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The flow rate of a pressure-driven liquid through a microchannel may be enhanced
by texturing its no-slip boundaries with grooves aligned with the flow. In such
cases, the grooves may contain vapour and/or an inert gas and the liquid is trapped
in the Cassie state, resulting in (apparent) slip. The flow-rate enhancement is of
benefit to different applications including the increase of throughput of a liquid
in a lab-on-a-chip, and the reduction of thermal resistance associated with liquid
metal cooling of microelectronics. At any given cross-section, the meniscus takes the
approximate shape of a circular arc whose curvature is determined by the pressure
difference across it. Hence, it typically protrudes into the grooves near the inlet of
a microchannel and is gradually drawn into the microchannel as it is traversed and
the liquid pressure decreases. For sufficiently large Reynolds numbers, the variation
of the meniscus shape and hence the flow geometry necessitates the inclusion of
inertial (non-parallel) flow effects. We capture them for a slender microchannel,
where our small parameter is the ratio of ridge pitch-to-microchannel height, and
order-one Reynolds numbers. This is done by using a hybrid analytical–numerical
method to resolve the nonlinear three-dimensional (3-D) problem as a sequence of
two-dimensional (2-D) linear ones in the microchannel cross-section, allied with
non-local conditions that determine the slowly varying pressure distribution at leading
and first orders. When the pressure difference across the microchannel is constrained
by the advancing contact angle of the liquid on the ridges and its surface tension
(which is high for liquid metals), inertial effects can significantly reduce the flow rate
for realistic parameter values. For example, when the solid fraction of the ridges is 0.1,
the microchannel height-to-(half) ridge pitch ratio is 6, the Reynolds number of the
flow is 1 and the small parameter is 0.1, they reduce the flow rate of a liquid metal
(Galinstan) by approximately 50 %. Conversely, for sufficiently large microchannel
heights, they enhance it. Physical explanations of both of these phenomena are given.

Key words: interfacial flows (free surface), mathematical foundations, micro-/nano-fluid
dynamics

1. Introduction
Mathematical models of flows of liquid in the Cassie state through microchannels

patterned with longitudinal grooves containing a vacuum or vapour and/or inert gas,

† Email address for correspondence: d.papageorgiou@imperial.ac.uk
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Flows in superhydrophobic microchannels with varying meniscus curvature 273

have been studied in detail. We briefly summarize some of them below and refer the
reader to the recent review article by Lee, Choi & Kim (2016) for further details
– experimental results are also discussed there. We note that as regularly pointed
out in the literature (see, for example, Lee et al. (2016), Peaudecerf et al. (2017),
Song et al. (2018)), experimental measurements of drag reduction tend to be far
below those predicted theoretically. Depending on the flow conditions, various (and
often coupled) factors, such as gas-phase viscosity (see, e.g. Asmolov, Nizkaya &
Vinogradova (2018)), edge effects (see, e.g. Game et al. (2017)), meniscus curvature
(see, e.g. Sbragaglia & Prosperetti (2007)) and thermocapillary stress (see, e.g. Hodes
et al. (2017)), may play a role in resolving the discrepancies. A phenomenon that
is lately receiving increased attention due to the studies of Peaudecerf et al. (2017)
and Song et al. (2018), is the substantial or full immobilization of menisci due to
Marangoni stresses along them arising from even trace amounts of surfactants in
water. In this study we identify and quantify yet another mechanism, namely inertial
effects due to slowly varying meniscus curvature, that must be considered to fully
resolve the discrepancies between theory and experiment. As in the case of meniscus
curvature, it can result in non-negligible reduction or enhancement of the flow rate
for a fixed pressure difference across a superhydrophobic (SH) microchannel at
realistic operating conditions. We note that until pressure-driven flow experiments
are performed with water under sufficiently pristine conditions to eliminate surfactant
effects, or with a liquid (perhaps a liquid metal) in the Cassie state not subject to
Marangoni stresses on account of trace amounts of surfactants, we are unable to
verify our own predictions against experimental data.

In a seminal study, Philip (1972a,b) analytically resolved the fully developed
flow field and corresponding flow rate for various internal flow configurations with
flat, shear-free menisci by using conformal maps to accommodate mixed boundary
conditions. Lauga & Stone (2003) used Philip’s analysis to find expressions for the
(apparent) slip length in tubes with longitudinal grooves, and also obtained solutions
for the case of transverse grooves using separation of variables. Teo & Khoo (2009)
formulated and solved dual-series equations to resolve the velocity field in cases
not considered by Philip, involving grooves on the upper and lower boundaries
of a parallel-plate channel. Sbragaglia & Prosperetti (2007) and Teo & Khoo (2010)
captured the effects of meniscus curvature asymptotically and numerically, respectively,
and more recently Marshall (2017) found an exact solution for the slip length for
small meniscus curvatures. Maynes et al. (2007) and Ng, Chu & Wang (2010)
considered the effect of gas viscosity on the flow rate, while Game et al. (2017)
considered this effect in combination with meniscus curvature and end-wall effects.

The foregoing studies and all others pertaining to longitudinal grooves, consider two-
dimensional unidirectional flows in which only a cross-section of the microchannel
is considered since the flow is independent of the streamwise variable. For those
studies that assume a flat meniscus, this can be viewed as the limiting case where
surface tension is infinite and thus the meniscus is flat throughout a microchannel.
This limit tends to be invalid in practice, however, where the objective is often to
maximize the flow rate of the liquid. As discussed in further detail by Game et al.
(2018), this objective may be met by additional texturing of the longitudinal ridges
to cause them to be re-entrant surfaces as originally proposed by Ahuja et al. (2008)
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274 S. E. Game, M. Hodes and D. T. Papageorgiou

and Tuteja et al. (2008) in the context of droplets on SHs. Then, the (metastable)
contact angle between a downward-protruding meniscus and the ridges may approach
90 degrees at the entrance of a microchannel and, at its outlet it may be flat or even
upward protruding. This maximizes the pressure difference across a microchannel
while preserving the Cassie state and thus the flow rate of the liquid. This is
also relevant to the application of superhydrophobic microchannels to enhance
microchannel cooling of microelectronics using a liquid metal such as Galinstan
as discussed by Lam, Hodes & Enright (2015). Here lubrication is essential as the
thermal resistance of the microchannel is dominated by the sensible temperature
rise of the liquid metal. Meniscus curvature in this context is especially important,
even when the ridges are not textured with re-entrant structures, since the advancing
contact angles of Galinstan on Teflon and silicon nitride, for example, are 161.2
and 147.0 degrees, respectively (equivalently, downward protrusion angles of 71.2
and 57.0 degrees respectively), as reported by the measurements of Liu, Sen & Kim
(2012a). Notably, since Galinstan has a negligible vapour pressure at near-atmospheric
conditions (see Hodes et al. (2014) for a summary of its thermophysical properties)
and is highly susceptible to oxidation, the space in the grooves is best kept under a
high vacuum and thus the shear-free meniscus assumption, which we invoke below,
is a valid one. In short, trying to maximize the flow rate of liquid through a SH
microchannel, causes three-dimensional (3-D) inertial effects due to the decrease in
liquid pressure along the channel. This in turn causes a gradient in meniscus curvature,
thus varying the geometry of the cross-sections as a microchannel is traversed.

In the present study we make significant analytical progress by utilizing the
physically relevant limit of slow streamwise variations in the meniscus curvature that
in turn imply streamwise velocity variations and the introduction of a transverse flow
field. We make use of this limit to resolve 3-D effects and show that they can cause
significant changes to quantities of interest, such as the slip length. This limit (as
applied to flow through microchannels) has been previously utilized at various points
in the past, in the context of no-slip channels. We give an overview here of some
significant studies that use such methodology.

As discussed by Tanner (1966), Kotorynski (1979) and Van Dyke (1983), Blasius
(1910) first studied the asymptotic limit for flows through channels with slowly
varying geometry. He found expressions for the first-order perturbation of the flow
field (with the channel diameter to length ratio as the small parameter) in the case
of axisymmetric or two-dimensional channels. This limit was seemingly studied very
little since then, until Tanner (1966) extended this analysis to find a closed form
expression for the change in pressure drop (for a fixed flow rate) caused by these
slow variations. Manton (1971) extended the work of Tanner (1966) to allow radial
variation in the pressure gradient, and hence find a higher-order expression for the
pressure.

A fully 3-D problem was solved by Wild, Pedley & Riley (1977) who used
the slowly varying approximation to find an exact solution for the zeroth-order
velocity field and pressure for a slowly varying channel with elliptical cross-sections.
Remarkably, they were also able to find the zeroth-order transverse velocity, the
first-order streamwise velocity and the first-order pressure fields analytically for an
order one Reynolds number. They do this for the case when the properties of the
ellipse vary as a function of the streamwise dimension. They also extend this to
the case in which the cross-sectional geometry is a function of the liquid pressure.
Elasticity conditions are imposed on the channel boundaries in order to model
blood flow through veins. The final part of this analysis is completed by fitting the
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relationship between cross-sectional area and pressure to experimental data. Coupling
of liquid pressure with channel geometry is central to the present study, making the
work of Wild et al. (1977) of particular interest.

General expressions for slowly varying 3-D channels were generated by Kotorynski
(1979) who provided expressions for each order that can, in theory, be solved
iteratively. The formulation was also applied to the particular case of a spiralling
circular pipe. He also studied the case in which the channel geometry varies slowly
in two dimensions.

Van Dyke (1983) studied small (as well as slow) variations in a meandering two-
dimensional channel of constant width by using an intrinsic coordinate system. He
found analytical expressions for the first four terms of the asymptotic expansion of
the streamfunction. A 3-D analogue to this problem was solved by Chadwick (1985)
in the case of Stokes flow, who found that a small amount of channel curvature can
actually decrease flow resistance. Following this, a survey article was written by Van
Dyke (1987), covering progress made up to that point in this field of study.

The case of slowly varying axisymmetric channels is revisited by Kotorynski
(1995) who used the slowly varying approximation to find an analytical asymptotic
solution for the flow field through slowly varying axisymmetric channels. In contrast
to previous efforts, Kotorynski’s solutions are valid for arbitrary radial profiles. Their
formulation can, in principle, find expressions for the velocity field to any required
order of accuracy.

More recently, Lauga, Stroock & Stone (2004) showed that flows through channels
constrained by two parallel plates with (non-trivially) varying geometry are fully
three-dimensional and discuss the implications of this with regards to mixing
applications. Akbari, Sinton & Bahrami (2011) used a heuristic approach to relate
the slowly varying elliptic model of Wild et al. (1977) to that of an arbitrary
cross-section. They also provided comparisons to experimental data, and find good
agreement, attributing this to inclusion of the inertial terms.

The previous studies exclusively examine channels with a no-slip boundary
condition in which a slow geometric variation is usually imposed. There has been
some work on slowly varying channels with more exotic boundary conditions (see,
e.g. Ghosal (2002)). However, the slowly varying limit has seldom been applied
to meniscus geometries in superhydrophobic microchannels. D. G. Crowdy (private
communication, 2017) has used this limit, in combination with an asymptotic solution
to the two-dimensional problem, to capture the leading-order effect of slowly varying
meniscus geometry. This is also captured in the present study, which goes on to
calculate the leading-order transverse velocity field, as well as the first-order correction
to the streamwise velocity field (which arises from inertial effects).

