensionality is an option, it is not generally undertaken because of
the added computational expense. The practice in traditional SMC modelling is to
postulate a closure expression for the Mijkl tensor that is based on some implied
average value of the dimensionality tensor. In effect, the conditional (based on a
specific value of the dimensionality tensor) correlation between pressure and strain
fluctuations is modeled with the unconditional correlation (based on some average
dimensionality tensor). Thus, the need for the dimensionality tensor is obviated, at
the expense of accuracy.

Lacking knowledge of the dimensionality tensor, the closure expression for pressure–
strain correlation is generally required to satisfy several physical and mathematical
constraints to ensure some degree of fidelity to the flow physics. A complete list of
currently mandated constraints can be found in Pope (2000). Three of the important
constraints are that a rapid pressure–strain correlation model must (i) be linear in
Reynolds stress; (ii) conform to a specific functional form (given in (2.9)); and,
(iii) lead to a realizable Reynolds stress. While the need for the realizability
requirement is now clear, the linearity requirement also stems from important
turbulence physics. It is easy to see that the Poisson equation for rapid pressure
is linear in fluctuating velocity (Reynolds 1976). Therefore, the rapid or linear
pressure term cannot increase the number of (Fourier) modes of fluctuation. In
other words, the rapid pressure term conserves the number of fluctuating modes.
Any nonlinear model cannot preserve this important physical characteristic of
rapid pressure. The Mijkl-form requirement is a consequence of the form of the
Green’s function solution of the Poisson equation. As pointed out in Pope (2000),
currently, there exists no rapid pressure–strain correlation model that satisfies all
of the required constraints. Specifically, none of the current models satisfy both
realizability and linearity requirements. In fact, it has been shown that it is
impossible to satisfy realizability fully with linear models (Lumley 1978). While
realizability is an important constraint, it is equally desirable to achieve it in a
manner as closely consistent with other turbulence physics (such as the linearity
requirement) as possible. In this paper, we propose additional constraints on
φ′

ij and Mijkl that could be expected to aid future development of such closure
models.

3. Realizability constraints
We will first discuss the strong and weak forms of Schumann constraints.

Realizability of Reynolds stresses is most conveniently considered in terms of the
determinant of the normalized Reynolds-stress tensor:

F ≡ det

(
uiuj

1
3
ukuk

)
. (3.1)

In the realizable state-space of Reynolds stress (Lumley invariant triangle), F is
positive: F is negative through most of the unrealizable space. The realizable and
the unrealizable Reynolds stress state-spaces are separated by two-componential
turbulence in which the determinant F vanishes. The current realizability conditions
constrain the behaviour of the model in the neighbourhood of F = 0.
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Strong realizability

The strong Reynolds stress realizability condition requires the turbulence model to
satisfy the following conditions (Pope 2000):(

dF

dT

)
F=0

= 0,

(
d2F

d2T

)
F=0

> 0. (3.2)

The strong realizability condition permits accessibility to two-component turbulence.
Rigorous implementation of strong realizability constraints to develop closure models
is best exemplified in Ristorcelli, Lumley & Abid (1995), Sjögren & Johansson (2000),
etc. In fact, in Johansson & Hallback (1994), a recipe for deriving a rapid pressure–
strain correlation model that satisfies the strong realizability constraint at any order of
tensor expansion is provided. It was found that the fourth-order model was successful
over a wider range of flows than typical linear models. In Sjögren & Johansson (2000),
the use of a strong realizability constraint to develop slow pressure-correlation and
anisotropic dissipation models are also summarized.

Weak realizability

Many authors point to major difficulties in enforcing the strong realizability
constraint and opt for the easier to implement weak realizability version. The weak
realizability constraint simply requires that the rate of change of F be positive as the
two-componential limit is approached (Pope 2000):(

dF

dT

)
F=0

> 0. (3.3)

This constraint does not permit access to two-component turbulence. The stochastic
realizability analysis of Durbin & Speziale (1994) is a variant of the weak-realizability
approach. They demonstrate that every turbulence model equation can be represented
by an equivalent stochastic equation. The requirement that the coefficient of the
random forcing term of the stochastic equation be real yields constraints on the
pressure–strain correlation model. This approach leads to the dependence of the rapid
pressure–strain correlation model coefficients on the coefficients in the dissipation
and the slow pressure–strain correlation models. Such interdependence of model
coefficients is not physically justifiable. For example, if a turbulence model yields
unrealizable results in the rapid distortion limit, it is the rapid pressure–strain
correlation model that requires modification. Slow pressure–strain correlation and
dissipation processes are completely irrelevant in this limit and modifying their
models to achieve realizability must be deemed unphysical. The realizability issues of
each process should be considered independently, as is demonstrated in Sjögren &
Johansson (2000).

