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We use direct numerical simulations to investigate the interaction between the
temperature field of a fluid and the temperature of small particles suspended in
the flow, employing both one- and two-way thermal coupling, in a statistically
stationary, isotropic turbulent flow. Using statistical analysis, we investigate this
variegated interaction at the different scales of the flow. We find that the variance
of the carrier flow temperature gradients decreases as the thermal response time
of the suspended particles is increased. The probability density function (PDF) of
the carrier flow temperature gradients scales with its variance, while the PDF of
the rate of change of the particle temperature, whose variance is associated with
the thermal dissipation due to the particles, does not scale in such a self-similar
way. The modification of the fluid temperature field due to the particles is examined
by computing the particle concentration and particle heat fluxes conditioned on the
magnitude of the local fluid temperature gradient. These statistics highlight that
the particles cluster on the fluid temperature fronts, and the important role played
by the alignments of the particle velocity and the local fluid temperature gradient.
The temperature structure functions, which characterize the temperature fluctuations
across the scales of the flow, clearly show that the fluctuations of the carrier flow
temperature increments are monotonically suppressed in the two-way coupled regime
as the particle thermal response time is increased. Thermal caustics dominate the
particle temperature increments at small scales, that is, particles that come into
contact are likely to have very large differences in their temperatures. This is caused
by the non-local thermal dynamics of the particles: the scaling exponents of the
inertial particle temperature structure functions in the dissipation range reveal very
strong multifractal behaviour. Further insight is provided by the flux of temperature
increments across the scales. Altogether, these results reveal a number of non-trivial
effects, with a number of important practical consequences.

Key words: multiphase and particle-laden flows

1. Introduction
The interaction between inertial particles and scalar fields in turbulent flows plays a

central role in many natural problems, ranging from cloud microphysics (Pruppacher
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& Klett 2010; Grabowski & Wang 2013) to the interactions between plankton and
nutrients (De Lillo et al. 2014) and dust particle flows in accretion disks (Takeuchi
& Lin 2002). In engineered systems, applications involve chemical reactors and
combustion chambers, and more recently, microdispersed colloidal fluids, where the
enhanced thermal conductivity due to particle aggregations can give rise to non-trivial
thermal behaviour (Prasher et al. 2006; Momenifar et al. 2015), and which can be
used in cooling devices for electronic equipment exposed to large heat fluxes (Das,
Choi & Patel 2006).

In this work, we focus on the heat exchange between advected inertial particles
and the fluid phase in a turbulent flow, with a parametric emphasis relevant to
understanding particle–scalar interactions in cloud microphysics. Understanding the
droplet growth in clouds requires one to characterize the interaction between water
droplets and the humidity and temperature fields. A major problem is to understand
how the interaction between turbulence, heat exchange, condensational processes
and collisions can produce the rapid growth of water droplets that leads to rain
initiation (Pruppacher & Klett 2010; Grabowski & Wang 2013). While the study
of the transport of scalar fields and particles in turbulent flows are well established
research areas in both theoretical and applied fluid dynamics (Taylor 1922; Kraichnan
1994), the characterization of the interaction between scalars and particles in turbulent
flows is a relatively new topic (Bec, Homann & Krstulovic 2014), since the problem
is hard to handle analytically, requires sophisticated experimental techniques and is
computationally demanding.

When temperature differences inside the fluid are sufficiently small, the temperature
field behaves almost like a passive scalar, that is, the fluid temperature is advected and
diffused by the fluid motion but has negligible dynamical effect on the flow. Even
in this regime, the statistical properties of the passive scalar field are significantly
different from those of the underlying velocity field that advects it. Different regimes
take place according to the Reynolds number and the ratio between momentum and
scalar diffusivities (Shraiman & Siggia 2000; Warhaft 2000; Watanabe & Gotoh 2004).

Experiments, numerical simulations and analytical models show that a passive
scalar field is always more intermittent than the velocity field, and passive scalars
in turbulence are characterized by strong anomalous scaling (Holzer & Siggia 1994).
This is due to the formation of ramp–cliff structures in the scalar field (Celani et al.
2000; Watanabe & Gotoh 2004): large regions in which the scalar field is almost
constant are separated by thin regions in which the scalar abruptly changes. The
regions in which the scalar mildly changes are referred to as Lagrangian coherent
structures. The thin regions with large scalar gradient, where the diffusion of the
scalar takes place, are referred to as fronts. It has been shown that the large-scale
forcing influences the passive scalar statistics at small scales (Gotoh & Watanabe
2015). In particular, a mean scalar gradient forcing preserves universality of the
statistics while a large-scale Gaussian forcing does not. However, the ramp–cliff
structure was observed with different types of forcing, implying that this structure is
universal to scalar fields in turbulence (Watanabe & Gotoh 2004; Bec et al. 2014).
Moreover, recent measurements of atmospheric turbulence have shown that external
boundary conditions, such as the magnitude and sign of the sensible heat flux, have a
significant impact on the fluid temperature dynamics within the inertial range, while
for the same scales the fluid velocity increments are essentially independent of these
large-scale conditions (Zorzetto, Bragg & Katul 2018).

When a turbulent flow is seeded with inertial particles, the particles can sample
the surrounding flow in a non-uniform and correlated manner (Toschi & Bodenschatz
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Scalar field–particle interaction 681

2009). Particle inertia in a turbulent flow is measured through the Stokes number
St ≡ τp/τη, which compares the particle response time to the Kolmogorov time
scale. A striking feature of inertial particle motion in turbulent flows is that they
spontaneously cluster even in incompressible flows (Maxey 1987; Wang & Maxey
1993; Bec et al. 2007; Ireland, Bragg & Collins 2016a). This clustering can take
place across a wide range of scales (Bec et al. 2007; Bragg, Ireland & Collins 2015a;
Ireland et al. 2016a), and the small-scale clustering is maximum when St = O(1).
A variety of mechanisms have been proposed to explain this phenomenon: when
St � 1 the clustering is caused by particles being centrifuged out of regions of
strong rotation (Maxey 1987; Chun et al. 2005), while for St > O(1), a non-local
mechanism generates the clustering, whose effect is related to the particles memory of
its interaction with the flow along its path history (Gustavsson & Mehlig 2011; Bragg
& Collins 2014a; Bragg, Ireland & Collins 2015b; Bragg et al. 2015a; Gustavsson &
Mehlig 2016). Note that recent results on the clustering of settling inertial particles
in turbulence have corroborated this picture, showing that strong clustering can occur
even in a parameter regime where the centrifuge effect cannot be invoked as the
explanation for the clustering, but it is caused by a non-local mechanism (Ireland,
Bragg & Collins 2016b).

When particles have finite thermal inertia, they will not be in thermal equilibrium
with the fluid temperature field, and this can give rise to non-trivial thermal coupling
between the fluid and particles in a turbulent flow. A thermal response time τθ can
be defined so that the particle thermal inertia is parameterized by the thermal Stokes
number Stθ ≡ τθ/τη (Zaichik, Alipchenkov & Sinaiski 2009). Since both the fluid
temperature and particle phase-space dynamics depend upon the fluid velocity field,
there can exist non-trivial correlations between the fluid and particle temperatures
even in the absence of thermal coupling. Indeed, it was show by Bec et al. (2014)
that inertial particles preferentially cluster on the fronts of the scalar field. Associated
with this is that the particles preferentially sample the fluid temperature field, and
when combined with the strong intermittency of temperature fields in turbulent flows,
this can cause particles to experience very large temperature fluctuations along their
trajectories.

Several works have considered aspects of the fluid–particle temperature coupling
using numerical simulations. For example, Zonta, Marchioli & Soldati (2008)
investigated a particle-laden channel flow, with a view to modelling the modification
of heat transfer in micro-dispersed fluids. They considered both momentum and
temperature two-way coupling and observed that, depending on the particle inertia,
the heat flow at the wall can increase or decrease. Kuerten, van der Geld & Geurts
(2011) considered a similar set-up with larger dispersed particles, and they observed a
stronger modification of the fluid temperature statistics due to the particles. Zamansky
et al. (2014, 2016) considered turbulence induced by buoyancy, where the buoyancy
was generated by heated particles. They observed that the resulting flow is driven
by thermal plumes produced by the particles. As the particle inertia was increased,
the inhomogeneity and the effect of the coupling were enhanced in agreement
with the fact that inertial particles tend to cluster on the scalar fronts. Kumar,
Schumacher & Shaw (2014) examined how the spatial distribution of droplets is
affected by large-scale inhomogeneities in the fluid temperature and supersaturation
fields, considering the transition between homogeneous and inhomogeneous mixing.
A similar flow configuration was also investigated by Götzfried et al. (2017).

Each of these studies was primarily focused on the effect of the inertial particles
on the large-scale statistics of the fluid temperature field. However, the results of Bec
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et al. (2014) imply that the effects of fluid–particle thermal coupling could be strong
at the small scales, owing to the fact that they cluster on the fronts of the temperature
field. Moreover, there is a need to understand and characterize the multiscale thermal
properties of the particles themselves. In order to address these issues, we have
conducted direct numerical simulations (DNS) to investigate the interaction between
the scalar temperature field and the temperature of inertial particles suspended in a
fluid, with one- and two-way thermal coupling, in statistically stationary, isotropic
turbulence. Using statistical analysis, we probe the multiscale aspects of the problem
and consider the particular ways that the inertial particles contribute to the properties
of the fluid temperature field in the two-way coupled regime.

The paper is organized as follows. In § 2 we present the physical model used in
the DNS, and present the parameters in the system. In § 3 the statistics of the fluid
temperature and time derivative of the particle temperature are considered, which
allow us to quantify the contributions to the thermal dissipation in the system from
the fluid and particles. In § 4 we consider the statistics of the fluid and particle
temperatures. In § 5 we consider the heat flux due to the particle motion conditioned
on the local fluid temperature gradients in order to obtain insight into the details
of the thermal coupling. In § 6 we consider the structure functions of the fluid and
particle temperature increments, along with their scaling exponents. In § 7 we consider
the probability density functions (PDFs) of the fluxes of fluid and particle temperature
increments across the scales of the flow. Finally, concluding remarks are given in § 8.

2. The physical model
In this section we present the governing equations of the physical model which will

be solved numerically to simulate the thermal coupling and behaviour of a particle-
laden turbulent flow.

