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This paper presents three-dimensional numerical simulations of non-colloidal dense
suspensions in a wall-bounded shear flow at zero Reynolds number. Simulations rely
on a fictitious domain method with a detailed modelling of particle–particle and
wall–particle lubrication forces, as well as contact forces including particle roughness
and friction. This study emphasizes the effect of walls on the structure, velocity and
rheology of a moderately confined suspension (channel gap to particle radius ratio of
20) for a volume fraction range 0.1 6 φ 6 0.5. The wall region shows particle layers
with a hexagonal structure. The size of this layered zone depends on volume fraction
and is only weakly affected by friction. This structure implies a wall slip which is
in good accordance with empirical models. Simulations show that this wall slip can
be mitigated by reducing particle roughness. For φ/ 0.4, wall-induced layering has a
moderate impact on the viscosity and second normal stress difference N2. Conversely,
it significantly alters the first normal stress difference N1 and can result in positive
N1, in better agreement with some experiments. Friction enhances this effect, which
is shown to be due to a substantial decrease in the contact normal stress |Σ c

xx| (where
x is the velocity direction) because of particle layering in the wall region.

Key words: complex fluids, rheology, suspensions

1. Introduction

Dense suspensions of particles in low-Reynolds-number flows are ubiquitous
in industry as well as in biological or natural flows. They display complex flow
properties, intermediate between solid and liquid. The present study considers the
ideal case of non-Brownian non-colloidal single-sized spherical particles embedded
in a Newtonian fluid. However, even this simple suspension notoriously exhibits
the complex non-Newtonian behaviours typical of actual suspensions (Stickel &
Powell 2005; Morris 2009). Recent advances in understanding the complex physics
of suspensions have rested on detailed experiments and numerical simulations.
Simulations provide access to some micromechanical details not easily available in
experiments, such as the three-dimensional microstructure, flow field or hydrodynamic
and contact forces between particles. In particular, the Stokesian dynamics (SD) (Brady
& Bossis 1988; Sierou & Brady 2002) has been instrumental in providing insights
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Effect of confinement in wall-bounded non-colloidal suspensions 101

into suspension physics. To a large extent, the current knowledge concerns unbounded
suspensions, since most simulations – especially SD – usually consider an infinite
domain by using periodicity conditions in all directions.

Conversely, confined suspensions have received much less attention. Suspension
flows in porous media, blood flow in capillaries or microfluidic devices are examples
of situations where interactions with boundaries are predominant. This can lead
to surprising effects, such as a negative quadratic dependence of viscosity with
volume fraction (Davit & Peyla 2008) or swapping trajectories for two spheres in
shear flow (Zurita-Gotor, Bławzdziewicz & Wajnryb 2007). Walls are also known to
strongly alter particle diffusion (Michailidou et al. 2009; Yeo & Maxey 2010a). Work
by Sangani, Acrivos & Peyla (2011) shows a significant increase in the stresslet of
a particle close to a wall, by a factor of four. Usual rheological measurements make
use of rheometers where the suspension is confined. Therefore, it is not completely
known to what extent walls can alter the measured rheological quantities. There is
now a debate concerning the sign of the first normal stress difference N1=Σxx−Σyy
(where x and y refer to the direction of velocity and velocity gradient, respectively),
since available experimental results are controversial. Numerical simulations of
unbounded suspensions using Stokesian dynamics (SD) (Sierou & Brady 2002), the
force-coupling method (FCM) (Yeo & Maxey 2010b) or fictitious domains (Gallier
et al. 2014b) find a negative N1. Other simulations by Mari et al. (2014) show that
prior to shear thickening, the average value of N1 is nearly zero, but is dominated
by large fluctuations. In contrast, experiments report either negative N1 (Zarraga, Hill
& Leighton Jr 2000; Singh & Nott 2003; Dai, Bertevas, Qi & Tanner 2013), or
almost zero (Couturier, Boyer, Pouliquen & Guazzelli 2011), or positive N1 (Lootens
et al. 2005; Dbouk, Lobry & Lemaire 2013; Royer, Blair & Hudson 2016), or, at
last, either positive or negative values depending on the size and polydispersity of
particles (Gamonpilas, Morris & Denn 2016). Interestingly, recent simulations by Yeo
& Maxey (2010b) in wall-bounded suspensions have shown that |N1| was smaller
than in unbounded suspensions. This suggests that confinement may have a role on
rheology in general, and on N1 in particular. This is one of the motivations of the
present work.

Walls are also known to affect the suspension flow field by inducing an apparent
wall slip (Jana, Kapoor & Acrivos 1995; Coussot 2005) which alters the effective
shear in the suspension. They also promote a local ordering by forming particle
layers, as confirmed by simulations (Singh & Nott 2000; Nguyen & Ladd 2002;
Kromkamp et al. 2006; Yeo & Maxey 2010b). This wall-induced layering is also
clearly visible experimentally by high-resolution particle tracking (Cheng, McCoy,
Israelachvili & Cohen 2011; Blanc, Lemaire, Meunier & Peters 2013; Metzger, Rahli
& Yin 2013; Snook, Butler & Guazzelli 2015; Pieper & Schmid 2016). A hexagonal
ordering takes place close to walls and is attested for volume fractions φ as low
as 0.48 (Yeo & Maxey 2010c). This wall-induced ordering can persist on large
distances, typically 10a, where a is the particle radius. For strongly confined systems
(channel width to particle radius ratio Ly/a < 11), this order also depends on the
commensurability between the channel width and the number of particle layers (Yeo
& Maxey 2010c). Simulations by Bian, Litvinov, Ellero & Wagner (2014) also show
that confinement increases viscosity, facilitates cluster formation, and is essential to
observe hydrodynamic shear thickening.

This paper intends to improve the current knowledge of the role of walls on
suspensions – especially rheology – using numerical simulations. In the present work,
we make use of a fictitious domain approach, as detailed in Gallier et al. (2014a).
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102 S. Gallier, E. Lemaire, L. Lobry, and F. Peters

Our method explicitly solves long-range hydrodynamics and incorporates an adequate
modelling of lubrication and contact forces. Wall–particle lubrication interactions
will be specifically addressed in this work due to their relevance. The thorough
study by Yeo & Maxey (2010b) has already considered simulations on wall-bounded
suspensions, and has brought many significant results on the role of confinement.
The present study intends to go a step further by focusing on rheology (especially
normal stress differences) as well as investigating the effect of friction, which has
recently been shown to have a profound impact on the rheology of homogeneous
suspensions (Fernandez et al. 2013; Seto et al. 2013; Gallier et al. 2014b). Section 2
presents a brief description of the numerical approach used. In § 3, we present
suspension simulation results in simple shear flows and investigate the role of walls
on suspension structure, flow field and rheology. Throughout this study, the magnitude
of confinement is described by the ratio κ of channel width Ly to particle radius a,
i.e. κ = Ly/a. Most simulations are conducted on moderately confined suspensions
(κ = 20).

2. Numerical model

This section briefly describes the numerical method used; more details can be
found in a previous paper (Gallier et al. 2014a). In a fictitious domain method,
solid particles are supposed to be filled with a fluid having the same properties as
the actual fluid. From a computational viewpoint, this means that a classical fluid
problem is solved in the whole domain. Particles are thus considered as some regions
of the fluid constrained to have a rigid body motion.