Need for further constraints

In the second-moment closure approach, Reynolds stress is calculated using a
modelled evolution equation. Any non-physical behaviour of the Reynolds stress
must originate from unphysical closure models in its evolution equation. In Navier–
Stokes physics, the realizability of the Reynolds stress is achieved while maintaining all
the contributing statistical moments individually realizable. Any realizability analysis
is incomplete without the examination of the realizability of the individual closure
models that contribute towards Reynolds stress evolution. The strong realizability
approach indirectly addresses this issue, but only in the two-componential turbulence
limit. The weak realizability approach, as currently practised, completely ignores the
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realizability of individual moments in the Reynolds stress evolution equation. Thus,
both the strong and the weak realizability approaches can and do (as will be demon-
strated later) permit unrealizable pressure–strain correlation values.

In order to achieve a greater degree of consistency with turbulence physics, we
recommend that the closure model for each moment in the Reynolds stress evolution
equation be individually realizable, not only in the two-componential limit, but also
at all other states of turbulence. Physically achievable or realizable models for each
of the unclosed statistical moments must satisfy the following requirements:

(i) Auto-covariances must be non-negative.
(ii) Cross-covariances must satisfy the Schwarz inequality.

In this paper, we address the realizability of the rapid pressure–strain correlation
term. In most modelling methods, it is the Mijkl tensor that is first modelled – see
for example, Launder, Reece & Rodi (1975); Ristorcelli, Lumley & Abid (1995) or
equation (54) in Sjögren & Johansson (2000) – and the pressure–strain correlation
closure is simply obtained from (2.9). Hence, postulating constraints on Mijkl is
as effective and useful as constraining pressure–strain correlation itself. Here, we
derive constraints on the Mijkl tensor that guarantee realizable rapid pressure–strain
correlation.

The need for further constraints on Mijkl can also be motivated from the turbulence
structure tensors point of view. As Kassinos et al. (2001) point out, a complete one-
point statistical description of turbulence requires specification of several tensors:
componentiality or Reynolds stress (Rij ); dimensionality (Dij ); circulicity (Fij );
inhomogeneity (Cij ); and, finally, stropholysis (Qijk). In general, each tensor carries
independent information and all of them are required in order to fully specify the
one-point statistical state of turbulence. It then stands to reason that closures for all
the tensors should be individually realizable. In the special case of incompressible
homogeneous turbulence, these structure tensors can be related to the Mijkl tensor
(Kassinos et al. 2001):

Qijk = εipqMjqpk, Rij = Mijrr , Dij = Mrrij , Fij = εimpεjrsMpsrm, (3.4)

where εijk is the alternating tensor. Therefore, in homogeneous incompressible
turbulence, all physical and realizability issues are embodied in Mijkl tensor. Thus
the realizability of the Mijkl tensor is much more fundamental than that of Reynolds
stress alone. Hence, constraints that can guarantee the physical fidelity of this tensor
are of great importance.

4. Realizability of rapid pressure moments
In homogeneous turbulence, the pressure–strain correlation (φij ) is identical in

magnitude and opposite in sign to the velocity pressure-gradient correlation (Πij ):

Πij = ui

∂p

∂xj

+ uj

∂p

∂xi

= −2psij = −φij . (4.1)

The velocity pressure-gradient correlation is more fundamental as it is the
one that appears in the Reynolds stress closure equation before decomposition
into homogeneous and inhomogeneous components. We will now investigate the
realizability bounds on the rapid portion of the velocity (rapid) pressure-gradient
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correlation (Π ′
ij ):

Π ′
ij = ui

∂p′

∂xj

+ uj

∂p′

∂xi

= −2p′sij = −φ′
ij . (4.2)

The magnitude of this correlation is bounded by

|Π ′
αβ | =

∣∣∣∣ uα

∂p′

∂xβ

+ uβ

∂p′

∂xα

∣∣∣∣ �

∣∣∣∣ uα

∂p′

∂xβ

∣∣∣∣ +

∣∣∣∣ uβ

∂p′

∂xα

∣∣∣∣ . (4.3)

The Schwarz inequality as applied to the last two correlations on the extreme right
requires ∣∣∣∣ uα

∂p′

∂xβ

∣∣∣∣ � uαuα
1/2 ∂p′

∂xβ

∂p′

∂xβ

1/2

. (4.4)

(Whereas repeated italic indices imply summation, Greek indices do not.) As a
consequence, the rapid portion of velocity pressure-gradient correlation must be
bounded by:

|Π ′
αβ | � uαuα

1/2 ∂p′

∂xβ

∂p′

∂xβ

1/2

+ uβuβ
1/2 ∂p′

∂xα

∂p′

∂xα

1/2

. (4.5)

