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TriGlobal linear instability analysis and direct numerical simulations have been
performed to unravel the mechanisms ultimately responsible for transition of steady
laminar flow over a long rectangular finite-span open cavity with dimensions L : D : W
= 6 : 1 : 2 to unsteadiness. The steady laminar three-dimensional flow loses stability
at ReD,cr ≈ 1080 as a consequence of linear amplification of a travelling eigenmode
that is qualitatively analogous to the shear-layer mode known from analyses of
flow in spanwise-periodic cavities, but has a three-dimensional structure which is
strongly influenced by the cavity lateral walls. Differences in the eigenspectrum
of the present and the spanwise homogeneous flow configuration are documented.
Topological changes exerted on the steady laminar flow by linear amplification of the
unstable shear-layer mode are reminiscent of observations in experiments at an order
of magnitude higher Reynolds number.

Key words: instability, transition to turbulence

1. Introduction

A rectangular finite-span open cavity has been used extensively as a simplified
model to understand flow in aircraft bays. Despite the apparent simplicity of
the geometry, a multitude of physical phenomena arise, involving the shear layer
emanating from the upstream cavity lip and its interaction with the downstream
cavity corner, the boundary layers on the cavity walls, shock waves and expansion
waves potentially existing at appropriate flow regimes, and acoustic waves generated
at the cavity and propagating at long distances from it. From an engineering point of
view, either of these aspects in isolation or their interaction can be seen at distinct
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flow regimes to affect noise emission from the cavity, structural integrity of landing
gears, and safe release of stores.

Extensive research efforts over more than half a century have employed experimen-
tation, numerical simulation and linear instability analysis in order to understand
and control cavity flow physics. Table 1 summarizes a representative list of studies
which have, at least partially, focused on flow instability in open cavities. While
most practical applications use the full (three-dimensional, rectangular, finite-span)
geometry, linear instability analyses of cavity flows to date have resorted to additional
assumptions which make the resulting theoretical problem tractable. Most often
spanwise flow homogeneity has been assumed, or flow over a two-dimensional cavity
has been considered. The present work employs for the first time the theoretical
TriGlobal instability analysis framework, which is appropriate for finite-span open
cavities, as will be discussed shortly.

Research into open cavity flows commenced in the 1950s (Krishnamurty 1955;
Roshko 1955) and has continued incessantly since. In an early significant contribution,
Rossiter (1964) described a flow-acoustic resonance mechanism involving the
interaction of the shear layer with the downstream cavity corner and derived a
semi-empirical formula to predict the resonance frequencies, a work that has been
extended by a number of authors since (e.g. Alvarez, Kerschen & Tumin 2004).
Sarohia (1975, 1977) performed experiments and inviscid local linear instability
analysis of laminar flow in a shallow axisymmetric cavity geometry and found
that a large lateral motion of the shear layer occurs near the downstream lip. This
three-dimensional motion results in a periodic shedding of vortices at a frequency of
cavity oscillation different from those predicted by the Rossiter frequencies. In their
classic experiment, Gharib & Roshko (1987) also employed the axisymmetric cavity
geometry and described a flow behaviour, termed wake mode, which was found to be
qualitatively distinct from that described by the quasi-parallel shear layer emanating
from the upstream cavity lip. Rowley et al. (2002), in their two-dimensional direct
numerical simulations (DNS), described both the shear-layer instabilities and those
of the bluff-body-like wake mode, and associated the latter with absolute instability
in the sense of Huerre & Monkewitz (1990), but did not employ the latter theory,
applicable to one-dimensional base flow profiles, to describe the wake mode physics.