2.1. Review of the fictitious domain method
Particles are supposed to be rigid and homogeneous, whereas the fluid is assumed
incompressible and Newtonian and is governed by the Stokes equations:

∇ · u= 0, (2.1)
∇ ·Σ + λ= 0, (2.2)

where ρ and u are the fluid density and velocity, respectively, while λ is a momentum
forcing term used to enforce the rigid body motion inside particles. For a Newtonian
fluid, the stress tensor Σ reads

Σ =−pI + 2”E, (2.3)

where p is the pressure, η the fluid viscosity and E the rate-of-strain tensor E= (∇u+
∇uT)/2. The fluid velocity inside each particle must comply with a rigid body motion,
so that

u=U+Ω × (x− xg), (2.4)

where U and Ω stand for the particle translational and rotational velocities and xg

is the position of the centre of gravity of the particle. Particle motion is given by
Newton’s equations, which read, neglecting inertia:

Fh +Fc +Fe = 0, (2.5)
Th + Tc + Te = 0, (2.6)
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where forces F and torques T are decomposed into their hydrodynamic part (h),
contact part (c) and external part (e), which can include any external force, such as
gravity. The Stokes equations are solved by finite differences on a staggered Cartesian
grid using standard projection methods. Once particle velocities are known, their
position is updated using a second-order Adams–Bashforth scheme. Most numerical
details are skipped here and may be found in Gallier et al. (2014a).

2.2. Lubrication model
Lubrication forces play a major role in concentrated suspensions and require adequate
modelling. They are very short range in nature, so that they can usually not be fully
resolved with the typical grids employed. The present lubrication model is described
elsewhere (Gallier et al. 2014a) and is only briefly addressed here. It is similar
to the approach used in SD or FCM inasmuch as hydrodynamic interactions are
split into long-range interactions – explicitly resolved – and short-range (lubrication)
contributions that must be modelled since they can not be resolved. The grand
resistance matrix R, that links hydrodynamic forces/torques and translational/rotational
velocities, can therefore be written as

R ≈ Rr + Rnr. (2.7)

The resolved part Rr formally describes the part of the interactions explicitly described
by the numerical model, whereas the non-resolved part Rnr represents the contribution
that can not be resolved with the actual grid. It is classically estimated by subtracting
the resolved resistance matrix Rr

2B – obtained numerically on two-sphere configurations
– from the exact theoretical two-sphere resistance matrix Rtheo

2B known from lubrication
theory (Kim & Karrila 1991). For a many-particle system, Rnr is constructed assuming
a pairwise additivity of forces. The associated non-resolved lubrication force/torque
Fnr = (F, T)T is related to particle velocities U= (U,Ω)T by

Fnr = Rnr
FU · (U∞ −U)+ Rnr

FE : E∞, (2.8)

where U∞= (U∞,Ω∞)T and U∞, Ω∞, E∞ are the unperturbed translational velocities,
rotational velocities and rate-of-strain tensor, respectively. This force/torque Fnr

represents the lubrication portion of hydrodynamic interactions that can not be
resolved by the numerical approach, and is directly included in (2.5)–(2.6) as an
external force and torque. The hydrodynamic stresslet Sh is corrected from lubrication
as well using a similar procedure. The deviatoric stresslet is written in resistance form
and is similarly decomposed into a resolved and non-resolved part as

S = Sr + Rnr
SU · (U∞ −U)+ Rnr

SE : E∞, (2.9)

where Sr corresponds to the resolved stresslet explicitly computed by the numerical
method. The non-resolved resistance matrices Rnr

SU and Rnr
SE are obtained as described

previously, and theoretical expressions are found in Kim & Karrila (1991). Finally, a
similar correction procedure is also applied to the trace of Sh – which represents the
hydrodynamic contribution to particle pressure Π – using the theoretical resistance
functions from Jeffrey, Morris & Brady (1993) and similarly reads

Π =Π r + Rnr
ΠU · (U∞ −U)+ Rnr

ΠE : E∞. (2.10)
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2.3. Lubrication near a wall
Lubrication for wall–particle interactions is actually taken into account using a similar
strategy. The non-resolved lubrication interactions are identified by subtracting the
resolved interactions (obtained on particle–wall configurations with different gaps)
from the theoretical interactions. Because the latter are addressed scarcely and
incompletely in the literature, they are here described in more detail. The theoretical
resistance expressions for the hydrodynamic force, torque, stresslet and particle
pressure for a single particle close to a wall readF

T
S
Π

= η
A B† G†

B C H†

G H M
P 0 Q


U∞(x)−U

Ω∞(x)−Ω
E∞.

 (2.11)

Following the notations in Kim & Karrila (1991), the resistance tensors are

Aij = XAdidj + YA(δij − didj), (2.12)
Bij = YBεijkdk, (2.13)

Cij = XCdidj + YC(δij − didj), (2.14)

Gijk = XG
(
didj − 1

3δij
)

dk + YG(diδjk + djδik − 2didjdk), (2.15)

H ijk = YH(εikldldj + εjkldldi), (2.16)

M ijkl = XMd(0)ijkl + YMd(1)ijkl + ZMd(2)ijkl, (2.17)

P i = XPdi, (2.18)
Qij = XQ

(
didj − 1

3δij
)
, (2.19)

in which d is the unit vector from the particle centre to the wall. The fourth-rank
tensors d(0)ijkl, d(1)ijkl and d(2)ijkl can be found in Kim & Karrila (1991). The third-rank
transpose in (2.11) is such that G†

ijk =Gkij.
For plane walls and a shear flow (which will be the case in this study), the functions

XM, ZM and XQ are actually not needed because the associated terms d(0)ijklEkl, d(2)ijklEkl
and (didj − 1/3δij)Eij are zero in that case. The required resistance functions are
therefore XA, YA, YB, XC, YC, XG, YG, YH , YM and XP. Some asymptotic near-wall
developments are available only for XA, YA, YB, XC, YC, YG and YH (see Yeo &
Maxey (2010b) for a compiled set of expressions), so that XG, YM and XP seem
to be missing in the literature. Since these functions are primarily connected with
stresslet and particle pressure, this may confirm that the role of walls on rheology
has not received much attention. In appendix A, we report the near-wall asymptotic
expressions used in this work. They are taken from the literature, except for XG, YM

and XP, for which we propose new expressions.

2.4. Contact model
Contact interactions are modelled using Hertzian soft spheres. For a pair of spherical
particles i and j (radius a) undergoing contact, the contact force Fc is classically
decomposed into its normal Fc

n and tangential Fc
t components: Fc = Fc

n + Fc
t . The

normal contact force is modelled using a Hertz law

Fc
n =−kn|δ|3/2n (2.20)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.368


Effect of confinement in wall-bounded non-colloidal suspensions 105

in which δ = ‖r‖ − 2a is the overlap distance with r = xj − xi, and n is the normal
vector n = r/‖r‖. Surface roughness is accounted for in the model by assuming
sparse asperities of size hr. Contact is therefore supposed to take place whenever
‖r‖ 6 2a + hr, which corresponds to define a modified overlap distance δ′ = δ − hr.
Hence, contact occurs if δ

′ 6 0. Note that lubrication forces are, however, still
evaluated with the actual distance δ= δ′ + hr, since the fluid is assumed to flow freely
between asperities. In this work, the roughness size will be fixed to hr/a= 5× 10−3,
which is a typical roughness measured for suspension particles (Smart & Leighton
1989; Blanc, Peters & Lemaire 2011). Walls are assumed to be perfectly smooth.
The normal stiffness kn in (2.20) is chosen sufficiently high so as to mimic rigid
particles and the non-dimensional stiffness kn/ηγ̇ a2h−3/2

r is approximately 2 × 103.
This involves an average roughness deformation |δ′ |/hr lower than 0.1. The exact
value of stiffness has been shown to induce negligible effects on rheology if it
is sufficiently large (Gallier et al. 2014b). For dense regimes, however, roughness
can occasionally be deformed completely, leading to δ = 0. This is not numerically
tractable, since lubrication functions diverge at δ = 0. To circumvent this problem,
a threshold value of 10−6a is prescribed when evaluating lubrication functions. This
means that when lubrication functions are being computed, any normalized distance
δ/a lower than 10−6 is fixed to 10−6. This choice is similar to Sierou & Brady (2001).
Note that this threshold is useless and not considered when computing contact forces
through (2.20).

