
J. Plasma Physics (2001), vol. 65, part 5, pp. 365–406. � 2001 Cambridge University Press

DOI: 10.1017/S002237780100887X Printed in the United Kingdom

365

Meromorphy and topology of localized
solutions in the Thomas–MHD model

J. -D. F O U R N I E R1 and S. G A L T I E R1,2,3

1Department G.D. Cassini, Observatoire de la Côte d’Azur and CNRS, BP 4229,
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91405 Orsay Cedex, France

(Received 1 December 1999 and in revised form 17 March 2000)

Abstract. The one-dimensional MHD system first introduced by J.H. Thomas [Phys.
Fluids 11, 1245 (1968)] as a model of the dynamo effect is thoroughly studied in
the limit of large magnetic Prandtl number. The focus is on two types of local-
ized solutions involving shocks (antishocks) and hollow (bump) waves. Numerical
simulations suggest phenomenological rules concerning their generation, stability
and basin of attraction. Their topology, amplitude and thickness are compared
favourably with those of the meromorphic travelling waves, which are obtained
exactly, and respectively those of asymptotic descriptions involving rational or de-
generate elliptic functions. The meromorphy bars the existence of certain configur-
ations, while others are explained by assuming imaginary residues. These explana-
tions are tested using the numerical amplitude and phase of the Fourier transforms
as probes of the analyticity properties. Theoretically, the proof of the partial in-
tegrability backs up the role ascribed to meromorphy. Practically, predictions are
derived for MHD plasmas.

1. Introduction
In the present theoretical work, the reader should not expect the physical modelling
of any particular plasma – natural or experimental. Following the other route, we
start from a well-known particular one-dimensional magnetohydrodynamic (1D-
MHD) theory, the Thomas (1968) system, and we derive its predictions. Using ele-
mentary dynamical systems theory, asymptotic and complex analysis, and precise
numerical simulations, we derive exact results and reliable phenomenological laws
on intermittency, energy balance and integrability. We first discuss the domain of
validity of the various hypotheses made in obtaining the Thomas system and in
the course of its study.

1.1. Aim and scope of this study

Our motivation is to contribute to a better understanding of certain phenomena
occurring in natural plasmas where the 1D-MHD level of description is sufficient. It
is now widely recognized that the MHD approximation is adequate for a variety of
astrophysical and geophysical plasmas (Parker 1994), ranging from the Sun (Priest
1982; Galsgaard and Nordlund 1996) and the solar wind (Dobrowolny et al. 1980;
Zank and Matthaeus 1992; Marsch and Tu 1994, Goldstein and Roberts 1999) to
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the interstellar medium (Heiles et al. 1993; Bhattacharjee et al. 1998). The MHD
approximation is in turn a convenient tool for a thorough study of very anisotropic
plasmas (Shebalin et al. 1983; Ng and Bhattacharjee 1997; Galtier et al. 2000) – not
to mention laboratory plasmas created in tokamaks (Wild et al. 1981; Taylor 1986).

Specifically, the phenomena we have in mind are shocks (Festou et al. 1993;
Zilbersher et al. 1998; Pouquet et al. 1999) and localized oscillations, as well as
the spatio-temporal intermittency events present in the interstellar medium and
in the solar corona, or more generally in the heliosphere (Burlaga 1991; Schwenn
and Marsch 1991), of which solar flares are but a catastrophic example (Galtier
and Pouquet 1998); here the 1D reduction proves to be rich enough to capture
the physics and mathematics of the phenomena. On the other hand, in some other
cases, this reduction is the last resort, given the formidable task presented both
mathematically and numerically by the full 3D-MHD problem. It is especially so
if one is to perform a large number (of large duration) of computer simulations to
obtain reliable statistics, which is in order given the turbulence present in most of
the media cited above. Our experience (Galtier and Pouquet 1998) is that 1D models
are useful and rewarding given the non-trivial physical effects they can embody
and the quality of the statistics. Of course, for a good global understanding, the
statistical approach has to be complemented and clarified by the prior study of
the deterministic structures (cf. Galtier and Fournier (1998), where a preliminary
account of the present work was given) and singularities generated in the flow by
the nonlinear dynamics.

Finally, we focus our study on situations where the ratio of the kinematic viscos-
ity and the magnetic resistivity, the magnetic Prandtl number, is large, as encoun-
tered, for example, in the interstellar medium (Heiles et al. 1993). Conversely our
study predicts a preference for states where the magnetic energy is larger than the
kinetic one – a situation encountered in some regions of the heliosphere (Schwenn
and Marsch 1991); according to our findings, this could be a hint that the Prandtl
number is large in these regions. For the mathematical part of our study, the Prandtl
number is taken to be infinite; that is, the magnetic resistivity is set to zero.

With these guidelines in mind, we consider in the present paper the localized (in
space) solutions and the integrability properties of a particular 1D model of MHD;
the model is akin to those used in previous statistical and deterministic studies
(Galtier and Pouquet 1998); up to this point, our study is entirely deterministic.
We derive exact solutions of the travelling-wave problem, which are meromorphic
(in space), as well as meromorphic (in space) approximations of localized solu-
tions of the genuine time-dependent problem. We study numerically the stability of
localised (or ‘topological’) solutions and the validity of their meromorphic approxi-
mations. Incidentally, we hope to convince the reader (i) how worthwhile it is to go
over to the complex plane (Chabat 1990; Flaschka et al. 1991) to detect and char-
acterise hidden singularities (Fournier and Bessis 1994) that govern the shape, the
integrability and the dynamics of localized real solutions (Fournier 1986); (ii) that
partial integrability (see Conte and Boccara 1990; see the end of this section and
Sec. 5) gives a handle on features and (quasi-) solutions of certain nonlinear systems.

1.2. The Thomas–MHD model

The particular 1D MHD model that we study is the one introduced by Thomas
(1968) as a model of the dynamo effect. It is given by

∂tv + v ∂xv = b ∂xb + σ ∂xxv, (1.1a)
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∂tb + v ∂xb = b ∂xv + η ∂xxb , (1.1b)

where v(x, t) is the velocity field, b(x, t) the magnetic induction, σ the kinematic
viscosity and η the magnetic resistivity. We want to mention that these equations,
under various disguises, represent various physical phenomena. For instance, in the
inviscid limit, the system (1.1) is conjugate to the system

∂tv + v ∂xv = − 1
γM 2

1
ρ
∂xρ

γ , (1.2a)

∂tρ + ∂x(ρv) = 0, (1.2b)

under the mapping

b =
1
M
ρ(γ−1)/2, (1.3)

and the restriction γ = −1 (Thomas 1970). The system (1.2) describes the dynamics
of polytropic gases with index γ, density ρ and Mach number M . The physical,
hydrodynamical and mathematical aspects of this system or systems akin to it have
been extensively studied in the literature. Brunelli and Das (1997) have obtained
a Lax representation of the system (1.2) for γ ∈ N∗. Olver and Nutku (1988) have
exhibited the Hamiltonian structure of a family of hydrodynamic type, including
(1.2), but the value γ = −1 appears as a singular case. Statistical investigations have
been pursued recently by Passot and Vázquez-Semadeni (1998), with emphasis on
the symmetric role of the case γ = 1.

Going back to the MHD problem, we stress that the system (1.1) has the ad-
vantages of having the same nonlinearities as the full MHD equations and also the
same form for the dissipative effects. The system is characterized by two dimen-
sionless numbers: the Reynolds number Re, which is proportional to 1/σ, and the
magnetic Prandtl number

PM =
σ

η
. (1.4)

The main difference from the full MHD equations is that the solenoidal constraint
has been dropped both for v and b; its presence would of course completely trivialize
this 1D problem. Here, in the opposite case, we have a sort of infinite compress-
ibility, but this phenomenon is balanced by dissipative effects. A similar discussion
could be given with regard to the Burgers equation, of which the Thomas model
(1.1) is the most natural generalization to the magnetic case. We just note here in
passing that after the exciting introduction of his equation by Burgers (1939) (and
see also Burgers 1974) as a model of turbulence, the discovery (Hopf 1950; Cole
1951) that it could be linearized depreciated it in his own view! Nevertheless the
Burgers equation is still today a rich source of inspiration, a physical model and
a mathematical toy; the structures and the singularities that it produces are ac-
tively studied in both the deterministic and statistical cases (Kida 1979; Fournier
and Frisch 1983; Bessis and Fournier 1984, 1990; Gurbatov et al. 1997). We be-
lieve that, with the aid of the accumulated experience on the Burgers equation, the
Thomas model is worth similar efforts.

We recall that in the inviscid limit (σ → 0+), the Burgers equation is singular in
the real domain: the solution exhibits ‘true’ shocks, with a finite discontinuity of
the velocity. When a coupled magnetic induction is introduced, as in (1.1) but with
zero diffusion term (η = 0), the singularity is prevented in strong initial magnetic
induction regions and favoured by neutral points. This was proved by Sulem et al.
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(1979) for the Thomas model with σ = η = 0, using real analysis tools. We shall
refer later to their results as governing asymptotic regimes.

In a more recent study, Passot and Pouquet (1986) have discussed the integra-
bility of the model on the basis of the nature of the complex singularities, the
so-called Painlevé test (Ablowitz et al. 1980; Weiss et al. 1983; Passot 1986). They
pointed to the possibility that in subcases (e.g. η = 0) the system (possibly endowed
with an additional integrability constraint) could be solved, although in most cases
the system should have infinitely multivalued singularities; generically, this entails
a clustering of identically singular points, which precludes integrability. It is an
instance of partial integrability, a concept whose validity has since been widely
recognised (Levine and Tabor 1988; Fournier et al. 1989; Conte and Boccara 1990)
and has motivated us to look for exact solutions in the zero-magnetic-resistivity
case. In an unpublished study, Passot (1987) also conducted numerical experiments
at moderate resolution (64 modes) with magnetic Prandtl number and Reynolds
number ranging typically from 1 to 10. In several instances, he observed localized
profiles for v, b and/or the reduced Elsässer variables z± = v ± b. Those could
take the form of fronts, pulses or hollow waves, which were all reminiscent of lim-
iting cases of Jacobi elliptic functions. We therefore considered it a challenge to
find meromorphic solutions or at least prove the existence of nearby complex poles
whose position, motion, order and residue would explain these shapes.

2. Travelling waves at infinite Prandtl number : exact results
By infinite Prandtl number, we mean here zero magnetic resistivity η.

2.1. Profiles of the travelling waves

We study hereinafter solutions {ṽ(x, t), b̃(x, t)} of the system (1.1) that depend only
on the reduced variable X = x− ct. In applying a Galilean transform

v = ṽ − c, (2.1a)

b = b̃, (2.1b)

it is clear that the profiles v(X) and b(X) of these travelling waves are solutions of
the stationary Thomas system (1.1). We rewrite it hereinafter for convenience as

vv′ = bb′ + σv′′, (2.2a)

vb′ − bv′ = 0, (2.2b)

where the primes indicate derivatives with respect to X. The system (2.2) is invari-
ant under space translation; all the profiles obtained here should be understood as
functions of X−X∗, where X∗ is a free, real or possibly complex number (since the
solutions can be analytically continued).

We first consider the case of zero kinematic viscosity, where the solutions are
either (i) a pure constant for both v and b or (ii) a free function of X provided that
v and b are equal up to a sign. The latter seems to have curiosity value, but we
stress that in this case the nonlinearities in (2.2a) annihilate each other.

Turning to σ > 0, we mention the possibility of an identically vanishing velocity
field, with which a pure constant magnetic induction is associated; and of an iden-
tically vanishing magnetic induction, which maps back the problem to the Burgers
equation.
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Finally, there is again here the possibility of v and b having the same modulus,
but this time the presence of the kinematic viscosity restricts the solutions to a
constant or affine behaviour.

Once these extreme cases have been examined, (2.2b) indicates that the ratio of
the two fields is a non-degenerate pure constant. Precisely, we note that

b = Dv, (2.3)

with D being a finite real number (since v and b are real for X real) but with −1,
0 and 1 excluded. Using then (2.3) in (2.2a) and integrating once, one gets

1
2 (1−D2)v2 + λ = σv′, (2.4)

where λ is a free integration constant belonging to R. Three different regimes must
now be studied according to the position of the product λ(D2 − 1) with respect
to 0.