The linear instability analysis of Brés & Colonius (2008) employed modal BiGlobal
theory to reveal a centrifugal instability mechanism associated with the main
recirculation eddy inside the cavity, which was responsible for the loss of stability of
two-dimensional cavity flows to three-dimensional instabilities. The frequency of this
centrifugal instability, the characteristics of which were documented for a wide range
of subsonic Mach numbers, was found to be one order of magnitude lower than that
of the shear-layer mode. The periodic spanwise structure formation predicted in the
analysis was found to be in good agreement with experimental observations in the
same geometry (Faure et al. 2007, 2009). Meseguer et al. (2014) and Citro et al.
(2015) have focused on the incompressible regime of spanwise-homogeneous flow
and presented detailed linear BiGlobal instability analyses of the centrifugal linear
instability mechanism; the latter work also discussed the means for theoretically
founded control of this instability mechanism. Yamouni et al. (2013) revisited
compressible flow over a rectangular open cavity and connected the global modes
identified in their analysis with those predicted by the earlier cavity acoustics theories.

Experimentally, vortex shedding phenomena with a lateral motion downstream of
the cavity were observed in a series of experiments performed in an axisymmetric
cavity by Zhang & Naguib (2008) and a wall-bounded version of the same
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geometry by Zhang & Naguib (2011). The detected frequencies were consistent
with those found by Sarohia (1977) but different from those predicted by the
Rossiter theory. In this context, the numerical experiments of Yao et al. (2004) on
unsteady incompressible three-dimensional cavity flow indicated that, at sufficiently
high Reynolds number, both three-dimensional centrifugal modes and shear-layer
modes may co-exist and interact. In an analogous vein, the experimental work of
George et al. (2015) employed stereo particle image velocimetry (PIV) measurements
to show that the effect of the sidewalls in the cavity flow is also relevant; their
experiments revealed that the frequency of the dominant Rossiter mode varies when
comparing different spanwise aspect ratio cavities, with and without lateral walls.
The experiments of Ashcroft & Zhang (2005) employed PIV measurements to
analyse turbulent flow over a large-width cavity and documented the presence of
shear-layer instabilities in turbulent flow. Özsoy et al. (2005) also experimented with
turbulent flow and described vortex motions inside the cavity. Crook, Kelso & Drobik
(2007), Crook et al. (2013) performed experiments with the full three-dimensional
geometry and postulated that a single vortex located near the cavity centreline was
responsible for asymmetries observed in the cavity flow. The observed asymmetry
in the time-mean flow was due to the asymmetries in the instantaneous flow field,
which switched between two extremes at low frequency. These authors associated
this motion with centrifugal instability, but with a more three-dimensional complex
pattern. De Vicente et al. (2014) further described the centrifugal instability in
a combined theoretical and experimental work, while very recently Douay et al.
(2016) have performed experimental work exclusively dedicated to the description
of this mechanism. Large-scale simulations have employed DNS to fully resolve
the two-dimensional (Sun et al. 2014) or three-dimensional spanwise-homogeneous
(Zhang et al. 2015) and finite-span cavity (Yao et al. 2004), as well as large eddy
simulation for the latter geometry (Forestier et al. 2003; Larchevêque et al. 2004,
2007; Nayyar, Barakos & Badcock 2007). Useful as they may be in the identification
of physical mechanisms, large-scale simulations are hardly appropriate for parametric
studies of the dependence of instability characteristics on geometric or flow parameters.
A full discussion of the intense efforts to control cavity flow, also by exploiting the
hitherto understood linear instability mechanisms, may be found in the excellent
reviews of Cattafesta et al. (2008) and the related work on actuators of Cattafesta &
Sheplak (2011).

Despite this intense activity, to date the question of the origins of laminar–turbulent
transition in the cavity model closest mimicking the desired application, namely a
three-dimensional, rectangular, finite-span open cavity, is still open. Evidence does
exist in the literature to suggest that the lateral walls have a profound influence on
the flow features, and hence on their instability modes. Motivated by the fact that
all linear instability work on open cavities has been performed either in a local
framework, or assuming flow homogeneity along the span, the present work employs
for the first time the TriGlobal modal analysis framework (Theofilis 2003) appropriate
for rectangular finite-span open cavities.