This paper is organized as follows. We formulate our mathematical model in § 2,
and include the construction of asymptotic expansions (as part of the slowly varying
approximation) and the derivation of the resulting governing equations and boundary
conditions. Our methodology for solving these equations is a hybrid of numerical and
analytical methods. In § 3, we give the analytical component of this methodology. This
is subdivided into three parts, the zeroth-order streamwise velocity problem, the zeroth-
order transverse velocity problem and the first-order streamwise velocity problem. In
§ 4, we outline the numerical component of our methodology. In § 5, we give our
results, primarily in terms of the flow rate perturbation due to inertia. In § 6, we
conclude with a summary.
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FIGURE 1. (Colour online) A section of the lower half of a superhydrophobic
microchannel. The region contained within the red dotted lines represents that in which we
develop our mathematical formulation. This region is illustrated in more depth in figure 2.
The microchannel is symmetrical in the horizontal centre plane. Hence, the upper half of
the microchannel (not shown) is a reflection of the lower half, in this plane.

2. Mathematical model
2.1. Fully three-dimensional problem and boundary conditions

We wish to calculate the volumetric flow rate of liquid flowing over parallel ridges
aligned with the flow direction, including inertial effects caused by the streamwise
variation in meniscus geometry. Guided by applications we assume that between
the ridges there is a groove of sufficient depth to allow meniscus protrusion. We
also assume that the grooves contain gas of negligible viscosity or, equivalently for
our purposes, are under vacuum. We illustrate a microchannel characterized by such
grooves and ridges in figure 1. This figure also indicates a region under consideration
which, by symmetry, is representative of the entire liquid domain.

The liquid motion is governed by the steady Navier–Stokes equations and driven
by a pressure drop over the microchannel length. In dimensional form the equations
read,

ρ(u · ∇)u=−∇p+µ∇2u, (2.1)
∇ · u= 0, (2.2)

where u = (u, v, w) is the velocity field in the usual Cartesian coordinate system
(x, y, z) where x, y are cross-sectional coordinates and z denotes the streamwise
coordinate; p is the pressure, ρ is the liquid density and µ its viscosity. Gravity is
unimportant in the applications we are considering and is excluded. We have also
assumed that the liquid is Newtonian. However, confirmation of this in the case of
Galinstan has not been obtained due to complications in measuring the viscosity
of liquid gallium alloys due to formation of an elastic oxide skin (Xu et al. 2012).
Figure 2(a) illustrates the three-dimensional liquid domain, showing the distinct types
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FIGURE 2. (a) Full 3-D liquid domain and its boundaries, indicating key dimensional
geometric quantities and (b) Two-dimensional (2-D) cross-section of the full 3-D domain
corresponding to an arbitrary value of z, given with corresponding boundary labels and
indicating dimensionless geometric parameters. Note that the former is not drawn to scale
and does not show the curvature gradient along boundary A.

of boundaries where different boundary conditions need to be applied. On the solid
ridge D at y=−H, δ < x< P, we impose a no-slip condition. On the meniscus E at
the unknown interface y=−h(x, z), 0< x< δ, we impose zero normal velocity since
we are at steady state, and a balance of normal and tangential stresses noting that
the latter lead to zero shear stress conditions since the gas viscosity is negligible. At
the inflow front face A of the microchannel at z = 0, and its back end G at z = L,
we prescribe pressure values (when it is well-defined to do so – see below). The
other boundaries C, F, G represent planes of symmetry, with appropriate boundary
conditions imposed there. In summary, the (dimensional) boundary conditions are

p= p(1) on A, (2.3)
∂u
∂y
= v =

∂w
∂y
= 0 on B, (2.4)

u=
∂v

∂x
=
∂w
∂x
= 0 on C, (2.5)

u= 0 on D, (2.6)

u · n= 0, tT
i σ n= 0, nT σ n+ p(0) + γ κ = 0, on E, (2.7a−c)

u=
∂v

∂x
=
∂w
∂x
= 0 on F, (2.8)

p= p(0) on G, (2.9)
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where κ is the mean curvature of the gas–liquid interface defined by y=−h(x, z), n
is an inward facing normal to this surface, ti, i = 1, 2 are two linearly independent
vectors in a tangent plane with normal n and are chosen to be in the spanwise and
streamwise directions, respectively, and σ =−pI +µ(∇u+∇uT) is the viscous stress
tensor. Superscripts T denote the transpose of a vector.

2.2. Non-dimensionalization and asymptotic expansions for slowly varying
microchannels

We make analytical progress by considering the important limit when the dimensions
of the microchannel cross-section are much smaller than its length, i.e. H,P� L. We
non-dimensionalize lengths by (half of) the ridge pitch P or microchannel length L
as appropriate, and use the prescribed inlet and outlet pressures (denoted by p(1) and
p(0), respectively) to re-scale the pressure as shown below. Defining ε= P/L� 1 we
note that the streamwise velocity has scale W = εP(p(1) − p(0))/µ and consequently
the velocity in the cross-section is one order higher and scales with U = εW. The
following dimensionless variables are introduced (decorated with star superscripts that
will be dropped later)

(x, y, z)= (Px∗, Py∗, Lz∗), u= (u, v,w)= (Uu∗,Uv∗,Ww∗), (2.10a,b)

p= p(0) + (p(1) − p(0))p∗, δ = Pδ∗, H = PH∗, h(x, z)= Ph∗(x∗, z∗). (2.11a−d)

The slowly varying assumption is characterized by ε� 1. Substituting (2.10)–(2.11)
into the Navier–Stokes and continuity equations, (2.1) and (2.2), respectively, and
dropping the stars yields

ε3Re(uux + vuy +wuz)=−px + ε
2(uxx + uyy + ε

2uzz), (2.12a)
ε3Re(uvx + vvy +wvz)=−py + ε

2(vxx + vyy + ε
2vzz), (2.12b)

εRe(uwx + vwy +wwz)=−pz +wxx +wyy + ε
2wzz, (2.12c)

ux + vy +wz = 0, (2.12d)

where the Reynolds number Re= ρWP/µ and is assumed to be an order one quantity.
We proceed with an asymptotic expansion of dependent variables in powers of ε:

u= u0 + εu1 + · · · , v = v0 + εv1 + · · · , w=w0 + εw1 + · · · , (2.13a)
p= p0 + εp1 + · · · , h=H + h0 + εh1 + · · · (2.13b)

Substituting these expansions into the dimensionless governing equations (2.12), and
the dimensionless versions of the pressure drop boundary conditions (2.3) and (2.9)
gives, at leading order ε0,

p0x = 0, p0y = 0, ∇2
⊥

w0 − p0z = 0, (2.14a)
u0x + v0y =−w0z, (2.14b)

p0(x, y, 0)= 1, p0(x, y, 1)= 0. (2.14c)

Throughout this study we use

∇
2
⊥
=
∂2

∂x2
+
∂2

∂y2
, (2.15)
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to denote the Laplacian in cross-sectional variables. In § 2.3, we derive the remaining
zeroth-order boundary conditions that apply at each cross-section. As implied by
(2.14a), the zeroth-order pressure is constant in each cross-section, validating our
original choice of pressure drop boundary conditions. At order ε we find the system,

p1x = 0, p1y = 0, (2.16a)
∇

2
⊥

w1 − p1z = Re (u0w0x + v0w0y +w0w0z), (2.16b)
p1(x, y, 0)= 0, p1(x, y, 1)= 0. (2.16c)

Note that we are interested in the O(ε) correction to the volumetric flow rate, and
this does not require consideration of the first-order continuity equation which would
only be useful in computing u1 and v1, which are not needed here.

At O(ε2) the x and y momentum equations yield governing equations for u0 and
v0,

∇
2
⊥

u0 = p2x, ∇
2
⊥
v0 = p2y. (2.17a,b)

Solving for u0 and v0 is central in the analysis since they appear as forcings in the
governing equation (2.16b) for w1. Note that w0z is also needed to accomplish this
since it appears as a forcing in (2.14b) which is coupled to (2.17a,b).

2.3. Boundary conditions
After non-dimensionalization the zero- and first-order boundary conditions are largely
identical in appearance to the boundary conditions given in (2.3)–(2.9) with the
exception of the stress balances treated next. Asymptotically, these are applied at
the leading-order meniscus location, y = −H − h0(x, z), with 0 < x < δ (where δ is
the groove or cavity fraction on the textured surface) and where necessary Taylor
expansions are performed around this value of y to account for the higher-order terms
in h. In dimensional terms, points on the liquid–gas interface are parametrized as
(x, −h(x, z), z), and two linearly independent unit tangent vectors t1 and t2, and the
inwards pointing unit normal vector n can be expressed by

t1 =
(1,−hx, 0)T√

1+ h2
x

, t2 =
(0,−hz, 1)T√

1+ h2
z

, n=
∇(y+ h(x, z))
|∇(y+ h(x, z))|

=
(hx, 1, hz)

T√
1+ h2

x + h2
z

.

(2.18a−c)

Hence the impermeability condition (2.7a) reads

0= u · n=
1√

1+ h2
x + h2

z

(uhx + v +whz), (2.19)

which gives, to leading order (after non-dimensionalization and dropping stars)

u0h0x + v0 =−w0h0z. (2.20)

This is needed to determine the cross-flow and does not enter into the first-order
analysis. The remaining conditions are the tangential and normal stress balances (2.7),
namely tT

1 σn= 0, tT
2 σn= 0 and nTσn+ p(0)= γ κ . We provide the detailed derivations
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of the zeroth- and (where necessary) first-order approximations of these boundary
conditions in appendix A, and list the results here. The condition tT

1 σn= 0, at zeroth
order, gives

2h0x(u0x − v0y)+ (u0y + v0x)(1− h2
0x)= h0zh0xw0y − h0zw0x, on y=−H − h0(x, z).

(2.21)

Once again, this condition determines the cross-flow only and is not needed to first
order. The condition tT

2 σn= 0, at zeroth order, gives

w0xh0x +w0y = 0, on y=−H − h0(x, z), (2.22)

which recovers the no-shear condition for the two-dimensional streamwise field w0. At
first order, this tangential stress balance yields

w1xh0x +w1y = h1w0yy + h1w0xyh0x −w0xh1x, on y=−H − h0(x, z). (2.23)

The dimensionless normal stress balance (2.7c) or (A 8) fully written out, becomes at
leading order,

p0 =−Γ
h0xx

(1+ h2
0x)

3/2
, on y=−H − h0(x, z), (2.24)

where Γ = γ /(P(p(1) − p(0))). Condition (2.24) is identical to the pressure condition
used in the two-dimensional parallel flow problem, and is only used to determine
the coupling between the pressure and the geometry of the meniscus. As in the 2-D
problem, at every z, we have that h0(x, z) represents the circular arc of radius Γ /p0(z)
with h0x = 0 at x= 0 and h0 = 0 at x= δ. Equivalently,

h0(x, z)=

[(
Γ

p0(z)

)2

− x2

]1/2

−

[(
Γ

p0(z)

)2

− δ2

]1/2

. (2.25)

Since h0 is determined by p0 which is a monotonic function of z, we can instead
consider it as a function of p0 itself. Henceforth we will write h0(x, p0) as a shorthand
for h0(x, z(p0)) and likewise for other functions of z. Continuing to first order in the
normal stress balance provides, on y=−H − h0(x, z),

p1 =−Γ

(
h1xx

(1+ h2
0x)

3/2
−

3h0xh0xxh1x

(1+ h2
0x)