2.1. Fluid phase
We consider a statistically stationary, homogeneous and isotropic turbulent flow,
governed by the incompressible Navier–Stokes equations. The turbulent velocity field
advects the fluid temperature field (assumed a passive scalar), together with the
inertial particles. In this study, we account for two-way thermal coupling between the
fluid and particles, but only one-way momentum coupling. Therefore, the governing
equations for the fluid phase are

∇ · u= 0, (2.1a)

∂tu+ u · ∇u=−
1
ρ0
∇p+ ν∇2u+ f , (2.1b)

∂tT + u · ∇T = κ∇2T −CT + fT . (2.1c)

Here u(x, t) is the velocity of the fluid, p(x, t) is the pressure, ρ0 is the density of the
fluid, ν is its kinematic viscosity, T(x, t) is the temperature of the fluid and κ is the
thermal diffusivity. The ratio between the momentum diffusivity ν and the thermal
diffusivity κ defines the Prandtl number Pr ≡ ν/κ . In this work, we consider Pr =
1, leaving further exploration of its effect on the system to future work. The f and
fT terms in (2.1b) and (2.1c) represent the external forcing, and CT is the thermal
feedback of the particles on the fluid temperature field, that is, the heat exchanged
per unit time and unit volume between the fluid and particles at position x.
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When the forcing is confined to sufficiently large scales, it is assumed that the
details of the forcing do not influence the small-scale dynamics. Previous experimental
evidence seems to confirm this (Sreenivasan 1996), leading to a universal behaviour
of the small scales. However, recent studies (Gotoh & Watanabe 2015) pointed out
that this hypothesis of universality is partially violated by the advected scalar fields,
whose inertial range statistics exhibit sensitivity to the details of the imposed forcing.
Since we aim to characterize temperature and temperature gradient fluctuations in the
dissipation range for different inertias of the suspended particles, we employ a forcing
that imposes the same total dissipation rate for all the simulations. This produces
results which can be meaningfully compared for different parameters of the suspended
particles, since the response of the system to the same injected thermal power can be
examined. Therefore, we employ the large-scale forcing (Kumar, Schumacher & Shaw
2013; Kumar et al. 2014),

f̂ (k, t)= ε
û(k, t)∑

kf∈Kf

‖û(kf , t)‖2
δk,kf , f̂T(k, t)= χ

T̂(k, t)∑
kf∈Kf

|T̂(kf , t)|2
δk,kf , (2.2a,b)

in the wavenumber space. A hat indicates the Fourier transform and kf is the
wavenumber which here belongs to the set of forced wavenumbers, Kf = {kf : ‖kf‖=

kf }; ε and χ are the imposed dissipation rates of velocity and temperature variance,
respectively. This employed forcing scheme thus allows us to control the overall
dissipation rate and, therefore, to control the Stokes number.

The values of the parameters relative to the fluid flow employed in the simulations
are given in table 1. Time-averaged energy and temperature spectra, in the absence of
particle thermal feedback, are shown in figure 1(a).

2.2. Particle phase
We consider rigid, point-like particles which are heavy with respect to the fluid, and
small with respect to any scale of the flow. In particular, the particle density ρp is
much larger than the fluid density ρp� ρ0, and the particle radius rp is much smaller
than the Kolmogorov length scale rp � η. With these assumptions (and neglecting
gravity) the particle acceleration is described by the Stokes drag law. Analogously,
the rate of change of the particle temperature is described by Newton’s law for the
heat conduction

dxp

dt
≡ vp, (2.3a)

dvp

dt
=

u(xp, t)− vp

τp
, (2.3b)

dθp

dt
=

T(xp, t)− θp

τθ
. (2.3c)

Here, τp≡ 2ρpr2
p/(9ρ0ν) is the particle momentum response time, τθ ≡ρpcpr2

p/(3ρ0c0κ)
is the particle thermal response time, cp is the particle heat capacity and c0 is the fluid
heat capacity at constant pressure. The Stokes number is defined as St ≡ τp/τη, and
the thermal Stokes number is defined as Stθ ≡ τθ/τη, where τη is the Kolmogorov time
scale.

We consider nine values of Stθ and three values of St in order to explore the
behaviour of the system over a range of parameter values. Since we are accounting
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Kinematic viscosity ν 0.005
Prandtl number Pr 1
Velocity fluctuation dissipation rate ε 0.27
Temperature fluctuation dissipation rate χ 0.1
Kolmogorov time scale τη 0.136
Kolmogorov length scale η 0.0261
Taylor micro-scale λ 0.498
Integral length scale ` 1.4
Root mean square velocity u′ 0.88
Kolmogorov velocity scale uη 0.192
Small-scale temperature Tη 0.117
Taylor Reynolds number Reλ 88
Integral-scale Reynolds number Rel 244
Forced wavenumber kf

√
2

Number of Fourier modes N 128 (3/2)
Resolution Nη/2 1.67

TABLE 1. Flow parameters for the numerical simulations in this study. Dimensional
parameters are non-dimensionalized into arbitrary code units. The characteristic parameters
of the fluid flow are defined from its energy spectrum E(k) ≡

∫
‖k‖=k ‖û(k)‖

2 dk/2. The
dissipation rate of turbulent kinetic energy is ε ≡ 2ν

∫
k2E(k) dk. The Kolmogorov

length η ≡ (ν3/ε)1/4, time scale τη ≡ (ν/ε)
1/2 and velocity scale uη ≡ η/τη. The Taylor

micro-scale is λ≡ u′/
√
〈|∇u|2〉. The root mean square velocity is u′ ≡

√
(2/3)

∫
E(k) dk

and the integral length scale `≡π/(2u′2)
∫

E(k)/k dk. Similarly, the spectrum, root mean
square value and dissipation rate of the scalar field are ET(k)≡

∫
‖k‖=k |T̂(k)|

2 dk/2, T ′ ≡√
2
∫

ET(k) dk, χf ≡ 2κ
∫

k2ET(k) dk. The small-scale temperature is determined by the
viscosity and dissipation rate: Tη ≡

√
χτη. Since the Prandtl number is unitary the small

scales of the scalar and the velocity field are of the same order.

for thermal coupling, each combination of Stθ and St must be simulated separately,
and when combined with the large number of particles in the flow domain, the set
of simulations require considerable computational resources. Therefore, in the present
study we restrict attention to Reλ = 88, but future explorations should consider larger
Reλ in order to explore the behaviour when there exists a well-defined inertial range
in the flow.

In order to obtain deeper insight into the role of the two-way thermal coupling, we
perform simulations with (denoted by S1) and without (denoted by S2) the thermal
coupling. The particle parameters employed in the simulations are given in table 2.
The second-order longitudinal structure functions of the particle velocity are shown in
figure 1(b) for all the Stokes numbers investigated.

2.3. Thermal coupling
In the two-way thermal coupling regime, the thermal energy contained in the fluid is
finite with respect to the thermal energy of the particles, therefore, when heat flows
from the fluid to the particle the fluid loses thermal energy at the particle position.
Due to the point-mass approximation, the feedback from the particles on the fluid
temperature field is a superposition of Dirac delta functions, centred on the particles.
Hence the coupling term in (2.1c) is given by
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Particle phase volume fraction φ 0.0004
Particle to fluid density ratio ρp/ρ0 1000
Particle back reaction CT S1: included; S2: neglected
Stokes number St 0.5; 1; 3
Thermal Stokes number Stθ 0.2; 0.6; 1; 1.5; 2; 3; 4; 5; 6
Number of particles NP 12 500 992; 4 419 584; 847 872

TABLE 2. Particle parameters in dimensionless code units. The Stokes number is St ≡
τp/τη and the thermal Stokes number Stθ ≡ τθ/τη; the particle response times are defined
in the text. In the simulations, Stθ is varied by varying the particle heat capacity. The
different combinations of St and Stθ are simulated including the two-way thermal coupling
(simulations S1) and neglecting it (simulations S2).

CT(x, t)=
4
3
π
ρp

ρ0

cp

c0
r3

p

NP∑
p=1

dθp

dt
δ(x− xp). (2.4)

2.4. Validity and limitations of the model
The physical model in §§ 2.1–2.3, is normally referred to as point-particle model.
The two-way thermal coupling regime is considered, that is, the particles can affect
the fluid temperature field while the direct particle–particle thermal interaction is
neglected. Previous estimations (Elghobashi 1991) have shown that particle–particle
interactions become relevant at average volume fractions φ exceeding 10−3. In this
work, the volume fraction lies in the two-way coupling regime and the average
distance between particles exceeds the particle diameter by an order of magnitude.
In our simulations φ = 4× 10−4, which is small enough to neglect particle collisions,
but large enough for two-way momentum coupling between the particles and fluid
to be important (e.g. Elghobashi 1994). Nevertheless, we ignore two-way momentum
coupling in the present study. The motivation is that including both two-way
momentum and two-way thermal coupling introduces too many competing effects
that would compound a thorough understanding of the problem. We therefore employ
a reductionistic approach, seeking first to understand the role of two-way thermal
coupling in the absence of momentum coupling, and then in a future study will
explore their combined effects. Even aside from this methodological point, the results
still have physical relevance since the thermal relaxation time is often larger than the
momentum relaxation time in many particle-laden flows. For example, Stθ/St ranges
from 2 to 6 for many liquid droplets in air (≈4 for water droplets in air). Therefore
thermal feedback can be more relevant to the thermal balance than momentum
feedback on momentum balance. This is confirmed by the analysis of the effect of
momentum coupling and elastic collisions on the temperature statistics, presented in
appendix A. An additional set of simulations shows that, in the range of parameters
considered in this work, both phenomena have a minimal effect.

The numerical solution of (2.1b,c) and (2.3) is considered a DNS, insofar as the
Kolmogorov scale is resolved (Kuerten 2016), even though the details of the flow
near the surface of each particle are not resolved. This point-particle simplification
is formally valid for particles which are smaller than the smallest active scale in the
flow, the Kolmogorov microscale (Toschi & Bodenschatz 2009). When the particle
Reynolds number (based on the slip velocity between the particle and the local fluid)
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is small, the effect of the stresses on the particle can be described using a Stokes drag
force (Maxey & Riley 1983). Under an analogous set of conditions, the heat transfer
between the particle and the fluid is a diffusive process, that has a time scale r2

p/κ . For
small point-like particles, this time scale is much smaller than the Kolmogorov time
scale, so that the heat transfer is a quasi-steady process which leads to the Newton-like
equation for heat transfer in (2.4) (Zonta et al. 2008; Bec et al. 2014). In this work,
the ratio between the particle radius rp and the Kolmogorov scale η is well below
0.1 for St = 0.5 and St = 1 and approximately 0.1 at St = 3. Therefore finite size
effects are negligible up to St = 1, while there may be small errors for St = 3. The
impact of these small errors should be quantified in a future work using a more
sophisticated model that resolves the flow around the particle surface. Also the fluid
continuity equation should be in principle modified, due to the volume occupied by
inertial particles. However, the error introduced in the continuity equation, proportional
to the rate of change of the local volume fraction, is of the same order as the error
introduced by other approximations in the model which are quite small.

In the point-mass Eulerian–Lagrangian model here employed, the fluid temperature
in (2.3c) should be understood as the temperature of the carrier fluid flow without the
local effect of the disturbance due to the presence of the particles (Boivin, Simonin
& Squires 1998). Neglecting this disturbance is justified for particles with a diameter
much smaller than the Kolmogorov scale and much smaller than the grid spacing.
In the case of two-way momentum coupling, the error introduced by neglecting the
disturbance can be estimated to be less than 10 % for the particle parameters we are
considering (Horwitz & Mani 2016). A similar estimation is expected for the fluid
temperature disturbance due to the particle, since the equations for the particle velocity
and temperature are analogous. At the largest simulated Stokes number, St = 3, the
same estimation indicates that an error of approximately 15 % can be introduced.
Therefore, the error is larger for this case, though certainly a sub-leading effect.
Some simplified, efficient ways to compute the effect of the particle disturbance are
available for the two-way momentum coupling (Horwitz & Mani 2016), but equivalent
models for the thermal coupling problem are not well developed or tested. Given this,
and the fact that for our small particles the corrections due to the disturbance terms
would be sub-leading, it is justified to neglect their effect as a first approximation for
understanding this complex problem.

We also emphasize that the statistics of the fluid temperature field presented in the
paper refer to the carrier, resolved, temperature field, with the disturbance temperature
field produced by the particles neglected. The actual (or total) temperature field is
the superposition of the carrier temperature field and the disturbance induced by
the particles. In the limit of large scale separation between the particle size and
Kolmogorov scale and in the dilute regime, the disturbance field produced by the
particle can be determined analytically and so the statistics of the actual temperature
field can be reconstructed knowing the resolved carrier flow and the analytic solution
for the particle temperature disturbance field. This aspect is discussed in appendix B.