Section 2 defines the geometric and flow parameters considered. The cavity
geometry employed by Crook et al. (2013) and others in their experiments is chosen
in order to facilitate comparisons, albeit qualitative on account of the lower Reynolds
numbers at which instabilities have been identified; flow topology is used to relate the
two sets of results. Three-dimensional DNS is performed in § 3.1 in order to obtain
the base flows to be analysed, either by time-marching the full equations of motion
until convergence in the subcritical regime, or by employing a selective frequency
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D
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y z
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FIGURE 1. Configuration of the three-dimensional open cavity.

Re 900 950 1000 1050 1100

D/θ0 31.948 32.823 33.676 34.507 35.319
δ∗0 0.081 0.079 0.077 0.075 0.073
Reδ∗0 73.007 75.008 76.957 78.857 80.731

TABLE 2. Summary of the flow parameters considered in the analysis. Subscript 0 refers
to conditions at the upstream edge of the cavity.

damping (SFD) technique in order to obtain steady unstable three-dimensional flows
beyond the first bifurcation. Linear instability analysis results are presented in § 3.2
and their relation to those obtained by assuming spanwise-homogeneous flow is
discussed in § 3.3. Topological reconstruction of the main flow features is used to
provide a qualitative comparison of the present theoretical results with the available
experimental results. A short discussion in § 4 closes the present contribution.

2. Problem formulation

A sketch of the rectangular finite-span open cavity flow configuration walls is
shown in figure 1. The cavity geometry is characterized by a length L to depth D to
width W ratios of L : W : D = 6 : 2 : 1. A Cartesian coordinate system with (x, y, z)
the streamwise, wall-normal and spanwise direction, respectively, is considered and
the origin (0, 0, 0) is fixed at the upstream left corner of the cavity. The velocity
vector u(x, y, z, t) comprises the corresponding Cartesian components (u, v, w)T, all
of which are inhomogeneous functions of the three spatial coordinates and time. The
length, height and width of the computational domain are denoted by Lx, Ly and
Lz, respectively. The domain boundaries Din, Dw, Df , Dout and Dfs denote inflow,
wall, far-field, outflow and side wall boundaries, respectively. The flow is governed
by three-dimensional incompressible Navier–Stokes and continuity equations, and
the Reynolds number is based on the cavity depth Re = UD/ν, where U = 1 is
the streamwise velocity in the far field and ν is the kinematic viscosity. A laminar
Blasius boundary layer is imposed at the inflow boundary and the flow parameters
are chosen such that no boundary layer instabilities develop prior to the upstream
cavity lip. The parameter ratio of cavity length to initial boundary layer momentum
thickness, L/θ , boundary layer displacement thickness δ∗ and displacement thickness
Reynolds number Reδ∗ =Uδ∗/ν are fixed at the values listed in table 2.
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Direct numerical simulations are performed with the spectral element code Nek5000
(Fischer & Ronquist 1994). The boundary conditions used to obtain the solutions
analysed are homogeneous Dirichlet on the wall boundary Dw, (u, v, w)= (uB, vB, 0)
at the inflow boundary Din, (u, ∂v/∂n, w) = (U, 0, 0) on the far-field boundary Df ,
(∂u/∂n, ∂v/∂n,w)= 0 on the lateral boundaries Dfs and (p− (1/Re)∇u) ·n= 0 on the
outflow boundary Dout. The subscript B denotes Blasius boundary layer profile. The
computational domain above the cavity is initialized with an incompressible Blasius
boundary layer profile, while the flow inside the cavity is initially taken to be at rest.

The linear instability of the flow to small-amplitude perturbations has been analysed
using a modal TriGlobal approach (Theofilis 2003, 2011), following which flow
is decomposed into a steady base flow ū and a small amplitude time-varying
three-dimensional perturbation û according to

u(x, y, z, t)= ū(x, y, z)+ εû(x, y, z)eλt + c.c. (2.1)

Here λ = λr + iλi, where λr denotes the temporal amplification/damping rate of the
perturbations, λi is the perturbation frequency, c.c. denotes the complex conjugate
and ε � 1. Introduction of this decomposition into the equations of motion and
linearization yields the linearized Navier–Stokes equations (LNSE), which can be
recast as the three-dimensional eigenvalue problem

Aû= λû, (2.2)

at O(ε), in which the operator A is an abbreviation for the Jacobian. The boundary
conditions closing (2.2) are homogeneous Dirichlet on all perturbation velocity
components on Din and Dw alongside (û, ∂v̂/∂n, ŵ)= 0 on Df , (∂ û/∂n, ∂v̂/∂n, ŵ)= 0
on Dfs and (p̂ − (1/Re)∇û) · n= 0 on Dout. The eigenvalue problem (2.2) is solved
for the recovery of λ and û using the time-stepping methods provided in Nek5000
(Peplinski et al. 2014).