The tangential force is given by

Fc
t =−ktΥ (2.21)

in which Υ is defined by integrating the slip velocity Us during the contact duration
tc

Υ =
∫ tc

0
Us dt, (2.22)

where the slip velocity is

Us =Ui −Uj − [(Ui −Uj) · n] · n+ (aΩi + aΩj)× n. (2.23)

Using the classical Amontons–Coulomb law of friction, the actual tangential force
magnitude is limited by the friction limit µd|Fc

n|, where µd is the dynamic friction
coefficient. The tangential stiffness kt is linked to the normal stiffness kn by kt/kn =
2|δ′ |1/2/7 (Shäfer, Dippel & Wolf 1996; Silbert et al. 2001). Finally, the corresponding
contact torque is

Tc = an×Fc. (2.24)

Contact forces also induce an additional contact stresslet and contact particle pressure
that are given for a particle as

Sc = 1
2(F

c ⊗ an+ an⊗Fc) (2.25)

Π c =− 1
3(F

c
· an). (2.26)

Contact forces with walls are handled similarly. Particle–wall interactions are
frictionless if particles are themselves frictionless. Conversely, the particle–wall
interaction is frictional if particle–particle friction is considered. The wall is assumed
to be perfectly smooth, but since particles are rough, they can experience an actual
contact with the wall through particle roughness: particle–wall contacts therefore
occur whenever δ 6 hr.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.368


106 S. Gallier, E. Lemaire, L. Lobry, and F. Peters

2.5. Validation: single sphere near a wall
A validation for the wall–particle hydrodynamic interactions is proposed for a single
force-free torque-free spherical particle in the vicinity of a wall in a shear flow. When
a particle is close to a wall, wall–particle interactions alter the particle velocity and
stresslet. In particular, the wall tends to impose its own velocity to the particle and this
must be accurately predicted so as to model wall-bounded suspensions. The present
case considers a single particle (radius a) freely suspended in a linear shear flow of
magnitude γ̇ = 2Uw/Ly, where Ly = 10a is the channel width and Uw (resp., −Uw) is
the velocity prescribed at the upper wall (resp., lower wall) in the x-direction. The
domain sizes in the velocity and vorticity directions are respectively Lx = 20a and
Lz= 20a. The grid spacing is ∆= a/5 and the time step is 1t= 10−3γ̇ −1. Simulations
are conducted for different particle vertical positions Y in the channel, and we denote
ξ = (Y − a)/a the non-dimensional gap between particle surface and lower wall. The
lubrication correction is activated for a non-dimensional gap lower than 0.2.

Figure 1(a) presents the particle translational velocity U rescaled by the wall
velocity Uw. Reference simulations by Ganatos, Weinbaum & Pfeffer (1982) using a
boundary collocation method are also reported. Results show that the effects of wall
can be observed as soon as ξ / 0.5, since a deviation is noted from the expected
linear profile (dotted line). Our simulations accurately match those from Ganatos
et al. (1982), even in the very near-wall region. Wall effects grow as the particle
comes closer to the wall and particle velocity rapidly departs from the linear profile,
and asymptotes to the wall velocity Uw.

Wall interactions also result in a significant increase in the particle stresslet, as
seen in figure 1(b), which presents the non-dimensional hydrodynamic stresslet
Sxy/Sxy,∞, where Sxy,∞ is the stresslet of a unique particle in an unbounded domain
Sxy,∞ = 10/3πηa3γ̇ . Similarly to the particle velocity, the particle stresslet increases
rapidly in the near-wall region. Predictions are in good agreement with theoretical
works by Sangani et al. (2011) (solid line in figure 1b). This curve is given by the
following asymptotic development, valid for ξ < 0.15

Sxy

Sxy,∞
= 0.847 ln ξ−1 − 0.41+ 1.44ξ ln ξ−1 − 0.3ξ

0.2 ln ξ−1 + 0.6376
. (2.27)

This relation suggests that the stresslet Sxy remains finite at contact and can reach
0.847/0.2 ≈ 4.2. This means that the stresslet Sxy of a particle in contact with a
wall is 4.2 times larger than the stresslet this particle would have in an unbounded
domain.

3. Effect of confinement: results and discussion
The objective of this study is to investigate the role of walls on suspensions,

especially on rheology. Numerical simulations of suspensions are performed for
different volume fractions in the range 0.1 6 φ 6 0.55. The computational domain is
a cell of size Lx, Ly, Lz in the direction of velocity, velocity gradient and vorticity,
respectively. The channel width Ly will be varied, whereas Lx = 20a and Lz = 20a.
For Ly = 20a (the most investigated case) and φ = 0.5, the total number of particles
is approximately 1000. We recall that the magnitude of confinement is described by
the parameter κ , which is the ratio between channel width Ly and particle radius
κ = Ly/a. An unbounded suspension has κ→∞, whereas the minimum value κ = 2
is reached for a gap having the same size as the particle. A shear flow of magnitude
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(a) (b)Ganatos (1982)
Linear
Present simulations
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Sangani (2011)

FIGURE 1. Translational particle velocity U/Uw (a) and particle stresslet Sxy/Sxy,∞ (b) in
a shear flow as a function of particle non-dimensional distance to wall ξ = (Y − a)/a.
Channel width is Ly = 10a. Solid lines in (a) simulations by Ganatos et al. (1982). Solid
lines in (b) asymptotic expression by Sangani et al. (2011).

γ̇ is imposed by moving upper and lower walls with opposite velocities. Periodic
boundary conditions are used in x (velocity direction) and z (vorticity direction). The
numerical parameters are a grid spacing ∆ = a/5 and a time step 5 × 10−4γ̇ −1. All
runs are started using random hard-sphere equilibrium configurations obtained from
a Monte Carlo procedure. For steady results, the initial strain (γ̇ t < 50) is discarded
and the computation is continued for another 100–150 γ̇ t. Rheological properties are
based upon the computation of the Batchelor particle stress Σp

ij (Batchelor & Green
1972), which is the contribution of particles to the bulk suspension stress. It is further
decomposed as

Σ
p
ij =Σh

ij +Σ c
ij, (3.1)

with

Σh
ij = n〈Sh

ij〉 (3.2)
Σ c

ij = n〈Sc
ij〉, (3.3)

where Sh
ij and Sc

ij are the hydrodynamic and contact stresslets, respectively, n is
the number density of particles and brackets 〈·〉 indicate an ensemble average. For a
linear shear flow, the relative viscosity ηr=ηs/η (where ηs is the suspension viscosity)
reads

ηr = 1+ Σ
p
xy

ηγ̇
. (3.4)

The normal stress differences are given by

N1 =Σp
xx −Σp

yy (3.5)
N2 =Σp

yy −Σp
zz. (3.6)

3.1. Wall-induced structuring
The onset of specific structures in the suspension can be monitored using orientational
order metrics such as Q6 and C6. The metric Q6 is based on the spherical harmonics
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0
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FIGURE 2. Order parameters Q6 (E) and C6 (u) as a function of volume fraction (κ = 20;
µd = 0).

Ylm(θ, ϕ) of the orientational bond angles (θ , ϕ) between particles, and is defined
as (Rintoul & Torquato 1996)

Q6 =
√√√√4π

13

6∑
m=−6

Y6m
2
, (3.7)

where Y6m represents the average Y6m(θ, ϕ) over the neighbouring particles. For a
completely disordered system, Q6 = 0, whereas the maximal value QFCC

6 ≈ 0.575 is
reached for a face-centred cubic structure. Another metric, C6, has been introduced
by Kulkarni & Morris (2009) to specifically track hexagonal structures. It is based on
the three-dimensional pair-correlation function g(r, θ, ϕ) and given as

C6 =max
ψ

∫ 2π

0
g(2a,π/2, ϕ) cos[6(ϕ −ψ)] dϕ∫ 2π

0
g(2a,π/2, ϕ) dϕ

. (3.8)

The angle ψ accounts for a possible tilt of the structure around the x-axis. In our
computations, however, we have always found ψ = 0, meaning that the obtained
hexagonal structure is untilted. C6 is 0 for a disorder random system and reaches 1
for a perfect hexagonal lattice. Note that, since particles are rough, they experience
actual contact and, in (3.8), the pair-correlation function is therefore computed for
r 6 2a+ hr.