5/2

)
=−

d
dx

Γ h1x

(1+ h2
0x)

3/2
. (2.26)

Recalling that p1 is independent of x and y (see (2.16a)), and integrating (2.26) in x
gives

xp1 =−
Γ h1x

(1+ h2
0x)

3/2
, (2.27)

since, by symmetry, we require h1x(0)= 0. Using (2.24) in (2.27) casts the latter into

h1x =
p1

p0
xh0xx. (2.28)
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Integrating by parts gives

h1(x, p0)= p1(p0)g1(x, p0), (2.29)

where

g1(x, p0)=
1
p0
(xh0x − h0 − δh0x(δ)). (2.30)

The conditions h0(δ)= h1(δ)= 0 have been used to fix the integration constant. Note
that g1 is well defined. In particular, we can evaluate g1(x, p0) at p0 = 0, as revealed
by an asymptotic expansion of (2.25) for small p0 which gives

h0 ∼
p0

2Γ
(δ2
− x2)+O(p3

0) as p0→ 0. (2.31)

3. Semi-analytical solution and calculation of the volumetric flow rate
One of the central objectives of the present work is the calculation of the volumetric

flow rate due to the effect of slow variations in the meniscus curvature. Recall
that applications seek to maximize the pressure drop and hence the inlet meniscus
curvature – the meniscus then relaxes to a flat interface at the microchannel exit
assuming the pressure reaches its ambient value. We derive expressions for Q0 and
Q1, say, the first two terms of the asymptotic expansion of the volumetric flow rate
through the microchannel. As we show below, Q0 depends on the leading-order
streamwise velocity w0(x, y, z) and leading-order meniscus shape h0(x, z) which need
to be determined together since the leading-order pressure gradient dp0/dz is not
known at a given cross-section – we show below how we can solve this problem.
The correction Q1 in turn depends on the streamwise velocity correction w1, the
correction p1 to the pressure and the associated correction h1 to the interfacial shape.
To accomplish this calculation we need to solve for the cross-flow velocities and in
addition need to retain inertial effects as we see below.

3.1. Volumetric flow rate
We begin by formally deriving the expansion for the volumetric flow rate in the form

Q=Q0 + εQ1 + · · · . (3.1)

Integrating the continuity equation (2.12d) over an interval z1 6 z 6 z2 and applying
the divergence theorem leads to∫ ∫

D(z1)

w(x, y, z1) dx dy=
∫ ∫

D(z2)

w(x, y, z2) dx dy=Q, (3.2)

where Q is the constant flow rate (we are at steady state), 06 z1< z2 6 1 are arbitrary
and D(z) is the cross-section (normal to the streamwise direction) of the 3-D domain
at the streamwise station z. Due to the arbitrary nature of z1 and z2, it follows that
for every 0 6 z 6 1 ∫ ∫

D(z)
w(x, y, z) dx dy=Q. (3.3)
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Firstly note that∫ ∫
D(z)

w(x, y, z) dx dy=
∫ δ

0

∫ 0

−h(x,z)
w(x, y, z) dy︸ ︷︷ ︸
I(x,z)

dx+
∫ 1

δ

∫ 0

−H
w(x, y, z) dy dx, (3.4)

where we have defined I(x, z) =
∫ 0
−h(x,z) w(x, y, z) dy as indicated. Note also that the

interface is defined to be at y=−h(x, z)=−(H + h0(x, z)+ εh1(x, z)+ · · ·). In order
to find the expansion for Q, we first find that for I(x, z). We start by splitting the
range of integration,

I(x, z) =
(∫ 0

−H−h0(x,z)
+

∫
−H−h0(x,z)

−H−h0(x,z)−εh1(x,z)

+

∫
−H−h0(x,z)−εh1(x,z)

−H−h0(x,z)−εh1(x,z)−ε2h2(x,z)
+ · · ·

)
w(x, y, z) dy. (3.5)

The third integral has size O(ε2) since its range is of O(ε2) and the integrand is
bounded; hence it is not retained in the analysis. Next, by Taylor expanding the second
integrand in (3.5) about y=−H− h0(x, z) and using the asymptotic series (2.13a) for
w, we obtain

I(x, z) =
∫ 0

−H−h0(x,z)
w0(x, y, z) dy

+ ε

(
h1(x, z)w0(x,−H − h0(x, z))+

∫ 0

−H−h0(x,z)
w1(x, y, z) dy

)
+O(ε2).

(3.6)

Furnished with (3.6), the expressions for Q0 and Q1 follow readily:

Q0 =

∫ ∫
D0(z)

w0(x, y, z) dx dy, (3.7)

Q1 = p1

∫ δ

0
g1(x, z)w0(x,−H − h0(x, z), z) dx+

∫ ∫
D0(z)

w1(x, y, z) dx dy, (3.8)

where D0(z) is the leading-order cross-section whose only difference from D(z) is that
the former has a liquid–gas meniscus boundary given by the leading-order expression
y = −H − h0(x, z). To compute Q0 and Q1 we need to solve for the leading-order
streamwise velocity, the cross-flow problem and the first-order streamwise problem.
These are addressed next.

3.2. Zeroth-order streamwise velocity problem
As mentioned in § 2.3 we find it convenient to work with p0 as the streamwise
independent variable rather than z. In what follows we provide a method for finding
z(p0), w0(x, y,p0) and hence Q0 from (3.7). The difficulty is that, at each cross-section,
the forcing dp0/dz is unknown and p0 also determines its geometry. Hence, we solve
a complimentary problem that allows us to apply the numerical method without
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knowledge of z(p0), and use the acquired numerical results to then solve the fully
coupled problem.

Note from (2.14a) that since p0 is constant in each cross-section, it follows that
dp0/dz is also constant in each cross-section. This is the only forcing in equation
(2.14a) for w0, hence at a fixed streamwise location, w0 is proportional to the leading-
order pressure gradient. Substituting

w0 =−
dp0

dz
W0, (3.9)

into (2.14a) yields the following Poisson equation at each cross-section (geometrically
characterized by a fixed value of p0)

∇
2
⊥

W0 =−1. (3.10)

The leading-order boundary conditions to be satisfied by solutions of (3.10) are (see
§ 2.3 and in particular the tangential stress balance condition (2.22) at the meniscus)

W0xh0x +W0y = 0 on y=−h0(x, p0), 0< x< δ, (3.11)
W0 = 0 on y=−H, δ < x< 1, (3.12)

W0x = 0 on x= 0, 1, (3.13)
W0y = 0 on y= 0. (3.14)

This can be solved numerically using the method outlined in § 4. We define Q̃0 to be
the integral of W0 over the leading-order cross-section D0,

Q̃0(p0)=

∫ ∫
D0(p0)

W0(x, y, p0) dx dy. (3.15)

This quantity can be found numerically at discrete values p(n)0 as defined in (4.1).
Substituting the definition (3.9) into (3.15) and making use of (3.7) gives

− Q̃0(p0)
dp0

dz
=Q0. (3.16)

Equation (3.16) relates the auxiliary quantity Q̃0 that we can calculate at any
cross-section, to the physically relevant constant flow rate Q0 that we are seeking.
Rearranging (3.16) and integrating both sides with respect to p0 (first an integration
between 0 and 1 to calculate Q0 followed by an indefinite integral between 0 and p0)
gives the following expressions for Q0 and z(p0)

Q0 =

∫ 1

0
Q̃0(p′) dp′, (3.17)

z(p0)= 1−

∫ p0

0
Q̃0(p′) dp′∫ 1

0
Q̃0(p′) dp′

. (3.18)

Having calculated the values of Q̃0(p0) at the Chebyshev points p(n)0 as defined in (4.1),
we compute integrals (3.17)–(3.18) in turn using Chebyshev collocation methods. We
then recover dp0/dz from (3.16), and obtain w0 from the definition (3.9).
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3.3. Cross-flow problem
In order to find u0 and v0 which automatically satisfy the continuity equation (2.14b)
and to eliminate p2 from (2.17), we define a modified streamfunction ψ such that

u0(x, y, z)=ψy(x, y, z), v0(x, y, z)=−ψx(x, y, z)+
∫ 0

y
w0z(x, y′, z) dy′. (3.19a,b)

Cross-differentiating (2.17) to eliminate p2, and substituting (3.19) provides the
following equation for ψ

ψxxxx + 2ψxxyy +ψyyyy =

(∫ 0

y
w0z dy′

)
xxx

+

(∫ 0

y
w0z dy′

)
xyy

. (3.20)

The right-hand side of (3.20) is identically zero as we show next. Using the leading-
order streamwise momentum equation (2.14a) we have w0xx = p0z −w0yy and so(∫ 0

y
w0z dy′

)
xxx

+

(∫ 0

y
w0z dy′

)
xyy

=

∫ 0

y
(p0xzz −w0xyyz) dy′ −w0xyz = 0, (3.21)

since p0x= 0 from (2.14a). Hence, in order to obtain the cross-flow we need to solve
a biharmonic equation in the cross-plane,

∇
4
⊥
ψ = 0. (3.22)

This is to be solved subject to the meniscus boundary conditions (2.20) and (2.21)
which in terms of ψ read

h0xψy −ψx =−h0zw0 −

∫ 0

−H−h0(x)
w0zdy, (3.23)

4h0xψxy + (ψyy −ψxx)(1− h2
0x) = h0zh0xw0y − h0zw0x − 2h0xw0z

−

∫ 0

−H−h0(x)
w0xz dy(1− h2

0x). (3.24)

Substitution of (3.19) into the remaining boundary conditions for u0 and v0, and
then integration of the resultant tangential derivative conditions to produce equivalent
Dirichlet conditions (choosing ψ = 0 on y = 0 without loss of generality), gives the
remaining boundary conditions for ψ . Firstly,

ψy = 0, ψ =−

∫ 1

x

∫ 0

−H
w0z dy dx on y=−H, x> δ, (3.25a,b)

from the no-slip and impermeability conditions on the solid ridge, respectively.
Secondly,

ψ = 0, ψxx =

∫ 0

y
w0xz dy= 0 on x= 0, 1, (3.26a,b)

from impermeability at the vertical planes of symmetry and the symmetry condition
on v0, respectively. Thirdly,

ψ = 0, ψyy = 0 on y= 0, (3.27a,b)
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from impermeability at the horizontal plane of symmetry and the symmetry condition
on u0, respectively. It can also be shown by integrating the tangential derivative of
ψ over a section of the meniscus and applying the gradient theorem, that (3.23) is
equivalent to:

ψ =−

∫ 1

δ

∫ 0

−H
w0z dy dx−

∫ δ

x

∫ 0

−H−h0(x)
w0z dy dx−

∫ δ

x
w0(x,−H − h0(x))h0z dx.

(3.28)

Note that, at x= 0, the right-hand side of (3.28) is equal to −dQ0/dz (by the Leibniz
integral rule), which is equal to zero, since Q0 is constant. Hence, it can be verified
that the preceding boundary conditions for ψ preserve continuity around the boundary.

This system for ψ is solved at each required cross-section (according to our
discretization in the p0 direction) using the method outlined in § 4 below.