If λ vanishes, (2.4) can be trivially integrated, leading to the solution

v = −2σ
1

1−D2

1
X
, (2.5a)

b = −2σ
D

1−D2

1
X
. (2.5b)

If λ(D2 − 1) is negative, a simple change of variable and of function,

v = A tan[ϕ(X)], (2.6)

leads to the solution

v = A tan
(

A

2σ
(1−D2)X

)
, (2.7a)

b = Dv. (2.7b)

The amplitude A is a free real positive number. The freedom in the choice of A
stands for the freedom of the constant previously denoted by λ.

If λ(D2−1) is positive, the solutions are no longer circular but rather hyperbolic
functions. Depending on the sign of the derivative, one gets respectively

v = −A coth
(

A

2σ
(1−D2)X

)
, (2.8a)

v = constant, (2.8b)

v = −A tanh
(

A

2σ
(1−D2)X

)
; (2.8c)

in each case,

b = Dv. (2.8d)

We note in passing that, on using a complex translation, as discussed above, with

X∗ = i
π

2
2σ

A(1−D2)
, (2.9)

the solution (2.8c) produces the solution (2.8a).
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2.2. Singularity analysis

At the end of this rather elementary but systematic discussion, we want to stress
that all non-trivial solutions are meromorphic functions exhibiting one or an infinite
number of poles in the real or complex domain. Of course, the singularities of v and
b have the same position. Also, the reality of the fields for real X implies that each
singularity in the complex plane is accompanied by a singularity with the complex-
conjugate position and a complex-conjugate amplitude factor. We shall not enter
into a discussion of the convergence of the Laurent series or of the questions of their
formal existence or the possibility of logarithmic corrections; the last two points
will be the subject of Sec. 5. Of course, for the travelling-wave solutions obtained
above, all of this information can be read off from (2.5)–(2.8). Nevertheless, we want
to show how indications on the nature of singularities and the amplitude factors
can be obtained from the structure of the travelling-wave equations (2.2), using the
so-called dominant singularity analysis. Let us suppose that locally (somewhere in
the complex plane)

v ' V0X
−α, (2.10a)

b ' B0X
−β , (2.10b)

where V0 and B0 are (possibly complex) amplitudes, and α and β are, to start with,
positive rational numbers. Using this local behaviour in (2.2b) implies equality be-
tween α and β. Going then to (2.2a), the nonlinear terms are of the same order of
magnitude, and the question is to compare this with the magnitude of the dissi-
pative term. Of course, it can only be of the same order or subdominant. In the
latter case, the amplitudes V0 and B0 have also to be equal up to a sign. Now, we
know from (2.2b) and (2.3) that the ratio of the two fields is a pure constant. So, if
V 2

0 = B2
0 , this means that |v| = |b| globally – a particular case already studied and

where solutions are entire functions. Thus each of the three terms in (2.2a) con-
tributes to the dominant singularity analysis; this implies that α = β = 1, which is
a simple pole; for the moment, we assume they are pure poles (e.g. no logarithmic
corrections). For the amplitudes (residues) the singularity analysis of (2.2a) implies

V 2
0 = B2

0 − 2σV0. (2.11)

In contrast to the Burgers equation, the residues are not constrained by the struc-
ture of the equations. In reference to the Burgers case, we introduce normalized
residues such that V0 = −2σW and B0 = −2σZ. These normalized residues are a
priori free complex numbers depending on the considered pole of v (respectively b).
However, for a given pole, they cannot be chosen independently. They are related
by

Z2 = W 2 −W. (2.12)

It is noteworthy that, for any given travelling-wave solution, the residues are real
and identical for all the poles. Given the fact that the ratio D of the two fields is a
pure constant, it is thus also the case for the ratio of the residues −2σZ and−2σW .
The ratio of the normalized residues is in turn equal to D; given (2.12), one thus
has

W =
1

1−D2 , (2.13a)

Z =
D

1−D2 , (2.13b)
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as is simply seen from (2.5) or (2.8). The dominant singularity analysis and the
relation (2.12) extend to the possible meromorphic solutions of the time-dependent
problem, since the terms with time derivative in (1.1) do not contribute to the
dominant singularity analysis of these equations. This will be of some importance
in Secs 3 and 4, and will be discussed thoroughly in Sec. 5.

2.3. Phase space and orbits

For completeness, and to mention a link with the previous remarks, we want here
to present the study of the geometrical aspect of the problem (2.2) with a strictly
positive viscosity. Here no claim is made for originality (see e.g. Arnold 1973),
but we need to go into details for the announced discussion. Again we put aside
the regimes where the ratio D = b/v is infinite or plus or minus one. Under this
restriction, the Thomas system reduces to the non-trivial regimes of (2.2a). This
family of second-order differential equations, for the profile v as a function of X,
is parametrized by D. Given the sign of 1 − D2, it can be mapped into a unique
dynamical system via the following change of variables

s =
|1−D2|

σ
X, (2.14a)

ξ1(s) = v(X), (2.14b)

ξ2(s) =
σ

|1−D2|v
′(X). (2.14c)

The phase space of this two-dimensional system will be the plane (ξ1, ξ2), and the
dynamical equations then read

dξ1

ds
= ξ̇1 = ξ2, (2.15a)

dξ2

ds
= ξ̇2 = sign(1−D2) ξ1ξ2, (2.15b)

where (ξ̇1, ξ̇2) is the velocity vector field of the dynamical system. We note at once
that changing the sign of 1 − D2 is just equivalent to considering a new vector
field obtained from the previous one by symmetry with respect to the ξ1 axis,
an operation that keeps unchanged the topology of the field. From now on, we
shall thus restrict our study to D2 < 1. In doing so, we are actually studying the
analogous dynamical system associated with the stationary Burgers equation with
a viscosity equal to one.

We proceed to the local analysis of the field (2.15) (see Fig. 1). All the points of
the ξ1 axis are fixed points, and there are no others in the finite domain. These
points are thus neutral in the ξ1 direction. The differential flow of the field at any
point of the ξ1 axis exhibits an eigenvector e = (1, ξ1) associated with an eigenvalue
equal to ξ1. The point at infinity is also a fixed point. This can be seen using inverse
polar coordinates; by this, we mean rewriting the vector field (2.15) in the plane
(ρ, θ), where θ is the polar angle and ρ the inverse modulus of the vector (ξ1, ξ2). In
this reference system, the point (0, 1

2π) is indeed a fixed point. We note in addition
that on the ξ2 axis, the field is parallel to the ξ1 axis, with an intensity such that
it reaches the first bisecting line (ξ2 = ξ1), under identification of the phase space
and its tangent space.

We turn now to global analysis. As we know from the previous section, the
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Figure 1. Phase-space representation of the dynamical system constituted by the stationary
Thomas system in the normalized coordinates (ξ1, ξ2). All the points of the ξ1 axis are fixed
points; on the ξ2 axis, the field is parallel to the ξ1 axis, with an intensity (represented by the
arrows) that reaches the first bisecting line. The integral lines of the system correspond to
three different classes of parabolas. The arches of these parabolas correspond to the solutions
(2.5)–(2.8). The tan solution corresponds to the upper parabola (dash-dotted line), the unique
pole solution to the middle one (solid line), the coth solution to the two upper-half-plane
branches of the lower one (dashed line) and the tanh solution to the lower half-plane branch
of the same parabola. The phase points travel according to the arrows. The parabolas are
labelled: inside by the time and outside by the values of ξ1 and ξ2 when finite.

differential system (2.2) can be integrated. In terms of the associated dynamical
system, this means that we can write down the equation of the integral lines, namely

ξ2 = 1
2ξ

2
1 + µ. (2.16)

This family of parabolas divides into three classes (Fig. 1). For positive µ, the
parabola is entirely in the upper half-plane, and, in keeping with the previous
notation, we write

ξ2 = 1
2ξ

2
1 + 1

2 A2. (2.17)

A limiting case is obtained for µ = 0. For negative µ, the parabola equation reads

ξ2 = 1
2ξ1

2 − 1
2 A2. (2.18)

It crosses the ξ1 axis, and thus divides into three branches.
Combining the geometrical information (2.16) and the dynamical content of

(2.15a) yields exactly (2.4), which has already been solved and discussed. The ad-
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vantage of the point of view of this section is that a topological meaning is attached
to each of the four families of solutions. The tan solutions (2.7) correspond to the
upper-half-plane parabola; the representative phase point travels from the upper
left corner down to the summit of the parabola and then to the upper right corner,
as times elapses from (− 1

2π) to ( 1
2π). The unique pole solution (2.5) corresponds to

the limiting case µ = 0. Here the phase point travels from the origin of the plane
to the upper right corner, as time elapses from minus infinity to zero; then it comes
back from the point at infinity, down the upper left branch, and approaches the
origin as time goes to infinity. The coth solutions (2.8a,d) correspond to the two
upper-half-plane branches of the parabolas, whose summit lies in the lower half-
plane; the phase point starts, for infinite negative times, from a point (A, 0); it is
bound to the point at infinity in the upper right corner and comes back from infin-
ity via the upper left corner, to reach, as time goes to infinity, the point (−A, 0).
Finally the tanh solutions (2.8c,d) correspond to the lower branch of the previous
parabolas; starting from (A, 0) at large negative times, the phase point reaches the
summit (0,−A2) at time equal to zero and the symmetric point (−A, 0) at large
positive times.

The first comment is that what we called ‘non-trivial’ solutions of (2.2) in Sec. 2.2
are all heteroclinic orbits of the system (2.15), joining two fixed points, or three in
the coth case. It is a fact of life that travelling-wave solutions of partially integrable
PDEs are often meromorphic – or at least those that correspond to heteroclinic
orbits have this property. Our second comment is that in the present case, all non-
trivial travelling waves are heteroclinic orbits and do correspond to meromorphic
solutions.

2.4. Realistic solutions

We discuss now the feature of the physically relevant solutions – that is, those that
are real for X real and have no singularity in the real domain. Apart from the
trivial solutions, this means that we study the profiles (2.8c,d), which we rewrite
here for convenience:

v = −A tanh
(

A

2σ
(1−D2)X

)
, (2.19a)

b = −DA tanh
(

A

2σ
(1−D2)X

)
; (2.19b)

we recall that A is a strictly positive real number and D is a real number such that
D(1 − D2) does not vanish. For the velocity field, the jump across the transient
region located nearby the origin is [−A sgn(1 −D2)]; if it is negative, we call this
region a shock, as usual; if it is positive, we call it an antishock. We use the same
terminology for the magnetic field.

The richness of this MHD problem appears here in the fact that, in contrast to
the Burgers case, the sign of the jump of the profiles (2.19) is not prescribed by the
equations. Both v and b may undergo a negative or positive jump depending on the
sign of 1 − D2 (respectively D(1 − D2)), which we call for this reason topological
factors. In his unpublished finding, Passot had found one of the configurations
generated by the model – the one where both v and b have a shock profile. Three
other configurations are clearly possible with v and/or b exhibiting an antishock
profile. In all these cases, transient profiles match two plateaus of the physical
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fields; following condensed matter physics terminology, we shall therefore call these
solutions defects and the transient region the core of the defect.

One interesting physical prediction of the configurations described by (2.19) con-
cerns the width of the shock (and/or antishock). The jump is always different for
v and b, but the thickness governed by the argument of the tanh function is the
same for both fields. Thus the physics of these regimes, in the absence of magnetic
resistivity, is governed by the kinematic viscosity for both fields.

The notion of thickness may seem a priori a bit loose, although there is no doubt
about its scaling with respect to the viscosity, the amplitude of the jump and
the absolute value of the topological factor 1 − D2. We propose hereinafter two
quantitative definitions.

