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Abstract

The runtime system of dynamic languages such as Prolog or Lisp and their derivatives

contain a symbol table, in Prolog often called the atom table. A simple dynamically resizing

hash-table used to be an adequate way to implement this table. As Prolog becomes

fashionable for 24 × 7 server processes we need to deal with atom garbage collection

and concurrent access to the atom table. Classical lock-based implementations to ensure

consistency of the atom table scale poorly and a stop-the-world approach to implement

atom garbage collection quickly becomes a bottle-neck, making Prolog unsuitable for soft

real-time applications. In this article we describe a novel implementation for the atom table

using lock-free techniques where the atom-table remains accessible even during atom garbage

collection. Relying only on CAS (Compare And Swap) and not on external libraries, the

implementation is straightforward and portable.
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1 Introduction

An important, but for a long time simple, component of the implementation

of dynamic languages is the symbol or atom table. This table maps the string

representation of a symbol (atom) to a handle. Using handles instead of the

original strings avoids duplication, allows for fast equality testing (unification, clause

indexing) and causes each symbol to require the same space, which simplifies the

representation of data involving atoms. The atom table is traditionally implemented

using a dynamically resizing open hash table. Such a table provides excellent

performance and is easy to implement.

In languages that use symbols to represent only constants from the program, the

above is completely adequate. Prolog programs, however, tend to use atoms also

for representing constant as well as dynamic strings from data that is processed
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by the program. For example, NLP (natural language processing) programs tend to

represent words from the text they process as atoms. As shown in, e.g., Creutz (2003),

the number of unique words does not flatten out if more and more documents are

being processed. This means we need atom garbage collection (AGC) to dispose

of words from old documents if we want to realise programs that can process

unbounded input.

As virtually all modern hardware has multiple cores and the number of cores is

growing, several Prolog implementations have added support for multiple threads

(see table 1). In most systems a thread runs a goal using its own stacks, while all

threads share the same program. Typically, atoms are shared between all threads and

thus access to the atom table needs to be synchronised between threads.

A naive way to solve this problem is described in Wielemaker (2003). It relies

on a classical atom table for which the consistency is guaranteed using mutexes

(also called locks or critical sections) that serialises atom lookup operations. Note

that an atom lookup may either return an existing atom or create a new atom. In

a typical application most atom lookup operations return an existing atom. Still,

also lookup of an existing atom needs to be locked to deal with a table resize as

well as AGC. The first implementation of concurrent AGC in SWI-Prolog used a

stop-the-world approach: the thread that initiates AGC stops all threads, marks all

atoms reachable from each thread, removes unmarked atoms from the hash table

and finally resumes all threads. This became problematic for two reasons. First,

we discovered that reliably ‘stopping the world’ is troublesome in MS Windows.1

Second, as programs relying on dozens of threads were developed, the atom table

lock became a bottleneck. Our requirements are:

• AGC that allows other threads to proceed, including performing atom lookups.

This solves the above mentioned portability problem and makes the system

better suitable for (soft) real-time applications.

• Scalable atom lookup, where the lookup time depends as little as possible on

the number of threads performing concurrent lookups.

The first step to tackle this was taken in 2013 after we discovered the

portability issue mentioned above. We replaced the stop-the-world collector with

an asynchronous marking algorithm while using the global atom table lock to

perform the collection phase safely. This implies that other threads can proceed

during the marking phase, but will block when trying to lookup an atom. The

design of this collector is the subject of section 3.2.

1 This is claimed (http://www.codeproject.com/Articles/7238/QueueUserAPCEx-Version-Truly-
Asynchronous-User-M) to be possible using a device driver. Using a device driver was not an
option due to the required administrative privileges for installing a device driver as well as security
considerations that cause many organizations not to accept software that require this. Another
claim found is to use GetThreadContext() after SuspendThread(). This proved unreliable in our tests
(around 2011) on Windows XP. Similar problems are reported at e.g., http://stackoverflow.com/
questions/3444190/windows-suspendthread-doesnt-getthreadcontext-fails. Microsoft hints
at this solution in a recent (2015) post at https://blogs.msdn.microsoft.com/oldnewthing/
20150205-00/?p=44743.
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With portable support for atomic memory operations, notably compare-and-swap

(CAS) now being available for all major platforms as well as a wealth of described

techniques for using these to build lock-free data structures (e.g., Read-copy-update

(RCU), Transactional Memory (TM), Hazard pointers (Desnoyers et al. 2012; Harris

et al. 2008; Michael 2004)) we decided to replace many of the shared data structures

in SWI-Prolog with lock-free alternatives. A crucial and the most challenging data

structure was the atom table. The design of this lock-free, resizing hash table and

its synchronisation with AGC is the subject of section 4.