3.4. First-order streamwise velocity problem
We address equations (2.16a)–(2.16c) and obtain the solutions for p1(p0), h1(p0), w1
and hence Q1 from the expression (3.8). The first-order boundary conditions to be
satisfied at the curved meniscus and the solid ridge, together with symmetry conditions
at x= 0, 1 and y= 0, and zero conditions for the inlet and outlet perturbation pressure
read

w1xh0x +w1y = p1(g1h0xw0xy + g1w0yy − g1xw0x) on y=−H − h0(x), (3.29)
w1 = 0 on y=−H, x> δ, (3.30)

w1x = 0 on x= 0, 1, (3.31)
w1y = 0 on y= 0, (3.32)
p1 = 0 on z= 0, 1. (3.33)

The tangential stress condition (3.29) follows from (2.23) after use of (2.29) and
(2.30) for h1. An apparent complexity in the above system is the fact that p1 is
unknown and depends on p0 which in turn determines the geometry of the domain.
This is resolved by utilizing the linearity of the problem and identifying three
p1-independent auxiliary problems whose solutions are superimposed with p1 as a
multiplicative function. The auxiliary problems need to be addressed numerically but
are either similar to or identical to the solution for w0 described in § 3.2, so that our
existing numerical algorithms can be used. Once the functional form of the solutions
is found, we address the fully coupled problem as described next. To motivate the
decomposition consider (2.16b) written in the form

w1xx +w1yy =
dp1

dp0
p0z + Re (u0w0x + v0w0y +w0w0z), (3.34)

with the first term on the right-hand side followed by the chain rule and the fact that
p1x= p1y= 0 – see (2.16a). Comparison of (3.34) and the boundary conditions (3.29)–
(3.33) with the leading-order streamwise problem (2.14a) and its boundary conditions
(in particular the tangential stress balance (2.22) since the other symmetry and no-
slip conditions are homogeneous), shows that we must deal with three inhomogeneous
terms to solve the problem. These are the right-hand side of (3.29) where the only
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unknown is the function multiplying p1, along with the pressure gradient and inertial
terms on the right-hand side of (3.34). Hence, looking for a solution of the form

w1 = p1wA +
dp1

dp0
wB + Re wC, (3.35)

we have

∇
2
⊥

wA = 0, (3.36)

∇
2
⊥

wB =
dp0

dz
, (3.37)

∇
2
⊥

wC = u0w0x + v0w0y +w0w0z, (3.38)

subject to the boundary conditions

wAxh0x +wAy = g1h0xw0xy + g1w0yy − g1xw0x, (3.39)
wBxh0x +wBy =wCxh0x +wCy = 0 on y=−H − h0(x), (3.40)

wA =wB =wC = 0 on y=−H, x> δ, (3.41)
wAx =wBx =wCx = 0 on x= 0, 1, (3.42)

wAy =wBy =wCy = 0 on y= 0. (3.43)

Note that the solution wB is identical to w0 which is already known – wB =

−(dp0/dz)W0 with W0 already found from (3.10)–(3.14). The remaining solutions
wA and wC can be found at each required cross section by discretization in p0 using
the methods of § 4.

To obtain the correction Q1 to the flux given by (3.8), we integrate the solution
(3.35) over any cross-sectional area D0(p0) as defined earlier in § 3.1. Since p1 is a
function of p0 alone, this integration can be easily accomplished to yield

Q1 = p1QA(p0)+
dp1

dp0
QB(p0)+ Re QC(p0), (3.44)

where

QA(p0)=

∫ ∫
D0(p0)

wA dx dy+
∫ δ

0
g1(x)w0(x,−H − h0(x)) dx, (3.45)

QB(p0)=

∫ ∫
D0(p0)

wB dx dy, (3.46)

QC(p0)=

∫ ∫
D0(p0)

wC dx dy. (3.47)

Since wB=w0, this implies that QB(p0)=Q0= const., and so (3.44) can be rearranged
to give

dp1

dp0
+

QA(p0)

Q0
p1 =

Q1

Q0
− Re

QC(p0)

Q0
, (3.48)

which in turn can be cast into

d
dp0

(p1Λ(p0))=
Λ(p0)

Q0
(Q1 − ReQC), (3.49)
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where

Λ= exp
(

1
Q0

∫ p0

0
QA(p′0) dp′0

)
. (3.50)

Integrating (3.49) with respect to p0 yields

p1 =
1

Q0Λ(p0)

∫ p0

0
Λ(p′0)(Q1 − Re QC(p′0)) dp′0, (3.51)

where the lower limit is chosen to satisfy the outlet pressure condition p1= 0 at p0= 0.
The inlet condition for p1 translates into p1 = 0 at p0 = 1, and applying this to (3.51)
provides an expression for the flux correction Q1,

Q1 = Re QC, where QC =

∫ 1

0
Λ(p′0)QC(p′0) dp′0∫ 1

0
Λ(p′0) dp′0

. (3.52)

An expression for p1 in terms of known computable quantities follows, namely,

p1(p0)=
Re

Q0Λ(p0)

∫ p0

0
Λ(p′0)(QC −QC(p′0)) dp′0. (3.53)

With (3.53) available we readily obtain the correction h1(x, p0) to the interface as
given by (2.29) and (2.30). In addition, substituting (3.53) into expression (3.35)
determines the leading-order streamwise velocity w1(x, y, p0) where it is understood
that p0 and z are interchangeable as explained above.

We emphasize that the analysis presented here must be augmented with a series
of elliptic two-dimensional cross-sectional problems solved at a discretized set of
streamwise nodes. The computational work is described next, and is carried out using
domain decomposition and Chebyshev methods that preserve spectral accuracy. An
additional complication is the presence of stress singularities at the liquid–gas–solid
triple point, and we provide details of our algorithms for treating such points
analytically and maintaining spectral accuracy.

4. Numerical methods
As part of our semi-analytical study, several second- and fourth-order two-

dimensional partial differential equations (PDEs) are solved numerically at different
cross-sections along the three-dimensional microchannel and our general computational
approach is described next. The 2-D cross-sectional domain is decomposed into two
subdomains separated by a vertical line which passes through the triple contact
point, as indicated in figure 3. Likewise, the entire 3-D domain is separated into two
subdomains by the vertical plane x= δ that passes through the triple contact line.

To facilitate the implementation of spectral Chebyshev discretizations for second-
order problems, each subdomain with cross-section 1 and 2 as indicated in figure 3
is transformed to the cubes [−1, 1]3. The required transformations are denoted by A
and B and are detailed in appendix B. They transform the (x, y, z) coordinates to
(ξi,2, ηi,2, p0) coordinates (where i corresponds to the subdomain and the subscript 2
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1 2

FIGURE 3. Diagram indicating how the cross-sectional domain is decomposed into two
distinct subdomains.

denotes second-order problems). In each coordinate, we sample N + 1 Chebyshev
points to create a three-dimensional grid given by

(ξ
(l)
i,2 , η

(m)
i,2 , p(n)0 )=

[
cos
(

lπ
N

)
, cos

(mπ

N

)
, cos

(nπ

N

)]
. (4.1)

To solve fourth-order problems such as (3.22), we divide the domain as before
and use transformations C and D as detailed in appendix B transforming the (x, y)
coordinates into (ξi,4, ηi,4), adopting the notation introduced above. Note that we do
not consider the z mapping here, because it is not necessary to take z derivatives of
the solution of any fourth-order problems. Each subdomain (in 2-D space) is therefore
transformed to the square [−cos(π/N), cos(π/N)] × [−cos(π/N), cos(π/N)]. Hence
the boundaries of the original domains have been mapped to ξi,4, ηi,4 =± cos(π/N),
including the division line between subdomains. We then solve the resultant PDEs in
[−1, 1] × [−1, 1], slightly extending the domain of definition of the solution function.
This gives an extra row/column on each side of the Chebyshev grids at which the
function value is not important. We use the extra degrees of freedom to impose a
second boundary condition on each of the boundaries, without over-determining the
discrete problem. As before, we sample N + 1 Chebyshev points in each coordinate
in [−1, 1] × [−1, 1] via

(ξ
(l)
i,4 , η

(m)
i,4 )=

[
cos
(

lπ
N

)
, cos

(mπ

N

)]
. (4.2)

The procedure for solving the PDEs (at a fixed value of p(n)0 ) is as follows. First,
we transform the governing equations and boundary conditions (including continuity
between subdomains) from (x, y, z) coordinates into (ξi,j, ηi,j, p0) coordinates, where
j = 2 or 4. Next we express the discrete approximations to these equations at
the Chebyshev grid points, using standard Chebyshev differentiation matrices – see
Trefethen (2000) for example. The finite set of equations is cast into a matrix problem
that was solved using MATLAB’s backslash function. More details of this approach
can be found in Game et al. (2017). Throughout this process, we remove stress
singularities at the solid–liquid–gas triple point from the numerical problems, and
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this is found to greatly enhance the numerical convergence of the resulting problems.
Such singularity removal has been discussed in the literature for superhydrophobic
problems by Nizkaya, Asmolov & Vinogradova (2014), for example, and also much
earlier by Peyret & Taylor (1983) in computational aspects of the Motz problem.
To achieve this we require analytical asymptotic expressions for the singular parts of
the solutions, and these are derived in appendix C. The method of decomposing the
solution into a singular plus a regular part is identical to that described by Game et al.
(2018), in which the unknown strength of the singularity form is calculated as part of
the numerical problem. We make a slight addition to this method where derivatives or
integrals of a previously found solution are required (e.g. the computation of w0z). In
particular, we calculate the derivative or integral of the singular and regular parts of
the solution function separately. This is due to accuracy being lost when taking, for
instance, the spectral derivative of a function with infinite derivatives. In this way, we
require expressions for not only the singularities, but also all of the relevant integrals
and derivatives of the singularities as well. All these are also detailed in appendix C.

Hence, after finding solutions to a PDE at each p(n)0 , relevant quantities such as
z derivatives of w0 for example, can be calculated to be used as inhomogeneous
terms for later problems (note that this typically requires polynomial interpolation
between different coordinate systems). For this particular example we use Chebyshev
differentiation matrices in the p0 direction on the regular part of w0 according to
the transformations detailed in appendix B. Following this, the z derivative of the
singular part is calculated analytically and added to the numerical derivative of the
regular part. Other quantities were calculated in a similar manner.

5. Numerical results
5.1. Three-dimensional flow field, pressure distribution and meniscus shape

We initially provide a sample solution to the full problem, for the chosen parameter
values of H=0.5, Γ =1 and δ=0.8 – recall that H is the dimensionless microchannel
height, Γ the surface tension parameter (see (2.24) for the definition) and 1− δ the
the solid fraction. The relatively small height and small solid fraction were chosen
to make the 3-D effects more pronounced visually. The surface tension parameter
γ was selected so that the inlet meniscus protrusion angle (in this case 53◦) would
be physically realizable when using a liquid metal such as Galinstan. Liu et al.
(2012a) find that Galinstan has an advancing contact angle θA = 147◦ on silicon
nitride, corresponding to a protrusion angle of 57◦. Hence our chosen value of Γ is
consistent with maintaining the Cassie state under physically relevant conditions.