For comparison purposes with the more commonly employed BiGlobal linear modal
analysis framework for the analysis of open cavity flow, the related Ansatz is also
presented here. In the case of spanwise homogeneous base flow, linear global modal
perturbations satisfy the expansion

u(x, y, z, t)= ū(x, y)+ ε ˆu2d(x, y)ei(βz+λit)eλr t + c.c. (2.3)

The eigenvalue problem resulting from substituting (2.3) into the LNSE has also
been solved here and results will be discussed in the next section. In the present
work the BiGlobal eigenvalue problem is also solved by a time-stepping approach,
in a three-dimensional domain in which the base flow is uniform along z. Periodic
boundary conditions are imposed along the spanwise spatial direction, which, for a
given wavenumber of interest, β, is taken to have a length of Lz=2π/β. Consequently,
modes corresponding to β = 0 or multiples of the imposed β may appear in the
results.

3. Results

3.1. Base flow
At the set of flow parameters chosen our first concern has been to establish
independence of the steady base flows analysed from the choice of size of
computational domain and polynomial order used to resolve the base state and
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FIGURE 2. (a) Convergence history of ln(1Ek) against time. (b) Power spectral density
of ln(1Ek) at Re= 1100. (c) Spanwise fluctuation velocity component.

its gradients. As regards the extent of the domain, it was found that Lx = 13, Ly = 5
and Lz = 4 are the lowest values in the three spatial directions which ensure that the
base state obtained in the cavity is independent of the lateral, top and downstream
boundary locations.

Once the minimum domain size has been established, the genbox utility of nek5000
has been used to create a mesh comprising a total of 9696 elements. This has been
kept constant in the subsequent computations, while the polynomial order has been
varied between p = 5, 7 and 9, until convergence of the vorticity components at
randomly chosen locations within the domain was obtained; details may be found in
Liu (2016). In order to maintain the computing cost at a minimum while convergence
is ensured, p= 7 has been selected for the computations that follow.

Preliminary work on the same geometry and flow conditions has identified the
critical Reynolds number at Re ≈ 1100 (Liu, Gómez & Theofilis 2015). Below this
value direct DNS have been performed until convergence to a steady state has been
reached, while above this value the selective frequency damping (SFD) algorithm
(Åkervik et al. 2006), as implemented in the nek5000 code, has been used to obtain
steady unstable three-dimensional flows that will subsequently be analysed. It should
be noted in this context that the critical Reynolds number of an L : D = 6 : 1 cavity,
in which spanwise-homogeneous flow is considered, is Re ≈ 790 (Sun et al. 2014),
as extrapolated from the results of these authors at the limit Mach number M→ 0, a
point which will be discussed further in what follows.

Figure 2(a) presents DNS results at Re= 1050 and 1100. Shown is the perturbation
energy 1Ek = |Ek(t) − Ēk|, where Ek =

∫
Ω

u · u dΩ and Ēk is the solution at
convergence. At Re = 1050, a linearly decaying signal is observed, which results
in a steady state being obtained at convergence. By contrast, at Re = 1100 the
flow attains a saturated state in which both a low-frequency and a high-frequency
oscillation are visible. Fourier transforming the signal, two frequencies may be
identified, St = λiD/U ≈ 0.004 and St ≈ 0.23, as shown in figure 2(b). Isosurfaces
1w = ±0.008 of the spanwise component of the fluctuating velocity vector are
presented in figure 2(c) and will be discussed in what follows.