Summarizing, because of the marked scale separation between the particle size
and the Kolmogorov scale, rp � η, and low particle volume fraction, φ � 1, which
are the conditions explored in our study, the point-particle method provides a good
first approximation to the complex problem under consideration. The statistics for
the temperature field reported in the paper refer to the carrier temperature field,
in which the near-particle temperature changes are excluded, while the statistics
of the actual temperature field can be recovered a posteriori on the basis of the
modelling hypothesis. Future work should explore the problem using methods where
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the flow around the particle is resolved, referred to as FRDNS (fully resolved DNS)
(Boivin et al. 1998; Gualtieri et al. 2015). However, even with currently available
high performance computational resources, FRDNS is limited to a small number of
particles, making it unfeasible at present to explore the problem of interest in this
work (Botto & Prosperetti 2012).

2.5. Numerical method
We perform direct numerical simulation of incompressible, statistically steady and
isotropic turbulence on a tri-periodic cubic domain. Equations (2.1a), (2.1b) and
(2.1c) are solved by means of the pseudo-spectral Fourier method for the spatial
discretization. The 3/2 rule is employed for dealiasing (Canuto et al. 1988), so that
the maximum resolved wavenumber is kmax=N/2. The required Fourier transforms are
executed in parallel using the P3DFFT library (Pekurovsky 2012). Forcing is applied
to a single scale, that is to all wavevectors satisfying ‖k‖2

= kf , with kf = 2, and the
equations for the fluid velocity and temperature Fourier coefficients are evolved in
time by means of a second-order Runge–Kutta exponential integrator (Hochbruck &
Ostermann 2010). This method has been preferred to the standard integrating factor
because of its higher accuracy and, above all, because of its consistency. Indeed,
in order to obtain an accurate representation of small-scale temperature fluctuations,
it is critical that the numerical solution conserves thermal energy. The same time
integration scheme is used to solve particle equations (2.3a), (2.3b) and (2.3c), thus
providing overall consistency, since the system formed by fluid and particles is
evolved in time as a whole.

The fluid velocity and temperature are interpolated at the particle position by
means of fourth-order B-spline interpolation. The interpolation is implemented as a
backward non-uniform fast Fourier transform (NUFFT) with B-spline basis: the fluid
field is projected onto the B-spline basis in Fourier space through a deconvolution,
then transformed into the physical space by means of a inverse fast Fourier transform
(FFT). A convolution provides the interpolated field at particle positions (Beylkin
1995). Since B-splines have a compact support in physical space and deconvolution
in Fourier space reduces to a division, this provide an efficient way to obtain
high-order interpolation. This guarantees smooth and accurate interpolation and its
efficient implementation is suitable for pseudo-spectral methods (van Hinsberget al.
2012). The coupling term (2.4) has to be projected on the Cartesian grid used to
represent the fields. This is performed by means of the forward NUFFT with B-spline
basis (Beylkin 1995). Briefly, the algorithm works as follows (Carbone & Iovieno
2018). The convolution of the distribution CT(x, t) with the B-spline polynomial basis
B(x) is computed in physical space, so that it can be effectively represented on the
Cartesian grid

C̃T(x, t)=CT ∗ B=
4
3
π
ρp

ρ0

cp

c0
r3

p

NP∑
p=1

dθp

dt
B(x− xp). (2.5)

The smoothed field C̃T is transformed by means of a FFT giving F [C̃T] in Fourier
space. Finally, the convolution with the B-spline is removed in Fourier space,

Ĉ(k, t)=
F [CT ∗ B]
F [B]

=
F [C̃T]

F [B]
. (2.6)
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Since the convolution is removed in Fourier space, increasing the order of B-spline
provides higher accuracy, without introducing non-locality, even if the number of grid
points influenced by each particle becomes larger in the preliminary convolution. A
fourth-order B-spline polynomial is employed in these simulations and a test with
the same forcing, same parameters, with a larger resolution (2563 Fourier modes)
confirmed the grid independence of the results. Also, the backward and forward
transformations are symmetric, that guarantees energy conservation (Sundaram &
Collins 1996). A detailed description and assessment of the NUFFT in the framework
of particles in turbulence can be found in Carbone & Iovieno (2018).

3. Characterization of the thermal dissipation rate
In the flow under consideration, the total dissipation rate of the temperature field χ

is constant due to the forcing term fT . The total dissipation has a contribution from
the carrier fluid and particle phases and is given by

χ = κ〈‖∇T‖2
〉 +

φ

τθ

ρpcp

ρ0c0
〈(T(xp, t)− θp)

2
〉. (3.1)

An analogous balance was derived for the kinetic energy dissipation rate (Sundaram &
Collins 1996). It is worth noting that, in practice, the sense of the bracket operator is
not strictly the same for the two terms: one is computed as spatial and time average,
while the other is computed as time average over the set of particles. We indicate with
χf the dissipation due to the fluid temperature gradient and with χp the dissipation due
to the particles, the two terms on the right-hand side of (3.1), so that χ =χf +χp. Note
that both contributions to the dissipation rate are proportional to the kinematic thermal
conductivity of the fluid since τθ ∝ 1/κ , and hence both the dissipation mechanisms
are due to molecular diffusivity. By inserting the definition of the particle thermal
relaxation time into (3.1), it is possible to rewrite it as

χ = κ

[
〈‖∇T‖2

〉 + 3φ

〈(
T(xp, t)− θp

rp

)2
〉]

, (3.2)

which evidences that the temperature disturbance induced by the particle has a length
scale of the order of the particle radius.

The portion of temperature fluctuations dissipated by the two different mechanisms
depends on the statistics of the differences between the particle and local carrier flow
temperatures. In the limit Stθ→0 we have T(xp, t)= θp, such that all of the dissipation
is associated with the fluid. In the general case, the statistics of T(xp, t)− θp depend
not only on Stθ , but also implicitly upon St, with the statistics of T(xp, t) depending on
the spatial clustering of the particles. This coupling between the particle momentum
and temperature dynamics can lead to non-trivial effects of particle inertia on χp.
Physically, the overall dissipation rate of the temperature field is due to the gradients
of the total temperature gradients, which is the superposition of the carrier temperature
field and the near-particle temperature field, with the total temperature equal to the
particle temperature at the particle surface. However, the point-particle model separates
the dissipation rate due to the carrier, resolved, temperature field χf and the dissipation
rate due to the suspended particles χp. This is allowed because of the marked scale
separation between the smallest scale of the carrier field, that is the Kolmogorov scale
η, and the scale of the gradients induced by the suspended particles, that is the particle
size rp, with rp � η. This is detailed in appendix B, in which the relation between
the moments of the carrier temperature field gradient and the actual temperature field
gradient is also discussed.
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FIGURE 1. (Colour online) (a) Three-dimensional energy spectrum of the fluid velocity
field (open squares) and temperature field (open circles). The temperature field is
computed without any feedback from the particles on the fluid flow (simulations S2).
(b) Second-order longitudinal structure functions of the particle velocity for various Stokes
numbers.
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FIGURE 2. (Colour online) PDF of the carrier flow temperature gradient ∂xT from
simulations S1, at St= 3, for various Stθ (a,b) dissipation rate, χf , of the fluid temperature
fluctuations, for different St as a function of Stθ . The filled lines indicate the maximum
deviations of the dissipation rate occurred in the time interval used to compute averages.

3.1. Thermal dissipation due to the carrier temperature gradients
Since the flow is isotropic, χf is given by

χf = 3κ〈(∂xT)2〉. (3.3)

We consider fixed Reynolds number and Pr = 1, thus κ is the same in all the
presented simulations, and so 〈(∂xT)2〉 fully characterizes χf . Moreover, given the
expected structure of the field ∂xT , it is instructive to consider its full probability
density function (PDF), in addition to its moments in order to know how different
regions of the flow contribute to the average dissipation rate χf .

Figure 2(a) shows the normalized PDFs of ∂xT for St = 3, for various Stθ , where
the PDFs are normalized using the standard deviation of the distribution, σ∂xT . The
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distribution is almost symmetric and it displays elongated exponential tails. The
largest temperature gradients exceed the standard deviation by an order of magnitude
(Overholt & Pope 1996). Remarkably, the shape of the PDF shows a very weak
dependence on St and Stθ , over all the considered range of these parameters,
such that the PDF shape scales with σ∂xT . Consistently, the kurtosis of the fluid
temperature gradients distribution is approximately constant, which confirms that the
fluid temperature gradient PDF is approximately self-similar.

The variance of the resolved fluid temperature gradient is proportional to the actual
dissipation rate of the temperature fluctuation χf (the proportionality factor being 3κ ,
the same in all the simulations). In contrast to the PDF shape, the suspended particles
have a strong impact on χf , as shown in figure 2. As Stθ is increased, χf decreases.
However, this is mainly due to the fact that as Stθ is increased, χp increases, and so
χf must decrease since χ = χf + χp is fixed. The influence of the Stokes number on
χf is very small in the range of parameters considered.

3.2. Thermal dissipation due to the particle dynamics
The dissipation rate due to the particles, χp, depends on the difference between the
particle temperature and the fluid temperature at the particle position,

χp = 3κφ

〈(
T(xp, t)− θp

rp

)2
〉
. (3.4)

For notational simplicity, we define ϕp≡
√

3φ(T(xp, t)− θp)/rp. When ϕp is normalized
by its standard deviation, we can relate this to the rate of change of the particle
temperature using (2.3c)

θ̇p

σθ̇p

=
ϕp

σϕp

. (3.5)

The normalized PDF of θ̇p for St = 1 and St = 3, and for various Stθ is shown
in figure 3. Figure 3(a) shows the normalized PDF of θ̇p, for St = 1 for the set
of simulations S1, in which the two-way thermal coupling is taken to account.
Figure 3(b) shows the corresponding results for simulations S2, in which the two-way
thermal coupling is neglected. The normalized PDF of θ̇p for St= 3, with and without
the two-way thermal coupling, is shown in figure 3(c,d).

In contrast to the fluid temperature gradient PDFs, the shape of the PDF of θ̇p is
not self-similar with respect to its variance. As Stθ is increased, the normalized PDF
becomes narrower. This is due to the fact that as Stθ is increased, the particles respond
more slowly to changes in the fluid temperature field, analogous to the ‘filtering’ effect
for inertial particle velocities in turbulence (Salazar & Collins 2012; Ireland et al.
2016a). The PDF shapes are mildly affected by St, and for larger Stθ , extreme fluid
temperature–particle temperature differences are suppressed when the two-way thermal
coupling is neglected.