Since (∂p′/∂xβ)(∂p′/∂xβ) � (∂p′/∂xi)(∂p′/∂xi), the following inequality must hold:

|Π ′
αβ | �

(
uαuα

1/2 + uβuβ
1/2

)∂p′

∂xi

∂p′

∂xi

1/2

≡ Gαβ, (4.6)

where the second identity defines the tensor Gαβ . Because we replace

(∂p′/∂xβ)(∂p′/∂xβ) in the inequality by the larger (∂p′/∂xi)(∂p′/∂xi), we must regard
the constraint in (4.6) as less stringent than required to satisfy the Schwarz inequality.
This inequality is valid for homogeneous and inhomogeneous flows. From (4.6), it can
be seen that the realizability bounds on the rapid pressure–strain correlation depend
on the componentiality (via uαuα) and dimensionality (via (∂p′/∂xβ)(∂p′/∂xβ)) of the
turbulence.

The inequality in (4.6) forms the basis of the new constraints developed in this
paper. In the limit of two-componential turbulence, this inequality yields the strong
realizability constraint: if velocity fluctuations in the α-direction vanish, then

uαuα = 0, (4.7)

which immediately implies

|φ′
αα| = |Π ′

αα| � uαuα
1/2 ∂p′

∂xβ

∂p′

∂xβ

1/2

= 0. (4.8)

Apart from this requirement, the inequality in (4.6) has not been exploited for
formulating all other possible modelling constraints. For example, it is obvious
that when the pressure-gradient variance vanishes, so must the pressure–strain
correlation. Yet, this fundamental requirement has never been posed as a modelling
constraint. This is probably because rapid pressure-gradient statistics (indicative
of the dimensionality of turbulence) are not considered in traditional modelling
approaches where only the Reynolds stresses (componentiality of turbulence) are
solved for explicitly. In this work, we will derive an exact analytical expression
for rapid pressure-gradient variance. Knowledge of rapid pressure-gradient variance
opens up the possibility of a new set of constraints on the rapid pressure–strain
correlation that are much more general than the strong realizability requirement.
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Rapid pressure-gradient variance

Multiplying (2.5) through by the rapid pressure and taking the average leads to:

p′ ∂2p′

∂xi∂xi

= −2Sijp′sij − 2Wijp′wji. (4.9)

In homogeneous turbulence which is of interest here, we can further write

p′ ∂2p′

∂xi∂xi

= −∂p′

∂xi

∂p′

∂xi

= −2Sijp′sij − 2Wijp′wji = −2
∂Ui

∂xj

p′ ∂uj

∂xi

. (4.10)

It was shown in the previous section that the rapid pressure–strain correlation tensor
is related to the fourth-order tensor Mijkl . The relationship between this tensor and
the pressure-gradient variance can be easily derived from (2.7) and (4.10):

∂p′

∂xi

∂p′

∂xi

= 4
∂Uj

∂xi

∂Uk

∂xl

Miljk. (4.11)

Thus, the rapid pressure-gradient variance can be obtained as a function of the rapid
pressure–strain correlation. In purely strained flows, the relationship is even simpler:

∂p′

∂xi

∂p′

∂xi

= 2Sijp′sij . (4.12)

It has to be pointed out that Kassinos et al. (2001) derive an expression for pressure-
gradient variance in the rapid reference-frame rotation limit. The expression involves
the rotation rate and the circulicity tensor which contains information about the large-
scale vorticity. The circulicity tensor is not known in the traditional second-moment
closure modelling.

4.1. New realizability constraints

With the knowledge of rapid pressure-gradient variance, we will now formulate
the new realizability constraints in one-, two- and three-componential homogeneous
turbulence. These pressure–strain correlation constraints account for dimensionality as
well as componentiality, whereas, the Schumann constraint takes only componentiality
into consideration.

Constraint 1. In two-componential turbulence (with no velocity fluctuations in the
α direction), the realizability of rapid pressure–strain correlation requires

φ′
αα = Π ′

αα = 0. (4.13)

The values of the off-diagonal terms will depend on the dimensionality of the
turbulence. This is similar to the strong realizability requirement. Alternatively, the
realizability constraint on Mijkl in the two-component limit is

Mααij = 0. (4.14)

In one-componential turbulence, all three diagonal pressure–strain correlation
components must be zero. The diagonal components in the direction of zero
fluctuating velocity clearly must be zero for the same reason as above. The correlation
component in the third direction is zero for a different reason. Continuity requires
that the fluctuating pressure gradient be zero in the direction of velocity. Thus, in
one-dimensional turbulence (if β is the direction of non-zero velocity) the realizability
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constraints are:

for α �= β : uαuα = 0, implying φ′
αα = 0; Mααij = 0,

for α = β :
∂p′

∂xα

∂p′

∂xα

= 0, implying φ′
αα = 0; Mijαα = 0.