3.2. Linear instability analysis
Results of TriGlobal linear modal instability analysis performed for the stationary base
flows at Re= 900, 950, 1000 and 1050, and the steady unstable base flow obtained
with the SFD algorithm, using filter width ∆= 2 and force control parameter χ = 0.8,
at Re = 1100 are shown in table 3. At Re = 900 and 950, the leading global mode
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FIGURE 3. Dependence of λr on Re for the cavity modes ST, CS and CT.

FIGURE 4. Spanwise amplitude functions of the leading cavity eigenmodes at Re= 1050.

is stable and stationary, having a spatial structure reminiscent of the centrifugal
instability known from analyses of the spanwise-homogeneous cavity, as has been
discussed by Brés & Colonius (2008) and earlier related work (e.g. Barkley, Gomez
& Henderson 2002). This mode is referred to as the centrifugal stationary (CS)
eigenmode. Additional modes having low frequencies and analogous spatial structure
of the eigenfunctions, but being stronger damped, have also been recovered. The next
of them is referred to as the centrifugal travelling (CT) mode. When the Reynolds
number is increased to Re = 1000, the leading mode is still the CS perturbation,
however, besides this and the CT mode, a new global mode appears in the subset
of the eigenspectrum recovered, having a relatively higher frequency than the CT
mode, St ≈ 0.23. Owing to the spatial structure of its amplitude function, this mode
is termed the shear-layer travelling (ST) eigenmode. When the flow Reynolds number
is further increased to Re = 1050, the ST mode becomes the leading eigenvalue,
its λr exceeding the damping rates of both of the CT and CS instabilities, and
finally becoming unstable, leading flow to a modally unstable state and ultimately to
laminar–turbulent transition. The critical Reynolds number is obtained using linear
interpolation of the damping/growth rate results of the ST mode either side of the
λr = 0 axis, as shown in figure 3. The zero crossing of the λr,ST eigenvalue in this
open cavity configuration is estimated to occur at Recr ≈ 1080.

The spatial structure of the amplitude functions of global modes ST, CS and
CT at Re = 1050 is illustrated in figure 4. Eigenfunctions are normalized with their
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respective max |û| values and isosurfaces û = ±0.1, v̂, ŵ = ±0.05 are shown. Visual
inspection of the amplitude functions reveals that the velocity field of the ST mode
corresponds to three-dimensional shedding oscillations near the downstream corner of
the cavity, which exhibit typical shear-layer mode characteristics. However, the mode
structure is different from an idealized spanwise-homogeneous Kelvin–Helmholtz
perturbation, as it has a more complex spatial structure owing to the proximity of the
lateral walls. Such behaviour can be interpreted as being qualitatively related to that
found in earlier experimental work (Sarohia 1977; Zhang & Naguib 2008), according
to which no vortex structures are to be observed in the neighbourhood of the leading
edge of the cavity, while self-sustained oscillations are seen near the downstream
cavity corner, caused by convective waves accompanied by a large lateral flapping
motion. The present results identify the origin of the latter motion in the existence
of the spanwise perturbation velocity ŵST of the ST mode.

The amplitude functions of the CS and CT modes, also shown in figure 4, are
three-dimensional structures mainly confined inside the cavity, which peak in the
neighbourhood of the three-dimensional base flow recirculation region of the cavity
(Liu 2016). The characteristic structure of the ŵ perturbation component of both
of these modes is reminiscent of the pattern found in the spanwise-homogeneous
cavity (Brés & Colonius 2008), although in the latter case alternating maxima and
minima of the spanwise perturbation velocity are repeated, in line with the imposed
periodicity wavenumber. By contrast, in the present lateral-wall-bounded cavity, only
one such structure, symmetric about the plane z= 1, can be seen in the ŵ amplitude
functions of both of the CS and CT eigenmodes.