The variance of θ̇p is proportional to the particle dissipation rate χp,

〈θ̇ 2
p 〉 =

〈
(T(xp, t)− θp)

2

τ 2
θ

〉
=

r2
pχp

3κφτ 2
θ

, (3.6)

and the results for this are shown in figure 3(e), for various St and Stθ , and for
simulations S1 and S2. The results show that as Stθ is increased, χp increases. This
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FIGURE 3. (Colour online) PDF of θ̇p for St= 1 (a,b) and St= 3 (c,d), and for various
Stθ . Panels (a–c) are from simulations S1, in which the two-way thermal coupling is
considered, while panels (b–d) are from simulations S2, in which the two-way coupling
is neglected. (e) Dissipation rate χp of the temperature fluctuations due to the particles,
for different St as a function of Stθ . ( f ) Kurtosis of the PDF of θ̇p.

is mainly because as Stθ is increased, the thermal time correlation of the particle
increases, and the particle temperature depends strongly on its encounter with the
fluid temperature field along its trajectory history for times up to O(τθ) in the past.
As a result, the particle temperature can differ strongly from the local carrier flow
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temperature. The results also show that χp is dramatically suppressed when two-way
thermal coupling is accounted for. One reason for this is that as shown earlier,
two-way thermal coupling leads to a suppression in the fluid temperature gradients.
As these gradients are suppressed, the fluid temperature along the particle trajectory
history differs less from the local carrier flow temperature than it would have in the
absence of two-way thermal coupling, and as a result χp is decreased.

The results for kurtosis of θ̇p, as a function of Stθ and for various St are shown in
figure 3( f ). The results show that the kurtosis decreases with increasing Stθ . This is
mainly due to the filtering effect mentioned earlier, wherein as Stθ is increased, the
particles are less able to respond to rapid fluctuations in the fluid temperature along
their trajectory. Further, the kurtosis is typically larger when the two-way thermal
coupling is taken into account (simulations S1), and is maximum for St= 1. This is
due to the particle clustering on the fronts of the fluid temperature field, as will be
discussed in § 5.

Our results for the PDF of θ̇p and its moments differ somewhat from those in Bec
et al. (2014). This is in part due to the difference in the forcing methods employed
by Bec et al. (2014) and that in our study. The solution of (2.3c) may be written as
(Bec et al. 2014)

〈θ̇p
2
〉 =

1
2τ 3

θ

∫
∞

0
〈(δtTp(t))2〉 exp

(
−

t
τθ

)
dt, (3.7)

where δtTp(t)≡T(xp(t), t)−T(xp(0), 0). In the regime Stθ� 1, the exponential in (3.7)
decays very fast in time so that the main contribution to the integral comes from δtTp
for infinitesimal t, with δtTp∼ tn for t→ 0. Substituting δtTp∼ tn into (3.7) we obtain
the leading-order behaviour

〈θ̇p
2
〉 ∼

1
2τ 3

θ

∫
∞

0
t2n exp

(
−

t
τθ

)
dt∼ St2n−2

θ , Stθ � 1. (3.8)

Bec et al. (2014) used a white in time forcing for the fluid scalar field, giving n =
1/2, and yielding 〈θ̇p

2
〉 ∼ St−1

θ for Stθ� 1. However, the forcing scheme that we have
employed generates a field T(x, t) that evolves smoothly in time, so n= 1 and 〈θ̇p

2
〉∼

constant for Stθ � 1.
For Stθ � 1, the integral in (3.7) is dominated by uncorrelated temperature

increments, δtT ∼ t0, such that 〈θ̇p
2
〉 ∼ St−2

θ . The comparison between figure 4(a)
and figure 5 of Bec et al. (2014) highlights the different asymptotic behaviour of
σ 2
θ̇p
≡ 〈θ̇p

2
〉 for Stθ � 1, but the same behaviour 〈θ̇p

2
〉 ∼ St−2

θ for Stθ � 1. Further, as
expected, our DNS data approach these asymptotic regimes for both the cases with
and without two-way thermal coupling.

Another difference is that in the results of Bec et al. (2014), the tails of the PDFs
of θ̇p for Stθ = 1 become heavier as St is increased, whereas our results in figure 3
show that while the kurtosis of these PDFs increases from St = 0.5 to St = 1, it
then decreases from St= 1 to St= 3. In order to examine this further, we performed
simulations (without two-way thermal coupling) for Stθ = 1 and St 6 0.4. The results
are shown in figure 4(b), and in this regime we do in fact observe that the tails of
the PDFs of θ̇p become increasingly wider as St is increased. Taken together with the
results in figure 3, this implies that in our simulations, the tails of the PDFs of θ̇p
become increasingly wider as St is increased until St≈ 1, where this behaviour then
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FIGURE 4. (Colour online) (a) Variance of the particle temperature rate of change as
a function of the thermal Stokes number for different Stokes numbers. The dotted lines
represent the expected asymptotic behaviour for Stθ� 1 and Stθ� 1. (b) Normalized PDF
of the particle temperature rate of change, θ̇p at Stθ = 1 for various Stokes numbers. The
dotted line shows a Gaussian PDF for reference. Results obtained neglecting the particle
thermal feedback.

saturates, and upon further increase of St the tails start to narrow. This non-monotonic
behaviour is due to the particle clustering in the fronts of the temperature field, which
is strongest for St≈ 1 (see § 5). While the results in Bec et al. (2014) over the range
St 6 3.7 do not show the tails of the PDFs of θ̇p becoming narrower, their results
clearly show that the widening of the tails saturates (see inset of figure 5 in Bec
et al. (2014)). It is possible that if they had considered larger St, they would have
also begun to observe a narrowing of the tails as St was further increased. Possible
reasons why the widening of the tails saturates at a lower value of St in our DNS
than it does in theirs include is the effect of Reynolds number (Reλ = 315 in their
DNS, whereas in our DNS Reλ = 88), and differences in the scalar forcing method.
This raises the question about Reynolds number dependency. We expect that the strong
intermittency of advected passive scalars in high Reynolds number flows may affect
the results quantitatively. However, two-way coupled simulations at higher Reynolds
numbers are computationally demanding and are left for a future work.

4. Characterization of the temperature fluctuations

This section consists of a short overview of the one-point temperature statistics.
Note that due to the large-scale forcing used in the DNS, the one-point statistics of the
flow can be affected by the forcing method employed (Dhariwal & Rani 2018). The
deterministic forcing may also generate some long standing patterns at large scales.
However, the analysed configuration allows us to fix the same average dissipation rate
of temperature and velocity fluctuations for all the Stokes numbers considered, which
provides considerable advantages for the interpretation of the results.

The statistics of the carrier temperature field, in which the near-particle disturbances
are excluded, are presented in this section. As discussed in appendix B, the one-point
statistics of the carrier temperature field are very close to the one-point statistics of
the actual fluid temperature field in the dilute regime.
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FIGURE 5. (Colour online) PDF of the carrier flow temperature for St= 1 (a) and St=
3 (b), and for various Stθ . (c) Variance of the carrier flow temperature fluctuations for
different St as a function of Stθ . (d) Kurtosis of the carrier flow temperature PDF. These
results are from simulations S1 in which the two-way thermal coupling is considered.

4.1. Fluctuations of the carrier temperature field

Figure 5(a,b) shows the normalized one-point PDF of the carrier flow temperature
for St = 1 and St = 3, respectively, and for various Stθ . The PDFs are normalized
with the standard deviation of the distribution σT . The PDFs are almost Gaussian for
low Stθ , while the tails become wider as Stθ is increased. However, we are unable to
explain the cause of this enhanced non-Gaussianity. The temperature PDFs are also
not symmetric, and display a bump in the right tail. This behaviour was also reported
by Overholt & Pope (1996) for the case without particles, and it appears to be a low
Reynolds number effect that is also dependent on the forcing method employed.

The effect of St on σT is striking, whereas we saw earlier in figure 2(c) that χf only
weakly depends on St. To explain the dependence upon the Stokes number we note
that the energy balance (3.2) can be rewritten as

χ = κ

[
〈‖∇T‖2

〉 +
2
3
φ

η2

ρp

ρ0

1
St
〈(T(xp, t)− θp)

2
〉

]
. (4.1)
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The factor φρp/(ρ0η
2) is constant in our simulations. Therefore, since our DNS data

suggest that χf is a function of Stθ only (see figure 2c), from (4.1) and (2.3c) we
obtain

〈T(xp, t)2〉 − 〈θ 2
p 〉 ∝ Stf (Stθ). (4.2)

The kurtosis of the fluid temperature fluctuation is shown in figure 5(d), as a
function of Stθ and for various St. For small Stθ , the kurtosis of the fluid temperature
fluctuation is close to the value for a Gaussian PDF, namely 3. However, as Stθ is
increased, the kurtosis increases. Furthermore, the kurtosis decreases with increasing
St for the range considered in our simulations. The explanation of these trends in the
kurtosis is unclear.

4.2. Particle temperature fluctuations
Figure 6(a,b) shows the normalized one-point PDF of the particle temperature with
St = 1, for various Stθ , and for simulations S1 and S2. Figure 6(c–d) shows the
corresponding results for St = 3, and the PDFs are normalized by their standard
deviations. When the two-way thermal coupling is accounted for, the tails of the
particle temperature distribution tend to become wider as Stθ is increased. On
the other hand, when the two-way coupling is neglected, the PDF of the particle
temperature is very close to Gaussian, and its shape is not sensitive to either St or
Stθ .

The variance of the particle temperature fluctuations monotonically decreases with
increasing Stθ , as shown in figure 6(e). The results also show a strong dependence on
St, but most interestingly, the dependence on St is the opposite for the cases with and
without two-way coupling. To understand this we note that using the formal solution
to the equation for θ̇p(t) (ignoring initial conditions) we may construct the result

〈θ 2
p (t)〉 =

1
τ 2
θ

∫ t

0

∫ t

0
〈T(xp(s), s)T(xp(s′), s′)〉e−(2t−s−s′)/τθ ds ds′. (4.3)

If we now substitute into this the exponential approximation

〈T(xp(s), s)T(xp(s′), s′)〉 ≈ 〈T2(xp(t), t)〉 exp[−|s− s′|/τT], (4.4)

where τT is the time scale of T(xp(t), t), then we obtain

〈θ 2
p (t)〉 =

〈T2(xp(t), t)〉
1+ τθ/τT

. (4.5)

This result reveals that the particle temperature variance is influenced by St in two
ways. First, 〈T2(xp(t), t)〉 depends upon the spatial clustering of the inertial particles,
and this depends essentially upon St. Second, the time scale τT is the time scale of
the fluid temperature field measured along the inertial particle trajectories, and hence
depends upon St. For isotropic turbulence, this time scale is expected to decrease
as St is increased, which would lead to 〈θ 2

p (t)〉 decreasing as St increases, which is
the behaviour observed in figure 6(e). In the presence of two-way coupling, however,
〈T2(x, t)〉 increases with increasing St, as shown earlier. In the two-way coupled
regime this increase in 〈T2(x, t)〉 leads to an increase in 〈T2(xp(t), t)〉 that dominates
over the decrease of τT with increasing St, and as a result 〈θ 2

p (t)〉 increases with
increasing St.

The kurtosis of the particle temperature increases with increasing Stθ when the two-
way thermal coupling is accounted for, as shown in figure 6( f ) (simulations S1, filled
symbols). Conversely, the kurtosis of the particle temperature remains constant as Stθ
is increased when the two-way thermal coupling is ignored (simulations S2, open
symbols).
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FIGURE 6. (Colour online) PDF of the particle temperature for St = 1 (a,b) and St =
3 (c,d), for various Stθ . Panels (a–c) are from simulations S1, in which the two-way
thermal coupling is considered, while panels (b–d) are from simulations S2, in which
the two-way coupling is neglected. (e) Variance of the particle temperature fluctuations
for different St numbers as a function of Stθ . ( f ) Kurtosis of the particle temperature
distribution.
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FIGURE 7. (Colour online) (a) Radial distribution function (RDF) as a function of the
separation r/η for various St. (b) Particle number density conditioned on the magnitude
of the fluid temperature gradient at the particle position, for various St. These results are
from simulations S2, in which the two-way thermal coupling is neglected.