 (4.15)

The pressure–strain correlation constraints are valid for the slow term as well.
Constraint 2. The rapid pressure–strain correlation model must lead to non-negative

values for the rapid pressure-gradient variance. Physically, this ensures that the
pressure fluctuations are real. Thus, the first of two realizability constraints on Mijkl

is

∂Uj

∂xi

∂Uk

∂xl

Miljk � 0. (4.16)

This inequality should hold for any arbitrary non-zero mean-velocity gradient tensor.
Hence, Mijkl must be positive semi-definite. Unless Mijkl is positive semi-definite, there
will be a mean velocity field, for which the fluctuating rapid pressure gradient will be
negative.

For purely strained flows, the positivity condition on the pressure-gradient variance
can also be written as

Sijφ
′
ij � 0. (4.17)

Constraint 3. The pressure-gradient variance must not only be positive, but also be
large enough to satisfy the Schwarz inequality on rapid pressure–strain correlation.
This can be guaranteed if the model satisfies the following inequality (from (4.11) and
(4.6)):

2|p′sαβ | ≡ |Π ′
αβ | � 2

(
uαuα

1/2 + uβuβ
1/2

) [
∂Uj

∂xi

∂Uk

∂xl

Miljk

]1/2

. (4.18)

Satisfaction of this constraint in conjunction with constraint 2 will ensure realizable
velocity pressure-gradient correlation. For purely strained flows, the above constraint
can be expressed directly in terms of pressure–strain correlation:

φ′
ij ≡ |Π ′

αβ | �
(
uαuα

1/2 + uβuβ
1/2

)
[Sijφ

′
ij ]

1/2. (4.19)

It can be recognized that the first constraint (equation (4.13)), derived for one- and
two-componential turbulence, is equivalent to the strong Reynolds stress realizability
constraint. However, constraints 2 (equation (4.16)) and 3 (equation (4.18)) are not
addressed in existing literature. In light of these new constraints several questions
arise:

(i) Do the current models violate the new realizability constraints? If not, the new
constraints are only of academic interest.

(ii) Does Reynolds-stress realizability automatically imply realizability of pressure–
strain correlation? If yes, then the current constraints would be redundant.

(iii) Conversely, does pressure–strain correlation realizability guarantee Reynolds-
stress realizability? If yes, then the new realizability constraints are more complete
and the Reynolds-stress realizability is redundant.

(iv) Or, are the old and new realizability constraints mutually exclusive so that
both should be required of the pressure–strain correlation models?
In an attempt to find the answers, we perform model calculations in the next section.
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5. Results, discussion and implications
We will now examine the realizability of the calculated Reynolds stress and modeled

rapid pressure–strain correlation in SMC computations employing various models.
First, we will focus our attention on linear models. Linear models not only satisfy
the fundamental linearity requirement, but are more easily amenable to fully explicit
algebraic Reynolds stress reduction (Girimaji 1996). The linear (and quasi-linear)
rapid pressure–strain correlation models considered in this work can be represented
in the form

φij = −
(
C0

1ε + C1
1P

)
bij + C2KSij + C3K

(
bikSjk + bjkSik − 2

3
bmnSmnδij

)
+ C4K(bikWjk + bjkWik), (5.1)

where the C terms are model coefficients; K = uiui/2; ε = ν(∂ui/∂xj )(∂ui/∂xj ); and
bij = (uiuj/2K) − δij /3. The following models were tested: the isotropization of
production (IP) model; the LRR model (Launder et al. 1975); quasi-linear and
nonlinear versions of the SSG model (Speziale, Sarkar & Gatski 1992); the JM model
(Jones & Musonge 1988); and the Girimaji model (2000). For the model coefficient
values the reader is referred to the original works. The rapid portion of the various
models can be written as

φ′
ij = −C1

1Pbij + C2KSij + C3K
(
bikSjk + bjkSik − 2

3
bmnSmnδij

)
+ C4K(bikWjk + bjkWik). (5.2)

Results from the IP, LRR and SSG models are now presented. It is known that
these models may not satisfy strong or ‘individual’ realizability in one- or two-
componential limits. We will first investigate the extent of violation in these limiting
states of turbulence and consistency with RDT (rapid distortion theory) equations.

One-component turbulence limit

This regime of turbulence is of limited practical importance. While inaccuracies can
be tolerated, an unrealizable closure expression at this limit must be regarded as an
indication of serious flaws in the modelling methodology. At this limit, the constraint
derived in the previous section requires that all the diagonal components of the model
must be zero. For all α, we must have

φ′
αα = 0 = −C1

1Pbαα + C2KSαα + C3K
(
bαkSαk + bαkSαk − 2

3
bmnSmn

)
+ C4K(bαkWαk + bαkWαk). (5.3)