Figure 2 plots the evolution of C6 and Q6 with respect to the suspension volume
fraction φbulk. Computations are performed for frictionless particles (µd = 0) and
confinement κ=20. Both parameters have a similar profile, with very small values in
dilute regimes and an abrupt increase for a volume fraction in the range 0.45–0.5.
For this confinement (κ = 20), this marks the transition between disordered and
ordered states. High C6 values show that the system preferentially crystallizes into a
hexagonal structure, in accordance with previous studies (Kulkarni & Morris 2009;
Yeo & Maxey 2010c). Friction has a weak effect on this structuring, as will be seen
later.

This structuring is easily noticed on particle snapshots, as illustrated in figure 3.
This figure plots an instantaneous particle configuration at volume fraction φbulk = 0.5
and κ=20 in the shear plane x–y (side view, (a)) and in the velocity gradient–vorticity
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XZ

Y

XZ

Y(a) (b)

FIGURE 3. Particle snapshots (φbulk = 0.5; κ = 20; µd = 0): (a) side view; (b) end view.
For visualization, particle radius is half the actual size.

plane y–z (end view, (b)). For the sake of clarity, particles are represented at half their
actual size. Particles are seen to form layers in the vicinity of the walls, whereas the
core of the suspension remains disordered. The end view (plane y–z) in figure 3(b)
clearly shows a hexagonal structure close to walls, with a given particle being at the
centre of a hexagon formed by six neighbours.

3.2. Wall effects on volume fraction
Since we are concerned with wall-bounded flows with periodicity imposed in the x
and z directions, the average quantities depend on the vertical position y. As proposed
by Yeo & Maxey (2010b), an average volume fraction 〈φ(y)〉 can be defined as

〈φ(y)〉 = 1
LxLz

〈∫∫
χ(x, y, z) dx dz

〉
, (3.9)

where χ is the particle indicator function, which is 1 in the particle and 0 elsewhere.
Note that 〈φ(y)〉 is rather an areal fraction, but it is known from stereology theory
to be equal to the volume fraction (Delesse principle). Figure 4 presents this local
volume fraction 〈φ(y)〉 for four different bulk fractions φbulk in the case κ = 20 and
frictionless particles. Some simulation results by Yeo & Maxey (2010b) at φbulk = 0.4
(µd = 0) are also plotted. Local peaks in the wall region indicate the presence of
a stable particle layering, which is also attested in other computations (Kromkamp
et al. 2006; Yeo & Maxey 2010b) or experiments (Cheng et al. 2011; Blanc et al.
2013; Snook et al. 2015; Pieper & Schmid 2016). This layering exists irrespective of
the bulk volume fraction φbulk. However, for moderate fractions such as φbulk = 0.2,
it is much less pronounced and is noted only for the first two layers (y/a < 4). In
present case (κ = 20), and for φbulk below 0.5, there is still a flat profile in the core.
In this core region, the suspension is devoid of wall effects, and is therefore expected
to behave like an unbounded suspension. In contrast, for φbulk = 0.5, wall effects are
dominant across the whole channel. This value is consistent with the rapid increase
in order parameters, as seen in figure 2. The size of the wall-structured region ewall
can be estimated from the spatial variations of 〈φ(y)〉. A rough criterion used here
is to define ewall such that a|d〈φ(y)〉/dy|/φbulk > 0.1. To address dense suspensions, it
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FIGURE 4. Local volume fraction 〈φ(y)〉 in the channel width for κ = 20 and bulk
fractions φbulk = (0.2, 0.3, 0.4, 0.5). Open symbols are computations by Yeo & Maxey
(2010b).

is necessary to consider large domains so as to allow this wall structuring to freely
develop. Results are compiled in figure 5 for frictionless particles, with the chosen
confinement κ specified for each volume fraction. For φbulk < 0.4, the size of the wall
structuring grows mildly with φbulk, from 3a to 6a. However, it increases abruptly
for φbulk & 0.4, even though larger domains are considered. For φbulk > 0.52, there
is a marked organized structure across the whole domain despite the wide channel
investigated Ly= 80a. In that case, ewall is set to Ly/2= 40a. This is not the physical
value, but indicates only that the size could not be determined, since the whole
suspension is ordered. Simulations in larger domains were not performed. This result
is reminiscent of simulations from Kulkarni & Morris (2009) and Sierou & Brady
(2002), who showed that, even in unbounded suspensions, there is a crystallization
of the system for φbulk between 0.5 and 0.55 (although for φ > 0.6, the system could
become disordered again; we have yet not considered such high fractions). This
behaviour is close to a system of hard spheres with a freezing point at φf ≈ 0.49.
Since it can occur in infinite domains, the complete ordering noted in our simulations
at φbulk = 0.52 and φbulk = 0.55 in large domains may not be due solely to walls.
Monte Carlo simulations have showed that the crystallization of hard-sphere systems
is faster when walls are present (Volkov et al. 2002). It can therefore be considered
as a wall-induced crystallization, since it is promoted by an existing local ordering.
This crystallization is not experimentally attested in suspensions, which might be
due to the present use of monodisperse particles, while experiments always consider
slightly polydisperse particles.

When the wall-induced ordering can develop freely, it does not seem to depend
much on the channel height. Simulations at φbulk=0.4 were conducted in a moderately
confined suspension (κ = 20) and a weakly confined suspension (κ = 60). Results
are presented in figure 6 and show very similar structure near walls (peak heights
and positions). This absence of domain size influence was also reported by other
simulations (Yeo & Maxey 2010b) and experiments (Eral et al. 2009).

Let us conclude this section on volume fraction by investigating the role of friction.
The same suspension at κ=20 and φbulk=0.4 is computed for frictionless (µd=0) and
frictional (µd = 0.5) particles. The obtained volume fraction profiles are provided in
figure 7 and globally share similar characteristics. However, frictional particles result
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FIGURE 5. Size of the wall-structured region ewall as a function of bulk volume fraction
φbulk (µd = 0). The confinement κ considered is provided as the numbers labelling the
circles. For the last two points at ewall/a= 40, the whole suspension is ordered.
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FIGURE 6. Volume fraction profile 〈φ(y)〉 for κ = 20 (solid lines) and κ = 60 (dotted
lines). Simulations at φbulk = 0.4 and µd = 0.

in less marked peaks in the wall region, indicating a slightly weakened structuring.
This is much clearer on the first particle layer, where the local volume fraction is
lower in the case of friction. Intuitively, tangential contact forces between particles
promote a more active momentum exchange between adjacent layers, which may
contribute to destabilizing well-ordered layers. This may also be in connection with
a higher diffusion noted for frictional particles (Gallier 2014).

3.3. Wall effects on particle velocity
The effects of walls on axial particle velocity U can similarly be investigated using
the following particle-phase average velocity 〈U(y)〉 (Yeo & Maxey 2010b)

〈U(y)〉 =

〈∫∫
χ(x, y, z)U(k) dx dz

〉
〈∫∫

χ(x, y, z) dx dz
〉 , (3.10)

with U(k) the translational velocity at the centre of particle k. Figure 8 presents this
velocity profile, normalized by the wall velocity Uw, for a suspension at κ = 20 and
φbulk= 0.4 for frictionless (µd= 0) and frictional particles (µd= 0.5). Both profiles are
similar, with a linear evolution in the core of the suspension and a strong effect of
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FIGURE 7. Volume fraction profile 〈φ(y)〉 for µd = 0 (dotted lines) and µd = 0.5 (solid
lines). Simulations at φbulk = 0.4 and κ = 20.
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FIGURE 8. Particle-phase axial velocity 〈U(y)〉/Uw for frictionless particles µd= 0 (dotted
lines) and frictional particles µd = 0.5 (solid lines). Simulations at φbulk = 0.4 and κ = 20.

walls on the velocity. The role of friction is limited, and tends to smooth velocity
variations, in accordance with the previous effects on volume fraction. Because of
significant wall-induced layering, the velocity is quasi-constant within a layer, and this
forms plateaus in the velocity profile close to the walls. This is particularly noted for
the first layer and is then progressively damped farther in the flow, until the expected
linear profile is found in the centre of the suspension. In the first layer (0< y< 2a),
the particle velocity is close to the wall velocity Uw because of lubrication forces. It is
still not exactly equal to wall velocity, mostly because of roughness. Since lubrication
tangential forces scale as log ξ , they are bounded by log ξr, where ξr = hr/a is the
non-dimensional roughness.