5. Statistics conditioned on the local carrier flow temperature gradients

In this section we consider additional quantities to obtain deeper insight into the
one-point particle to fluid heat flux. In particular, we explore the relationship between
this heat flux and the local carrier flow temperature gradients.

5.1. Particle clustering on the temperature fronts
It is well known that inertial particles in turbulence form clusters (Bec et al. 2007),
which may be quantified using the radial distribution function (RDF). As shown in
figure 7(a), the particle number density in our simulations at small separations is a
order of magnitude larger than the mean density when St = O(1). Bec et al. (2014)
showed that inertial particles also exhibit a tendency to preferentially cluster in the
fluid temperature fronts where the temperature gradients are large. To demonstrate
this, they measured the temperature dissipation rate at the particle positions and
showed that this was higher than the Eulerian dissipation rate of the fluid temperature
fluctuations. Note that previous works (Gualtieri et al. 2013, 2015) have shown that
the radial distribution function can be reduced by momentum coupling, which we are
neglecting. A future work that includes two-way momentum coupling should consider
how this affects the way inertial particles sample high temperature gradients in the
flow.

We quantify the tendency for inertial particles to cluster in the fluid temperature
fronts by computing the single particle position probability density, conditioned upon
the norm of the fluid temperature gradient,

ρ(xp| ‖∇T‖)=
ρ(‖∇T‖(xp))

ρ(‖∇T‖)
. (5.1)

This conditioned probability can also be understood as the ratio between the fraction
of inertial particles np(St; ‖∇T‖) located in a region of a given temperature gradient
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magnitude ‖∇T‖ and the number of particles np(0; ‖∇T‖) which would be located in
the same region for St→ 0, that is, when particles follow fluid trajectories,

ρ(xp | ‖∇T‖)=
np(St; ‖∇T‖)
np(0; ‖∇T‖)

. (5.2)

By defining ‖∇T‖rms as the root mean square (r.m.s.) value of ‖∇T‖, small values
of ‖∇T‖/‖∇T‖rms may be interpreted as corresponding to the large scales, and are
associated with the Lagrangian coherent structures in which the temperature field is
almost constant. Large values of ‖∇T‖/‖∇T‖rms may be interpreted as corresponding
to the small scales, and are associated with fronts in the fluid temperature field. The
results for ρ(xp| ‖∇T‖) are shown in figure 7(b), for the simulations without two-way
thermal coupling (the results show only a weak dependence on Stθ when the two-way
coupling is included). Due to the clustering on the temperature fronts, ρ(xp|‖∇T‖)
is an increasing function of ‖∇T‖ and it is larger than unity in the region of large
temperature gradient. The probability of observing a gradient of a certain magnitude
(which is proportional to np(0; ‖∇T‖)) decays almost exponentially with increasing
‖∇T‖, as in figure 2(a). For values of St at which the maximum particle clustering
takes place, np(St; ‖∇T‖) is up to four times larger than np(0; ‖∇T‖) in regions
of strong temperature gradients. We expect even higher values at the largest ‖∇T‖,
however it is difficult to obtain statistically relevant results in correspondence with
such extreme events. These results therefore support the conclusions of Bec et al.
(2014) that inertial particles preferentially cluster in the fronts of the fluid temperature
field where ‖∇T‖/‖∇T‖rms is large.

5.2. Particle motion across the temperature fronts
To obtain further insight into the thermal coupling between the particles and fluid we
consider the properties of the particle heat flux conditioned on ‖∇T‖. In particular,
we consider the following quantity

qn(‖∇T‖)≡ (T(xp)− θp)
nvp · nT(xp)|‖∇T‖, (5.3)

where nT is the normalized, resolved, temperature gradient

nT(xp)≡
∇T(xp)

‖∇T(xp)‖
. (5.4)

The statistics of qn provide a way to quantify the relationship between the particle
heat flux and the local carrier temperature gradients in the fluid. Understanding
this relationship is key to understanding how the particles modify the properties of
the fluid temperature and temperature gradient fields. It is justified to investigate
the interaction between the resolved temperature field, in which the near-particle
disturbances are not represented, since, in the dilute regime, particles are statistically
far enough that a particle rarely finds itself in the disturbance region of another
particle. As discussed in appendix B, the norm of the gradient of the perturbation
field induced by the particle is proportional to r−2

p and, therefore, it is usually large.
The efficiency with which the particles cross the fronts in the carrier flow

temperature field is quantified by 〈|q0|〉, and our results for this quantity in one-way
coupled simulations are shown in figure 8(a). The curves are normalized with
the Kolmogorov velocity scale uη. At moderate Stokes number, particles tend to
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FIGURE 8. (Colour online) (a) Results for 〈|q0(‖∇T‖)|〉/uη, for various St. (b) Results
for 〈| cos αp|〉 as a function of ‖∇T‖, for various St. These results are from simulations
S2, in which the two-way thermal coupling is neglected.

accumulate near the front, therefore they cross the front with a small velocity. On
the other hand, particles with large inertia slowly respond to a change of the local
velocity/temperature and therefore they are less affected by the local value of the
temperature gradient, carrying large temperature increments across the temperature
field. Accordingly, the velocity magnitude becomes nearly independent of the local
value of the temperature gradient as the particle inertia is increased, as shown in
figure 8.

It is also important to consider whether the reduction of 〈|q0|〉 as ‖∇T‖ increases is
due to the reduction of the norm of the particle velocity or to the lack of alignment
between the particle velocity and the fluid temperature gradient at the particle position.
Figure 8(b) displays the average of the absolute value of the cosine of the angle
between the particle velocity and temperature gradient

cos αp ≡
vp

‖vp‖
·
∇T(xp)

‖∇T(xp)‖
, (5.5)

conditioned on ‖∇T‖. The results show that as ‖∇T‖ is increased, the particle motion
becomes misaligned with the local carrier flow temperature gradient. This then shows
that the reduction of 〈|q0|〉 as ‖∇T‖ increases is due to non-trivial statistical geometry
in the system. The results also show that as St is increased, the cosine of the angle
between the fluid temperature gradient and the particle velocity becomes almost
independent of ‖∇T‖, and 〈| cosαp|〉 ≈ 1/2, the value corresponding to cosαp being a
uniform random variable. This shows that as St is increased, the correlation between
the direction of the particle velocity and the local carrier fluid velocity gradient
vanishes.

5.3. Heat flux due to the particle motion across the fronts
We now turn to consider the quantity 〈q1〉. When the particle moves from a cold to a
warm region of the fluid, the component of the particle velocity along the temperature
gradient is positive, vp · nT(xp) > 0. If the particle is also cooler than the local fluid
so that T(xp) − θp > 0, then as it moves into the region where the fluid is warmer,
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q1 > 0 meaning that the particle will absorb heat from the fluid, and will therefore
tend to reduce the local fluid temperature gradient. When the particle moves from
a warm to a cold region of the flow, if T(xp) − θp < 0 then q1 is also positive, so
that again the particle will act to reduce the local temperature gradient in the fluid.
Therefore, q1 > 0 indicates that the action of the inertial particles is to smooth out
the fluid temperature field, reducing the magnitude of its temperature gradients, and
q1 < 0 implies the particles enhance the temperature gradients.

The results for 〈q1〉 are shown in figure 9 for various St and Stθ , including
(simulations S1) and neglecting (simulations S2) the two-way thermal coupling. On
average we observe 〈q1〉> 0, such that the particles tend to make the fluid temperature
field more uniform. The results show that 〈q1〉 tends to zero as ‖∇T‖ → 0. This
indicates that the particles spend enough time in the Lagrangian coherent structures to
adjust to the temperature of the fluid. However, 〈q1〉 increases significantly as ‖∇T‖
increases, suggesting that inertial particles can carry large temperature differences
across the fronts. In the limit Stθ → 0, 〈q1〉 → 0 reflecting the thermal equilibrium
between the particles and the fluid. As Stθ is increased, the heat flux becomes finite,
however, if Stθ is too large, the particle temperature decorrelates from the fluid
temperature and the heat exchange is not effective. Hence, 〈q1〉 can saturate with
increasing Stθ . The results show that 〈q1〉 increases with increasing St, associated
with the decoupling of vp and nT(xp) discussed earlier. Finally, the results also
show that two-way thermal coupling reduces 〈q1〉. This is simply a reflection of the
fact that since the particles tend to smooth out the fluid temperature gradients, the
disequilibrium between the particle and local fluid temperature is reduced, which in
turn reduces the heat flux due to the particles.

6. Temperature structure functions
We now turn to consider two-point quantities in order to understand how the two-

way thermal coupling affects the system at the small scales.

6.1. Structure functions of the carrier temperature field
The nth-order structure function of the resolved fluid temperature field is defined as

Sn
T(r)≡ 〈|1T(r, t)|n〉, (6.1)

where 1T(r, t) it the difference in the carrier temperature field at two points separated
by the distance r (the ‘temperature increment’). The results for S2

T , with different St
and Stθ are shown in figure 10. The structure functions of the actual temperature
field differ from the structure functions of the carrier temperature field, due to the
near-particle temperature disturbances. As discussed in appendix B, the impact of
the local near-particle perturbation is marked at small separation and the carrier flow
temperature field can be understood as the actual temperature field filtered at the grid
resolution scale. In order to emphasize this fact, the carrier flow temperature structure
functions are reported only down to the Kolmogorov scale, which is comparable to
the grid spacing.

The results show that S2
T decreases monotonically with increasing Stθ at all scales

when the two-way thermal coupling is taken to account. In the dissipation range, S2
T

is directly connected to the dissipation rate, and is suppressed in the same way for the
three different St considered. Conversely, the suppression of the large-scale fluctuations
is stronger as St is reduced, at least for the range of St considered here.
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FIGURE 9. (Colour online) Results for 〈q1(‖∇T‖)〉/(uηTη) for St= 0.5 (a,b), St= 1 (c,d)
and St= 3 (e, f ) and for various Stθ . Panels (a,c,e) are from simulations S1, in which the
two-way thermal coupling is considered, while panels (b,d, f ) are from simulations S2, in
which the two-way coupling is neglected.

The scaling exponents of the structure functions of the carrier temperature field

ζ n
T ≡

dlogSn
T(r)

dlog r
(6.2)
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FIGURE 10. (Colour online) Results for S2
T for different Stθ , for St= 0.5 (a), St= 1 (b)

and St= 3 (c). (d) Scaling exponents of the fluid temperature structure functions at small
separation, r 6 2η, at St = 1. The data are from simulations S1 in which the two-way
thermal coupling is considered.

are shown in figure 10(d) for r 6 2η. The results show that the resolved fluid
temperature field remains smooth (to within numerical uncertainty) even when inertial
particles are suspended in the flow.

6.2. Particle temperature structure functions
The nth-order structure function of the particle temperature θp(t) is defined as

Sn
θ(r)≡ 〈|1θp|

n
〉r, (6.3)

where 1θp(t) is the difference in the temperature of the two particles, and the brackets
denote an ensemble average, conditioned on the two particles having separation r. The
results for S2

θ for different St and Stθ , with and without two-way thermal coupling, are
shown in figure 11.