If the modelled pressure–strain correlation component is to be zero, then the model
coefficients must be either zero or scalar functions of anisotropy, strain-rate and
rotation-rate tensors. In most of the popular models, these coefficients are non-zero
constants. Thus, the current models are not even qualitatively consistent with this
realizability condition. To further understand the model limitations, we now present
their behaviour at one-component limit in purely strained flows. The models are tested
in plane-strain, axisymmetric expansion and contraction flows. The nomenclature 1Cα

refers to a one-component velocity field in which only uα is non-zero. The results are
summarized in table 1. Under the column marked ‘Exact’ two items are presented:
(i) the analytical constraint on the magnitude of the pressure–strain correlation
component and (ii) whether RDT permits evolution from that state of turbulence.
The letter E is used to indicate that RDT permits evolution and N indicates no
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IC Flow Παα Exact RDT IP LRR SSG

1C1 AC 11 N 0 EU 0.8 EU 0.98 EU 1.486
22 0 −0.4 −0.49 −0.743
33 0 −0.4 −0.49 −0.743

AE 11 N 0 ER −1.6 ER −1.964 ER −2.972
22 0 0.8 0.982 1.486
33 0 0.8 0.982 1.486

PS 11 N 0 EU 0.8 EU 0.982 EU 1.486
22 0 −0.4 −0.4 −0.469
33 0 −0.4 −0.582 −1.017

1C2 AC 11 N 0 ER 0.2 ER 0.109 EU −0.039
22 0 −0.4 −0.491 −0.743
33 0 0.2 0.382 0.782

AE 11 N 0 EU −0.4 EU −0.218 EU 0.078
22 0 0.8 0.982 1.486
33 0 −0.4 −0.764 −1.564

PS 11 N 0 ER 0.4 ER −0.4 ER 0.469
22 0 −0.8 −0.182 −1.486
33 0 0.4 0.582 1.017

1C3 AC 11 N 0 ER 0.2 ER 0.109 EU −0.039
22 0 0.2 0.382 0.782
33 0 −0.4 −0.491 −0.743

AE 11 N 0 EU −0.4 EU −0.218 EU −0.078
22 0 −0.4 −0.764 −1.564
33 0 0.8 −0.982 1.486

PS 11 N 0 N 0 EU −0.182 EU −0.547
22 0 0 0.182 0.547
33 0 0 0 0

Table 1. Comparison between model and RDT in one-component turbulence.

evolution. These ‘exact’ results are compared against model calculation. For each
model, the numerical value of the pressure–strain correlation component is listed.
Whether a model leads to evolution (E) or no evolution (N) is also indicated. Also
shown is whether the model evolution yields realizable (ER) or unrealizable (EU)
Reynolds stresses. These calculations employ the rapid portion of the pressure–
strain correlation model only apart from the production term. This enables a clean
comparison against RDT in which the slow pressure–strain correlation and dissipation
effects are excluded.

All the linear models violate the pressure–strain correlation bounds in the one-
dimensional turbulence limit. While the RDT result calls for no evolution of
anisotropy in all the cases considered, the models predict spurious evolution. This
unphysical evolution may or may not yield realizable Reynolds stresses. Hence, apart
from being unrealizable, the models are also inconsistent with RDT physics.

Two-componential turbulence limit

This regime of turbulence is very important, since it represents the boundary
between realizable and unrealizable Reynolds stress. At this limit of turbulence we
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IC Flow Παα Exact RDT IP LRR SSG

2C1 AC 11 N 0 ER 0.2 ER 0.109 ER 0.226
AE 11 N 0 EU −0.4 EU −0.218 EU −0.452
PS 11 E 0 ER 0.2 ER 0.109 EU 0.226

2C2 AC 22 E 0 EU −0.1 EU −0.055 EU −0.113
AE 22 E 0 ER 0.2 ER 0.109 ER 0.226
PS 22 E 0 EU −0.2 EU −0.109 EU −0.226

2C3 AC 33 E 0 EU −0.1 EU −0.0545 EU −0.113
AE 33 E 0 ER 0.2 ER 0.109 ER 0.226
PS 33 E 0 ER 0 ER 0 ER 0

Table 2. Comparison between model and RDT in two-component turbulence.

have,

uαuα = 0, implying bαα = − 1
3
. (5.4)

The corresponding modelled rapid pressure–strain correlation component must be
zero:

φ′
αα = 0 = 1

3
C1

1P + C2KSij + C3K
(
bαkSαk + bαkSαk − 2

3
bmnSmn

)
+ C4K(bαkWαk + bαkWαk). (5.5)

Any model with fixed coefficients is inherently incapable of satisfying the required
constraints given in (4.13). Again, we look to compare the model against exact RDT
for further insight. The results from model computations and RDT are presented
in table 2. The notation 2Cα represents a two-componential velocity field in which
uα = 0. The observations are very similar to those in one-componential turbulence.