In their work, Jana et al. (1995) studied wall slip in suspensions and proposed an
experimental correlation for the slip velocity ue as

ue = ηr

8
γ̇ a, (3.11)

where γ̇ here represents the local shear rate and ηr is the overall suspension viscosity.
This wall slip leads to a shear rate that is smaller than the macroscopic prescribed
shear rate γ̇bulk = 2Uw/Ly. This shear rate γ̇Jana reads 2(Uw − ue)/Ly and, accounting
for (3.11), can be expressed as γ̇Jana= γ̇bulk − γ̇Janaηr/4κ . This eventually gives γ̇Jana=
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With wall/particle roughness
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FIGURE 9. Particle-phase axial velocity 〈U(y)〉/Uw with and without wall–particle
roughness. Simulations at φbulk = 0.4, κ = 20 and µd = 0.

γ̇bulk/(1+ ηr/4κ)≈ γ̇bulk(1− ηr/4κ). From the viscosity ηr taken from our simulations
at φbulk = 0.4 and κ = 20, Jana’s model gives γ̇Jana/γ̇bulk ≈ 0.93 in the frictionless case
(ηr = 6.0) and 0.89 in the frictional case (ηr = 9.1). These values can be compared to
the numerical shear rate obtained by a linear regression of 〈U(y)〉 in the suspension
homogeneous core γ̇core = (d〈U(y)〉/dy)56y/a615. From the profiles of figure 8, this
regression yields γ̇core/γ̇bulk ≈ 0.96 in the frictionless case and γ̇core/γ̇bulk ≈ 0.89 in
the frictional case, in good agreement with γ̇Jana from Jana’s model.

Close to the walls, we have mentioned that the particle velocity is not exactly equal
to the wall velocity Uw. The scaled slip velocity |−Uw−〈Uy=0〉|/γ̇ a at the lower wall
y= 0 is approximately 0.6 and 1.0 in the frictionless and frictional case, respectively.
It is not zero – meaning that particles are not stuck on walls – nor 0.5, which would
be the expected velocity of a particle rolling without slip on the wall (assuming Ωz=
−γ̇ /2). This occurs mostly because the lubrication tangential force is bounded by
log ξr. This can be checked by investigating the case where particle roughness is
discarded for interactions with the walls (however, roughness is still kept for particle–
particle interactions). Particles can thus come arbitrarily close to the walls, with the
possibility of vanishing distance between particles and walls. As seen in figure 9
(frictionless case), the velocity of the first particle layer is now much closer to the
wall velocity. The slip velocity | −Uw− 〈Uy=0〉|/γ̇ a is reduced irrespective of friction,
and is approximately 0.3 (frictionless particles) and 0.4 (frictional particles), which is
lower than in the case of wall–particle roughness (0.6 and 1.0 in the frictionless and
frictional case, respectively). Because the wall–particle gap ξ is reduced, lubrication
tangential forces are higher and increase particle entrainment by the moving walls. In
the case ξ = 0 (actual contact), theoretical studies by Chaoui & Feuillebois (2003)
show that particles would indeed be stuck to the wall with translational velocity U=
Uw and zero rotational velocity. A linear regression of particle velocity in the core
region gives that γ̇core/γ̇bulk ≈ 1 in the frictionless case and 0.96 in the frictional case,
suggesting a reduction of apparent wall slip.

Finally, we investigate the effects of walls on particle rotation rate. Figure 10
presents the particle-phase angular velocity 〈Ωz(y)〉 scaled by γ̇bulk for frictionless
and frictional particles. In the suspension homogeneous core, a value close to the
expected −γ̇bulk/2 is found. The noted effect of friction can be explained by the
different core shear rate because of wall slip. Indeed, scaling by the core shear rate
γ̇core leads to the same value 〈Ωz(y)〉/γ̇core≈−0.54, irrespective of friction. Note that,
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FIGURE 10. Particle-phase angular velocity 〈Ωz(y)〉/γ̇bulk for frictionless particles µd = 0
(dotted line) and frictional particles µd = 0.5 (solid line). Simulations at φbulk = 0.4 and
κ = 20. Dashed line is −γ̇bulk/2.

unlike volume fraction, the profile shows no plateau, even in the suspension core,
suggesting that the domain might be too small here to obtain a local homogeneity of
the rotational velocity. A plateau is indeed found, but for larger channel height. Walls
are found to play a significant role because tangential lubrication interactions hinder
particle rotation. In the frictionless case, the rotation rate is roughly divided by two
compared to the suspension core. In the theoretical case of a single smooth sphere at
non-dimensional distance ξ = ξr= 5× 10−3, the expected rotation rate (scaled by shear
rate) is 0.249 (Chaoui & Feuillebois 2003), which is close to the average rotation
rate in the first layer, approximately 0.275. In the frictional case, the additional
tangential contact force imposes a torque on particles and increases rotation. On the
walls, particles roll with partial slip, since the ratio |a〈Ωz〉/(〈Uy=0〉 + Uw)| is less
than 1. Interestingly, this ratio is approximately 0.4 for both frictionless and frictional
particles. This value is consistent with the theoretical case of a single smooth sphere
at wall distance ξr, where this ratio is approximately 0.52 (Chaoui & Feuillebois
2003). Maximal rotation rate is reached between the first and second layers (y≈ 2.5a)
with 〈Ωz〉 ≈−0.7γ̇bulk.

3.4. Wall effects on viscosity
Wall-induced structuring involves some suspension thixotropy, with significant
transients until a steady regime is reached. This unsteady behaviour is noticed during
strains of approximately 10 or more. Figure 11 simultaneously plots the evolution of
the relative viscosity ηr and the order parameter Q6 with strain for a suspension at
φbulk = 0.5 and κ = 20. The initial configuration (at γ = 0) is a random hard-sphere
configuration in equilibrium. At the very beginning, the viscosity suddenly increases
from ηr ≈ 7 (the viscosity of a random configuration) to approximately 13 before
decreasing to a steady value. The evolution of Q6 mirrors the viscosity, which hints at
a strong link between viscosity and suspension ordering. The average steady state is
reached after a strain of approximately 40. This is close to the value of approximately
30 found in a similar simulation by Yeo & Maxey (2010c). This characteristic strain
is, however, significantly larger than the typical strain of approximately 1 needed
for the deformation of the suspension microstructure due to the imposed shear. The
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FIGURE 11. Relative viscosity ηr (a) and parameter Q6 (b) as a function of strain
γ = γ̇bulkt. Simulations at φbulk = 0.5, κ = 20 and µd = 0.

latter basically corresponds to the rapid initial transient between the starting isotropic
microstructure and a deformed anisotropic microstructure.

When a steady regime is eventually reached, confinement alters the suspension
viscosity, depending on the bulk volume fraction φbulk. Results presented in figure 12
show the suspension relative viscosity ηr for κ = 20 and two friction coefficients
µd = 0 and µd = 0.5. As noted previously for this confinement (κ = 20), the
wall structuring spreads across the whole suspension as soon as φbulk = 0.45–0.5.
In figure 12, this basically corresponds to the point where the viscosity curve
ηr(φbulk) shows an inflexion point. For very concentrated suspension (φbulk= 0.55), the
suspension viscosity decreases irrespective of friction. This decrease in the viscosity
is also reported in other simulations (Kulkarni & Morris 2009; Yeo & Maxey 2010c),
and is a consequence of particle layering. For the highest volume fractions – where
the suspension is strongly ordered – results are expected to depend strongly on
confinement as well as how channel size and particle size commensurate (Yeo &
Maxey 2010c; Bian et al. 2014). Such commensurability effects will be discussed in
§ 3.7.