The results show that S2
θ depends on Stθ in much the same way as the inertial

particle relative velocity structure functions depend on St (Ireland et al. 2016a).
This is not surprising since the equation governing θ̇p is structurally identical to the
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FIGURE 11. (Colour online) Results for S2
θ for different Stθ , for St= 0.5 (a,b), St= 1 (c,d)

and St = 3 (e, f ). Panels (a,c,e) are from simulations S1, in which the two-way thermal
coupling is considered, while panels (b,d, f ) are from simulations S2, in which the two-way
coupling is neglected.

equation governing the particle acceleration. However, important differences are that
θ̇p depends on both St and Stθ , and also that the fluid temperature field is structurally
different from the fluid velocity field, with the temperature field exhibiting the
well-known ramp–cliff structure.
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To obtain further insight into the behaviour of S2
θ and Sn

θ in general, we note that
the formal solution for 1θp(t) is given by (ignoring initial conditions)

1θp(t)=
1
τθ

∫ t

0
1T(xp(s), rp(s), s) exp

(
−

t− s
τθ

)
ds, (6.4)

where 1T(xp(s), rp(s), s) is the difference in the fluid temperature at the two particle
positions xp(s) and xp(s)+ rp(s). Equation (6.4) shows that 1θp(t) depends upon 1T
along the path history of the particles, and 1θp(t) is therefore a non-local quantity.
The role of the path history increases as Stθ is increased since the exponential kernel
in the convolution integral decays more slowly as τθ is increased. Since the statistics
of 1T increase with increasing separation, particle pairs at small separations are able
to be influenced by larger values of 1T along their path history, such that 1θp(t) can
significantly exceed the local fluid temperature increment 1T(xp(t), rp(t), t). This then
causes S2

θ to increase with increasing Stθ , as shown in figure 11. This effect is directly
analogous to the phenomena of caustics that occur in the relative velocity distributions
of inertial particles at the small scales of turbulence (Wilkinson & Mehlig 2005), and
which occur because the inertial particle relative velocities depend non-locally on the
fluid velocity increments experienced along their trajectory history (Bragg & Collins
2014b). In analogy, we may therefore refer to the effect as ‘thermal caustics’, and they
may be of particular importance for particle-laden turbulent flows where particles in
close proximity thermally interact.

The results in figure 11 also reveal a strong effect of St, and one way that
St affects these results is through the spatial clustering and preferential sampling
of the fluid temperature field by the inertial particles. There is, however, another
mechanism through which St can affect S2

θ . In particular, since, due to caustics, the
relative velocity of the particles increases with increasing St at the small scales,
then the values of 1T(xp(s), rp(s), s) that may contribute to 1θp(t) become larger.
This follows since if their relative velocities are larger, then over the time span
t − s 6 O(τη) the particle pair can come from even larger scales where (statistically)
1T(xp(s), rp(s), s) is bigger. This effect would cause S2

θ to increase with St for a
given Stθ , further enhancing the thermal caustics, which is exactly what is observed in
figure 11. The results also show that the thermal caustics are stronger for Stθ > O(1)
when the two-way thermal coupling is ignored. This is mainly due to the reduction in
the fluid temperature gradients due to the two-way thermal coupling described earlier,
noting that in the limit of vanishing fluid temperature gradients, the thermal caustics
necessarily disappear.

At larger scales where the statistics of 1T vary more weakly with r, the non-
local effect weakens, the thermal caustics disappear, and a filtering mechanism takes
over which causes S2

θ to decrease with increasing Stθ . This filtering effect is directly
analogous to that dominating the large-scale velocities of inertial particles in isotropic
turbulence, and is associated with the sluggish response of the particles to the large-
scale flow fluctuations due to their inertia (Ireland et al. 2016a).

The particle temperature structure functions Sn
θ behave as power laws at small

separation, log Sn
θ(r) ≈ ζ

n
θ log r + an, and the associated scaling exponents ζ n

θ are
shown in figure 12. The exponents are obtained by fitting the logarithm of the
structure function in the dissipation range according to ordinary least squares. To
reduce statistical noise, we estimate ζ n

θ by fitting the data for Sn
θ over the range

0.2η 6 r 6 2η. Over this range, Sn
θ do not strictly behave as power laws, and
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FIGURE 12. (Colour online) Scaling exponent of the structure functions of the particle
temperature at small separation, 0.2η 6 r 6 2η, for various thermal Stokes numbers Stθ ,
at fixed Stokes number St= 0.5 (a,b) and St= 1 (c,d). Panels (a,c) are from simulations
S1, in which the two-way thermal coupling is considered, while panels (b,d) are from
simulations S2, in which the two-way coupling is neglected.

hence the exponents measured are understood as average exponents. The error bars
indicate the largest deviations from the mean exponent observed in the considered
range. The results in figure 12 reveal that particle temperature increments exhibit
a strong multifractal behaviour. This multifractality is due to the non-local thermal
dynamics of the particles and the formation of thermal caustics, described earlier. In
particular, there exists a finite probability to find inertial particle pairs that are very
close but have large temperature differences because they experienced very different
fluid temperatures along their trajectory histories. As with the thermal caustics, the
multifractality is enhanced as St is increased. Most interestingly, the results for ζ n

θ

are only weakly affected by the two-way thermal coupling, despite the fact that we
observed a significant effect of the coupling on S2

θ . This suggests that the two-way
coupling affects the strength of the thermal caustics, but only weakly affects the
scaling of the structure functions in the dissipation range.
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FIGURE 13. (Colour online) Second-order mixed structure functions of the carrier flow
temperature field, for different thermal Stokes numbers of the suspended particles, at St=
0.5 (a) and St= 1 (b). The data refer to the set of simulations S1, with thermal particle
back reaction included.

6.3. Mixed structure functions
We turn to considering the behaviour of the flux of the temperature increments across
the scales of the flow, which is associated with the mixed structure functions

SQ(r)≡ 〈(1T(r, t))21u‖(r, t)〉, (6.5)

where 1u‖ is the longitudinal relative velocity difference. The results for SQ, for
different St and Stθ are shown in figure 13. Just as we observed for the fluid
temperature structure functions, −SQ decreases monotonically with increasing Stθ , as
was also observed for the fluid temperature dissipation rate χf . The mixed structure
functions of the carrier temperature field are reported to separation down to the
Kolmogorov scale, that is the scale at which the carrier temperature field is resolved,
as discussed in appendix B.

To consider the flux of the particle temperature increments, we begin by considering
the exact equation that can be constructed for Sn

θ using PDF transport equations. In
particular, if we introduce the PDF P(r, 1θ, t)≡ 〈δ(rp(t)− r)δ(1θp(t)−1θ)〉 and the
associated marginal PDF %(r, t) ≡

∫
P d1θ , where r and 1θ are time-independent

phase-space coordinates, then we may derive for a statistically stationary system the
result (see Bragg & Collins (2014a), Bragg et al. (2015b) for details on how to derive
such results)

〈[1θp(t)]2〉r = 〈1T(xp(t),rp(t), t)1θp(t)〉r −
τθ

2%
∂

∂r
· %〈[1θp(t)]2wp(t)〉r, (6.6)

where wp(t) ≡ ∂trp(t). The first term on the right-hand side is the local contribution
that remains when there exist no fluxes across the scales, and this term determines
the behaviour of 〈[1θp(t)]2〉r at the large scales of homogeneous turbulence where the
statistics are independent of r. The second term on the right-hand side is the non-
local contribution that arises for Stθ > 0, and it is this term that is responsible for the
thermal caustics discussed earlier. It depends on the spatial clustering of the particles
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FIGURE 14. (Colour online) Second-order mixed structure functions of the particle
temperature, for different thermal Stokes numbers, at St=0.5 (a,b) and St=1 (c,d). Panels
(a,c) refer to the set of simulations S1, in which the thermal particle back reaction is
included. Panels (b,d) refer to the set of simulations S2, in which the thermal particle
back reaction is neglected.

through % (which is proportional to the RDF), and the flux 〈[1θp(t)]2wp(t)〉r which,
for an isotropic system, is determined by the longitudinal component

SQp(r)≡
r
r
· 〈[1θp(t)]2wp(t)〉r. (6.7)

The results for SQp from our simulations are shown in figure 14, and they show that
without two-way coupling, −SQp monotonically increases with increasing Stθ at the
smallest scales. However, with two-way coupling, −SQp is maximum for intermediate
values of Stθ , and this occurs because as shown earlier, as Stθ is increased, the fluid
temperature fluctuations are suppressed across the scales.

7. Distribution of the temperature fluxes
We finally look at the distribution of temperature flux across the scales, in the

dissipation range. We consider the PDFs of the carrier flow temperature flux Q =
(1T(r, t))21u‖(r, t) and particle temperature flux Q= [1θp(t)]2w‖(t), where w‖(t) is
the parallel component of the particle-pair relative velocity.
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FIGURE 15. (Colour online) PDF in normal form of the flux of carrier flow temperature
increments at small separations, r 6 2η, at St= 0.5 (a) and St= 1 (b). The data refer to
the set of simulations S1, with thermal feedback included.

The PDF of the carrier flow temperature flux, which does not include the
contribution of the near-particle field changes, is plotted in normal form for r 6 2η
in figure 15. These normalized PDFs collapse onto each other for all St and Stθ
values considered. Thus, the distribution of the resolved temperature increments flux
simply scales with its variance in the dissipation range, and the variance of the flux
is modulated by the particles but the shape of the distribution is not affected by the
particle dynamics. The PDFs are strongly negatively skewed and have a negative
mean value, associated with the mean flux of thermal fluctuations from large to small
scales in the flow.

The PDF of the particle temperature flux is plotted in normal form for r 6 2η in
figure 16. The PDF of the particle temperature flux across the scales is not self-similar
with respect to its variance. Furthermore, the PDF becomes more symmetric as Stθ
is increased. This is associated with the increasingly non-local thermal dynamics of
the particles, which allows the particle pairs to traverse many scales of the flow with
minimal changes in their temperature difference.

8. Conclusions

Using direct numerical simulations, we have investigated the interaction between
the scalar temperature field and the temperature of inertial particles suspended in the
fluid, with one- and two-way thermal coupling, in statistically stationary, isotropic
turbulence.

We found that the shape of the PDF of the carrier flow temperature gradients is not
affected by the presence of the particles when two-way thermal coupling is considered,
and scales with its variance. On the other hand, the variance of the fluid temperature
gradients decreases with increasing Stθ , while St plays a negligible role. The PDF
of the rate of change of the particle temperature, whose variance is associated with
the thermal dissipation due to the particles, does not scale in a self-similar way with
respect to its variance, and its kurtosis decreases with increasing Stθ . The particle
temperature PDFs and their moments exhibit qualitatively different dependencies on
St for the case with and without two-way thermal coupling.
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FIGURE 16. (Colour online) PDF in normal form of the flux of particle temperature
increments at small separations, r 6 2η, at St= 0.5 (a,b), St= 1 (c,d). Panels (a,c) refer to
the set of simulations S1, in which the thermal particle back reaction is included. Panels
(b–d) refer to the set of simulations S2, in which the thermal particle back reaction is
neglected.

To obtain further insight into the fluid–particle thermal coupling, we computed
the number density of particles conditioned on the magnitude of the local fluid
temperature gradient. In agreement with Bec et al. (2014), we observed that the
particles cluster in the fronts of the temperature field. We also computed quantities
related to moments of the particle heat flux conditioned on the magnitude of the
local carrier flow temperature gradient. These results showed how the particles tend
to decrease the fluid temperature gradients, and that this is associated with the
statistical alignments of the particle velocity and the local carrier flow temperature
gradient field.