In figures 4 and 5 we show the streamwise velocity profiles at zeroth and
first orders, w0 and w1/Re, respectively, in the cross-sectional region 0 < x < δ,
−H − h0(x, z) < y < 0 and δ < x < 1, −H < y < 0, at four streamwise locations
z = 0, 1/3, 2/3 and 1. Animated videos of these solutions (as the microchannel is
traversed at a constant rate) are provided as supplementary Movie 1 for w0 available
at https://doi.org/10.1017/jfm.2019.366, and supplementary Movie 2 for w1. As can
be seen from these results, the flow-field structures of w0 and w1 are quite similar
comprising of a slow flowing region in the vicinity of the solid boundary and a
faster moving central core over the meniscus and away from solid boundaries. The
reason for this is the fact that the in the solution (3.35) for w1, the main contribution
comes from wC which satisfies a Poisson equation and shares the same boundary
conditions as w0 (compare (3.38)–(3.39) for wC with (3.10)–(3.11)). In addition, in
contrast to w0, w1 is usually negative because its governing equation has w0w0z as its

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.366
https://doi.org/10.1017/jfm.2019.366


290 S. E. Game, M. Hodes and D. T. Papageorgiou
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FIGURE 4. (Colour online) Contour plots of w0 for Γ = 1, H= 0.5, δ= 0.8, at z= 0, 1/3,
2/3 and 1 (from a to d).
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FIGURE 5. (Colour online) Contour plots of the normalized first-order correction w1/Re
to the streamwise velocity. Other parameters are Γ = 1, H = 0.5, δ = 0.8, at z = 0 (a),
1/3 (b), 2/3 (c) and 1 (d).

primary forcing, and w0z is also usually positive, i.e. the leading-order flow speeds up
as we move downstream. In both cases the velocity magnitudes are typically larger
towards the end of the microchannel. This is a consequence of a constant flow rate
being driven through a smaller channel cross-section as we move downstream and
the meniscus becomes flatter and explains why w0z is usually positive. We provide
results for large ranges of microchannel heights H later, but we emphasize that for
moderate heights the trends outlined in results presented above are fairly typical in
that inertia causes a slowing down of the total streamwise flow and hence a reduction
in the total flux (see figure 12 and the discussion pertaining to it).

Next we consider the behaviour of the spanwise (x-direction) and vertical
(y-direction) velocities, u0 and v0, respectively, for the transverse flow problem in
the cross-section. Results are provided in figures 6 and 7 for u0 and v0 respectively,
for the same geometry and parameters as those in figures 4 and 5. These results
are captured for all streamwise locations in supplementary Movie 3 for u0, and
supplementary Movie 4 for v0. Additionally, Figure 8 provides contour plots of
the transverse flow field, where the colour map indicates the transverse flow speed√

u2
0 + v

2
0 , whereas the contours indicate the transverse flow direction, that is the

tangents of the contours are in the direction of the vector (u0, v0). Note that the
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(a) (b)
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FIGURE 6. (Colour online) Contour plots of the spanwise velocity u0 for Γ = 1, H= 0.5,
δ = 0.8, at z= 0 (a), 1/3 (b), 2/3 (c) and 1 (d).
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FIGURE 7. (Colour online) Contour plots of the vertical velocity v0 for Γ = 1, H = 0.5,
δ = 0.8, at z= 0 (a), 1/3 (b), 2/3 (c) and 1 (d).

contours are not streamlines in the sense that they are not lines of constant ψ as
defined in (3.19). In all 3 figures’ results are, again, given at streamwise locations
z= 0, 1/3, 2/3 and 1. It can be observed that larger transverse velocities are attained
towards the end of the microchannel – for example the maximum values roughly
double as we move from z = 1/3 to z = 1, as can be seen from figures 6 and 7.
This increase is due to the larger values of w0 and w0z that force the system for ψ
– see (3.19) for the definition of the transverse velocities in terms of the modified
streamfunction ψ , and (3.22)–(3.23) for the equation and boundary conditions it
satisfies. The results can also be used to identify where in the 3-D geometry the
transverse velocities attain maximum values. Inspection of figure 7 indicates that the
maximum value of v0 is achieved on the meniscus at x = 0 and for all streamwise
values z. This is due to kinematic boundary condition (2.20). Since h0x = 0 at x= 0
and −h0z and w0 are at local maxima at x = 0, the maximum value of v0 on the
meniscus must also be here. Turning next to the streamwise velocity u0 and the
results of figure 6, it can be seen that a maximum value of u0 is achieved close to
the middle (x ≈ 0.5) of the microchannel centreline (y = 0). This is largely due to
transverse velocities induced at the meniscus being forced in the positive x direction
by the centreline and the symmetry line conditions at x= 0. The point in the middle
of the centreline is furthest (in y) from the solid ridge that provides the source of
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FIGURE 8. (Colour online) Contour plots illustrating the transverse flow field (u0, v0). The
colour map indicates the transverse flow speed,

√
u2

0 + v
2
0 , whereas the contours indicate

the transverse flow direction, i.e. tangents to the contours are in the direction of the vector
(u0, v0). Note that the contours are not streamlines – they are not lines of constant ψ , as
defined in equation (3.19). Results are depicted at streamwise locations z= 0 (a), z= 1/3
(b), z= 2/3 (c) and z= 1 (d) for Γ = 1, H = 0.5 and δ = 0.8.
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1.0

0.8

0.6

0.4

0.2

10

8

6

4

2

(÷ 10-3)

z z

p0

p 1
/R

e

(a) (b)

FIGURE 9. Plots of (a) p0(z) and (b) p1(z)/Re for Γ = 1, H = 0.5, δ = 0.8. In (a) we
also plot (1− z) against z as a dotted line to facilitate comparison with a constant pressure
gradient.

friction, and furthest (in x) from the symmetry lines x = 0, 1 which force u0 to
become zero by symmetry.

Figure 9 gives the calculated pressure at zeroth and first orders as a function of
the streamwise position z for the parameters used earlier, namely a microchannel
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of height H = 0.5, δ = 0.8 and Γ = 1. Note that since p0 and p1 are independent
of the cross-sectional coordinates x and y, they can be represented as curves of
a single variable z as shown. In figure 9(a), we also superimpose the dotted line
(1− z) which represents a linear pressure variation for a unit pressure drop. As this
figure shows, even for a case in which three-dimensional effects are inflated (small
H and δ approaching 1), we see very little deviation in p0 from the linear pressure
field case. This is a result of the limited variation in the quantity Q̃0 (see (3.15))
along the microchannel, which itself is a result of the relatively minor influence of
meniscus curvature on the 2-D problem with a constant pressure gradient. We find
that the deviation in p0 is even smaller as H increases, but as discussed later in the
context of figure 12(b), this is the scenario when we see the largest correction in
flow rate. Hence, the deflection (or lack thereof) of the zeroth-order pressure field
from linear is not predictive of the overall significance of three-dimensional effects.
Correspondingly, figure 9(b) shows that the values of the perturbation pressure p1
we achieve for H = 0.5 are numerically small and of maximum magnitude < 10−2.
This does not imply small values of w1, however. Inspection of (2.16b) (equivalently
(3.34)) indicates that w1 is driven by the first-order pressure gradient p1z and the
inertial terms involving leading-order velocities. The main inertial contribution comes
from w0w0z. The reason for this is that we find computationally that u0(x, y, z) ≈ 0
and v0(x, y, z) ≈

∫ 0
y w0z(x, y′, z)dy′ are excellent approximations (see (5.2)), and

consequently even when the term v0w0y is not small relative to w0w0z, its sign follows
that of w0w0z (note that w0y is non-negative). We conclude, therefore, that if w0w0z is
positive/negative it acts like a adverse/favourable pressure gradient thus decreasing or
increasing w1. If at the same time p1z is small even though it can be adverse over
more than 70 % of the microchannel length as is the case in figure 9, then since w0 is
non-negative it is the sign of w0z that controls whether the correction Q1 to the flux is
positive or negative. This physical reasoning helps explain our computational findings,
namely for small and moderate heights H we obtain Q1 < 0 and hence a reduction
in the overall flow rate – fluxes are discussed in detail later, but see figure 12(b) for
cases having Q1<0 when H /7. It remains to explain physically the origin of positive
values of w0z > 0, the leading-order streamwise velocity gradient, generally implying
an increase in w0 along the microchannel leading to an inertia-induced reduction
of the overall flow rate when H is sufficiently small. The increase in w0 can be
seen from figure 4 as we move down the microchannel, but also more explicitly in
figure 13(b), discussed in detail later, that shows w0z at different streamwise locations
for H = 6. As we move down the microchannel the meniscus becomes flatter and
hence the cross-sectional area decreases. If we were dealing with no-slip boundaries
then the conclusion that the velocity increases is immediate. In the presence of slip,
however, there is a competition between the decrease in cross-sectional area and the
effect of apparent slip as the meniscus flattens towards the end of the microchannel.
For sufficiently small H the former mechanism dominates and the streamwise velocity
increases due to cross-sectional area decrease – see also the 2-D computations by
Game et al. (2017) and the asymptotic study for small meniscus curvatures by Kirk,
Hodes & Papageorgiou (2017). We also note that one can achieve significant values
of p1 at the larger values of H in the regime discussed here, as shown in figure 10 for
δ= 0.8 and H = 6 or H = 10. In contrast to the pressure correction p1 corresponding
to the smaller H = 0.5 case shown in figure 9(b), we note that in addition to larger
values, the pressure gradient p1z is now favourable over about 0.4 units from entry
before becoming adverse over the latter section of the microchannel. However, the
inertial terms also see a corresponding increase in magnitude; w0z decreases as H
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FIGURE 10. Plots of p1(z)/Re for larger microchannel heights: H= 6 (solid), and H= 10
(dotted). Other parameters are Γ = 1, δ = 0.8.

increases, but this is more than offset by the increase in w0. Hence, the relative
significance of inertia and p1 on w1 is left unchanged as compared to smaller H
microchannels, and the overall effect is for Q1 to remain negative for H less than 8
approximately, as seen in figure 12(b). At larger H we find that Q1 becomes positive
and the physical mechanism behind this is discussed and explained later in § 5.2
where the flow field is also interrogated in more detail.

Next we turn to the shape of the meniscus as we traverse the microchannel. As
explained in § 2.2, the position of the meniscus, defined by y = −H − h(x, z) =
−H− h0(x, z)− εh1(x, z)+ · · ·, is found as part of the asymptotic solution procedure.
The leading-order term h0(x, z) is given by the expression (2.25) which is a circular
arc of changing radius Γ /p0(z). Hence, furnished with p0(z) computed numerically
as described earlier, the leading-order shape is completely determined. In figure 11
we provide the first-order correction h1(x, z) to h in order to identify any significant
deviations from the leading-order form – the solution for h1 is given by equations
(2.29)–(2.30). Since the meniscus shape is a quantity that varies only in the intervals
0< x< δ and 0< z< 1, we can display h1(x, z) as a two-dimensional contour plot as
seen in figure 11. The relatively small values achieved (less than 3×10−3) are a direct
consequence of the relatively small values of p1 observed in figure 9(b) – see solution
(2.29) which tells us that h1 depends linearly on p1. It is of note that the perturbations
to h are such that both h0 and h0 + εh1 represent circular arcs (up to an error of
O(ε2)). This is a consequence of the application of the Young–Laplace equation with
constant (in each cross-section) pressure fields p0 and p0 + εp1, respectively. Further
inspection of figure 11 shows that the largest values of h1 are in the vicinity of x∼ 0,
i.e. the meniscus centre, which might be expected as larger values of h0 are achieved
here. The overall maximum of h1 is seen at a streamwise location of around z= 0.7,
which corresponds to the maximum in p1 found in figure 9(b). Physically, then, the
correction h1 will cause a local depression in the vicinity of x≈ 0, z≈ 0.7, something
that could be of interest to experimentalists.