The notion of a shock is naturally associated with the idea of a rapid jump and
thus with the presence of a peak in the derivative. From a physicist’s point of view,
the thickness of the shock can be defined as the spatial extension of the region
where the derivative is large; it provides a natural length scale. Let us denote by
Md the absolute value of the extremum of the derivative, reached at X = 0; we
define the thickness of the shock (or antishock) by δp such that

∣∣v′ ( 1
2δp
)∣∣ =

Md

p
, (2.20)

where p is some arbitrary number imposing a definite change in the order of mag-
nitude of the derivative (e.g. p = 10). Using (2.19a), this means that

δp = 2 arcosh(
√
p)

2σ
A|1−D2| . (2.21)

Applying the same reasoning to the magnetic induction leads to exactly the same
formula. For the range of values of p that is of interest here, the ‘arcosh’ function
varies slowly (like a log), and thus the precise choice of p has a weak effect on the
definition of the thickness. Taking p = 10 as an example, we get

δp = (3.64 . . .)
2σ

A|1−D2| . (2.22)

A more mathematically oriented alternative definition is to use the analytic con-
tinuation of the tanh function. The abrupt change in the real domain can be seen
as resulting from the presence of a parade of an infinite number of poles, regularly
spaced on the imaginary axis ‘above’ the shock (or antishock). This point of view
also offers a natural length scale, but in the complex domain: the distance to the
real axis of the closest pole, i.e. the width of the analyticity strip. Clearly the pos-
ition iδ of this pole is reached when the argument of the tanh function is 1

2 iπ; that
is, for

δ =
π

2
2σ

A|1−D2| . (2.23)

This second definition is quantitatively comparable to the first, but has no arbi-
trariness. It brings to the fore the fact that the thickness is the same for v and b,
but depends on both jumps. Its generalization to the time-dependent case will be
much used in the next section.
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3. The dynamically forbidden, admissible and preferred configuration
of the shock defects

The findings of the preceding section take their full value in view of the fact that
the predicted shock/antishock configurations are indeed dynamically generated by
the time-dependent model, as will be seen in the present section. Although the
possibility of four configurations appears as a richness of the model, as we have
already pointed out, it is actually remarkable that, by (2.19), it rules out four
other configurations. Indeed if one combines the topological idea of the sign of the
jump for each field with the quantitative idea of a dominant kinetic or magnetic
energy, one can imagine only four topologies but eight configurations. The question
thus naturally arises of what happens if one chooses as initial condition one of the
four configurations that are not amenable to (2.19). We have actually investigated
the dynamical problem for each of the eight possible configurations taken as initial
conditions.

Up to this point, we have not obtained any explicit genuine time-dependent
global solution, although the likely existence of meromorphic ones is encouraging.
This and related questions are discussed in Secs 3.2 and 5. We thus analyse here
especially the data at times of order one, when the nonlinear effects have taken
place and where a fair local comparison with the explicit travelling-wave solutions
of Sec. 2 is possible.

The results in the present section have been obtained from numerical experi-
ments, about which we give now some details. The computation is based on a pseu-
dospectral method that implies periodic boundary conditions; we use a second-order
Crank–Nicholson algorithm for the time stepping; a resolution of 2048 grid points
is reached; the choice of a magnetic Prandtl number of 103 is made, with σ = 10−2

and η = 10−5; the two initial fields and their gradients being of order one, we take a
timestep ∆T = 4×10−4. Concerning the initial conditions, we know from the Burg-
ers equation that the region with large negative gradients will generate the shocks.
Since we are interested in the dynamics of isolated shocks, we choose initial con-
ditions such that only one shock (antishock) per unit length is generated for each
field in the body of the cell [0, 2π]. Others may be generated at the boundaries, and
very smoothed shocks and oscillations may be present in between. One could use
the spatial periodicity of the numerical solutions in studying both the centre and
the edge of the cell for each run. In this presentation, we prefer to concentrate on
the centre of the cell, with a larger collection of initial conditions. Also, our study
of the travelling waves suggests strongly the dynamical importance of the ratio D
of the two fields. In the end, this led us to choose

u(x, 0) = U0 sinx, (3.1a)

b(x, 0) = B0 sinx, (3.1b)

where U0 and B0 are real quantities of order one. We avoid initial conditions leading
to a trivial problem (U0 = 0) or mapping back the problem to the pure Burgers
case (B0 = 0) or giving raise to a quasilinear evolution (B0 = ±U0). Depending on
the position of the ratio D0 = B0/U0 with respect to +1, 0, −1, and the sign of
U0, this opens the possibility of eight different types of initial conditions. In the
inviscid non-magnetic case, an initial condition such as (3.1a) would produce a real
singularity at t = 1 and x = π. It is on this space–time region that we focus our
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attention. An advantage of the choice (3.1) is to include the case studied by Passot
(U0 = 1 and B0 = 0.2).

3.1. The fate of the eight configurations at times of order one

To implement the announced programme, we have used the initial conditions (3.1)
with U0 and B0 both taken from the set {−1,−0.2,+0.2,+1}, with all non-trivial
combinations being explored. We present here the fate at times of order one of
these eight different initial configurations. To discuss our results, we now need a
bit of nomenclature; this is done first according to the position of the decreasing
real number D0 with respect to +1, 0,−1, leading to the types 1, 2, 3 and 4; and
then according to the sign of the real number U0, leading to the subtypes α when
U0 > 0, that is, when the velocity has its most negative gradients for x ' π;
and to the subtypes β in the opposite case (U0 < 0). The configurations described
by (2.19) fall into the subtypes (1.β), (2.α), (3.α) and (4.β). They will be called
‘admissible’ configurations in the rest of this section. Without prejudice regarding
the results of the numerical exploration of the dynamics, we shall call ‘forbidden’
the other configurations that do not exist in the travelling-wave problem. The same
names are used to characterize the solutions at subsequent times; in the latter case,
this is of course only in reference to the local profiles for x ' π. These names are
written out with the numerical profiles gathered in Figs 2 and 3. Clearly this study
and this classification are redundant because of the invariance of the dynamics
of the Thomas model under the symmetry (v, b) −→ (v,−b). This can be seen on
comparing, for example, the configurations (2.α) with (3.α) in Figs 2 and 3 and
in Table 1. We use the redundancy to present a complete picture and to test our
numerical code.

The evolution of initial conditions of types 1(α, β) and 2(α, β) are presented in
Fig. 2; the drawings depict the profiles of the velocity (dashed line) and of the
magnetic induction (dash-dotted line) at the initial time (left-hand panels) and at a
later time of order one (right-hand panels). Figure 3 is similar, with initial conditions
of types 3(α, β) and 4(α, β).

A first look at the figures will show that, at times of order one, the two fields reach,
in most cases, a profile reminiscent, at least locally, of the exact travelling-wave
solutions of Sec. 2.4. Whenever possible, we have thus fitted the numerical results,
at a given time, by the analytic expression (2.19), where X should be understood
as X − π. Clearly from (2.19), the ratio D of the fields is also the ratio of their
gradients; for the best construction of the fit, we evaluate D as the numerical value
of the ratio of the gradients taken at the core of the defect. In a second step, we
obtain a numerical evaluation of A based on the numerical value of the velocity
gradient at the same point.

We shall hereinafter present our findings mainly by commenting upon these fig-
ures. At times of order one, we see that the original case (1.α) has changed its
topology, generating a (very smoothed) antishock for v, while b generates, as could
be expected, a (very smoothed) shock. This new topology is obtained very quickly;
the configuration is one of the admissible ones (4.β) and the fits are good locally.
Case (1.β) keeps its initial topology, with a (very smoothed) antishock for both v
and b, and the fits obtained are even better than in the previous case. Case (2.α)
generates the two expected shocks, which can be well fitted by the ‘tanh’ profiles.
In contrast to the previous cases, the forbidden configuration (2.β) does not evolve,
after times of order one, towards one of the admissible subcases: like (1.β), the topol-

https://doi.org/10.1017/S002237780100887X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780100887X


Meromorphy and topology of localized solutions 377

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

u, b

(1.α)

0.4

0.2

0

–0.2

–0.4

3.0 3.5
x, t = 3.6

(4.β )

2.5

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

u, b

(1.β )
0.4

0

–0.4

2.5 3.0
x, t = 3.6

(1.β )

2.0 3.5 4.0

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

(2.α )

u, b

1.0

0.5

0

–0.5

–1.0
2.0 2.5 3.0 3.5 4.0

x, t = 1.6

(2.α )

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

(2.β )

u, b

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4

x, t = 3.6

(2.β )

5 6

Figure 2. Profiles of the velocity (dashed lines) and the magnetic induction (dash-dotted
lines) for the four initial cases 1(α, β) and 2(α, β) (left-hand panels); the profiles at times of
order one (t = 1.6 or t = 3.6) are depicted in the right-hand panels. Local fits (solid lines) of
the profiles with the admissible shock/antishock configurations are also displayed.

ogy is the product of two antishocks, but this time the magnetic energy is smaller
than the kinetic one. This exotic behaviour will change in the long run, but at this
time no fit with the known coupled profiles is possible. In a similar way, Fig. 3 deals
with the last four cases. Cases (3.α) and (4.β) generate the expected configurations
and are fitted by the analytical profiles – especially well for (4.β). Case (4.α), like
case (1.α), changes its topology and reaches the configuration (1.β), which again
allows a fit. Finally, the (forbidden) configuration (3.β) keeps its configuration; it

https://doi.org/10.1017/S002237780100887X Published online by Cambridge University Press

https://doi.org/10.1017/S002237780100887X


378 J.-D. Fournier and S. Galtier

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

u, b

(3.α)

1.0

0.5

0

–0.5

–1.0
2.5 3.0

x, t = 1.6

(3.α )

2.0

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

u, b

(3.β )
0.5

0

–0.5

1 2
x, t = 3.6

(3.β )

0 3 4

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

(4.α )

u, b

0.6

0.4

0

–0.2

–0.6
2.5 3.0 3.5 4.0

x, t = 3.6

(1.β )

1.0

0.5

0

–0.5

–1.0
0 1 2 3 4 5 6

x, t = 0

(4.β )

u, b

0.5

0

–0.5

0.2 2.5 3.0 3.5
x, t = 3.6

(4.β )

3.5

3.5 4.0

5 6

0.2

–0.4

Figure 3. Profiles of the velocity (dashed lines) and the magnetic induction (dash-dotted
lines) for the four initial cases 3(α, β) and 4(α, β) (left-hand panels); the profiles at times of
order one (t = 1.6 or t = 3.6) are depicted in the right-hand panels. Local fits (solid lines) of
the profiles with the admissible shock/antishock configurations are also displayed.

has the topology of one of the admissible cases (4.β), v antishock/b shock, but with
the ‘bad’ ratio of magnetic to kinetic energy. Thus no fit is possible with (2.19).