The overall conclusion is that the current linear pressure–strain correlation models
with constant coefficients do not satisfy the realizability requirement by a significant
margin. This observation is consistent with that of Lumley (1978). Further, they are
inconsistent with rapid distortion theory as they can yield spurious evolution of the
anisotropy tensor when RDT indicates no evolution. Even when the model evolution
is realizable, it can be inconsistent with RDT. The physical significance of these issues
is discussed in more detail in Girimaji, Jeong & Poroseva (2003).

Three-componential turbulence

In this comparison, all terms including slow pressure–strain correlation and
dissipation are employed in the model computation. Rapid (SK0/ε0 = 50),
moderate (SK0/ε0 = 15) and mild (SK0/ε0 = 5) distortion rates are considered. Various
homogeneous mean flow cases (homogeneous shear, plane strain, axisymmetric
expansion and contraction) were investigated. Calculations were carried out for a
variety of different initial Reynolds stress anisotropies. For each flow, over three
hundred solution trajectories with the initial conditions systematically covering
the entire Lumley triangle for all possible permutations of the anisotropies were
investigated.

Realizability violations were observed with every linear model – for a sizable sub-set
of initial conditions – in each flow considered. The detailed results are presented in
Sambasivam, Girimaji & Poroseva (2004). The most important findings are: (i) in all
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Reynolds stress violation

Mijkl violation 
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Figure 1. SSG model trajectories in homogeneous turbulence with axisymmetric-expansion
mean flow. Anisotropy of the equilibrium point (+) and initial conditions are indicated.
Locations of Reynolds stress and rapid pressure–strain realizability violations are marked
(SK0/ε0 = 5).

observed transgressions, the pressure–strain correlation constraints (given in (4.18))
are violated before Reynolds stresses become unrealizable; (ii) the subset of initial
conditions leading to unrealizable behaviour grows larger with increasing magnitude
of mean-flow distortion; (iii) purely sheared flows exhibit smaller unrealizable regions
than purely strained flows; and (iv) for a given mean flow, the size of the unrealizable
region depends on the closure model used. For example, the LRR model generally
exhibits smaller unrealizable regions than the SSG model. Here, we present some
typical results from plane-strain and axisymmetric expansion flow calculations.

Axisymmetric expansion. We present results in the form of solution trajectories in
the Lumley triangle (figure 1). All models considered exhibit only one attracting
fixed point (equilibrium point) for realizable trajectories. When initial conditions are
nearly isotropic, all models yield realizable trajectories that ultimately asymptote to
the (structural) equilibrium point. Two such trajectories (calculated using the SSG
model) are shown in figure 1 with initial conditions marked by � and �.

When initial anisotropies are large, unrealizable Reynolds stress trajectories are
encountered. Each trajectory that ultimately yields unrealizable Reynolds stresses
first violates the new pressure–strain correlation constraint (equation (4.18)). One such
(SSG) model trajectory in shown in the figure with its initial condition denoted by �.
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Figure 2. LRR model trajectories in homogeneous turbulence with plain-strain mean flow
Legend same as in figure 1.

With time, one of the energy components tends towards zero and ultimately becomes
negative at the location marked by × at the upper boundary of the Lumley triangle.
Before the two-componential limit is reached, the new pressure–strain correlation
constraint is violated at the point marked with 
 in the figure.

For intermediate values of initial anisotropy, the solution trajectories exhibit a
different behaviour. Consider the SSG trajectory in figure 1, the initial condition of
which (marked by �) is less anisotropic (in magnitude of bijbij ) than the equilibrium
point. While the Reynolds stress appears realizable at all times along the trajectory,
pressure–strain correlation realizability violation (of equation (4.16)) occurs at the
point marked by 
 close to the two-componential limit of Reynolds stress. For this
trajectory, the pressure-gradient variance also becomes negative. This behaviour is
entirely inconsistent with Navier–Stokes equations and must be considered physically
impossible. Yet, such behaviour would be permitted by the strong realizability
constraint. This is a clear indication of the inadequacy of even the strong realizability
approach.

Plane strain. Some sample trajectories calculated in the plane-strain mean flow using
the LRR model are shown in figure 2. Unrealizable trajectories are again encountered
(as described in the plane-strain case) depending upon the initial level of anisotropy.
Yet again, the pressure–strain correlation realizability violation (marked with 
)
precedes that of Reynolds stress (denoted by ×). It should be noted that initial
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Figure 3. Contributions of individual components at different stages of anisotropy evolution
in plain-strain flow computation using LRR model (SK0/ε0 = 5).

conditions only marginally more anisotropic than the equilibrium point lead to
unrealizable trajectories.