5.2. Overall flow rates and the effects of inertia
The results of § 5.1 provided details of the flow-field, pressure distribution and
meniscus shape up to two terms in the asymptotic expansion, hence yielding results
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FIGURE 11. (Colour online) Contour plot of the first-order correction h1(x, z) to the
meniscus shape for Γ = 1, H = 0.5, δ = 0.8.

correct to O(ε2). To illustrate matters attention was focussed on one microchannel
geometry having H = 0.5, δ = 0.8 and dimensionless surface tension Γ = 1. In
this section we consider large ranges of H, δ and Γ and calculate their effect on
the leading-order flow rate Q0 and the scaled first-order correction Q1/(Re Q0) that
introduces the effects of inertia. Recall that Q=Q0 + εQ1 + · · · , and expressions for
Q0 and Q1 have been derived in (3.7) (equivalently (3.17)) and (3.8) (equivalently
(3.52)), respectively, and calculated using quadratures once the leading-order and
first-order quantities are determined. The Reynolds number Re is included on the
denominator of the quantity Q1/(Re Q0) because Q1 is proportional to Re – see
(3.52). We can multiply with a given value of Re to obtain the appropriate first-order
flow rate as needed.

Before presenting results from the computations, we introduce two approximations
to Q0 and Q1 denoted by Q(approx)

0 and Q(approx)
1 , respectively. Our motivation stems from

the question of whether the flow rates constructed using 3-D effects (albeit for the
slowly varying case) can be approximated well using computations of 2-D equations,
i.e. Poisson solvers that avoid the need for computing transverse flow quantities as
for example u0 and v0. Mathematically this simplification avoids solving biharmonic
equations for the modified streamfunction ψ – see (3.19) and (3.22) – allied with
singularity removal techniques for fourth-order problems as described in § C.3.

We begin with the approximation of Q0 defined by

Q(approx)
0 = Q̃0(p0 = 1/2), (5.1)

where Q0 is given as a function of p0 in (3.15). Instead of the exact form (3.17) for
Q0, we approximate the integrand Q̃0 by its value in the middle of the p0-domain,
i.e. at p0 = 1/2, leading to the (5.1). Note that this is exactly the two-dimensional
approximation that assumes a constant pressure gradient, with the meniscus protrusion
angle chosen to be that corresponding to the pressure midway between inlet and
outlet pressures. Next, we define Q(approx)

1 in the same way as Q1 given by (3.8) or
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FIGURE 12. (Colour online) (a) The zeroth-order flow rate Q0 and (b) the first-order flow-
rate correction metric Q1/(ReQ0) plotted against H for the indicated values of the liquid
fraction δ and γ = 1.2. In both cases dotted lines represent the corresponding approximate
values Q(approx)

0 and Q(approx)
1 . Note that in both cases, but particularly in (a), the dotted lines

are not easily visible due to very good agreement.

equivalently by (3.52), except that during the calculation process of wC via (3.38) we
use the following approximations for the transverse velocities u0 and v0

u0(x, y, z)≈ u(approx)
0 (x, y, z)= 0, v0(x, y, z)≈ v(approx)

0 (x, y, z)=
∫ 0

y
w0z(x, y′, z) dy′.

(5.2a,b)

Specifically, to calculate wC we substitute (5.2) for u0 and v0 into (3.38) and use
the result to calculate Q1 (now named Q(approx)

1 ) as before. We anticipate this to be
a good approximation as we expect ψ to be numerically small globally (as indeed
confirmed a posteriori from the full computations). The reason for this is that ψ , as
defined by (3.19) and satisfying the biharmonic equation (3.22) and relevant boundary
conditions given in § 3.3, has ψ = 0 imposed by boundary conditions on three sides
of the domain.

We begin by presenting results for Q0 and Q1/(ReQ0) for a wide range of
dimensionless microchannel heights H describing narrow microchannels all the way
to relatively high microchannels having H = 10. The results given in figure 12 were
computed for δ= 0.7, 0.8, 0.9, i.e. half-ridge lengths of 0.3, 0.2 and 0.1, respectively.
The surface tension parameter is Γ = 1.2. The leading-order flow rate Q0 is given
in figure 12(a) and the correction Q1/(ReQ0) is included in figure 12(b). For each
value of δ we also superimpose with dotted curves, the approximations Qapprox

0 and
Qapprox

1 given above. The accuracy of such approximations is remarkable for the given
range of H, and this finding can have implications for practitioners. Firstly, the
success of Q(approx)

0 implies that for problems where inertial effects do not need to be
considered, the technical details of the slowly varying approximation results do not
need to be accounted for. A practitioner can simply take the midpoint of the inlet and
outlet pressures, and compute the two-dimensional problem at this pressure. Secondly,
the success of Q(approx)

1 indicates that the most difficult and time-consuming part of
the implementation of the methodology (solving the cross-flow problem) is often
unnecessary for good accuracy. In fact, the implementation of this approximation will
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FIGURE 13. (Colour online) (a) The first-order velocity w1 and (b) the leading-order
velocity gradient w0z, plotted at z = 0, 1/4, 1/2, 1 (left to right). Other parameters are
δ = 0.8, H = 6.

only require the solutions to a sequence of second-order problems. It also means that
significant progress may be made in finding analytical solutions, as the fourth-order
problem would have been the most significant barrier to this. We expect there to be a
formal way to quantify the strength of these approximations using asymptotic analysis
(with H as a large parameter) as carried out in related problems, see Crowdy (2016),
D. G. Crowdy (private communication, 2017), Kirk et al. (2017), Kirk (2018).

The overall trends of the results for the leading-order flow rate Q0 shown in
figure 12(a) are as expected, namely smaller width ridges produce larger flow rates
due to reduced flow resistance. The results also show that this is valid for all values
of H with the curve for δ = 0.9 yielding the highest values and δ = 0.7 the lowest
ones. In addition, as expected Q0 is monotonically increasing with H for all values
of δ computed.

Figure 12(b) also illustrates that Q1 is more sensitive to δ as compared to Q0. The
results also show that the behaviour of Q1 with H is non-monotonic with a negative
minimum being attained at H≈ 6. As explained in § 5.1, the correction Q1 is negative
for small and moderate values of H mainly due to inertial terms and in particular
w0w0z being relatively large and positive compared to the other inertial terms and the
correction p1z of the pressure gradient. Figure 12(b) also shows that at large values of
H it is possible to obtain positive values of Q1, implying flow-rate enhancement due
to inertial effects. For example, Q1 becomes positive for H larger than approximately
7.7, 8.6 or 9.5, for ridges characterized by δ = 0.7, 0.8 and 0.9, respectively.
A physical explanation can be given both for the sign of Q1 in this regime as well as
the requirement of larger H as δ increases and the ridge width decreases. For large
H the decrease in area towards the end of the microchannel becomes insignificant
compared to the enhancement in slip length due to the flattening meniscus – see
Game et al. (2017), Kirk et al. (2017), for example. This slip enhancement in turn
enables the leading-order flow w0 to decrease towards the centre of the microchannel
to maintain a constant flow rate. This causes w0z to be negative in the centre of the
microchannel away from boundaries, and hence the main inertial contribution w0w0z

is negative over a large region of the cross-section and acts as a favourable pressure
gradient – see (3.34) and the relevant discussion in § 5.1. This then causes w1 to
become positive towards the centreline and once w1 is positive over a sufficiently large
part of the microchannel, the quantity Q1 also becomes positive. For completeness,
and to quantify the physical explanation given above, we provide numerical results of
the streamwise velocity correction w1 and the key quantity w0z, for a value of δ= 0.8
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FIGURE 14. (Colour online) (a) The first-order velocity w1 and (b) the leading-order
velocity gradient w0z, plotted at z = 0, 1/4, 1/2, 1 (left to right). Other parameters are
δ = 0.8, H = 10.

and two values of H = 6 and H = 10 – these results correspond to the middle curve
in figure 12(b) with H = 6 predicting a flow-rate decrease since Q1 < 0 then, and
H= 10 corresponding to an increase in flow rate since Q1 > 0. Results for H= 6 are
depicted in figure 13 at the streamwise locations z= 0, 1/4, 1/2, 1, with w1 and w0z

shown in figures 13(a) and 13(b), respectively. The results show that w1 is mostly
negative and w0z is mostly positive in the different cross-sections, explaining the
negative value of Q1 and hence the decrease in overall flow rate. The situation is the
opposite when H= 10 as shown in figure 14, with w1 having large positive velocities
in the majority of the microchannel driven by negative values of w0z.

Finally, in figure 15, we provide a more complete exploration of the parameter
space, giving Q1/(ReQ0) as all three parameters δ,H and Γ vary in the ranges 0.56
δ 6 0.9, 0.5 6 H 6 4 and 1 6 Γ 6 2. It is noteworthy that Q1 becomes more negative
for smaller Γ , as can be seen by fixing δ in any of the figures and reducing the value
of Γ . This is quite intuitive since smaller Γ leads to a larger inlet meniscus curvature
and therefore enhanced three-dimensional effects. Similarly, increasing δ for a fixed Γ
also enhances the three-dimensional effects, which in turn causes Q1 to become more
negative.

6. Conclusions

We have developed a hybrid asymptotic/numerical method to accurately compute
the velocity field through a microchannel textured with periodic longitudinal grooves
that support a slowly varying meniscus protrusion when the flow is driven by a
given pressure drop across the microchannel. We assume that the pressure at the
microchannel outlet is the ambient one, hence the meniscus is highly curved at
entry and flat at the end of the microchannel. No assumptions are made on the
size of the meniscus curvature. Using the ratio of the groove pitch to groove
length as a small parameter ε = P/L, and assuming order-one Reynolds numbers,
we developed systematic asymptotic expansions that enable us to calculate the
leading-order streamwise and transverse velocity fields along with the first-order
streamwise field. Our hybrid asymptotic/numerical methodology represents a useful
alternative approach to solving the full 3-D Navier–Stokes equations in an evolving
geometry where the liquid–gas interface that is in the Cassie state needs to be found
as part of the solution by satisfying nonlinear interfacial conditions arising from stress
balances.
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FIGURE 15. Contour plots of Q1/(ReQ0) against Γ and δ for the indicated values of H.

The resulting flow rate Q at steady laminar conditions is considered in detail and
our asymptotic solution yields Q= Q0 + εQ1 + · · · , where Q0 and Q1 are functions
of the cavity fraction δ, the dimensionless surface tension Γ and the dimensionless
microchannel height H (non-dimensionalization sets the pitch to unity). The first-order
flow rate Q0 is the result of the leading-order, slowly varying streamwise velocity and
pressure, whereas the correction Q1 has contributions due to inertia and the secondary
flow in the slowly varying microchannel cross-section. Typical computed flow fields
are given for different microchannel heights ranging from small, H = 0.5, to large
H= 10, and ranges of cavity fractions δ and surface tension parameter Γ of practical
relevance. In addition, the flow rates Q0 and Q1 are calculated and presented for a
wide range of flow conditions. We note that while the pressure field does not deviate
much from the standard linear profile, the slowly varying geometry is of fundamental
importance to the transverse flow and first-order velocity field. As expected Q0 is
always positive with larger values, for all H, as δ increases so that the ridge size gets
smaller – see figure 12(a). In contrast, we find that the first-order correction Q1 is
negative for small to moderate heights implying that inertial effects reduce the overall
flow rate. For microchannel heights above a critical value, Hc say, Q1 is positive
hence inducing inertia-induced enhancement of the overall flow rate. The value of Hc
depends on the cavity fraction δ as well as the surface tension Γ , and for fixed Γ
(as in the results of figure 12b), Hc increases as δ increases, i.e. larger heights are
needed to counteract the flow-rate reduction due to inertia. The physical origin of
these phenomena (discussed in detail in § 5.2) are linked to a competition between
the decrease of the microchannel cross-section as the meniscus flattens towards the
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microchannel end, with velocity modifications there due to apparent slip effects. For
small to moderate heights apparent slip is sub-dominant and area decrease effects
dominate and induce an increase in the leading-order streamwise velocity w0 (crucially
w0z is mostly positive towards the end of the microchannel). At large enough heights,
however, the area decrease is not as important as apparent slip effects that modify
w0 so that the constant flux Q0 can be attained with smaller maximum streamwise
velocities. As a result w0z is mostly negative and the inertial forcing w0w0z to the
first-order streamwise velocity correction w1, acts as a favourable pressure gradient
yielding Q1>0. Interestingly, as seen in figure 12(b) for instance, for given parameters
δ and Γ , there is a local (and indeed global) minimum negative value of Q1 at some
H, where inertia exerts its most adverse effect on the reduction of the overall flow
rate, at least within the context of our asymptotic analysis. It would be interesting to
evaluate such findings with direct numerical simulations in the future.