In the light of these results, a first conclusion can be drawn. At times of order one
the profiles of the travelling-wave exact solutions provide a good description of the
(admissible) configurations (1.β) and (4.β), while for the (admissible) configurations
(2.α) and (3.α), the validity of the fits is more narrow. This is consistent with the
fact that, in the present numerical exploration, the quasishocks (antishocks) of the
solutions of types (1.β) and (4.β) exhibit a much greater thickness δ than those of
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Figure 4. Temporal evolution of the thickness δ of the shocks created by the original case
(2.α). The value of δ computed from the relation (2.23) is represented by squares. An advan-
tageous comparison is made with the values of δ for the shock of the velocity (asterisks) and
of the magnetic induction (triangles) deduced from a fit on the spectra of the kinetic energy
and of the magnetic energy respectively. In the magnetic case, note the absence of data at
t = 1.2 and the disagreement after t = 3.4, where no accurate fits are possible.

types (2.α) and (3.α); and, of course, one expects the fits to be correct on a distance
O(δ). A comment on the nonlinear character of the solutions is in order here. The
above discussion relies mainly on the fits, themselves based on the magnitude of
the two fields v and b. To understand more fully the character of the solutions, it
is necessary to possess a precise evaluation of the thickness of the defect, which
is also the distance to the nearest singularity in the complex. The amplitude A
and the distance δ are related through an equation that also involves the residue
W of the complex pole ((2.23) and (2.13); see details below; there is an equivalent
formulation for b). In Table 1, we present for each admissible configuration discussed
here the entire collection of the numerical values of these quantities, along with
the magnetic residue Z and the ratio D of the two fields. It is striking that the
distance δ is O(10−2) for the shock/shock configuration (2.α) (and its counterpart
(3.α)), while it is O(1) for the very smoothed shocks (antishocks) of configurations
(1.β) and (4.β). The former cases ((2.α) and (3.α)) are thus strongly nonlinear, and
this can be understood with the aid of Theorem 4 of Sulem et al. (1979). In the
limiting case σ = η = 0, these authors proved that, if there exists, in the initial
condition, a neutral point a∗ (b(0, a∗) = 0) satisfying ∂xu(0, a∗) < −|∂xb(0, a∗)|,
then the system develops a real singularity in finite time. Among the eight initial
configurations, only (2.α) and (3.α) fulfil the condition (at the neutral point a∗ = π;
as already mentioned, we forget about the boundaries); in our numerical study with
small viscosity and very small diffusivity, they produce quasisingular shapes. In the
opposite situation, the value of δ in the cases (1.β) and (4.β) means that here the
extreme nonlinearity of the poles has very little influence in practice. Moreover, it
is remarkable that, while both being O(1), the two fields b and v have a ratio very
close to 1; as we already noticed in Sec. 2.1, this implies a quasilinear regime. We
note that, even in this regime, the solution of Sec. 2 provide a good representation
of the (extended) core of the defect. Finally, there are other indications that types
(1.β) and (4.β) play a special role. It is indeed remarkable that the two forbidden
configurations (1.α) and (4.α), which have changed their topology, have generated
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Table 1. Numerical values, for times of order one, of the ratio D, the kinetic residue W , the
magnetic residue Z, the amplitude A, the amplitude DA and the thickness δ of each of the
admissible configurations (1.β), (2.α), (3.α), (4.β), described locally by (2.19), reached by the
system.

t = 0 (1.α) (1.β) (2.α) (3.α) (4.α) (4.β)
t = O(1) (4.β) (1.β) (2.α) (3.α) (1.β) (4.β)

D −1.04 1.02 0.181 −0.181 1.04 − 1.02
W −12.7 −31.1 1.03 1.03 −12.7 −31.1
Z 13.2 −31.6 0.187 −0.187 −13.2 31.6
A 0.494 0.782 0.933 0.933 0.495 0.782
DA −0.514 0.798 0.169 −0.169 0.515 0.789
δ 0.807 1.25 0.035 0.035 0.807 1.25

the configurations (4.β) and (1.β). These latter thus seem to be the more attractive
among the admissible configurations. However, a firm conclusion cannot be drawn
without knowledge of the fate of the configurations at large times. This will be done
in Sec. 3.3.

We return now to the calculation of the thickness δ, concentrating on its time-
evolution in the (2.α) configuration. In section 2.4, we proposed the relation (2.23)
as a possible definition of the thickness δ of a shock/antishock. The knowledge of
the values of A and D, calculated to obtain at various times fits similar to those
presented in Figs 2 and 3, allows us to compute also δ and to follow its evolution,
especially at times of order one. Figure 4 (squares) shows this evolution for an initial
condition (t = 0) of type (2.α) (see Fig. 2), with time elapsing from t = 1.2 to t = 3.9.
We see that the thickness is characterized by a minimum at time t∗ ' 1.6, meaning,
from the point of view of the complex analysis, that the distance to the real axis
of the closest pole is minimal. According to the temporal position with respect to
t∗, two different regimes appear. Before t∗, the dynamics is mostly nonlinear, with
the formation of a shock configuration, the thickness of which decreases to reach
a minimum at t∗; after t∗, there is a dissipative phase where the thickness of the
shock increases.

3.2. Meromorphy and Fourier transform

We draw the reader’s attention to the mathematical meaning of the calculation of
the thickness presented in the previous section. Using (2.23) for this calculation
was nothing else than considering the analytic continuation, in the complex spatial
domain, of a local real approximation of a numerical profile, by a function of the
family (2.19). As already mentioned in Sec. 1, we are actually after the analycity
properties of the time-dependent solution itself – which of course are not a priori
identical to the analyticity properties of the local fit. A classical mathematical
probe of these properties is the behaviour at large wavenumbers of the Fourier
transform of the solution. Although, as we have just pointed out, this is a non-
rigorous reasoning, we pretend here that the results of Sec. 3.1 and the partial
integrability character of the Thomas model are indications of the meromorphy
of our time-dependent solutions. We shall also assume that the pattern created
by the poles is such that the Fourier integral on R can be transformed into a
contour integral on a curve Γ in C such that (i) there is no pole in the interior
of the domain and (ii) the contribution of most of the arcs of Γ vanishes when
the diameter of the domain goes to infinity. An example of what we mean is given
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Figure 5. Integration contour Γ around the singularity z∗ in the complex plane.

in Fig. 5. Given these hypotheses, the large wavenumber behaviour of the Fourier
transform of the time-dependent solution can be expressed order by order in an
asymptotic expansion according to the Laplace method. The main contributions
to the Laplace integral come from the arcs of Γ that are close to singularities of
the solutions. And, apart from pathologies discussed later, the amplitude of the
dominant term is controlled by the nature, the amplitude factor and the position
of the singularities closest to the real axis. We note in passing that this property
was the key technical point in the work by Frisch and Morf (1981) concerning a
particular scenario for intermittency in dynamical systems. More relevant to the
present work is the paper by Sulem et al. (1983), who, to the best of our knowledge,
were the first to make use of the Fourier transform to characterize the analyticity
properties of computer-generated solutions of PDEs. They concentrated on the
behaviour of the width δ(t) of the analyticity strip as a function of time; δ(t) was
obtained as the logarithmic decrement of the exponential fall-off of the modulus of
the Fourier transform at very large wavenumbers. We have worked along the same
lines but with the purpose of extracting more information on the function from the
knowledge of its Fourier transform. Specifically, we have examined the modulus
and the phase of the overall amplitude factor in front of the dominant term; this
factor is indeed generally a complex number that contains information not only on
the real part of the position of the singularities but also on the amplitude factors of
these singularities. As far as we know, this systematic use of the Fourier transform
is a novelty in the context of the numerical study of PDEs. Its value will perhaps
be more evident in the following section, but we need to go now into the details.

Let us first consider a meromorphic function f (z, t) with poles of order n (a
positive integer); let us consider the pole closest to the real axis, located at z∗(t) =
x∗(t) + iδ(t). Then the function behaves like

f (z, t) ' A [z − z∗(t)]−n (3.2)

in the neighbourhood of z∗(t), where the amplitude factor A is any complex num-
ber. As throughout the present work, we assume that f (z, t) is real-analytic, that
is, f (z, t) = f (z, t), where the bar indicates the complex conjugate. Using the tech-
niques described above, we introduce a contour Γ that lies entirely in the upper or
in the lower complex half-plane. Given our choice of the definition of the Fourier
transform integral (see Table 2), the expansion ‘à la Laplace’ of the integral is then
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Table 2. Some useful Fourier transforms. Note that when needed the Fourier integral is to
be understood as a Cauchy principal value integral.

f (x) f̂ (k) =
∫ +∞
−∞ f (x)e−ikx dx

(1 + x2)−1 πe−|k|

x (1 + x2)−1 − sign(k) i πe−|k|

tanhx − sign(k) i 2π cosh( 1
2kπ)/cosh(kπ)

1/coshx π/cosh( 1
2kπ)

conveniently done for k negative and large or for k positive and large, the two re-
sults being related by Hermitian conjugation. The dominant order of the Fourier
transform is thus readily obtained:

f̂ (k, t) ' 2π
1

(n− 1)!
(−1)n inAe−ikx∗(t)kn−1e−kδ(t), (3.3)

for

k� 1.

A more general and systematic derivation may be found in Frisch and Morf (1981).
In the Thomas model, we expect all singularities to be pure simple poles (n = 1),
as discussed in Sec. 2 (up to possible logarithms – see Sec. 5 – which we overlook in
the present regimes). For most of the initial conditions studied here, the abscissa
of the defect is π, and thus one expects that the real part of the location of the
singularities will be equal to π. The resulting asymptotic behaviour of the Fourier
transform of the velocity and the magnetic field should thus read

v̂(k, t) ' (−2σ)W 2π (−i) e−ikπe−kδV (t), (3.4)

b̂(k, t) ' (−2σ)Z 2π (−i) e−ikπe−kδM (t), (3.5)

for

k� 1;

we have used the normalized residues notation and introduced two different loga-
rithmic decrements δV (t) and δM (t) for the two fields. From the singularity analysis
of (2.2), we have learned that W and Z should be related by (2.12) and that δV (t)
and δM (t) should be equal.

For reasons that will appear immediately, we now turn to the simplest possible
case allowed by the hypothesis made on f (z, t), namely a function with only one
pair of poles with real identical residues and no additional entire part in the sense of
the Mittag–Leffler (Chabat 1990) decomposition. The function f (z, t) then reduces
to a rational function, which reads

f (z, t) = (−2σ)(2Ã)
z − π

(z − π)2 + δ2(t)
, (3.6)

with notation similar to that used in (3.4) and (3.5); in particular, Ã is the real
normalized residue. This extremely simple case has two interesting features. In a
real neighbourhood of π and over a distance O(δ), it exhibits a profile reminiscent
of a shock (or antishock, depending on the sign of Ã) with the maximum gradient
located exactly at π. The Fourier transform of this ‘poor man’s model’ of a shock
can be calculated exactly; for positive k it reads

f̂ (k, t) = (−2σ) Ã 2π (−i) e−ikπe−kδ(t) (3.7)
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(we have used Table 2). It is noteworthy that the asymptotic result of the type
(3.4), (3.5) is in this simple case an exact representation. Turning now from a
rational function to a degenerate elliptic function, one is naturally led to consider
the paradigmatic description of a shock by the usual tanh function. Again with the
same assumptions and notation, this reads

f (z, t) = (−2σ) Ã
π

2
1
δ(t)

tanh
(
π

2
z − π
δ(t)

)
. (3.8)

There are now an infinite number of poles with the same (normalized) residue R.
This gives rise to the plateaus of the tanh function in the real domain, allowing a
more global representation of the shock/antishock. This is the representation used
in the previous section to fit the shock defect. Again the Fourier transform can be
calculated exactly, and reads

f̂ (k, t) = (−2σ) Ã (2π) (−i) sign(k) e−ikπ
cosh[kδ(t)]
cosh[2kδ(t)]

, (3.9)

(we have used Table 2). Trivial manipulations of this formula will again produce to
the dominant order the formula (3.7).

Going back to the specifics of the numerical simulations, we recall that our nu-
merical scheme produces solutions that are spatially periodic with period 2π. We
are thus dealing with Fourier coefficients with the wavenumber k being an integer,
varying from 0 to 1

2N − 1, where N is the resolution (typically, N = 2048). All
the above asymptotic considerations on the Fourier integral go over to the case
of Fourier coefficients. If at all correct, our description of the shock defects of
the Thomas model by tanh profiles thus finally leads to the following predictions
concerning the numerical Fourier data:

Phase[v̂(k, t)] = (−1)k sign(1−D2)
π

2
, (3.10)

ln[|v̂(k, t)|2] ' ln(16σ2π2)− ln[(1−D2)2]− 2 δV (t)k, (3.11)

Phase[b̂(k, t)] = (−1)k sign[D(1−D2)]
π

2
, (3.12)

ln[|b̂(k, t)|2] ' ln(16σ2π2)− ln

[(
1−D2

D

)2
]
− 2 δM (t)k, (3.13)

for
k� 1. (3.14)

We have tested the phase predictions (3.10) and (3.12) for various cases of the
classification used in Figs 2 and 3. For times of order one, there is agreement up to
the 11th digit between the prediction and the numerics, for practically the whole
range of wavenumbers. For the energy spectra the situation is slightly more subtle,
as can be seen from Fig. 6. Among all possible configurations, we have chosen to
study in detail the evolution of type (2.α). Although the fits presented in Fig. 2 may
seem discouraging, we point out that the two shocks have a small thickness, which
means that the corresponding singularities are close to the real axis, a favourable
situation for the type of analysis we perform here. Moreover there is no small-scale
excitation outside the core of the defect. In Fig. 6(a), the kinetic spectrum |v̂(k, t)|2
is plotted on a log–log scale as a function of k, for various times between t = 1
and t = 4. Two comments are in order: for the largest wavenumbers, the numerical
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Figure 6. Plots of the kinetic energy spectrum EV (k) for the configuration (2.α) (see Fig. 2):
(a) on a log–log scale; (b) on a linear–log scale. EV (k) is plotted at times between t = 1.2
and t = 3.9. The kinetic spectra between k = 30 and k = 90 exhibit an exponential fall off
((b), corresponding to the zone between the two vertical lines in (a)).

noise (unavoidable with such small dissipation coefficients) dominates; for slightly
smaller wavenumbers, oscillations are clearly visible, which may be attributed to
the interaction of singularities whose locations do not have the same real part, a
point that we have not pursued. Finally, on decreasing once more the wavenumbers,
one enters the range where a distinct exponential fall-off can be seen. Concentrating
on the range k ∈ [30, 90] and using a linear–log representation (Fig. 6b), we can fit
the spectrum by straight lines, the slope of which is −2δV (t). The same process was
followed for the magnetic induction. Both results are plotted in Fig. 4 along with
the previous evaluation of the shock thickness based on the fits. We just stress here
the good agreement between the three processes.