The two-point temperature statistics were then examined to understand the
properties of the temperature fluctuations across the scales of the flow. By computing
the structure functions, we observed that the fluctuations of the carrier flow
temperature increments are monotonically suppressed as Stθ increases in the two-way
coupled regime. The structure functions of the particle temperatures revealed the
dominance of thermal caustics at the small scales, wherein the particle temperature
differences at small separations rapidly increase as Stθ and St are increased. This
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allows particles to come into contact with very large temperature differences, which
has a number of important practical implications. The scaling exponents of the
inertial particle temperature structure functions in the dissipation range revealed
strongly multifractal behaviour.

Finally, the flux of carrier flow temperature increments across the scales was
found to decrease monotonically with increasing Stθ . The PDFs of this flux are
strongly negatively skewed and have a negative mean value, indicating that the flux
is predominately from the large to the smallest scales of the flow. In the two-way
coupled regime, the presence of the inertial particles does not change the shape of
the PDF. The PDF of the flux of particle temperature increments in the dissipation
range becomes more and more symmetric as Stθ is increased, associated with the
increasingly non-local thermal dynamics of the particles.

The results presented have revealed a number of non-trivial effects and behaviours
of the particle temperature statistics. In a future work it will be important to consider
the role of gravitation settling and coupling with water vapour fields, both of which
are important for the cloud droplet problem. Moreover, it will be interesting to include
the two-way momentum coupling and to consider the non-dilute regime.
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Appendix A. Influence of momentum coupling and elastic collisions
In this appendix we quantify the effects of two-way momentum coupling and elastic

collisions, which have been neglected in our simulations.

A.1. Momentum coupling
Concerning the momentum coupling, we have carried out a few numerical simulations
in which both momentum and temperature coupling are taken to account. The results
show that the small-scale statistics are only weakly affected by the momentum
coupling. The thermal dissipation rate at different Stokes and thermal Stokes numbers,
with and without momentum coupling, is shown in figure 17(a), which shows that
the impact of two-way momentum coupling is quite small. As expected, the effect
of the momentum coupling is more evident for large Stokes numbers (St = 3), but
even then the effect is quite small. A small reduction of the thermal dissipation due
to the particles is observed since the large heat flux towards the particles is mainly
a consequence of the concentration of particles in the regions of large temperature
gradients, yet we expect a smoothing of the velocity field by momentum two-way
coupling, which mitigates the particle preferential concentration in the vicinity of the
temperature fronts. The second-order structure functions of the carrier temperature
field at St = 3 are shown in figure 17(b). Small quantitative modifications of the
fluid temperature occur due to the momentum coupling, especially at large separation,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.773


Scalar field–particle interaction 711

but, more importantly, the overall picture is not modified. Moreover, it should be
noted that the actual Stokes number is modified by the two-way momentum coupling,
since the fluid dissipation rate is no longer equal to the energy injection rate in (2.2),
resulting in a longer Kolmogorov time scale. Data in figure 17 are presented using
the nominal Kolmogorov time scale obtained by using overall dissipation rate, that
is, the same scale of simulations without particle momentum feedback. These results
justify our neglect of two-way momentum coupling in the current study as a first
approximation.

A.2. Elastic collisions
According to the criterion by Elghobashi (1994), the upper limit of the volume
fraction for the validity of the two-way coupling is φ = 10−3. Above this threshold
particle–particle interactions become frequent. Since in our work φ = 4 × 10−4 and
the Stokes number can be of order one, we have re-run some of the simulations
taking into account particle–particle interactions assuming elastic collisions. Apart
of collisions, any direct small-scale hydrodynamic interaction (Onishi, Takahashi &
Vassilicos 2013) is not taken into account.

The particle path is reconstructed at first order between time tn and tn+1 = tn +1t,
where 1t is the time step employed in the simulations. This yields the following
second-order equation for the relative distance between the pth and qth particle,

‖(1− t̃)(xp(tn)− xq(tn))+ t̃(xp(tn+1)− xq(tn+1))‖ = 2rp, (A 1)

where t̃ = (t − tn)/1t. If a real solution t̃ ∈ [0, 1) exists, a collision is detected and
the colliding particles p and q are evolved according to the equations for elastic
collisions between rigid spheres. No heat exchange occurs during the instantaneous
collision. Numerically, the direct search for collisions would be impractical, since
it would require O(N2

P) operations. In our simulations, the search for collisions is
performed by grouping the particles inside small boxes and searching inside each box
(Onishi et al. 2013). The spurious effect of the box boundaries is removed translating
the boxes and repeating the search.

The results show that, in the parameter range we are considering, the collisions
only mildly affect the heat exchange between the carrier fluid and the particles. As
shown in figure 17(a), the change in the thermal dissipation rate due to the carrier
temperature gradient is very moderate when elastic collisions are taken to account.
The effect of elastic collisions on the carrier flow temperature structure functions is
negligible, as in figure 17(b). The effect of elastic collisions on the scaling exponents
of the particle temperature structure functions at small separation is shown figure 17(c).
The impact of elastic collisions on those statistics at St = 1 is more noticeable but
still moderate. The temperature difference between colliding particles is shown in
figure 17(c), for St= 0.5, 1 and 3 and corresponding Stθ = 0.6, 1 and 3. Due to the
intermittency of the carrier flow temperature gradient and to the path-history effect,
the relative temperature between colliding particles can be large with respect to the
small-scale temperature increment Tη. However, such large temperatures rarely occur
and the majority of the temperature increments are concentrated in |1T| < Tη, a
behaviour similar to that of relative velocity distribution between colliding particles
(Voßkuhle et al. 2014). The relative temperature between colliding particles increases
with the particle inertia, as expected.
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FIGURE 17. (Colour online) (a) Dissipation rate χf of the fluid temperature fluctuations,
for different St as a function of Stθ and (b) second-order fluid temperature structure
function, at St = Stθ = 3, with and without momentum coupling and elastic collisions.
(c) Scaling exponents of the particle temperature structure functions at small separation,
with and without elastic collisions and momentum two-way coupling. Blue colour
indicates one-way momentum coupling and two-way temperature coupling, black colour
indicates two-way momentum and temperature coupling and red colour indicates two-way
momentum and temperature coupling with elastic collisions between particles. (d) PDF of
the temperature difference between colliding particles. The Kolmogorov scale quantities
are computed by using the overall dissipation rate.

Appendix B. Estimating the actual temperature field

The paper presented the statistics of the carrier temperature field T(x, t), which can
be resolved on the computational grid, within the limits of the point-particle model. In
that model, both the particle size and the region perturbed by the particle are assumed
to be much smaller than the Kolmogorov scale. The near-particle field changes are
excluded in the carrier resolved fluid temperature field, which is an approximation
of the actual temperature field far from particles. On the other hand, the actual
temperature field includes the near-particle field perturbations, which vary on scales
smaller than the Kolmogorov scale, down to the particle size, and it is such that
the actual fluid temperature matches the particle temperature at the particle surface

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

77
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.773
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(that is, there is no thermal slip). The carrier temperature field can be understood as
the actual temperature field filtered at the computational grid resolution scale, that is
comparable with the Kolmogorov length scale and much larger than the particle size.
Since large temperature gradients can be expected in the perturbed regions, which
are not explicitly accounted for by the carrier temperature field, in this appendix
we analyse how the statistics of the actual temperature field relate to the particle
temperature and resolved temperature field statistics.

B.1. Moments of the actual temperature gradient
Let us call T∗ the actual temperature field, which is given by the sum of the carrier
field T(x, t) (that is the one considered throughout the paper) and by the perturbations,
T̃p(x, t), induced by the particles. The carrier field has variations on a spatial and
temporal scale from the integral scale down to the Kolmogorov microscale, while
the perturbation variations are all concentrated around the particles, in a volume
with a size proportional to their radius rp. In the dilute regime we are considering,
the perturbation fields induced by each particle do not overlap. Also, the suspended
particles are small enough so that the Reynolds number of the relative motion with
respect to the carrier fluid is small. Therefore the enthalpy equation around each
particle reduces to the Fourier equation,

∂T∗
∂t
= κ∇2T∗, (B 1)

with the following boundary conditions,

‖x− xp‖ = rp ⇒ T∗ = θp, (B 2)
‖x− xp‖→+∞ ⇒ T∗→ T. (B 3)

Equation (B 1) gives the perturbed temperature field around the particle in a particle-
centred frame. Since particles have sub-Kolmogorov size, rp � η, and the Prandtl
number is unitary in our simulations, T can be considered uniform on the particle
scale. The time scale of heat diffusion τd is much shorter than the time scale of
the fastest fluctuations of the carrier temperature field T , which is of the order of
the Kolmogorov time scale τη and τd/τη ∼ (rp/η)

2
� 1. Therefore, the solution of

(B 1) with boundary conditions (B 3) around each particle can be approximated by its
quasi-steady solution so that the actual temperature field is

T∗(x, t)= T(x, t)+
NP∑

p=1

(θp − T(xp, t))
rp

‖x− xp‖
(B 4)

and its gradient reads

∇T∗ =∇T −
NP∑

p=1

(θp − T(xp))
rp

‖x− xp‖
3
(x− xp). (B 5)

Equation (B 5) is the basis to derive the point-particle closure of the particle heat
flux, equation (2.3c) and, as we will show, it also allows to recover the single-point
moments of the actual temperature gradient, which is the superposition of the carrier
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temperature gradient and the disturbance induced by the particles. Since the flow is
statistically homogeneous, we may replace statistical averages with spatial averages.
Let us indicate with Ω the overall domain, with Ωp the region occupied by the
pth particle and Ωf = Ω − ∪pΩp the region occupied by the fluid. The volume
of the region occupied by the fluid is |Ωf | = |Ω|(1 − φ) where φ =

∑
p |Ωp|/|Ω|

is the particle volume fraction. Since particles are very small with respect to the
scale of spatial variation of the carrier temperature field, the disturbance induced by
the particle is non-negligible only in a small region surrounding the particle. Let us
indicate the perturbed volume around each particle by Ω̃p, a ball of radius αrp, where
rp is the particle radius and α > 1 indicates to how many radii far from the particle
the disturbance on the temperature gradient becomes negligible. A one-dimensional
sketch of the point-particle model under consideration is in figure 18(a). In the
undisturbed fluid volume Ω̃f =Ω −∪pΩ̃p the particle perturbations are negligible and
the actual temperature is given only by the carrier temperature field. On the other
hand, in the perturbed region, the actual temperature is the sum of the resolved and
disturbance temperature. Therefore we have,

T∗(x, t)= T(x, t), x ∈ Ω̃f T∗(x, t)= T(x, t)+ T̃p(x, t), x ∈ Ω̃p, (B 6a,b)

where T̃p= (θp−T(xp, t))rp/‖x− xp‖ according to (B 4). The nth-order moment of the
actual temperature gradient may be then evaluated by spatial average,

〈‖∇T∗‖n
〉 =

1
|Ω|

∫
Ω̃f

(‖∇T‖2)n/2 dx+
1
|Ω|

∑
p

∫
Ω̃p

(‖∇T∗‖2)n/2 dx. (B 7)

In the region perturbed by the particle, the gradient of the disturbance field is larger
than the gradient of the carrier field, since the disturbance decays fast in a region
which is tiny with respect to the Kolmogorov scale. Therefore, using ‖∇T‖�‖∇T̃p‖,
the temperature field can be Taylor expanded in the perturbed regions, retaining terms
up to (‖∇T‖/‖∇T̃p‖)

2,

‖∇T∗‖n
∼ ‖∇T̃p‖

n

[
1+ n

∇T · ∇T̃p

‖∇T̃p‖
2
+

n
2
‖∇T‖2

‖∇T̃p‖
2
+

n(n− 2)
2

(∇T · ∇T̃p)
2

‖∇T̃p‖
4

]
. (B 8)

The last term on the right-hand side of (B 8) can be estimated by using the Schwarz
inequality to obtain

‖∇T∗‖n . ‖∇T̃p‖
n
+ n∇T · ∇T̃p‖∇T̃p‖

n−2
+

n(n− 1)
2
‖∇T‖2

‖∇T̃p‖
n−2. (B 9)

Equation (B 9) provides a local upper bound for powers of the actual temperature
gradient in the perturbed region (while ∇T∗ =∇T in the unperturbed region), which
allows us to compute an upper bound for the moments of the actual temperature
gradient. Using (B 9) in (B 7) leads to

〈‖∇T∗‖n
〉 .