The spatial evolution of stresses in the suspension is studied using a particle-phase
average stress defined as

〈Σij(y)〉 = n

〈∫∫
χ(x, y, z)S(k)ij dx dz

〉
〈∫∫

χ(x, y, z) dx dz
〉 , (3.12)

where S(k)ij is the stresslet (hydrodynamic, contact, or the sum thereof) of particle k
and n the number density of particles in the whole domain. Note that this is not a
real local stress, but rather a local stresslet having the dimension of a stress due to
the particle density n pre-factor. Figure 13 presents the local particle tangential stress
〈Σp

xy(y)〉 (referred to as total stress in the figure legend) as well as the hydrodynamic
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FIGURE 12. Relative viscosity ηr as a function of volume fraction (κ = 20) for friction
coefficients µd = 0 (E) and µd = 0.5 (u).

tangential stress 〈Σh
xy(y)〉 and contact tangential stress 〈Σ c

xy(y)〉. Stresses are scaled
by the fluid stress ηγ̇ , and are computed here for a suspension at φbulk = 0.4 and
κ = 20 for frictionless (a) and frictional particles (b). We recall that the total particle
stress Σp

xy is split up into a hydrodynamic stress Σh
xy and a contact stress Σ c

xy by
virtue of (3.1). Let us first consider the frictionless case (figure 13a). As expected,
stresses are relatively constant in the homogeneous core. The maximum in the particle
stress Σp

xy (therefore, ηr) is reached between the first and second layer, at y ≈ 2.5a.
This results from a large contribution from both hydrodynamics and contact. In
the first layer (0 6 y 6 2a), the hydrodynamic contribution remains important due to
wall–particle lubrication interactions. The contact contribution here is negligible, since
contact forces are mostly in the normal direction y in the frictionless case, which
results in a very small Σ c

xy. However, for 2a 6 y 6 3a, this corresponds to some
particles located somewhere between the first two layers. Such particles are expected
to experience stronger contacts, which explains the increase in the contact stress.
Friction (figure 13b) does not profoundly modify those conclusions. Stress levels
in the suspension core are larger, mostly because of contacts, as already detailed
in Gallier et al. (2014b). The stress peak between the first and second layers is
less visible than in the frictionless case due to a higher level of hydrodynamic and
contact stress at the wall. Because of frictional contact, the tangential contact force
does involve an additional contact contribution on the xy stress. It is important to
recall that the chosen average (3.12) accounts for an average stress density, since the
local stresslet is scaled by the local volume fraction (denominator in (3.12)). Because
of the wall depleted zone, the local volume fraction is small in the near-wall region,
so that the contribution of this wall region to the overall suspension stress is weak.

By and large, the profiles of 〈Σp
xy(y)〉 are moderately affected by walls. Therefore,

the viscosity ηκr of a wall-bounded suspension (at confinement κ) may not be that
different from the viscosity η∞r expected for an unbounded homogeneous suspension.
This unbounded viscosity η∞r is here computed in the homogeneous core of a
suspension in a large domain. Note that ηκr is calculated based on the prescribed
macroscopic shear rate γ̇bulk, whereas η∞r is computed using the local shear rate γ̇core
in the core of the suspension. This viscosity ratio is plotted in figure 14 for κ = 20
as a function of volume fraction for frictionless (µd = 0) and frictional (µd = 0.5)
particles. This ratio is always close to 1, regardless of the friction coefficient, except
for φbulk = 0.5, where a strong layering results in a viscosity decrease. Note that
this viscosity ratio is slightly below 1 for dilute suspensions. Actually, the tangential

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.368


Effect of confinement in wall-bounded non-colloidal suspensions 117

0

Total

Hydrodynamic

Contact

Total

Hydrodynamic

Contact

2

4

6

8

(a) (b)

5 10 15 20 0

2

4

6

8

5 10 15 20

FIGURE 13. Particle-phase particle stress 〈Σp
xy(y)〉/ηγ̇ (solid lines), hydrodynamic stress

〈Σh
xy(y)〉/ηγ̇ (dash-dotted lines) and contact stress 〈Σ c

xy(y)〉/ηγ̇ (dotted lines) in a
suspension at φbulk = 0.4 and κ = 20 for two friction coefficients: µd = 0 (a); µd = 0.5
(b).
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FIGURE 14. Ratio of bounded to unbounded viscosity ηκr /η
∞
r as a function of volume

fraction for µd = 0 (E) and µd = 0.5 (u) for κ = 20.

stress ratio is indeed approximately 1, so that ηκr /η
∞
r ≈ γ̇core/γ̇bulk. Because of wall

slip, this shear rate ratio γ̇core/γ̇bulk is lower than 1 and is approximately 0.98 for low
volume fractions, which explains the values of viscosity ratio in figure 14.

3.5. Wall effects on normal stress differences
A similar analysis is conducted for the normal stress differences N1 and N2 due to
their importance in rheology. The local profiles of the particle-phase average 〈N1(y)〉
and its contact contribution 〈Nc

1(y)〉 (scaled by the fluid stress ηγ̇ ) are presented in
figure 15 for a frictionless (a) and frictional case (b) for a suspension at φbulk = 0.4
confined at κ = 20. Unlike viscosity, a strong effect of walls is observed which can
locally modify the sign of 〈N1〉. In the homogeneous core, 〈N1〉/ηγ̇ is approximately
−1, but close to the walls it can increase to +1, or even +4 in case of friction.
Irrespective of friction, the contact contribution remains very small in the core (〈Nc

1〉�〈N1〉), but this is no longer the case in the vicinity of the walls, where it represents
the major contribution, i.e. 〈N1〉 ≈ 〈Nc

1〉. Furthermore, near the walls, 〈Nc
1〉 changes its

sign from negative to positive, while the hydrodynamic part 〈Nh
1〉 becomes close to

zero.
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FIGURE 15. Particle-phase average 〈N1(y)〉/ηγ̇ (solid lines) and 〈Nc
1(y)〉/ηγ̇ (dotted lines)

in a suspension at φbulk= 0.4 and κ = 20 for two friction coefficients: µd= 0 (a); µd= 0.5
(b).
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FIGURE 16. Particle-phase average contact stresses 〈Σ c
xx(y)〉/ηγ̇ (solid lines) and

〈Σ c
yy(y)〉/ηγ̇ (dotted lines) in a suspension at φbulk = 0.4 and κ = 20 for two friction

coefficients: µd = 0 (a); µd = 0.5 (b).

In order to gain further insight on this strong wall effect, figure 16 plots the contact
stresses 〈Σ c

xx(y)〉 and 〈Σ c
yy(y)〉 for this case. Those results show that 〈Σ c

xx〉 ≈ 〈Σ c
yy〉

in the suspension core, from which 〈Nc
1〉 ≈ 0 is expected. This has been shown to

arise from a uniform distribution of contacts in the compression region (Gallier et al.
2014b). Conversely, simulations predict a substantial decrease of |〈Σ c

xx〉| close to the
walls, whereas |〈Σ c

yy〉| remains similar (frictionless case) or even increases slightly
(frictional case). Contact forces in the y direction are only weakly affected, and walls
mostly act to reduce contact forces in the velocity direction x. This is related to
a layered configuration: particles in the first layer have similar velocities, so that
particles hardly interact in this direction. A decrease in |〈Σ c

xx〉| is therefore expected.
This induces high positive values of 〈Nc

1〉 which, in turn, involve the positive 〈N1〉
observed in figure 15.