Returning to the ST mode, additional evidence regarding its potential relevance to
transition in the open cavity at higher Reynolds numbers is provided by the fact that
its frequency is found to remain approximately constant in the instability analysis at
Re = 1000 and 1050, and is practically identical to the highest of the frequencies
extracted by post-processing the DNS signal of nonlinearly saturated flow at Re =
1100, shown in figure 2(b). In other words, the dynamics of flow at Re= 1100 appears
to be dominated by the ST mode, a conjecture corroborated by the comparison of the
spatial structure of the spanwise velocity component obtained in the DNS at Re =
1100, shown in figure 2(c) with the amplitude function of the ŵST component of the
perturbation velocity at Re= 1050, shown in figure 4; the respective three-dimensional
functions are practically indistinguishable.

Next, an attempt is made to relate the present finding of linear instability of the ST
mode with the result of earlier experimental work of Crook et al. (2007) in which
the exact same geometry has been utilized, albeit at an order-of-magnitude higher
Reynolds number value. Topological bifurcations (Délery 2013) exerted by the ST,
CS and CT modes on the underlying steady three-dimensional base flow have been
examined by Liu (2016), using a methodology analogous to that employed in earlier
analyses of three-dimensional separated flows (Theofilis, Hein & Dallmann 2000;
Rodríguez & Theofilis 2011; Le Clainche et al. 2015). The near-wall-streamline
pattern of a composite three-dimensional field is computed, in which the base state
and its leading eigenmode are superposed linearly at an arbitrary but small amplitude
parameter ε.

Figure 5(a) shows the wall-streamline result for the ST mode at an amplitude
ε = 0.1, while in (b) the experimental result of Crook et al. (2007) is presented.
Compared with their counterparts constructed using the CS and CT modes (Liu 2016),
the wall-streamline pattern of the composite field corresponding to the ST mode is
that which closest resembles the streamline curvature pattern seen in the experiment.
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Secondary
flow

Possible
vortex path

Vortical surface
features

(a) (b)

FIGURE 5. (a) Wall streamlines of the composite field constructed with the ST mode at
Re = 1050. (b) Streamlines depicted in the experiments of Crook et al. (2007) at Re ≈
1.66× 104 (reproduced with permission).

The two vortices predicted experimentally to exist near the downstream corners
of the cavity (cf. Crook et al. 2013) can also be identified as greyscale pressure
minimum contours in the theoretical results. At the higher Reynolds number of the
experiment, additional eigenmodes may have become unstable and will modify the
theoretical wall-streamline pattern, such that the qualitative agreement presented may
still be fortuitous. Nevertheless, this result motivates renewed combined theoretical
and experimental efforts at the exact same parameters, in order to further elucidate
the laminar–turbulent transition scenario in this flow.

3.3. Instability in spanwise-homogeneous cavities
Instability analysis of flow over spanwise-homogeneous cavities has been performed
in order to enable quantitative comparisons with the results of the lateral-wall-
bounded open cavity discussed in the previous sections. Two spanwise-homogeneous
configurations have been chosen, the square cavity discussed by Citro et al. (2015)
at Re= 4140, β = 22 with which comparisons of the leading eigenmodes have been
performed, as well as a cavity with aspect ratio L : D = 6 : 1 (Sun et al. 2014) in
which analysis has been performed at Re = 1000, β = π. The conditions examined
in both configurations correspond to linearly unstable flow; the eigenvalue spectrum
is presented in the former work, while a critical Reynolds number 502 6 Re 6 634
has been reported in the latter at Mach number M = 0.1. In the present analysis,
three-dimensional DNS making use of the SFD algorithm is used to obtain the basic
states in both configurations.

The leading members of the eigenvalue spectrum obtained in the first configuration
were found to be in good agreement with the results reproduced graphically from
Citro et al. (2015) and shown alongside our results for both open cavity configurations
in table 4 (Liu 2016). Of particular interest in the present context is the second
configuration, in which the spanwise periodicity length, Λ = 2π/β = 2, is identical
to the width W = 2 of the wall-bounded cavity analysed in the earlier sections.
Comparing the results of table 3 at Re = 1000 and those of table 4 for the
L : D = 6 : 1 cavity, it is seen that the leading eigenvalues of the former cavity,
pertinent to the (linearly stable) lateral-wall-bounded flow and those of the (linearly
unstable) spanwise-homogeneous flow in the L : D = 6 : 1 cavity with periodicity
length Λ = 2, bear no resemblance to each other. Besides the opposite signs of
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FIGURE 6. Streamwise perturbation velocities of the leading three modes of a L : D =
6 : 1 spanwise-homogeneous cavity at Re= 1000 whose eigenvalues are shown in table 4.