3.3. Large-time states: stability and metastability of the admissible configurations

The numerical experiments described in the introduction to this section have been
carried out for times up to many hundreds. We present and discuss here the fate
at moderate times and large times of the eight different initial configurations.

At moderate times, two interesting phenomena appear for configurations (2.β)
and (3.β). We recall that at times of order one, the initial configuration (2.β) had
kept its topology, while the ratio of the magnetic energy to the kinetic energy
had grown from 0.2 to almost 1; this tendency continues, and eventually the ener-
getic ratio crosses the critical value 1. According to our classification, one has thus
reached the configuration (1.β), which is one of the four admissible configurations.
The same applies for (3.β), which eventually reaches an admissible state of type
(4.β). We now comment that, more or less rapidly, all eight possible initial configur-
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Figure 7. Geometrical representation of the classification of the shock, antishock, hollow
and bump defects. The axes and the bisecting lines define eight sectors, which correspond
to the configurations introduced in Sec. 3 and are labelled according to the classification of
Sec. 3.1. The equilateral hyperbola represents the admissible configurations. We have tried
to render the dynamics by the use of different codings: a solid line for the W axis, which is
never crossed; a dash-dotted line for the bisecting lines; they are semipermeable frontiers,
and are crossed slowly; a dotted line for the Z axis, also a semipermeable frontier, but easily
crossed. When possible, the admissible configurations of Table 1 have been represented by
crossed. Using the transform Z = iΛ, the same plane is used to represent the circle of the
admissible shock/hollow (or bump) configurations: the appearance of complex residues sup-
plies a connecting path between the two branches of the hyperbola. The four configurations
of Table 4 are represented by crosses on the circle.

ations have eventually reached one of the four admissible configurations described
in Sec. 2. However, the four admissible configurations do not seem to play an equiv-
alent role in terms of their basin of attraction. At moderate times, six of the initial
configurations have been attracted by the two admissible configurations for which
v has an antishock and the ratio of magnetic to kinetic energy is larger than one,
that is, configurations (1.β) and (4.β). The admissible profiles (2.α) and (3.α) have
been reached only by initial configurations that were already of the same type. This
is in keeping with our previous remark that the fits with the profiles of Sec. 2 were
specially good for (1.β) and (4.β).

To pursue this discussion and present the results for large time, we have found it
convenient to use a geometrical representation of our classification in eight different
configurations. We recall that for the travelling-wave solutions, the (normalized)
residues of the (complex) poles are real and related by (2.12); also, the ratio of the
residues D is an indication of the relative importance of the magnetic and kinetic
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energies. It is then convenient to consider a plane with coordinates W and Z (see
Fig. 7); then (2.12) can be rewritten as(

W − 1
2

1
2

)2

−
(
Z
1
2

)2

= 1, (3.15)

which shows that the admissible configurations ‘live’ on an equilateral hyperbola;
we note in passing that the origin (W = Z = 0) is meaningless while the other
apex corresponds to the Burgers equation (W = 1, Z = 0). The ratio of magnetic
to kinetic energy can also be given a geometrical meaning with the aid of the two
bisecting lines described by the equation |D| = |Z/W | = 1. Clearly, the topology
of the defect is governed by the position with respect to the main axes, while the
energy ratio is governed by the position with respect to the bisecting lines. The
plane is thus divided into eight regions corresponding to the eight configurations of
our classification, the designations of which are given on Fig. 7. Each of our initial
conditions (3.1 a,b) lies in the corresponding sector of Fig. 7, but none of them is
on the hyperbola, or on the axes, or on the bisecting lines. Using this geometrical
language, all our findings concerning the dynamics at times of order one and at
moderate times are easily restated:

(i) the basins of attraction of the two sectors (2.α) and (3.α) seem to be limited
to themselves respectively;

(ii) all other points have reached the left half-plane and specifically its sectors
(1.β) and (4.β);

(iii) the motion of the representative points always joins points with the same
sign of Z;

(iv) the slow dynamics of types (2.β) and (3.β) may be linked to the necessity of
crossing the bisecting lines, which are the lines of equipartition of energy.

At this point, only the configurations (2.α) and (3.α) still ‘live’ in the right half-
plane; they do have profiles that, at least locally, are well described by those of
the meromorphic solutions of Sec. 2 that correspond to the right branch of the
hyperbola. Interestingly enough, the study at later times, O(100), revealed that
even these configurations would leave the right half-plane and reach a final state of
type (4.β) or (1.β) – that is, one of those well described by the meromorphic solutions
corresponding to the left branch of the hyperbola. Watching the evolution for even
larger times (up to 600), we found that all solutions, whatever their original type,
were better and better represented by (2.19) with |D| larger than one. In Fig. 8,
we have given the profiles of the two fields, with the corresponding fits, for two
configurations that were initially in two different half-planes and both outside the
attractive sectors. They have both reached the attractive sectors, and the fits are
valid at moderate distances ((b), (1.β), t = 80) or even globally for very large
times ((a), (4.β), t = 570). For the latter case, we stress that the value of the fit
goes far beyond the core of the defect, which is in this case of small width. The
numerical characteristics of the configuration of Fig. 8 are to be found in Table 3.
Although both configurations ‘live’ on the left branch of the hyperbola, they are
distinctly different from the nonlinearity point of view. There is indeed a factor
O(10) between the two analyticity-strip widths; at the same time, the ratio of the
fields is extremely close to one in the smooth configuration (1.β), which, as already
noticed, is the trace of a quasilinear regime.
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Figure 8. Profiles of the velocity (dash lines) and the magnetic induction (dash-dot lines) for
configurations that were initially (2.α) (a) and (2.β) (b), at times t = 570 and t = 80 respec-
tively. Notice the excellent agreement with the fits (solid lines). See Table 3 for numerical
details.

Table 3. Numerical values, for times of order hundred, of the ratio D, the kinetic residue
W , the magnetic residue Z, the amplitude A, the amplitude DA and the thickness δ of the
configurations initially (2.α) and (2.β). See Figure 8 for the profiles and fits.

t = 0 t = O(100) D W Z A DA δ

(2.α) (4.β) −6.36 −0.025 0.161 0.002 −0.014 0.366
(2.β) (1.β) 1.01 −84.1 −84.6 0.578 0.584 4.57

We now try to bring out some general features of the dynamics of the shock
defects. Using the geometrical language introduced above, we recall that two sec-
tors were first attracted by the right branch of the hyperbola but that, later on,
this region emptied onto the left branch of the hyperbola. Among the admissible
configurations, one thus must make the difference between metastable and stable
states. Using the parametrization (2.13) of the hyperbola, one sees that the stable
branch corresponds to D ∈]−∞,−1[∪] + 1,+∞[; as a result, in those states, (i) the
velocity always has the topology of an antishock; (ii) the magnetic energy is larger
than the kinetic energy. We also note that the sign of Z seems to be an invariant
in any evolution, and so also is the topology of the magnetic induction defect. We
suggest that, owing to the lack of dissipation in the magnetic induction equation,
the tendency of the system to reach states with a magnetic energy larger than the
kinetic one is a governing factor of the dynamics. Combined with the meromorphic
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properties of the travelling waves, which is expressed by the hyperbola, this yields
an explanation of all the features described above.

4. Magnetic hollow defects and complex residues
We turn now to an other observation made by Passot in the same numerical study
alluded to in Sec. 1. Starting with the initial condition

u(x, 0) = sin x, (4.1a)

b(x, 0) = 0.2, (4.1b)

he found that at times of order one, the Thomas model generated a shock for
the velocity field while the magnetic induction had a hollow profile (see Fig. 9,
which reproduces our own calculations). We interpret this as an oscillation created
by the system to join two separate regions where the magnetic induction has the
same (almost) constant value. The position of the bottom of the magnetic hollow
coincides with the position of the centre of the velocity shock. Each of the two fields
thus exhibits a defect, with the cores at the same place. The combination of the two
profiles is thus a new sort of defect naturally generated by the Thomas model. After
Passot’s discovery, various approximations or interpretations of this phenomenon
have been proposed, mainly based on the invariances of the equations. However,
all of them implied a type of singularity ruled out by the analyticity properties of
(1.1) studied by Passot and Pouquet (1986) and further explored by ourselves (see
Secs. 2 and 5). Hereinafter, we propose a simple explanation of the phenomenon
based on the meromorphy of the solutions; specifically, we make use of the freedom
left by (2.12) to have imaginary residues.

In our ‘poor man’s model’ of a shock (see (3.6)), we considered a meromorphic
function with only one pair of poles, no additional entire part, and identical real
residues. A more general requirement would be to have complex residues, conjugate
of each other. Here we concentrate on the particular case where the residues are
purely imaginary. Let us denote by iΛ the normalized residue of the pole located
at π + iδ, with δ positive; the corresponding rational function thus reads

f (z, t) = (−2σ)(−2Λ)
δ(t)

(z − π)2 + δ2(t)
, (4.2)

where Λ is a priori any real number. The poor man’s model of the hollow shape is
readily obtained in choosing Λ negative. One can imagine describing simultaneously
the velocity profile by the corresponding poor man’s model of the shock shape. The
poles have to be located at the same position as those of the hollow shape, but their
(normalized) residues have to be real. Now the crucial remark to be made here is
that such a configuration is allowed by the relation (2.12). Assuming indeed that
Z = iΛ, (2.12) becomes

Λ2 = W −W 2, (4.3)

which has real solutions with Λ ∈ [− 1
2 ,

1
2 ], provided that W ∈ [0, 1]. Prompted by

this remark, we have performed a new detailed high-resolution numerical simulation
with the initial condition (4.1), with the purpose of providing an explanation of the
hollow defect by the meromorphic properties of the system (1.1). On the pattern of
the previous section, we have tested this idea in comparing the numerical solutions
to the profiles predicted by two different meromorphic models and the numerical
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Fourier data with the asymptotic behaviour of the Fourier transform of the same
models. The physical and numerical specifications of the simulations are identical
to those of Sec. 3.