1
|Ω|

∫
Ω̃f

‖∇T‖n dy+
1
|Ω|

∑
p

∫
Ω̃p

[n∇T · ∇T̃p‖∇T̃p‖
n−2

+‖∇T̃p‖
n
+

n(n− 1)
2
‖∇T‖2

‖∇T̃p‖
n−2
] dyp. (B 10)
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FIGURE 18. (Colour online) (a) Sketch of the particle model. The sizes of the particle and
of the perturbed region are out of proportion for the sake of clarity. (b) Ratio between the
nth-order moment of the actual temperature gradient and the resolved carrier temperature
gradient, Rn= (〈‖∇T∗‖n

〉/〈‖∇T‖n
〉)1/n, as a function of the particle thermal inertia at St=1.

The average of the product of the carrier field and the disturbance is negligible, since
the carrier field varies on scale η and can be considered constant on scale αrp� η,
except in small regions of the domain in which extreme field temperature gradients
take place,∫

Ω̃p

∇T · ∇T̃p‖∇T̃p‖
n−2 dyp

' (T(xp, t)− θp)|T(xp, t)− θp|
n−2rn−1

p ∇T(xp, t) ·
∫
Ω̃p

yp‖yp‖
1−2n dyp = 0, (B 11)

where yp = x − xp and the spherical symmetry of the perturbation has been used.
Computing the integrals involving T̃p in (B 10), an upper bound for the nth-order
moment of the actual fluid temperature gradient is obtained

〈‖∇T∗‖n
〉 . (1− α3φ)〈‖∇T‖n

〉 + φ
3

2n− 3
(1− α3−2n)

〈∣∣∣∣θp − T(xp, t)
rp

∣∣∣∣n〉
+φ

3n(n− 1)
4n− 14

(1− α7−2n)

〈
‖∇T(xp, t)‖2

∣∣∣∣θp − T(xp, t)
rp

∣∣∣∣n−2
〉
. (B 12)

Regarding the corrections due to α, equation (B 5) shows that the disturbance
temperature gradient decays within a few radii from the particle. We may assume α
large but still αrp� η because of the marked scale separation hypothesis between the
particle size and the Kolmogorov length scale, rp� η. By hypothesis α3φ � 1 and,
therefore, also α7−2nφ� 1 for n > 2.

The first term on the right-hand side of (B 12) is the contribution of the carrier flow,
the other two terms are the contribution of the local perturbation due to the particles.
The inequality in (B 12) is only due to the last term, which has been overestimated
by the Schwarz inequality. The relative importance of the terms in (B 12) is now
estimated in order to obtain a direct estimation instead of an upper bound for the
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moments of the actual temperature gradient. We exploit the fact that the disturbance
gradient is much larger and more intermittent than the resolved gradient, therefore the
second term in (B 12), which behaves as |(θp−T(xp, t))/rp|

n, is dominant with respect
the third term in the same equation, that behaves only as |(θp − T(xp, t))/rp|

n−2. An
estimation of the ratio between the order of magnitude of the third and second terms
on the right-hand side of (B 12), that is,

Cn =
n(n− 1)(2n− 3)

4n− 14
1− α7−2n

1− α3−2n

〈‖∇T(xp, t)‖2
|θp − T(xp, t)|n−2

〉

〈|θp − T(xp, t)|n〉
r2

p, (B 13)

can be obtained neglecting the coupling between the resolved and perturbation
gradient, which is justified due to the wide scale separation of those two fields,
and using the results in Bec et al. (2014), where it is shown that the average
dissipation rate evaluated at the particle position is not larger than two times the
overall dissipation rate. Therefore, the ratio between the order of magnitude of the
third and second terms on the right-hand side of (B 12) can be estimated as

Cn .
6

Kn

χf

χp

∣∣∣∣n(n− 1)(2n− 3)
4n− 14

∣∣∣∣max(1, α7−2n)φ, (B 14)

where
Kn =

〈|θp − T(xp, t)|n〉
〈|θp − T(xp, t)|n−2〉〈|θp − T(xp, t)|2〉

(B 15)

and χf /χp depends on Stθ and weakly on St, as in figure 2(b). Since α3φ � 1, as
required by the two-way coupled point-particle model, and Kn is expected to be large
for n> 2 due to the high intermittency of the disturbance gradient (e.g. K4 = O(10)
from figure 3f ), we expect that Cn� 1 for moderate n (e.g. n 6 4) and Stθ not too
small (so that χf /χp not very large). The estimation in (B 14) can be rewritten using
(B 13), (3.3) and (3.4) together with the definition of Kolmogorov scales, 〈‖∇T‖2

〉 =

T2
η/η

2, which gives

Cn .
2

Kn

∣∣∣∣n(n− 1)(2n− 3)
4n− 14

∣∣∣∣max(1, α7−2n)
T2
η

〈|θp − T(xp, t)|2〉

(
rp

η

)2

. (B 16)

Therefore Cn�1 for small particles, moderate n and Stθ reasonably large (that is, |θp−

T(xp, t)|/Tη not very small). Both estimations, equations (B 14) and (B 16), show that
the second term on the right-hand side of (B 12) is the leading term of the contribution
of the particle perturbation to the actual temperature gradient moments, while the third
term on the right-hand side of (B 12) is sub-leading, for moderate n (e.g. n 6 4),
φ�1 and rp/η� 1, which are basic hypotheses of the point-particle model. Therefore,
the following simplified estimation for the moments of the actual temperature field is
obtained:

〈‖∇T∗‖n
〉 ∼ 〈‖∇T‖n

〉 +
3φ

2n− 3

〈∣∣∣∣θp − T(xp, t)
rp

∣∣∣∣n〉 , n > 2. (B 17)

Equation (B 17) with n = 2 is the balance of thermal dissipation rate, that is (3.2),
derived in the paper from the carrier flow temperature field equation (2.1c), which
includes the particle thermal feedback. The only hypotheses necessary to obtain
equation (B 17) are those that are also assumed for the validity of the point-particle
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model, without the need for any ad hoc assumption. It is worth noting that the
contribution of the particle perturbation to the actual temperature gradient moments
can become dominant with respect to the carrier temperature field contribution.
Indeed, the ratio between the second and first terms on right-hand side of (B 17) can
be roughly estimated to be proportional to φ(η/rp)

n, which shows that the particle
perturbation contribution dominates for large n, since in the point-particle model
hypothesis φ� 1 but η/rp� 1. This is a signature of the intermittency introduced by
the perturbation due to the particles. The quantity

Rn =

(
〈‖∇T∗‖n

〉

〈‖∇T‖n〉

)1/n

(B 18)

can be used to measure the overall contribution of the perturbed regions to the
temperature gradient moments, and it is shown in figure 18(b) as a function of
the thermal Stokes number, for n 6 4 and St = 1. As expected, for small particle
thermal inertia Rn ∼ 1 and the difference between the actual temperature gradient
distribution and the resolved temperature gradient distribution increases with Stθ . The
actual temperature gradient ∇T∗ is more intermittent than the carrier flow temperature
gradient ∇T (which does not include the particle disturbance) discussed in the paper.
The high-order moments of the actual temperature gradient might be even larger
than the prediction in (B 17), since the weight of the term neglected in (B 12) is
proportional to the order of the moment, n. The enhanced fluid flow intermittency
due to the suspended particles is consistent with the results from particle-resolved
direct numerical simulations of turbulent flows laden with small fixed spheres (Vreman
2016).

B.2. Actual temperature field PDF
The PDF of the actual temperature field T∗ can be obtained from the PDF of the
carrier temperature field T and the PDF of the particle temperature through equation
(B 4). A simple estimation, which overestimates the difference between the PDFs of
T and T∗, can be obtained by assuming that T∗ is equal to the particle temperature θp

within Ω̃p,

T∗(x, t)= T(x, t), x ∈ Ω̃f T∗(x, t)≈ θp, x ∈ Ω̃p. (B 19a,b)

The PDF of the actual temperature field is given by,

ρT∗(T
′)= ρ(T ′ and x ∈ Ω̃f )+ ρ(T ′ and x ∈∪pΩ̃p), (B 20)

and, through (B 19), it reduces to

ρT∗(T
′) = (1− α3φ)ρT(T ′)+ α3φρθ(T ′)
= ρT(T ′)+ α3φ(ρθ(T ′)− ρT(T ′)). (B 21)

Since α3φ� 1 and the difference between the distribution of θp and T is moderate
(see figures 5 and 6), the difference between the carrier temperature distribution T and
the actual temperature distribution T∗ is negligible and ρT ∼ ρT∗ .
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B.3. Structure functions
The moments of the actual temperature gradient provide information about the
temperature structure functions at small separation. Indeed, 1T∗(r) ∼ ∇T∗ · r for
r→ 0 and the overall thermal dissipation rate χ , which is imposed by the forcing, is
due to the gradients of the actual fluid temperature field,

χ = κ〈‖∇T∗‖2
〉. (B 22)

Therefore, invoking isotropy, the actual temperature field second-order structure
function at small separation is

S2
T∗(r)∼

〈
∂T∗
∂xi

∂T∗
∂xj

〉
rirj = 〈‖∇T∗‖2

〉
r2

3
=

r2χ

3κ
, r→ 0, (B 23)

while the second-order structure function of the carrier temperature field is ∼
r2χf /(3κ) at small separation. Small deviations from this limit may occur due to
lack of isotropy in the immediate vicinity of the particle. The structure function of
the actual temperature field at small separation is proportional to the overall thermal
dissipation rate. This again reflects the fact that physically all the dissipation rate
derives from the actual fluid temperature gradient, the thermal slip |θp − T(xp, t)|
being only an artefact of the point-particle model. In this work, the overall thermal
dissipation rate χ is the same for all the simulations, therefore the structure function
of the actual temperature field at small separation is the same for each St and Stθ .
On the other hand at large separation,

S2
T∗(r)∼ 2〈T2

∗
〉, r� `∗, (B 24)

where `∗ is the correlation length of the actual temperature field. Information about
the structure function can be then extrapolated by analysing the single-point actual
temperature field statistics. For these one-point statistics, however, the modification
due to the particles is expected to be small, as in § B.2. In conclusion, the variation of
the fluid temperature structure function ST at small separation due to the near-particle
field changes is expected to be pronounced, while the effect of the near-particle field
on the fluid temperature structure functions at large separation is expected to be very
moderate in the dilute regime.
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