Extensive computations were used to establish some highly accurate simplifying
approximations in the calculation of the flow field at leading and first orders, as
detailed in (5.1)–(5.2) and the discussion there. The accuracy of such approximations
in capturing the flow rates Q0 and Q1 over all ranges of parameters studied is
excellent – see the results of figure 12. As seen from (5.2) such simplifications make
it unnecessary to solve for the transverse flow field, rendering the entire computational
problem easier since we avoid biharmonic equations such as (3.22) with stick-slip
boundary conditions that require more intricate singularity removal computational
techniques as outlined in appendix C. As a consequence, the approximations can be
useful to practitioners and notably for low Reynolds number problems where the flow
rate is accurately given by the approximation (5.1) requiring solution of a parallel
flow problem governed by a single Poisson equation.
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Appendix A. Stress conditions
Stress balances are applied at the liquid gas interface y=−h, which in dimensionless

terms and utilizing the expansions (2.13b) reads y=−H − h0 − εh1 + · · · . First we
calculate

σnT
=

1√
1+ h2

x + h2
z

 (−p+ 2µux)hx +µ(uy + vx)+µ(uz +wx)hz

µ(uy + vx)hx + (−p+ 2µvy)+µ(vz +wy)hz

µ(uz +wx)hx +µ(vz +wy)+ (−p+ 2µwz)hz

 . (A 1)

The three boundary conditions we will derive are t1σnT
= 0, t2σnT

= 0 and nσnT
+

p(0) = γ κ . Using (A 1) and the expressions (2.18), the first tangential stress balance
becomes

µ[2uxhx + (uy + vx)(1− h2
x)+ (uz +wx)hz − 2vyhx − (vz +wy)hzhx] = 0, (A 2)
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and in dimensionless form (using (2.10)–(2.11))

2uxhx + (uy + vx)(1− h2
x)+ (ε

2uz +wx)hz − 2vyhx − (ε
2vz +wy)hzhx = 0. (A 3)

The leading-order condition (2.21) follows readily.
The second zero shear stress condition t2σnT

= 0 reads

µ[−(uy + vx)hxhz − 2vyhz + (uz +wx)hx + (vz +wy)(1− h2
z )+ 2wzhz] = 0, (A 4)

and non-dimensionalizing we find

− ε2(uy + vx)hxhz − 2ε2hzvy + (ε
2uz +wx)hx + (ε

2vz +wy)(1− ε2h2
z )+ 2ε2hzwz = 0,

(A 5)

also to be evaluated at y=−H − h0 − εh1 + · · · . At leading and first order we find
(2.22) and (2.23), respectively, the latter requiring a Taylor expansion of dependent
variables about y=−H − h0.

Finally, the normal stress balance condition nσnT
+ p(0) + γ κ = 0 becomes

−(p(0) + γ κ)(1+ h2
x + h2

z )=−p(1+ h2
x + h2

z )

+ 2µ[(uy + vx)hx + uxh2
x + vy +wzh2

z + (uz +wx)hxhz + (vz +wy)hz]. (A 6)

Note also that for the surface y=−h(x, z) we have

κ =−
(1+ h2

z )hxx − 2hxhzhxz + (1+ h2
x)hzz

(1+ h2
x + h2

z )
3/2

. (A 7)

Non-dimensionalizing using (2.10)–(2.11) and dropping the stars yields

Γ
(1+ ε2h2

z )hxx − 2ε2hxhzhxz + ε
2(1+ h2

x)hzz

(1+ h2
x + ε

2h2
z )

1/2
+ (1+ h2

x + ε
2h2

z )p

= 2ε2
[(uy + vx)hx + uxh2

x + vy + ε
2wzh2

z + (ε
2uz +wx)hxhz + (ε

2vz +wy)hz]. (A 8)

It follows from (A 8) that the leading- and first-order conditions (2.24) and (2.26) are
capillary pressure conditions with viscous stresses entering at higher order.

Appendix B. Coordinate transforms
B.1. Transformation A

Definition:

F(x, y, z)= f (ξ1,2, η1,2, p0), (B 1)

x= δ
(
ξ1,2 + 1

2

)
, y= (H + h0(x))

(
η1,2 − 1

2

)
, z= z(p0) is known. (B 2a−c)

Derivatives:

∂F
∂x
=

2
δ

(
∂f
∂ξ1,2
−
∂h0

∂ξ1,2

η1,2 − 1
H + h0

∂f
∂η1

)
, (B 3)

∂F
∂y
=

2
H + h0

∂f
∂η1,2

, (B 4)

∂F
∂z
=

dp0

dz
∂f
∂p0
−

dp0

dz
∂h0

∂p0

η1 − 1
H + h0

∂f
∂η1,2

. (B 5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.366


302 S. E. Game, M. Hodes and D. T. Papageorgiou

B.2. Transformation B
Definition:

F(x, y, z)= f (ξ2,2, η2,2, p0), (B 6)

x= (1− δ)
(
ξ2,2 + 1

2

)
+ δ, y=H

(
η2,2 − 1

2

)
, z= z(p0) is known. (B 7a−c)

Derivatives:

∂F
∂x
=

2
1− δ

∂f
∂ξ2,2

, (B 8)

∂F
∂y
=

2
H

∂f
∂η2,2

, (B 9)

∂F
∂z
=

dp0

dz
∂f
∂p0

. (B 10)

B.3. Transformation C
Definition:

F(x, y)= f (ξ1,4, η1,4), (B 11)

x= δ
(
ξ1,4 + cos(π/N)

2 cos(π/N)

)
, y= (H + h0(x))

(
η1,4 − cos(π/N)

2 cos(π/N)

)
. (B 12a,b)

Derivatives:

∂F
∂x
=

2 cos(π/N)
δ

(
∂f
∂ξ1,4
−
∂h0

∂ξ1,4

η1,4 − cos(π/N)
H + h0

∂f
∂η1,4

)
, (B 13)

∂F
∂y
=

2 cos(π/N)
H + h0

∂f
∂η1,4

. (B 14)

B.4. Transformation D
Definition:

F(x, y, z)= f (ξ2,4, η2,4), (B 15)

x= (1− δ)
(
ξ2,4 + cos(π/N)

2 cos(π/N)

)
+ δ, y=H

(
η2,4 − cos(π/N)

2 cos(π/N)

)
. (B 16a,b)

Derivatives:

∂F
∂x
=

2 cos(π/N)
1− δ

∂f
∂ξ2,4

, (B 17)

∂F
∂y
=

2 cos(π/N)
H

∂f
∂η2,4

. (B 18)
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Appendix C. Singularity considerations
C.1. Streamwise velocity problem

The solution to the zeroth-order streamwise problem w0(x, y) was fed into the next
part of the overall problem, the zeroth-order cross-flow problem. Likewise, the solution
to this problem was fed into the subsequent part of the overall problem, the first-order
streamwise problem. At each stage, transferring the previous numerically calculated
solution introduces the potential for numerical errors to compound, severely impeding
the convergence to the full solution. Consequently, we used a singularity removal
method at each stage, which dramatically enhanced convergence and accuracy of the
overall problem.

In particular, since the next part is a fourth-order PDE, we used slightly different
Chebyshev grids and Chebyshev interpolation on w0. We also computed derivatives
and indefinite integrals of w0 using Chebyshev collocation methods. Since all of these
Chebyshev methods rely on acting upon globally well-behaved functions, we handled
the regular and singular parts of w0 separately. Hence, all of the required work was
done analytically on the singular part, f , and numerically on the regular part, ŵ.
Denoting the strength of the singular part f as α, the solution was decomposed as

w0(x, y, z)= ŵ(x, y, z)+ αf (x, y, z). (C 1)

As demonstrated by Game et al. (2018), the singular part f can be calculated in polar
coordinates (r, ϕ), where r, ϕ are the usual radial and angular coordinates, respectively,
with the ridge at ϕ = 0. We find

f (x, y, z)= rλ(z) sin(λ(z)ϕ), (C 2)

λ(z)=
(2k+ 1)π

2(π+ θ(z))
, θ(z)= arcsin(δp0(z)/Γ ), (C 3a,b)

r(x, y)=
√
(x− δ)2 + (y+H)2, ϕ(x, y)=


tan−1

(
y+H
x− δ

)
y >−H

tan−1

(
y+H
x− δ

)
+ 2π y<−H.

(C 4a,b)

The quantity θ(z) above is the (downwards-facing) protrusion angle of the meniscus
at a streamwise distance z along the microchannel. In our numerical implementation,
we removed the first two singularities, i.e. k= 0 and k= 1. Note that the singular part
of functions wA and wC also take this form, therefore, in computing these we subtract
the same singular function f .