Our first model of the magnetic hollow defect is obtained using a slight improve-
ment of the above poor man’s model. The latter implies that the field tends to zero
at large distances. Figure 9(c) clearly shows that the magnetic induction tends to
a non-zero constant. We thus just use (3.6) and (4.2), but we allow a background
bc(t) for the magnetic induction. Rewriting with our usual notation, we thus have

v(x, t) = (−2σ)
2

1 + ∆2

x− π
(x− π)2 + δ2

V (t)
, (4.4)

b(x, t) = bc(t) + (−2σ)2
(−∆)

1 + ∆2

δM (t)
(x− π)2 + δ2

M (t)
, (4.5)

where ∆ = Z/iW ; Z is an imaginary number. In this model, the Fourier transform
of the velocity field is given exactly by (3.7), with Ã = 1/(1 + ∆2); the Fourier
transform of the magnetic induction can also be calculated exactly, and reads

b̂(k, t) = 2πbc(t) δ0(k) + (−2σ)
(−∆)

1 + ∆2 (2π) e−ikπe−kδM (t), (4.6)

where δ0(k) is the Dirac distribution centred at the origin (we have used Table 2).
We immediately introduce our second model. As in the shock defects, we try to

have a better description using degenerate elliptic functions that have an infinite
number of poles ‘above’ the core of the defect. For the velocity field, one uses the
usual tanh profile as in the preceding section (see (3.8))

v(x, t) = −A tanh
(
π

2
x− π
δV (t)

)
, (4.7a)

A = 2σ
1

1 + ∆2

π

2
1

δV (t)
. (4.7b)

To build a model for the magnetic induction, we take into account the analyticity
constraints coming from (4.7) and (1.1). The analytic extension of the magnetic
induction model must have poles located at the same place as the velocity model.
To describe a hollow profile, our first model suggests that the residues should be
imaginary, with the first pole in the upper complex half-plane (z∗ = π+ iδV ) having
a residue Z = iΛ, with

Λ =
∆

1 + ∆2 (4.8)

a negative real number. Combining (1.1), written on the imaginary axis, with the
ansatz (4.7) on the whole plane, one can prove that b2 must be periodic, with period
iπ. Moreover, over a distance of the order of the extension δ(t) of the core of the
defect, in any direction in the complex plane, the prediction of the two hollow
models should be close to each other. Now, in the simple hollow model (4.2), the
function never vanishes except at infinity. Given the pattern of the poles on the
imaginary axis and given this non-zero-crossing property, it is unavoidable that
the (imaginary) residues have alternating signs. The magnetic induction b is thus
periodic of period 2iπ. Forgetting for a moment about a possible additional entire
part, the only choice left is, up to a scaling factor on the variable and the field, the
degenerate case (m = 1) of the Jacobi elliptic function cn(z,m), that is (cosh z)−1.
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Figure 9. Profiles (dashed lines) of the velocity (a,b) and the magnetic induction (c,d) for time
t = 1.6. Local fits of the profiles realized with the ‘poor man’s models’, (4.4) and (4.5), are
shown by dotted lines, and the local fits realized with the elaborate models, (4.7) and (4.9),
by solid lines. Note the quality of the fits on the blow-ups (b) and (d). The initial conditions
are given by (4.1).

Introducing again a constant background bc(t), and with all our previous notations,
our more elaborate model for b thus reads

b(x, t) = bc(t)−B

[
cosh

(
π

2
x− π
δM (t)

)]−1

, (4.9a)

B = −∆A = −2σ
∆

1 + ∆2

π

2
1

δM (t)
, (4.9b)

δM (t) = δV (t). (4.9c)

Going to the Fourier space, the transform of the velocity field (4.7) is given exactly
by (3.9), with Ã = 1/(1 + ∆2); the Fourier transform of the magnetic induction can
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Figure 10. Temporal evolution of the thickness δ of the shock/hollow defect calculated using
the meromorphic ‘elaborated’ model. The initial conditions are given by formula (4.1).

also be calculated exactly, and reads

b̂(k, t) = 2πbc(t) δ0(k) + (−2σ)
(−∆)

1 + ∆2 π e
−ikπ {cosh[k δM (t)]}−1 (4.10)

(we have used Table 2). Trivial manipulations on (4.10) will again produce, to the
dominant order, the regular part of the formula (4.6). Our two meromorphic models
of the hollow/shock defect of the Thomas system thus finally both lead to the
following predictions concerning the numerical Fourier data:

Phase[v̂(k, t)] = (−1)k
π

2
, (4.11)

ln[|v̂(k, t)|2] ' ln(16σ2π2)− ln[(1 + ∆2)2]− 2 δV (t)k, (4.12)

Phase[b̂(k, t)] = π
1 + (−1)k

2
, (4.13)

ln[|b̂(k, t)|2] ' ln(16σ2π2)− ln

[(
1 + ∆2

∆

)2
]
− 2 δM (t)k, (4.14)

for

k� 1. (4.15)

Using the numerical data provided by our new simulation mentioned above, we
have tested the predictions of our two models in both physical and Fourier space.
With regard to the Fourier space, we have concentrated on the predictions con-
cerning the phase, for which the presence of an imaginary residue is a key factor
(compare (4.13) with (3.12)). In the shock/hollow defect, we found agreement up
to the 11th digit between the Fourier predictions (4.11), (4.14) and the numerics.
For the physical space, we have tried to fit the numerical profiles by the analytic
expressions of the first and second models. We proceed as follows. From the ex-
pressions (4.4), (4.5) and (4.7), (4.9), it is an easy matter to obtain predictions for
the infima of the gradients of both fields, and thus for the ratio of these quantities.
Hence, by comparison with the numerical data, one can find the value of ∆, the
ratio of the amplitude of the velocity shock to the depth of the magnetic hollow.
From the value of the infimum of the gradient of the velocity field, one then gets a
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Table 4. Numerical values, for times of order one, of the ratio ∆, the kinetic residue W ,
the magnetic residue Λ, the amplitude A, the amplitude |∆A|, the background bc and
the thickness δ of four different shock/hollow defects. As the initial magnetic induction B0

increases, the amplitude of the velocity shock A decreases.

U0 1 1 1 1
t = 0 B0 0.1 0.2 0.5 1.5

∆ −0.185 −0.574 −1.055 −1.078
W 0.967 0.752 0.473 0.462
Λ −0.178 −0.432 −0.499 −0.499
A 0.950 0.793 0.401 0.110
|∆A| 0.176 0.455 0.423 0.119
bc 0.1 0.2 0.5 1.5
δ 0.032 0.030 0.037 0.132

numerical estimate of the thickness δ(t) or equivalently of the amplitude A of the
shock. Depending on the model, A and δ are related by

δ =
2σ

A(1 + ∆2)
(4.16)

in the poor man’s model, and

δ =
π

2
2σ

A(1 + ∆2)
(4.17)

in the elaborated model. Finally, using the expression for the magnetic field at the
centre x = π, one adjusts the numerical value of the magnetic background. The
output of this process is summarized in Figs 9 and 10 and in Table 4. In Fig. 9(a), the
numerical profile of the velocity is plotted along with the fits provided by our two
models; Fig. 9(b) is a blow-up centred at the core of the defect. The same pattern
is followed for the magnetic induction in Figs 9(c,d). Both models provide a good
description of the core of the defect. As could be expected, the more elaborate
model has a more global validity; moreover, the resulting fits agree remarkably
well with the numerical solution near the centre of the magnetic hollow defect. In
Fig. 10, we present the evolution of the thickness of the defect, calculated using the
elaborated model and (4.17), at times of order one. As in Fig. 4, one can distinguish
a nonlinear regime that produces the defect and a dissipative regime where the
spatial extension of the defect increases.

Finally, for a more complete exploration, we have performed numerical exper-
iments with three other initial conditions of the type (4.1), that is, with a uniform
initial magnetic induction. Together with the simulation discussed above at length,
we have a set of four experiments with initial condition

u(x, 0) = sinx , (4.18a)

b(x, 0) ≡ b0 , (4.18b)

with b0 = 0.1, 0.2, 0.5 and 1.5. At times of order one, the four have evolved towards
a shock/hollow defect, for which we have performed a fit of the profiles, using
the elaborated model (this time we have put aside the possibility of negative b0,
which of course would produce shock/bump defects). The corresponding parameters
are presented in Table 4. One notes that, as b0 increases, the velocity residue W
decreases and the width δ increases; accordingly the velocity shock amplitude A
decreases. The system is thus less and less nonlinear, the effect being sharp between
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the third and fourth experiments. Again, this can be interpreted in terms of the
influence of the asymptotic regime σ = η = 0. Indeed, in the work already referred
to in Sec. 3, Sulem et al. (1979) proved that in this regime and with regular initial
conditions, regularity in R is preserved at all times for the Thomas system, under
the condition inf |b(x, 0)| > 1

2 [supu(x, 0)−inf u(x, 0)]. This is achieved only with the
fourth initial condition, for which a sufficiently strong initial magnetic induction
field smoothes out the nonlinear effects.

To conclude, we go back to the geometrical interpretation of the relation between
the (normalized) residues of the velocity and of the magnetic induction. To describe
the shock/hollow defect, we have been led to assume real residues for the velocity
field and purely imaginary residues for the magnetic induction. With the notation
Z = iΛ already introduced, (3.15) becomes(

W − 1
2

1
2

)2

+

(
Λ
1
2

)2

= 1 , (4.19)

which defines the circle of the admissible hollow (bump) configurations in the (W,Λ)
plane. In Fig. 7, we have mapped this plane onto the real (W,Z) plane to draw this
circle. The outcome of our four numerical experiments appears as crosses located on
this circle; as b0 increases, the crosses travel in the (W,Λ) plane down the lower right
arch. The circle fills the gap between the two branches of the hyperbola, showing
that real values of the velocity field residues W ∈ [0, 1] are allowed, and even have
a very interesting physical interpretation.

5. Partial integrability
The Thomas system (1.1) is not integrable, even with the restriction that η equals
zero. Nevertheless, the stationary subcase has been integrated in Sec. 2. Passot and
Pouquet (1986) noted that a certain self-similar reduction of (1.1) is meromorphic
in the reduced variable. Moreover the full system (1.1) (η = 0) exhibits properties
and symmetries that are usually linked to integrability. We present here some of
these features, thus proving that the Thomas system with zero magnetic resistivity
is what is now called a partially integrable system (see below).

Our discussion relies mainly on the singularity analysis of the system, with both a
local and global approach. Historically, since the days of Kovaleskaya and Painlevé,
integrability of ordinary differential systems is associated with meromorphy of
the integrals of the system. The modern point of view is that multivalued (even
infinitely so) singularities are acceptable (e.g. rational branch points, logarithms or
complex exponents) provided they are not ‘too numerous’. Another step was taken
when the Painlevé-type singularity study was extended to PDE’s (Weiss et al.
1983). The idea here is to build a sort of functional Painlevé–Laurent expansion
of the solution around a manifold that contains all its singularities. In both cases
(ODEs and PDEs), the expansion, if performed for the general solution of a non-
integrable case, will either break down or diverge or depend on a number of free
parameters smaller than the order of the system. In the latter case, the general
solution clearly escapes to the singularity analysis but the expansion may represent
a subfamily of, for example, meromorphic exact solutions. One can then speak of
partial integrability.
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5.1. The Painlevé-WTC expansion

The goal is to extend and generalize as much as possible the simple leading-order
analysis presented in Sec. 2.2. The main object is the singularity manifold Φ(x, t);
the zeros of the function Φ(x, t), obtained for real or complex x and t, are the
singularities of the function under study. It is assumed that Φ has an analyticity
domain containing all these zeros. The structure of the system (1.1) implies that
any singularity for the velocity field will be accompanied by a singularity for the
magnetic induction with the same spatio-temporal location. As a result, the sin-
gularity manifold of v is identical to its counterpart for b. Using a leading-order
analysis, one is easily convinced that the solutions of our system are proportional
to Φ−1 near the zeros of Φ. We thus assume the following functional form:

v =
1
Φ

∑
m>0

vmΦm, (5.1a)

b =
1
Φ

∑
m>0

bmΦm, (5.1b)

for respectively the velocity and the magnetic induction field. Here the vm and the
bm are functions of x and t with analyticity properties in the same domain as Φ.
The next step is to use these representations in the system (1.1) with η = 0. This will
produce conditions on v0 and b0 and recurrence relations for the subsequent vm and
bm. The analysis here is thus an asymptotic one, where the ordering is governed by
the successive integer powers of Φ. We envisage later the possibility of logarithmic
corrections, but we never attack the formidable problem of the summability of the
complete sequence of asymptotic terms. Thus we concentrate on the discussion of
the formal existence of the recurrence scheme, which we consider now.