From the marked effect of walls on N1, we can expect the Nκ
1 obtained in a bounded

suspension to be significantly different from its unbounded homogeneous counterpart
N∞1 . The ratio Nκ

1 /N
∞
1 is presented in figure 17 for a suspension at κ = 20. This

ratio is always smaller than 1, meaning that N1 in a bounded suspension is always
lower than in an infinite suspension. This ratio decreases with friction as well as with
volume fraction, mostly for φ > 0.2. An important result is that this ratio is negative
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FIGURE 17. Ratio of bounded to unbounded Nκ
1 /N

∞
1 as a function of volume fraction for

µd = 0 (E) and µd = 0.5 (u) for κ = 20.
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FIGURE 18. Particle-phase average 〈N2(y)〉/ηγ̇ (solid lines) and 〈Nc
2(y)〉/ηγ̇ (dotted lines)

in a suspension at φbulk= 0.4 and κ = 20 for two friction coefficients: µd= 0 (a); µd= 0.5
(b).

for dense suspensions, meaning that the overall suspension N1 becomes positive due
to confinement. It is therefore possible that the combined action of walls and friction
is liable to explain some experimental results showing almost zero or positive values
of N1 (Couturier et al. 2011; Dbouk et al. 2013; Gamonpilas et al. 2016). This point
will be reconsidered hereinafter.

We now move to the second normal stress difference N2. The local N2 profile
in the suspension is presented similarly in figure 18, with both total and contact
contributions. The contact Nc

2 (dotted lines in figure 18) can be hardly distinguished
from the total N2, meaning that N2 is entirely due to contacts (N2 ≈ Nc

2) and that
the hydrodynamic contribution is negligible (Nh

2 ≈ 0). Note that this stands for the
whole suspension (Gallier et al. 2014b) as well as locally everywhere in the flow.
For frictionless particles (figure 18a), N2 is almost constant across the suspension,
whereas in the frictional case (figure 18b), a significant increase in |N2| is noticed
close to the walls. This is due to the particle structuring in the vorticity direction
(see figure 3), which decreases contact forces in this direction and |Σ c

zz| accordingly.
Those results show that N2 is moderately affected by walls, unlike N1. This

is especially true in the frictionless case. For frictional particles, the variation of
N2/ηγ̇ in the wall region is significant (≈−3), and is almost of the same order of
magnitude as for N1 (≈+5). But because N1 is small, its relative variation is much
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FIGURE 19. Ratio of bounded to unbounded Nκ
2 /N

∞
2 as a function of volume fraction for

µd = 0 (E) and µd = 0.5 (u) for κ = 20.

higher than for N2. Furthermore, there is no change in the sign of N2, as opposed
to N1. Consequently, the overall Nκ

2 computed in a confined suspension might not
significantly differ from its unbounded counterpart N∞2 . This is confirmed in figure 19
for a suspension confined at κ = 20. The ratio Nκ

2 /N
∞
2 is approximately 1 for dilute

and moderately dense suspensions. For frictionless particles and dilute suspensions
(say, φbulk 6 0.2), however, it can be lower than 1, but this possibly comes from
large statistical errors – as shown by the error bars – primarily because values of
N2 are extremely small in that case. This statistical error is computed here as the
standard deviation over statistically independent intervals of 20–30 strain units each.
For volume fractions above 0.4, the N2 for a confined suspension can be greater by up
to 50 % compared to an homogeneous suspension, and with a weak effect of friction.

3.6. Normal stress differences: comparison with experiments
One of the motivations of this work was to investigate to what extent the confinement
of a suspension can explain discrepancies between experiments, especially on N1. A
first study – described in a previous work (Gallier et al. 2014b) – has shown that
friction leads to a decrease in |N1| and can help match available experiments and
simulations. However, it was concluded that friction itself can not result in positive N1,
as measured in some experiments (Dbouk et al. 2013). The present results, moreover,
suggest a significant role of walls – even in moderately confined suspensions (κ = 20)
– leading to positive values of N1. Figure 20 compiles experimental results on
normal stress differences (normalized by shear stress τ = ηrηγ̇ ) compared to our
frictional (µd = 0.5) simulations in a bounded (κ = 20) and unbounded suspension.
The experiments are taken from six sources from the literature (Singh & Nott 2000;
Zarraga et al. 2000; Couturier et al. 2011; Dai et al. 2013; Dbouk et al. 2013;
Gamonpilas et al. 2016) using different techniques. These seem to be the major
experiments simultaneously measuring N1 and N2 (other experiments are available,
but for N2 only, e.g. Garland et al. (2013)). Let us begin with N2 (figure 20b), since
it deserves less attention. As expected, the effect of confinement is limited, and does
not significantly change from unbounded suspension. In any case, simulation results
are close to experiments, which moreover are relatively consistent among themselves.
Concerning N1 (figure 20a), simulations show a change of sign for dense suspensions,
typically for φ ' 0.4, and N1 becomes largely positive above. Confinement can be
considered as a potential source for experimental discrepancy, since experiments are
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Dai (2013)
Singh (2000)
Zarraga (2000)
Couturier (2011)
Dbouk (2013)
Gamonpilas (2016) - Mono
Gamonpilas (2016) - Bi
Simulation (bounded)
Simulation (unbounded)

FIGURE 20. Normal stress differences N1 (a) and N2 (b) normalized by shear stress τ as
a function of volume fraction for a frictional suspension µd=0.5: bounded suspension κ=
20 (u) and unbounded suspension (E). Experiments (symbols) compile results from Singh
& Nott (2000), Zarraga et al. (2000), Dbouk et al. (2013), Dai et al. (2013), Couturier
et al. (2011), Gamonpilas et al. (2016). Data from Gamonpilas et al. (2016) are for
monomodal particles (Mono) and bimodal mixture (Bi).

conducted in different geometries and confinements. However, it is still difficult to
predict the experimental data from Dbouk et al. (2013) that are visible in figure 20(a)
as the most positive values (♦ symbols). Even at φ ≈ 0.3–0.4, the measured N1/τ

is larger than 0.1, whereas simulations predict N1/τ ≈ 0 for this range of volume
fractions. Note that these latter experiments are performed at κ ≈ 27, which is not
far from our simulations at κ = 20. A puzzling point is that their study proposed
additional experiments in much less confined suspensions (κ ≈ 100) but found similar
N1 results. This suggests that measurements are weakly dependent on confinement,
unlike our simulations, since for κ ≈ 100, we expect results close to our κ =∞ results
(seeE symbols in figure 20). A possible explanation is that these experiments – which
rely on a measurement of Σyy on the rheometer walls – describe a flow configuration
which is different from the overall suspension (in the sense of a volume average over
the whole domain) but is rather characteristic of the near-wall ordered state. Since this
local structuring is independent of confinement (see figure 6), this could explain why
experiments from Dbouk et al. (2013) are unaffected by confinement. The question
of which stress is measured in experiments still seems open and deserves attention in
future works. As a final remark, it is interesting to note that results by Gamonpilas
et al. (2016) show a difference in the sign of N1 depending whether the suspension is
monodisperse (positive N1) or bidisperse (negative N1). Monodispersity is well known
to promote ordering – as seen in present simulations – which is consistent with our
conclusion that N1 is positive because of wall-induced layering.

3.7. Effect of confinement on rheology
Most of the above analysis is conducted with a moderate confinement (κ = 20)
and here we intend to evaluate the effect of confinement κ on rheology, namely
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FIGURE 21. Effect of confinement κ on viscosity ηr at φbulk= 0.4 and µd= 0 in the range
66 κ 6 60. (Inset: range 66 κ 6 11; the numbers labelling the circles indicate the number
of layers).

viscosity and normal stress differences. The forthcoming computations are run only
in the frictionless case (µd = 0) and for a single volume fraction φbulk = 0.4. As
noted previously, the friction enhances wall effects, but does not seem to modify the
underlying physics, which explains why only frictionless particles are addressed here.

Figure 21 presents the effect of the confinement κ on the computed viscosity ηr
in the range 6 6 κ 6 60. Two different regimes are noted, with a transition at κc
approximately 12–15: an oscillating regime for κ . κc and a monotonic regime for
κ & κc. The value of κc is expected to correspond to a wall-induced ordering that
spans across the whole channel. For φbulk = 0.4, the size of the wall-structured region
ewall was found to be approximately 6a (see figure 5). This would give κc≈ 12, which
is consistent with the present results.