L : D = 1 : 1 L : D = 6 : 1
Citro et al. (2015) Present results

Mode λr λi λr λi Mode λr λi

I 0.233 0 0.2380 0 I 0.0850 ±1.0537
II 0.218 ±0.260 0.2243 ±0.3005 II 0.0798 ±1.5313
III 0.176 ±0.567 0.1811 ±0.6036 III 0.0320 ±0.2427
IV 0.113 ±0.886 0.1176 ±0.9134 — — —

TABLE 4. Leading eigenvalues in the spanwise-periodic open cavity L : D = 1 : 1 at
Re= 4140, β = 22 and in the L : D = 6 : 1 cavity at Re= 1000, β =π.

the amplification rates λr of all three modes, none of the frequencies, λi, in either
set of results coincides with any mode pertaining to the other configuration. The
stationary perturbation in the lateral-wall-bounded flow is altogether absent in the
spanwise-homogeneous case. On the other hand, the fact that the frequencies of the
travelling modes in the two configurations are of the same order of magnitude may
be considered as being fortuitous.

The last statement is strengthened by reference to the amplitude functions obtained
in BiGlobal linear modal analysis of the spanwise homogeneous open cavity flow. The
streamwise perturbation velocity components of the three modes pertinent to the L : D
= 6 : 1 cavity shown in table 4 are presented in figure 6 as isosurfaces û = ±0.2,
after being scaled with their respective max(û) values. The first two modes are seen
to correspond to β = 0 and be independent of the z-spatial direction, a fact that is
certainly not true in any of the corresponding eigenfunctions shown in figure 4. Indeed,
Modes I and II of the spanwise-homogeneous base flow are typical Rossiter modes
further discussed by Liu (2016), while the well-defined spanwise-periodic structure of
Mode III, known from earlier analyses and experiments to be related to centrifugal
instability, is also different from the spatial structure of the amplitude functions of
the CS or CT modes, in which the lateral-wall effect are evident.

4. Discussion and conclusions

Incompressible flow over a three-dimensional rectangular finite-span open cavity
with L : W : D = 6 : 2 : 1 has been analysed with respect to its linear instability from
subcritical to supercritical conditions. TriGlobal linear analysis has been employed for
the first time to this class of flows, and the critical Reynolds number was determined
to be Recr ∼ 1080. The mode responsible for the first bifurcation from steady to
unsteady flow that may lead to laminar–turbulent flow transition at higher Reynolds
numbers is akin to the well-known shear-layer instability, although the lateral walls
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have a strong effect on the amplitude function. Direct numerical simulations at
supercritical Reynolds numbers confirmed the existence and predominance of the
shear-layer mode. Linear amplification of the leading shear-layer eigenmode gives
rise to large lateral motions near the downstream cavity wall, while wall-streamline
patterns corresponding to the linear superposition of the base flow and this mode are
reminiscent of experimental results at one order of magnitude higher Reynolds number.
Additional eigenmodes have been discovered, arising from centrifugal instability
associated with the three-dimensional laminar separation bubble forming inside the
cavity. The centrifugal instabilities are less damped than the shear-layer mode at lower
Reynolds numbers, but have not become unstable in the Reynolds number range
examined presently. Results of the present analysis have been compared with those
pertinent to the well-understood spanwise homogeneous open cavity configuration
having the same length-to-depth ratio. Strong differences were documented both in
the critical Reynolds number values of the two configurations, as well as in the
frequencies and spatial structure of the amplitude functions of all modes identified in
the respective analyses, a result which underlines the need to employ modal TriGlobal
linear stability theory in order to understand the origins of laminar–turbulent flow
transition in three-dimensional open cavity geometries.
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