Balancing the two leading order terms (O(Φ−3)) in (1.1b) with η = 0 yields

(−Φx + Φx)v0b0 = 0 , (5.2)

thus leaving at this point v0 and b0 entirely free. The mechanism is that the mul-
tiplicative factor of v0b0 vanishes, a circumstance called a ‘resonance’, and at the
same time the inhomogeneous term also vanishes, making the resonance a ‘compat-
ible’ one. The free functions are thus at our disposal, playing the role of integrals
of the motion in the integration of a usual differential system. Turning now to the
first equation (1.1a) of the Thomas system, and balancing the O(Φ−3) terms (i.e.
two nonlinear terms and the dissipative term), we get

v2
0 − b2

0 + 2σφxv0 = 0 . (5.3)

Here a restriction appears, b0 and v0 being linked by an algebraic equation. The
situation thus lies between the Burgers case, where the residue function is entirely
determined by the algebraic structure of the dynamical equation ((5.3) with b0 ≡ 0),
and a fully fledged compatible resonance, where v0 and b0 would both be entirely
free. We see that the resonance is incomplete. We further note that the second
order of the recursion scheme will induce some feedback constraint on these first
functions. In keeping with the idea of an easy comparison with the pure Burgers
case, we introduce normalized amplitudes P and R, such that

v0 = −2σP, (5.4a)

b0 = −2σR. (5.4b)
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The leading-order relation (5.3) then reads

R2 = P 2 − PΦx, (5.5)

which from now on we shall call the ‘singularity relation’ (SR). By a further trans-
form, we can introduce the normalized residues W (x, t) and Z(x, t) such that

P = WΦx, (5.6a)

R = ZΦx; (5.6b)

the SR then reads

Z2 = W 2 −W, (5.7)

a familiar form from the travelling-wave study, but now with space- and time-
dependent residues.

Balancing in (1.1) (η = 0) the terms of next to leading order, and so on, will
produce at each step m > 1 a set of algebraic (i.e. not differential) linear inhomo-
geneous equations for the pair {vm, bm}. The coefficients of vm and bm depend on
{Φ, P,R}; the inhomogeneous term depends on the intermediate asymptotic terms
{vn, bn; 0 6 n < m} and their derivatives – hence the recurrence structure of the
scheme.

The first set is obtained in balancing terms O(Φ−2) in (1.1); it reads

Φxv1 = −Φt + σ

(
2Px − Φxx

Φx
P

)
, (5.8a)

RΦxb1 = σP

(
2Px − Φxx

Φx
P

)
− σPxΦx. (5.8b)

Using the SR, (5.8b) can be rewritten as

Φxb1 = σ

(
2Rx − Φxx

Φx
R

)
, (5.8c)

a form more symmetric to (5.8a).
The following step (m = 2) has a manifold outcome that is crucial for the present

discussion. Balancing the O(Φ−1) terms in (1.1) yields

0 = −Pt − (Pv1 −Rb1)x + σPxx, (5.9a)

Φx(Rv2 − Pb2) = 1
2 [Rt − (Rv1x −Rxv1) + (Pb1x − Pxb1)]. (5.9b)

Clearly we again have an incomplete resonance. Only in the first equation does the
left-hand side vanish. The right-hand side must vanish simultaneously to have a
consistent result and a compatible resonance. Since the right-hand side depends on
the previous functional coefficients, it appears as a back-constraint on P , R, v1 and
b1, as announced above; using (5.8), (5.9a) can indeed be rewritten as

Pt =
(
P

Φt
Φx

)
x

; (5.10)

(from (5.8) and the SR, an identical relation can be written for R). We comment
that, even at the simple formal level at which we are staying here, the whole re-
currence scheme cannot exist if (5.10) is not satisfied by P . If we are to hope for
explicit meromorphic solutions of the Thomas system, the very existence of their
Painlevé–Laurent expansion implies (5.10), which we thus from now on call the
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‘integrability restriction’ (IR). We note in passing that, using (5.6), the IR may be
transformed into

WxΦt = WtΦx. (5.11)

Considering Φ as given, this is a first-order linear PDE where the unknown W
appears only through its first-order derivatives; it can easily be reduced to

W (x, t) = W{Φ(x, t)}; (5.12)

that is,W depends on x and t only through Φ(x, t) or, in other words, it is a function
of Φ alone. This is a restriction on (5.7): not only are Z and W algebraically related,
but in addition W cannot be any given function. Up to this point, v2 and b2 are
free. However, the second equation (5.9b) exhibits a constraint on a certain linear
combination of v2 and b2. The freedom that is left corresponds to a one-dimensional
vector subspace instead of a two-dimensional space. If one wants more freedom in
the choice of {v2; b2}, it will be at the cost of restrictions on the previous terms
(see the right-hand side of (5.9b)); the consequences will play a role in Secs 5.2 and
5.3. We comment here that the imperfect character of the resonances at m = 0 and
m = 2, is the ground for saying ‘partial integrability’.

The third step of the recurrence yields the two following equations for v3 and b3:

2σΦx[(P − 3R + Φx)v3 + (3P −R)b3] = Tv{v1; b1} + Tb{v1; b1}
+v2[Φt − 2σ(Px +Rx) + Φx(v1 − b1)− σΦxx]

+b2[Φt + 2σ(Px +Rx) + Φx(v1 − b1)]

−2σv2x(P −R + Φx)− 2σb2x(P −R), (5.13a)

2σΦx[−(P + 3R + Φx)v3 + (3P +R)b3] = −Tv{v1; b1} + Tb{v1; b1}
−v2[Φt − 2σ(Px −Rx) + Φx(v1 + b1)− σΦxx]

+b2[Φt + 2σ(Px −Rx) + Φx(v1 + b1)]

+2σv2x(P +R + Φx)− 2σb2x(P +R), (5.13b)

where

Tv{v1; b1} = v1t + v1v1x − b1b1x − σv1xx, (5.14a)

Tb{v1; b1} = b1t + v1b1x − b1v1x. (5.14b)

The relations (5.13) and (5.14) will be useful later; this is why we have singled
them out, along with the fundamental outputs of the asymptotic analysis at order
Φ−3(m = 0), Φ−2(m = 1) and Φ−1(m = 2). It should be realized, however, that from
order m = 2 onwards, a general formula can be given, valid at any order m > 2 of
the recurrence, namely

σΦxMm

(
vm
bm

)
=
(

F+
m

F−m

)
, (5.15a)

where Mm is the matrix

Mm =
(

2mR + 2(m− 2)P + Φx(m− 2)(m− 1) −2mP − 2(m− 2)R
2(m− 2)P − 2mR + Φx(m− 2)(m− 1) 2mP − 2(m− 2)R

)
, (5.15b)
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and

F+
m = (vm−2 − bm−2)t + (m− 2)Φt(vm−1 − bm−1)

+
m−1∑
l=0

(vl + bl)(vm−l−1 − bm−l−1)x

+Φx
m−1∑
l=1

(vl + bl)(vm−l − bm−l)(m− l − 1)

−σ[(vm−2)xx + (m− 2)Φx(2vm−1)x + (m− 2)Φxxvm−1], (5.15c)

F−m = (vm−2 + bm−2)t + (m− 2)Φt(vm−1 + bm−1)

+
m−1∑
l=0

(vl − bl)(vm−l−1 + bm−l−1)x

+Φx
m−1∑
l=1

(vl − bl)(vm−l + bm−l)(m− l − 1)

−σ[(vm−2)xx + (m− 2)Φx(2vm−1)x + (m− 2)Φxxvm−1]. (5.15d)

Using the SR, the determinant Γm of the matrixMm is readily obtained, and reads

Γm = −4σ2Φ3
xPm(m− 2)(m + 1) . (5.16)

The resonance at m = 2 (and, at a formal level, the resonance at m = 0) can
be read off from (5.16) as the condition for the vanishing of the determinant of
the linear system (5.15); but, at the same time, one sees their incomplete character,
since, as is easily checked, the matrix Mm itself never vanishes.

Finally we mention that a rapid exploration suggests that, as in many non-
integrable systems, the introduction of logarithmic corrections may restore the
incomplete resonances to completeness (see e.g. Bender and Orszag 1978). In this
exploration, one writes v(x, t) and b(x, t) as double series, called Ψ series, here of
the form

v =
1
Φ

∑
vm,kΦm(ln Φ)k, (5.17a)

b =
1
Φ

∑
bm,kΦm(ln Φ)k; (5.17b)

one finds that (5.3) disappears and is replaced by a double condition on b0,1, v0,1

and v0,2, the functional coefficients of the first logarithmic corrections. In such a
formalism, one has, in general, at hand a sufficient number of free integrals of
the motion, but a closed formula for the solution cannot be obtained, given the
infinite number of logarithmic corrections. For mathematical purposes, this may
be useful (Fournier et al. 1988); for practical purposes, it is too high a cost for forcing
integrability in a non- (or partially non-) integrable system. However, it should be
remembered that solutions of the type studied, for example in Sec. 4, which are well
described assuming simple pure poles as singularities, may actually possess logar-
ithmic corrections. In this sense, the rational and elliptic representations may well
be more than simply models, as we called them, but rather low-order expansions
resulting from partial resummation of the ‘without-log terms’ in (5.17).

At this point, we acknowledge our intellectual debt to Passot and Pouquet. In
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their work referred to in Sec. 1, they performed the Painlevé test on the full system
(1.1), but they developed the formalism using the favourite Elsässer variables z± =
v±b; they found that the general case is non-integrable, and, for η = 0, they pointed
out a condition equivalent to (5.10) in their formalism; however, they were misled
by this formalism as to the role of the limiting pure Burgers case and they did not
envisage the truncations of the series (5.1), which will be the topic of the next two
subsections.

5.2. The complete truncation: a poor τ function?

Suppose v1 = b1 = v2 = b2 = . . . = vm−1 = bm−1 = 0, where m > 3; then, by (5.15),
vm = bm = 0. One can thus prove by recurrence that, if v1 = b1 = v2 = b2 = 0,
all terms of the series (5.1) vanish except for the lowest one; that is, one has the
identities

v = −2σ
P

Φ
, (5.18a)

b = −2σ
R

Φ
; (5.18b)

they express the nonlinear transform between the potential Φ and the physical
fields v and b; they are reminiscent of the logarithmic Hopf–Cole transform

v = −2σ
Φx
Φ
, (5.19)

which maps the Burgers equation into a linear problem, and of similar transforms
appearing in the calculation of multisoliton solutions to various integrable equa-
tions; in the latter context, the nonlinear potential Φ is called a τ function (Newell
1985). The difference is that the residues are only partially constrained by the SR.
Other differences will appear next.

The cost of this extreme truncation is that the right-hand side of (5.8) and (5.9)
vanish altogether. However, the two groups of conditions have a very different sta-
tus. Coupled with the SR, the conditions coming from (5.8) may be viewed as the
dynamical equations of the problem; they play the role of the heat equation in the
Burgers case, or of the Hirota bilinear equation for the τ function in, for example,
the Korteveg–de Vries case. They form a system of three equations for three un-
known quantities, from which one could expect to derive families of meromorphic
solutions, depending on the initial and boundary conditions. But the second group
of conditions, obtained as compatibility conditions for an incomplete resonance,
adds severe restrictions. In particular, under the present hypothesis, (5.9b) reads

Rt = 0, (5.20)

which, as we shall see, drastically reduces the number of solutions amenable to this
scheme. We now derive explicitly those solutions.

We put aside the completely trivial solution R = P = 0, which implies v = b = 0.
We next consider the case

R = 0, (5.21a)

P = Φx. (5.21b)

Then (5.8a) becomes

Φt = σΦxx , (5.22)
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and (5.9) is satisfied identically; at the same time, (5.18a) reduces to the Hopf–Cole
transform (5.19) and (5.18b) to b = 0. This particular family of solutions is merely
the set of all solutions of the Burgers equation. We suppose now that neither P nor
R are degenerate, but we make the assumption

Φt = 0. (5.23)

Combining (5.8a) and (5.8b) yields Px = 0 (we disregard the case Φx = 0, where the
singularity analysis is invalid). Then, from (5.8a), Φxx = 0; and then from (5.8b),
Rx = 0. And, from (5.9) we have Pt = Rt = 0. Thus, finally,

Φ = Γ(x− x∗), (5.24)

where x∗ and Γ are pure real constants, with Γ � 0, while P and R are also
pure non-zero real constants. Using the normalized residues, we have P = ΓW and
R = ΓZ, where Z andW are pure non-zero real constants, related by Z2 = W 2−W .
Returning to the physical fields, we have, with the particular assumption Φt = 0,
the unique solution

v = −2σ
W

x− x∗ , (5.25a)

b = −2σ
Z

x− x∗ , (5.25b)

which is merely the single-pole stationary solution (2.5).
Now the partially integrable character of the Thomas model appears here in the

fact that no solution other than Burgers and (5.25) is obtained via the present τ -
function ansatz. The proof is left to an appendix, but let it be said here again that
the compatibility conditions of the quasiresonance at m = 2 play a determining
role.