In the very confined regime (κ . κc), the viscosity exhibits an oscillatory behaviour
(see also the inset in figure 21). This is related to commensurability effects, as
already noted by Yeo & Maxey (2010c). Their simulations show that the order
parameter C6 and particle pressure Π are very sensitive to the commensurability of
the ordered structures with the channel height. Unsurprisingly, our results reveal a
similar behaviour in viscosity, which fluctuates depending on how the structure is
frustrated by the narrow channel. The bold numbers in the inset indicate the number
of particle layers across the channel height. The maximum in the viscosity seems to
correspond to a situation when the number of layers has just increased by one. In
that case, the distance between layers is smaller, making particles less mobile and
the suspension more ordered.

For the monotonic regime (κ & κc), the viscosity decreases slightly monotonically
towards an asymptotic value, which is obtained for κ & 50–60. This is consistent with
experiments by Zarraga et al. (2000), who have found that the asymptotic value is
reached for κ & 40. The viscosity computed at κ = 30 is only off by 3 % compared
to κ = 60, suggesting that a confinement ratio κ larger than 30 is suitable for
reliable viscosity measurements. The fact that viscosity decreases when κ increases
is also found in simulations (Davit & Peyla 2008; Bian et al. 2014), as well as in
the experiments from Peyla & Verdier (2011) and the theoretical expressions by
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FIGURE 22. Effect of confinement κ on normal stress differences N1/ηγ̇ (E) and N2/ηγ̇
(u) at φbulk= 0.4 and µd= 0 in the range 66 κ6 60. (Inset: range 66 κ6 11; the numbers
labelling the circles indicate the number of layers).

Sangani et al. (2011). In contrast, simulations by Yeo & Maxey (2010b) and
experiments by Zarraga et al. (2000) show an increase in viscosity with increasing
channel height. There seems to be a predominant role of volume fraction, since the
studies showing a viscosity decrease are for more dilute suspensions (range 0.05–0.4),
whereas the viscosity increase is noticed in denser regimes (range 0.4–0.45). A definite
conclusion would require simulations for a wide range of volume fractions, which
were not done here. But it seems that the effects are quite complex, and possibly
result from a subtle interplay between wall-enhanced hydrodynamic interactions,
wall-induced structuring, and apparent wall slip.

Figure 22 similarly presents the effect of the confinement κ on the normal stress
differences N1 and N2 scaled by the fluid stress ηγ̇ . Analogously to viscosity, two
regimes are clearly noticed. For κ&κc, N1/ηγ̇ and N2/ηγ̇ show a monotonic evolution
towards an asymptotic value. The confined regime κ . κc displays a non-monotonic
behaviour in connection with commensurability effects. The fluctuations are large, and
N1 can be strongly positive while N2 always remains negative. It is interesting to note
that N1 and N2 have mirrored behaviours: an increase in N1 is always related to a
decrease in N2. This is expected from our previous conclusions about the effect of
layering on normal stresses: particle layers result in an increase in Σp

xx and Σp
zz, and

a relatively unchanged Σp
yy. As a consequence, N1=Σp

xx−Σp
yy is expected to increase,

while N2 =Σp
yy −Σp

zz decreases concurrently.

4. Conclusions
In this paper, we have presented three-dimensional numerical simulations of

concentrated suspensions in a wall-bounded shear flow. Simulations rely on a
fictitious domain method including long-range hydrodynamics, particle–particle and
wall–particle lubrication forces, and contact frictional forces. Notably, wall-lubrication
corrections are proposed on rheological quantities, which do not seem to be reported
in previous similar computations.

Walls lead to a local hexagonal structuring of particles. The size of this layered
zone depends on volume fraction, and is only weakly affected by friction. For a
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confinement κ = 20 (ratio between channel width and particle radius), this region
represents half of the suspension volume at φbulk= 0.4, but the whole domain as soon
as φbulk & 0.5. For φbulk & 0.52, the system completely crystallizes even in very large
domains (Ly = 80a). This result is expected for monodisperse particles (the effect of
polydispersity was not investigated). The wall structuring is relatively slow to develop
with characteristic strains of O(10). It involves wall slip, leading to a reduced shear
rate in the suspension core which seems consistent with the empirical model of Jana
et al. (1995). For perfectly smooth walls, the wall slip is mostly due to particle
roughness that limits the wall–particle gap and lubrication intensity accordingly.

Wall-induced ordering is shown to have a limited impact on viscosity and second
normal stress difference N2, at least for moderately confined suspensions (κ = 20).
Conversely, it significantly affects the first normal stress difference N1. Friction
enhances this effect, which is shown to be due to a large decrease in the contact
normal stress |Σ c

xx| because of particle layering in the wall region. Our simulations
suggest that confinement and friction can promote positive values of N1. The obtained
results seem in better agreement with recent N1 measurements (Couturier et al.
2011; Dbouk et al. 2013) and eventually highlight the importance of friction and
confinement for quantitative predictions of actual suspensions.

Some future work will be required to address size polydispersity, since most
experimental suspensions have finite polydispersity. This is needed to extend the
relevance of our results beyond single-sized spheres, especially regarding experiments.
Polydispersity is likely to reduce ordering, and may alter the balance between
confinement effects per se and confinement effects through wall-induced layering.
This could also help in understanding the results obtained by Gamonpilas et al.
(2016), who found different normal stress differences between monodisperse and
bidisperse systems.

Acknowledgements

This work has been funded by the French Defence Procurement Agency (DGA).

Appendix A. Wall resistance functions

Asymptotic expressions for particle–wall resistance functions XA, YA, YB, XC, YC,
YG and YH can be found in various sources of the literature and have been recently
compiled by Yeo & Maxey (2010b). Note that in their paper, there seems to be
a typographical error for the O(1) term in YH , which is 0.0916 instead of 0.923
(see Bossis, Meunier & Sherwood 1991).

XA

6πa
= ξ−1 + 1

5
ln ξ−1 + 1

21
ξ ln ξ−1 + 0.8193, (A 1)

YA

6πa
= 8

15
ln ξ−1 + 64

375
ξ ln ξ−1 + 0.9557, (A 2)

YB

4πa2
=− 3

15
ln ξ−1 − 43

125
ξ ln ξ−1 + 0.3852, (A 3)

XC

8πa3
=−1

2
ξ ln ξ−1 + 1.2021, (A 4)

YC

8πa3
= 2

5
ln ξ−1 + 66

125
ξ ln ξ−1 + 0.3720, (A 5)
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YG

4πa2
= 7

10
ln ξ−1 + 221

250
ξ ln ξ−1 − 0.9230, (A 6)

YH

8πa3
=− 1

10
ln ξ−1 + 2

250
ξ ln ξ−1 + 0.0916, (A 7)

where ξ is the gap between particle surface and wall normalized by particle radius a.
In order to obtain the missing functions XG, XP and YM, we start from their general
expressions for two particles having different size (Kim & Karrila 1991; Jeffrey 1992)
and we denote β as the size ratio. A variable change is first needed, because in the
theoretical two-sphere expressions, distance ξ is non-dimensional using the average
radius a(1 + β)/2, while we want to keep a for a wall–particle interaction. Then,
the limit β →∞ is taken in the obtained expression. The O(1) non-singular term
is taken from Jeffrey (1992) for β = 100, which is the highest value available. The
final asymptotic expressions are

XG

4πa2
= 3

2
ξ−1 − 6

5
ln ξ−1 + 0.268, (A 8)

XP

4πa2
= 3

2
ξ−1 − 6

5
ln ξ−1 − 0.552, (A 9)

YM

20
3 πa3

= 24
25

ln ξ−1 + 1182
625

ξ ln ξ−1 − 0.685. (A 10)

Note that there seem to be no data available in the intermediate distance regime, so
those asymptotic expressions are always used.
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