Cause of violation

To better comprehend the sequence of model events that lead to unrealizable
Reynolds stress, we now study the contribution of various terms in the transport
equation – production, rapid pressure–strain correlation, slow pressure–strain
correlation and dissipation – towards Reynolds stress evolution. In figure 3, we show
an unrealizable LRR model trajectory in the plane-strain case (Sk0/ε0 = 5). Thus, the
case considered is that of weakly strained flow, typical of situations encountered in
many engineering applications. Along the trajectory, the contribution of various terms
during two stages of evolution are marked with arrows. The two stages considered are
(i) the location of the first pressure–strain correlation constraint violation (marked in
the figure with a filled circle); and (ii) the two-componential state where the Reynolds
stress realizability violation occurs (marked with a filled square). Arrows indicate the
direction of evolution due to individual terms. The length of the arrow represents
the relative magnitude of that term. The overall evolution is along the direction of the
vector sum of the various arrows. The contributions of slow pressure–strain correlation
and dissipation are combined into one as they reflect the nonlinear processes. The
roles of various terms are evident from the figure. Production (indicated by the arrow
marked p) causes the Reynolds stress to evolve in a direction parallel to the two-
component line of the Lumley triangle. It is clear that production cannot cause the
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violation. The nonlinear term (arrow s) is much smaller in magnitude than the other
two. It leads to evolution that returns the Reynolds stress towards isotropy and, hence,
cannot be the cause of the violation. The rapid pressure–strain correlation term (arrow
r) is of comparable magnitude to production and points in a direction directly out
of the Lumley triangle. This term, unambiguously, is the reason for Reynolds stress
realizability violation. The overall implication from the figure is that Reynolds stress
realizability violation is triggered by the unphysical rapid pressure–strain correlation
model. Several other unrealizable trajectories were also studied (Sambasivam et al.
2004) and the conclusions are the same: (i) rapid pressure–strain correlation causes
Reynolds stress realizability violation; (ii) the new constraint recognizes the deficiency
in the rapid pressure–strain correlation long before the trajectory reaches the two-
component limit.

Nonlinear pressure–strain correlation models

We now investigate whether nonlinear rapid pressure–strain correlation models,
that satisfy the strong realizability constraints, violate the constraints derived in
this paper. Three models are considered: the Shih–Lumley model (Shih & Lumley
1985) and two versions of closure expressions given in Sjögren & Johansson (2000).
Calculations reveal that though these models may produce Reynolds stresses that
are always realizable, they may or may not satisfy the new constraints. The region
of initial turbulence states in the Lumley triangle in which the Shih–Lumley model
violates the rapid pressure–strain correlation is shown in figure 4 for axisymmetric
contraction (filled circle) and plane strain (filled square) flows. Initial conditions
above the marked line can yield a trajectory with unrealizable rapid pressure–strain
correlation. The first of the two models of Sjögren & Johansson (2000) tested –
given in equations 75 and 76 – was of order three with rapid pressure–strain model
coefficients: γ1 = −0.05, γ2 = −(3/88) + (21/22)γ1, γ3 = (3/88) − (391/110)γ1 and
γ4 = 0. It was found that this model yielded largely unrealizable results. It was
brought to our notice that these coefficients were misprinted in the published article
(A. V. Johansson, personal communication). The second model tested (developed in
Johansson & Hallback 1994) was calibrated in a rapidly distorted homogeneous flow
to ensure the correct response to various forms of sudden strain and shear. The model
(given in equations 96 and 97 of Sjögren & Johansson 2000) is of order four with
coefficients: γ1 = −0.143, γ2 = 0.0295, γ3 = −0.0484 and γ4 = 14.0. The results of this
model yielded fully realizable Reynolds stress and also satisfied the new constraints
over most of the Lumley triangle. The new constraints were violated only over a
very small region near the two-component line. Sjögren & Johansson (2000) suggest
a different fourth-order model which is calibrated to perform better in wall-bounded
flows. This model was not tested, since homogeneous flows are the focus of this study.

Overall, it is clear from the failure of the Shih–Lumley model and the unrealizable
trajectory (starting from �) in figure 1 that the strong realizability alone cannot
guarantee consistency with the new realizability requirements proposed in this paper.

5.1. Utility of new constraints

We will now recast constraint 3 in a form that will lead to constraints on the
coefficients in the rapid pressure–strain correlation closure expression (5.1). Since the
Reynolds stress tensor is symmetric, there exists a coordinate system in which it can
be diagonalized. We will consider constraint 3 and (2.9) in this coordinate system.
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Figure 4. Rapid pressure–strain correlation unrealizable-region map of the
Shih–Lumley (1985) model.