C.2. Transferring w0 to the cross-flow problem
The cross-flow problem requires knowledge of the leading-order streamwise velocity
w0, its derivatives and certain indefinite integrals (in y). In order to handle the
singular part f analytically, it is necessary to derive expressions for the corresponding
derivatives and integrals of f . Firstly, we provide expressions for the x and y
derivatives of f as defined in (C 2)

fx = frrx + fϕϕx = cos ϕfr −
1
r

sin ϕfϕ = λrλ−1 sin((λ− 1)ϕ), (C 5)
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fy = frry + fϕϕy = sin ϕfr +
1
r

cos ϕfϕ = λrλ−1 cos((λ− 1)ϕ). (C 6)

We also need to compute z derivatives. This is done using the chain rule, hence a
useful expression to record is

λz = λθθp0p0z =−
λ

π+ θ

δ√
γ 2 − δ2p2

0

p0z, (C 7)

which is used in the evaluation of

fz = fλλz = λzrλ(log(r) sin(λϕ)+ ϕ cos(λϕ)). (C 8)

It is also necessary to evaluate
∫ 0

y w0z dy′ and hence it is useful to evaluate∫ 0

y
fz dy′ =

[∫ 0

y
f dy′

]
z

. (C 9)

Prior to differentiating the integral on the right-hand side of (C 9), we evaluate it at
fixed values of x 6= 0 and z∫ 0

y
rλ sin(λϕ) dy′ =

∫ ϕ+

ϕ−

(
x− δ
cos ϕ′

)λ
sin(λϕ′)

dy
dϕ′

dϕ′, (C 10)

where ϕ+ = ϕ(x, 0) and ϕ− = ϕ(x, y). Since y + H = (x − δ) tan ϕ, where x is now
considered constant, we can change variables to ϕ so that the integral in (C 10)
becomes

(x− δ)λ+1
∫ ϕ+

ϕ−

sin(λϕ′)
(cos ϕ′)λ+2

dϕ′, (C 11)

and evaluate to yield

−
(x− δ)λ+1

λ+ 1

[
cos((λ+ 1)ϕ′)
(cos ϕ′)λ+1

]ϕ+
ϕ−

=−
1
λ+ 1

[rλ+1 cos((λ+ 1)ϕ)]0y . (C 12)

Hence we can derive a complete expression for
∫ 0

y fz dy′, namely∫ 0

y
fz dy′ = −

λz

(λ+ 1)2
[rλ+1
{(λ+ 1) log(r) cos (λ+ 1)ϕ

−ϕ(λ+ 1) sin (λ+ 1)ϕ − cos (λ+ 1)ϕ}]0y . (C 13)

C.3. Singularities for ψ
It can be shown (by coordinate transformation to polar coordinates and local analysis)
that the system to be solved by the singular part of ψ , which we denote by g(x, y, z),
is

∇
4
⊥

g= 0, (C 14)
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subject to

g= 0, (C 15)
gϕϕ = 0 on ϕ = θ +π, (C 16)

g= 0, (C 17)
gϕ = 0 on ϕ = 0. (C 18)

The following expression for g (for a fixed power, λ, of r) can be verified using the
Michell solution – see Barber (2002),

g= rλ(A cos(λϕ)+ B cos((λ− 2)ϕ)+C sin(λϕ)+D sin((λ− 2)ϕ)). (C 19)

Since the problem is homogeneous and we require non-trivial solutions, it follows that
all of the constants A, B, C,D scale together and we can assume A= 1 without loss
of generality. Then, (C 17) implies that B=−1, (C 18) implies that

C=
2− λ
λ

D, (C 20)

and (C 15) implies

D=−λ
cos(λ(θ +π))− cos((θ +π)(λ− 2))

λ sin((θ +π)(λ− 2))− (λ− 2) sin(λ(θ +π))
. (C 21)

Finally, applying (C 16) gives the following implicit expression for λ

sin(2πλ− 2θ + 2λθ)= (λ− 1) sin(2θ), (C 22)

which can be solved by standard root-finding methods. The corresponding expression
for g then follows from (C 19). Note that (C 22) can have multiple solutions for λ.
We take the smallest non-integer solution greater than 1 (we expect velocities to be
finite), and remove the corresponding singularity.

REFERENCES

AHUJA, A., TAYLOR, J. A., LIFTON, V., SIDORENKO, A. A., SALAMON, T. R., LOBATON, E. J.,
KOLODNER, P. & KRUPENKIN, T. N. 2008 Nanonails: a simple geometrical approach to
electrically tunable superlyophobic surfaces. Langmuir 24 (1), 9–14.

AKBARI, M., SINTON, D. & BAHRAMI, M. 2011 Viscous flow in variable cross-section microchannels
of arbitrary shapes. Intl J. Heat Mass Transfer 54 (17), 3970–3978.

ASMOLOV, E. S., NIZKAYA, T. V. & VINOGRADOVA, O. I. 2018 Enhanced slip properties of
lubricant-infused grooves. Phys. Rev. E 98 (3), 033103.

BARBER, R. 2002 Elasticity. Kluwer Academic Publishers.
BLASIUS, H. 1910 Laminare stromung in kanalen wechselnder breite. Z. Angew. Math. Phys. 58,

225–233.
CHADWICK, R. S. 1985 Asymptotic analysis of stokes flow in a tortuous vessel. Q. Appl. Maths

43 (3), 325–336.
CROWDY, D. G. 2016 Analytical formulae for longitudinal slip lengths over unidirectional

superhydrophobic surfaces with curved menisci. J. Fluid Mech. 791, R7.
GAME, S. E., HODES, M., KEAVENY, E. E. & PAPAGEORGIOU, D. T. 2017 Physical mechanisms

relevant to flow resistance in textured microchannels. Phys. Rev. Fluids 2, 094102.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.366


306 S. E. Game, M. Hodes and D. T. Papageorgiou

GAME, S., HODES, M., KIRK, T. & PAPAGEORGIOU, D. T. 2018 Nusselt numbers for poiseuille flow
over isoflux parallel ridges for arbitrary meniscus curvature. Trans. ASME J. Heat Transfer
140 (8), 081701.

GHOSAL, S. 2002 Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly
varying cross-section and wall charge. J. Fluid Mech. 459, 103–128.

HODES, M., KIRK, T. L., KARAMANIS, G. & MACLACHLAN, S. 2017 Effect of thermocapillary
stress on slip length for a channel textured with parallel ridges. J. Fluid Mech. 814, 301–324.

HODES, M., ZHANG, R., LAM, L. S., WILCOXON, R. & LOWER, N. 2014 On the potential of
galinstan-based minichannel and minigap cooling. IEEE Trans. Compon. Packag. Manufacturing
Technol. 4 (1), 46–56.

KIRK, T. L. 2018 Asymptotic formulae for flow in superhydrophobic channels with longitudinal
ridges and protruding menisci. J. Fluid Mech. 839, R3.

KIRK, T. L., HODES, M. & PAPAGEORGIOU, D. T. 2017 Nusselt numbers for poiseuille flow over
isoflux parallel ridges accounting for meniscus curvature. J. Fluid Mech. 811, 315–349.

KOTORYNSKI, W. P. 1979 Slowly varying channel flows in three dimensions. J. Inst. Maths Applics.
24, 71–80.

KOTORYNSKI, W. P. 1995 Viscous flow in axisymmetric pipes with slow variations. Computers
Fluids 24 (6), 685–717.

LAM, L. S., HODES, M. & ENRIGHT, R. 2015 Analysis of galinstan-based microgap cooling
enhancement using structured surfaces. Trans. ASME J. Heat Transfer 137 (9), 091003.

LAUGA, E. & STONE, H. A. 2003 Effective slip in pressure-driven stokes flow. J. Fluid Mech. 489,
55–77.

LAUGA, E., STROOCK, A. D. & STONE, H. A. 2004 Three-dimensional flows in slowly varying
planar geometries. Phys. Fluids 16 (8), 3051–3062.

LEE, C., CHOI, C.-H. & KIM, C.-J. 2016 Superhydrophobic drag reduction in laminar flows: a critical
review. Exp. Fluids 57 (12), 176.

LIU, T., SEN, P. & KIM, C.-J. 2012 Characterization of nontoxic liquid-metal alloy galinstan for
applications in microdevices. J. Microelectromech. Syst. 21 (2), 443–450.

MANTON, M. J. 1971 Low Reynolds number flow in slowly varying axisymmetric tubes. J. Fluid
Mech. 49 (3), 451–459.

MARSHALL, J. S. 2017 Exact formulae for the effective slip length of a symmetric superhydrophobic
channel with flat or weakly curved menisci. SIAM J. Appl. Maths 77 (5), 1606–1630.

MAYNES, D., JEFFS, K., WOOLFORD, B. & WEBB, B. W. 2007 Laminar flow in a microchannel
with hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys.
Fluids 19 (9), 093603.

NG, C. O., CHU, H. C. W. & WANG, C. Y. 2010 On the effects of liquid–gas interfacial shear on
slip flow through a parallel-plate channel with superhydrophobic grooved walls. Phys. Fluids
22 (10), 102002.

NIZKAYA, T. V., ASMOLOV, E. S. & VINOGRADOVA, O. I. 2014 Gas cushion model and
hydrodynamic boundary conditions for superhydrophobic textures. Phys. Rev. E 90 (4), 043017.

PEAUDECERF, F. J., LANDEL, J. R., GOLDSTEIN, R. E. & LUZZATTO-FEGIZ, P. 2017 Traces of
surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc. Natl
Acad. Sci. USA 114 (28), 7254–7259.

PEYRET, J. R. & TAYLOR, T. D. 1983 Numerical Methods for Fluid Flow. Springer.
PHILIP, J. R. 1972a Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys.

23 (3), 353–372.
PHILIP, J. R. 1972b Integral properties of flows satisfying mixed no-slip and no-shear conditions.

Z. Angew. Math. Phys. 23 (6), 960–968.
SBRAGAGLIA, M. & PROSPERETTI, A. 2007 A note on the effective slip properties for microchannel

flows with ultrahydrophobic surfaces. Phys. Fluids 19 (4), 043603.
SONG, D., SONG, B., HU, H., DU, X., DU, P., CHOI, C.-H. & ROTHSTEIN, J. P. 2018 Effect of a

surface tension gradient on the slip flow along a superhydrophobic air–water interface. Phys.
Rev. Fluids 3 (3), 033303.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.366


Flows in superhydrophobic microchannels with varying meniscus curvature 307

TANNER, R. I. 1966 Pressure losses in viscometric capillary tubes of slowly varying diameter. British
J. Appl. Phys. 17 (5), 663–670.

TEO, C. J. & KHOO, B. C. 2009 Analysis of Stokes flow in microchannels with superhydrophobic
surfaces containing a periodic array of micro-grooves. Microfluid. Nanofluid. 7 (3), 353–382.

TEO, C. J. & KHOO, B. C. 2010 Flow past superhydrophobic surfaces containing longitudinal grooves:
effects of interface curvature. Microfluid. Nanofluid. 9 (2–3), 499–511.

TREFETHEN, L. N. 2000 Spectral Methods in MATLAB, vol. 10. SIAM.
TUTEJA, A., CHOI, W., MABRY, J. M., MCKINLEY, G. H. & COHEN, R. E. 2008 Robust omniphobic

surfaces. Proc. Natl Acad. Sci. USA 105 (47), 18200–18205.
VAN DYKE, M. 1983 Laminar flow in a meandering channel. SIAM J. Appl. Maths 43 (4), 696–702.
VAN DYKE, M. 1987 Slow variations in continuum mechanics. Adv. Appl. Mech. 25, 1–45.
WILD, R., PEDLEY, T. J. & RILEY, D. S. 1977 Viscous flow in collapsible tubes of slowly varying

elliptical cross-section. J. Fluid Mech. 81 (02), 273–294.
XU, Q., OUDALOV, N., GUO, Q., JAEGER, H. M. & BROWN, E. 2012 Effect of oxidation on the

mechanical properties of liquid gallium and eutectic gallium-indium. Phys. Fluids 24 (6),
063101.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.366

	Effects of slowly varying meniscus curvature on internal flows in the Cassie state
	Introduction
	Mathematical model
	Fully three-dimensional problem and boundary conditions
	Non-dimensionalization and asymptotic expansions for slowly varying microchannels
	Boundary conditions

	Semi-analytical solution and calculation of the volumetric flow rate
	Volumetric flow rate
	Zeroth-order streamwise velocity problem
	Cross-flow problem
	First-order streamwise velocity problem

	Numerical methods
	Numerical results
	Three-dimensional flow field, pressure distribution and meniscus shape
	Overall flow rates and the effects of inertia

	Conclusions
	Acknowledgements
	Appendix A. Stress conditions
	Appendix B. Coordinate transforms
	Transformation A
	Transformation B
	Transformation C
	Transformation D

	Appendix C. Singularity considerations
	Streamwise velocity problem
	Transferring w0 to the cross-flow problem
	Singularities for ψ

	References