5.3. A Bäcklund transform

We consider here a less severe truncation of the Painlevé expansion. The technical
remark is that one does not need vanishing v1 and b1 to obtain the proof by recur-
rence considered at the beginning of the previous subsection. A look at (5.13) will
show that v2 = b2 = 0 combined with Tv{v1; b1} = Tb{v1; b1} = 0 will also allow one
to crank the machine. This ensures the possibility of a two-term truncation

v = −2σ
P

Φ
+ v1, (5.26a)

b = −2σ
R

Φ
+ b1, (5.26b)

provided that v1 and b1 themselves form a solution of the Thomas system with η = 0
(see (5.14)). A more precise statement is that, given the relation (5.26) and under
the conditions that the SR, (5.8) and (5.9) with v2 = b2 = 0 hold, then ‘{v1; b1} is a
solution of the Thomas system’ implies ‘{v; b} is a solution of the Thomas system’
and conversely. The relation (5.26) thus reveals a sort of nonlinear additivity among
the solutions of the Thomas system; given a seed, one can expect that repeated
application of (5.26) will produce a family of new solutions of the same Thomas
system; in such a situation, one speaks of an auto-Bäcklund transform. We note
that the meromorphy assumption for the fields and the potentials is consistent
with the transform, and that, in general, the existence of a Bäcklund transform
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is thought of as a favourable symptom for integrability. We also stress that the
transform has an inverse; that is,

v1 = −2σ
P̃

Φ̃
+ v, (5.27a)

b1 = −2σ
R̃

Φ̃
+ b, (5.27b)

provided that

P̃ = −P L

Φ2 , (5.28a)

R̃ = −R L

Φ2 , (5.28b)

Φ̃ =
L

Φ
, (5.28c)

where L is a non-zero real pure constant.
A first subclass of solutions satisfying the Bäcklund conjugation is readily ob-

tained on considering the limiting Burgers case. One assumes that b = b1 = 0, and
the Thomas–Bäcklund transform then reads

v = −2σ
P

Φ
+ v1, (5.29a)

R = 0; (5.29b)

the SR then implies that P = Φx; as a consequence, (5.8a) yields

Φt + v1Φx = σΦxx, (5.30)

and (5.9a) is satisfied identically. The transform (5.29a) and the linear condition
(5.30) form the known Bäcklund transform of the Burgers equation, which is re-
covered here as a limiting case.

In the above derivation, the nonlinear condition (5.8a) becomes linear and the
conditions (5.8c) and (5.9a,b) do not play any role. From Sec. 5.2, we know that the
conditions (5.9) may impose drastic limitations to the integrability-related features
of the problem. To check if our finding of a Bäcklund transform is not deceptive,
we have looked for explicit couples {v1; b1}/{v; b} other than the Burgers one, using
various non-trivial ansätze.

The first idea is to hunt for cases where Φt = 0. Through the SR, it can immedi-
ately be concluded that Pt = Rt = 0. Through (5.8), one obtains also v1t = b1t = 0.
One is thus in the realm of stationary solutions, for both {v1; b1} and {v; b}. A
detailed examination shows that there is no new admissible set if v1 = 0, or if
|v1| = |b1| or if b1 = 0. One can thus write b1 = D1v1, where D1 is a pure constant,
with D1 ∈ R̄\{0;±1;±∞}. To explore a specific direction, we further assume that
v1 is a pure, non-zero, real constant. Then (5.9b) implies that R = D1P +E, where
E is a pure real constant. Combining this information with (5.8) leads to the con-
clusion that either Φxx or E vanishes. The use of the SR shows that the first route
is a dead end. Following the second route, and using the SR and (5.8a), one obtains

Φx = (1−D2
1)P, (5.31a)

Px =
1
σ

(1−D2
1)v1P. (5.31b)
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Thus, finally,

P = α exp
[

1
σ

(1−D2
1)v1x

]
, (5.32a)

Φ =
σ

v1
P + β, (5.32b)

R = D1P, (5.32c)

where α and β are pure real constants with α� 0. Three different targets may be
build with these formulae. First, if β = 0, then v = −v1 and b = −b1. Then, if β� 0,
two different formulae for v are obtained, depending on the sign of β/αv1. With
the positive sign, the final formulae read

v = −v1 tanh
[

1
2γ(x− x∗)

]
, (5.33a)

b = D1v, (5.33b)

where

γ =
1
σ

(1−D2
1)v1, (5.33c)

and x∗ is a free real number. With the negative sign, the final formulae read

v = −v1 coth
[

1
2γ(x− x∗)

]
, (5.34a)

b = D1v. (5.34b)

Starting from uniform fields, the Bäcklund transform thus builds the most inter-
esting stationary solutions (2.8) of Sec. 2. We note as a curiosity that, since the
transform may be inverted (see above (5.28)), one can make the easy prediction
that the image of the double tanh profile through the Bäcklund transform is a pair
of uniform fields.

The second idea is to hunt for cases where the potentials Φ, R and P have a
simple spatial structure. Specifically, we have considered

Φ = Γ(t)[x− x∗(t)], (5.35a)

P = P (t), (5.35b)

R = R(t). (5.35c)

Using this ansatz in (5.8a,b) leads to

v1 = − Γ̇
Γ
x +

Γ̇x∗ + Γẋ∗
Γ

, (5.36a)

RΓb1 = 0. (5.36b)

We put aside the case R = 0, which would lead to trivial results or very particular
cases of the Bäcklund transform of the Burgers equation. With the choice b1 = 0,
v1 must be on its own a solution of the Burgers equation. Moreover, the conditions
(5.9a,b) read

Pt = −[Pv1]x =
Γ̇
Γ
P, (5.37a)

Rt = Rv1x = − Γ̇
Γ
R. (5.37b)
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To integrate these equations, two cases must be considered. First, if Γ̇ does not
vanish, a detailed calculation shows that they imply R = 0, a case already put
aside. Secondly, if Γ̇ vanishes, so do Pt and Rt, and P , R and Γ are pure constants.
The equation (5.36a) reduces to v1 = ẋ∗, which implies, for v1 to be a solution of the
Burgers equation, that v1t = 0; thus v1 = ẋ∗ is a pure constant, while x∗ = v1t+x0.
The resulting new fields are

v = −2σ
P

Γ
1

(x− v1t)− x0
+ v1, (5.38a)

b = −2σ
R

Γ
1

(x− v1t)− x0
. (5.38b)

In this last case, the Bäcklund transform produces the solution (2.5), with a unique
simple pole for v and b, but after application of a Galilean boost with velocity v1.

We stop the hunting here, considering that we have proven that the set of non-
trivial instances of the Bäcklund transform is not empty and that the transform
itself is not without interest.

6. Summary and comments
We have studied the one-dimensional MHD system, proposed by J. H. Thomas, at
very large magnetic Prandtl number. Specifically, we have concentrated on solutions
where the small-scale excitation is localized in a small spatial region, just like shocks
in ordinary hydrodynamics, or, to stay with one-dimensional models, like the shocks
in the Burgers equation. In the Thomas system, the magnetic induction field and
the velocity field are coupled so that there is a variety of localized solutions, which
we have called defects, according to the terminology used in condensed matter
physics. We have found that the location of the core of the defect is always the
same for the two fields and that the spatial extension or width of this defect is
always the same for these two fields. This is remarkable, since there is no length
scale at one’s disposal in the magnetic induction equation in the present limit of
infinite Prandtl number. This result is particularly noteworthy, since a factor of
proportionality different from one between the two length scales could have been
possible.

We have studied numerically the generation and evolution of these defects. Some
phenomenological rules have been drawn, such as (i) ‘there is a preference for states
where the magnetic energy is larger than the kinetic energy’, which one may trace
back to the absence of magnetic energy dissipation; or (ii), less obviously, in the
shock defects, ‘states where the velocity exhibits an antishock are preferred’. A
mathematical rule has been obtained: ‘in the presence of a magnetic oscillatory
(bump/hollow) defect, the velocity exhibits a shock defect’. We believe that this
set of predictions may be of interest for the physical interpretation of plasmas
amenable to one-dimensional MHD modelling with large Reynolds and Prandtl
numbers.

Finally, we want to stress that many phenomena could not have been explained
without a proper understanding of the (spatial) analytic structure of the solu-
tions. Theoretically, the formal existence of a functional Laurent–Painlevé expan-
sion and of a Bäcklund transform marks the partially integrable character of the
Thomas system with zero magnetic diffusivity. In practice, we have obtained all the
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travelling-wave solutions of the Thomas system, which all turn out to be meromor-
phic; they provide a complete description of the shock/antishock defects. Similarly,
for the magnetic hollow defect, we have introduced meromorphic asymptotic repre-
sentations. The two laws mentioned above concerning the position and extension of
the defect have received in this way a simple interpretation in terms of the position
of the poles of v and b in the (spatial) complex plane. Similarly, the forbidding of
certain topologies of the defects corresponds to the lack of a solution for the equa-
tion linking the residues of the v-pole and the b-pole; while the existence of purely
imaginary solutions to this same equation gave an explanation of the shape of the
magnetic hollow wave. Every piece of knowledge that we had on the meromorphy
properties of the solutions has thus proven useful, not only to interpret but also to
explain some of the physics of the system.
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Appendix. Absence of a general solution to the τ -function formalism
This appendix is a complement to Sec. 5.2. From (5.8c) with b1 = 0, we read off
that R2/Φx is a function of time t only; we know from (5.20) that R is a function
of space x only. These two pieces of information are gathered with the following
notation:

Φ(t, x) = L(t)G(x) + J(t) (A 1a)

G′ = R2, (A 1b)

where L(t) does not vanish identically. The prime indicates the derivative with
respect to x. Using (5.20) and the IR written for R, one finds that RΦt/Φx is a
function of time t only. This is embodied in the notation

RΦt = N (t)Φx, (A 2)

where N (t) is a non-zero function of t. Combining with (A 1) yields

L̇

LN
=
R′

R2 = C, (A 3)

where C is a pure real constant and the dot indicates the derivative with respect
to t.

If C vanishes, then L = L0, R = R0 and G′ = R2
0, where L0 and R0 are pure

non-zero real constants. Consequently,

Φ = L0R
2
0[x− x∗(t)]. (A 4)
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With this notation, the dynamical equation (5.8a) yields

P = −L0R
2
0

2σ
ẋ∗(t)x + E(t), (A 5)

where E(t) is a function of t only. Combining the above remarks with (A 5), the SR
becomes a polynomial of degree two in x that has to vanish identically. This yields,
in particular,

E = 1
2L0R

2
0, (A 6a)

E2 = R2
0 + L0R0E, (A 6b)

which has no solution under the above hypotheses.
If C is a non-zero real number, then (A 3) can be integrated non-trivially and

yields

L(t) = L0 exp
(
C

∫
N (s) ds

)
, (A 7a)

R(x) =
−1
C

1
x− x∗ , (A 7b)

Φ(x, t) = L(t)
(−1
C2

1
x− x∗ + E

)
+ J(t), (A 7c)

where C, L0, x∗ and E are pure real constants, with C� 0 and L0� 0. When used
in (A 1) and (A 2), these expressions can be further simplified into

J = −EL̇, (A 8a)

Φ = L
−1
C2

1
x− x∗ + J0, (A 8b)

where J0 is a pure real constant. Using this last expression, one can integrate (5.8a)
for P , which reads

P =
1

x− x∗

( −L̇
2σC2x− α(t)

)
. (A 9)

Finally, one collects all the pieces in the SR, which becomes again a second-degree
polynomial in x; identifying the coefficients, one obtains L̇ = 0, which contradicts
C� 0.
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de Nice.

Passot, T. and Pouquet, A. 1986 The Painlevé analysis on the Burgers’ MHD. Phys. Lett.
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