The constraint can be recast as∣∣∣∣∂Uk

∂xl

Mαlαk

∣∣∣∣ � (2uαuα)
1/2

[
∂Uj

∂xi

∂Uk

∂xl

Miljk

]1/2

. (5.6)

This inequality can be further rewritten as

1√
2

∣∣∣∣∂Uq

∂xp

Mαqαp

∣∣∣∣
/ [

∂Uj

∂xi

∂Uk

∂xl

Miljk

]1/2

� uαuα
1/2. (5.7)

In the two-componential limit, when uαuα is zero, the above inequality can be
recognized as the strong realizability constraint. In this light, the new constraint
can be thought of as a more general realizability constraint that restricts rapid
pressure–strain correlation at all values of Reynolds stress. Unlike the strong and
weak realizability constraints, the new requirements involve the mean flow gradients,
and hence are flow specific. Mean-flow specific constraints are generally more useful
for model suggestion and calibration. These constraints could perhaps lead to rapid
pressure–strain correlation models that satisfy realizability, without compromising on
the other requirements. Using these constraints to develop models from first principles
will be deferred to future work.
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Figure 5. Contributions of individual components at different stages of anisotropy evolution
in plain-strain flow computation using truncated LRR model (SK0/ε0 = 5).

Fully realizable truncated LRR model

Here, we will demonstrate the potential promise of the current constraints by simply
truncating the LRR model to yield a fully realizable model. The LRR model is chosen
for this exercise as it satisfies all of the required constraints except realizability. To
achieve a fully realizable trajectory, the model rapid pressure–strain correlation should
be corrected when it violates the new constraints. The rapid pressure–strain correlation
is set to zero when it violates constraints 2 or 3:

φ
′t
ij =

{
φ′

ij when constraints are not violated,

0 when constraints are violated.
(5.8)

Calculations using this truncated model reveal no Reynolds stress realizability
violation for any of the initial conditions in all mean flows considered. A sample
evolution trajectory computed with this model is shown in figure 5. The flow is the
case considered in figure 3 where it was computed with the original LRR model.
The two trajectories are identical until the original LRR model violates the rapid
pressure–strain realizability constraint. After this stage, the truncated model evolution
is quite different. The trajectory becomes nearly parallel to the two-component line
and approaches the axisymmetric contraction line. Ultimately, it asymptotes the same
equilibrium point as that of all realizable trajectories. Several corrected trajectories in
various types of mean flow are shown in Sambasivam et al. (2004). Thus, truncating
the LRR model with the new constraint yields a fully realizable and piecewise linear
rapid pressure–strain correlation model.
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We now address the questions raised at the end of the last section.
(i) Do the current models violate the new realizability constraints? Yes, the current

models do violate the pressure–strain correlation constraints. In fact, this trans-
gression is more rampant than Reynolds-stress realizability violation.

(ii) Does Reynolds-stress realizability automatically imply realizability of pressure–
strain correlation? No. Even models satisfying the strong realizability requirement
violate the new constraints.

(iii) Does pressure–strain correlation realizability guarantee Reynolds-stress
realizability? The strong realizability requirement (which guarantees realizable
Reynolds stress) is a special limit of the more general constraint 3. Hence, rapid
pressure–strain correlation realizability will guarantee that Reynolds stress will not
become unrealizable owing to this model term. An example of this can be seen in
figure 5.

(iv) Are old and new realizability constraints mutually exclusive so that both
should be required of the pressure–strain correlation models? As already pointed out,
the strong realizability constraint is an extreme limit of the constraint derived in this
paper. Therefore, the pressure–strain correlation constraint is more fundamental than
the Reynolds stress realizability constraint.

6. Summary and conclusion
We propose an extended realizability condition that requires that all the statistical

moments contributing towards Reynolds stress evolution be individually realizable.
Such a requirement can lead to realizable Reynolds stress and realizable contributing
moments, unlike current approaches. This will ensure a higher degree of fidelity
to the governing Navier–Stokes equations than those satisfying only the Schumann
constraints.

Towards accomplishing the above goal, two new constraints on the rapid velocity
pressure-gradient correlation are derived. The constraints are: (i) pressure-gradient
variance must be non-negative leading to the requirement that the Mijkl tensor is
positive semi-definite; and, (ii) the pressure–strain correlation model expression must
satisfy the Schwarz inequality. It is shown that the strong realizability requirement
is a special case (in the two-componential limiting state of turbulence) of the more
general constraints developed in this paper.

A thorough computational investigation of realizability violations in currently
popular pressure–strain correlation models is performed. The important findings
from the calculations and analysis are

(i) Strong or weak realizability constraints cannot guarantee realizable pressure–
strain correlation.

(ii) Every observed episode of unrealizable Reynolds stress in the model calculation
is preceded by an unrealizable pressure–strain correlation.

(iii) An unphysical contributing closure model is a root cause of Reynolds stress
realizability violation.

(iv) A fully realizable piecewise linear pressure–strain correlation model can be
obtained by truncating the LRR model as dictated by the new constraints.

Our next step is to develop new rapid pressure–strain correlation models from first
principles employing the new constraints. Further, realizability of the slow pressure–
strain correlation model will be carefully studied. We will also explore the possibility
of developing more stringent constraints on Mijkl using the turbulence structure
tensors of Kassinos et al. (2001).
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