This article is organised as follows. In section 2 we discuss the state-of-the-art

with regard to atom handling in Prolog and other related work. In section 3 and

section 4 we describe our implementation of the atom garbage collector and the

lock-free atom table. In section 5, we evaluate our implementation using a couple

of real applications as well as an artificial benchmark.

2 Related work

Atom garbage collection is still not widespread in Prolog nor related languages such

as Erlang or Ruby. Ruby supports symbol garbage collection as of version 2.2.2

To our best knowledge, Erlang does not provide atom/symbol garbage collection.

Table 1 summarises the support for threads and AGC in popular Prolog systems.

AGC for Erlang has been proposed in Lindgren (2005) based on the same motivation

as we have, atom are commonly used for the representation of data that is being

processed and long running processes will thus collect too many atoms over time.

The Erlang community deals with this by avoiding atoms, using lists of characters

instead or by restarting nodes periodically. The Prolog community uses the same

workarounds. Some systems, e.g., SWI-Prolog, ECLiPSe and LPA Prolog support

packed strings to have a compact and natural representation for volatile text as well

as avoid the need for AGC.

We find two types of related work in the literature. First, there is a quickly

growing body of articles describing lock-free data structures. We particularly refer

to Triplett et al . (2011), describing a lock-free hash tables based on kernel space

RCU techniques. This paper has an extensive section on related techniques for lock-

free hash tables. The hash table implementation described provides good lookup

performance during resize, a property lacking in our implementation (see section 4).

The downside is that it relies heavily on the RCU wait-for-readers action, the

implementation of which is slow in user space and poorly portable. We considered

using liburcu3, but discarded it due to the lack of support for native MS-Windows

as well the lack of portability in general that follows from the detailed list of

supported CPUs and compilers.

Second, we looked at the work done in the area of multi-threaded symbolic

languages. In Lindgren (2005), Thomas Lindgren describes the design of an atom

2 https://www.infoq.com/news/2014/12/ruby-2.2.0-released
3 http://liburcu.org
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Table 1. Thread and AGC support for some popular Prolog systems

System Threads AGC Notes

SWI-Prolog Y Y

SICStus 4 N Y SICStus supports multiple independent

runtime systems in one process

YAP 6.3 Y Y YAP supports AGC or threads, but not both

B-Prolog 8.1 N N

CxProlog 0.98.1 N Y

ECLiPSe 6.1 N Y ECLiPSe will soon support threads and AGC.

The implementation is similar to Lindgren

(2005) and Tarau (2011)

GNU Prolog 1.4.4 N N

JIProlog 4.1.4.1 N N

Lean Prolog 5.4.4 Y Y See section 2

Qu-Prolog 9.7 Y N

XSB 3.6.0 Y N

garbage collector for Erlang. The overall idea is to realise a copying collector where

we have two symbol tables. If AGC is started, a new table is initialised with the

permanent atoms. An Erlang process is moved to the current (new) table when it

is resumed. The process scans its memory areas and moves each atom to the new

table while updating the used atom-handle. If all processes have been moved, the

old table can be discarded. Tarau (2011) describes the symbol garbage collector for

Lean Prolog. This Java based minimalist Prolog implementation uses symbols as a

generalisation for atoms that can also refer to Java objects such as large numbers.4

The implementation follows the same copying approach as the Erlang proposal

described above.

The copying approach has two advantages. First, the size of the atom table is

actually reduced and second, migrating the atoms is done by the target thread itself,

which avoids the need for asynchronous scanning as described in section 3.2 and

naturally distributes the workload over the running threads. In our view, there are

also disadvantages. First, after starting a new symbol table, it needs to be populated

with all permanent atoms, e.g., those appearing in the static part of the program.

Second, all threads will concurrently populate the new table with a potentially

large number of atoms. Third, SWI-Prolog threads are particularly designed to be

embedded into C code and call arbitrary C code. This may cause long (even infinite)

delays before all threads have migrated to the new table and we can discard the

old one. This issue is raised by Lindgren but not resolved. Tarau does not mention

this. Third, SWI-Prolog is actively used for processing linked data (RDF, Klyne and

Carroll 2004). Applications like this use many atoms (we used up to 50 million

atoms). Copying these atoms is expensive and uses a large amount of memory.

4 Also, SWI-Prolog atoms are internally generalised to symbols that are also used as safe references to
foreign objects such as streams, clause references, etc.
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The collector described in this article allows threads to proceed their work during

AGC, which includes running Prolog code, creating atoms as well as being blocked

in system calls or expensive computations done in external languages. It reclaims

the actual strings of unreachable atoms. The atom itself is not reclaimed, but reused

when new atoms need to be created. It is not hard to imagine workloads where

the copying approach is preferable to merely reusing atoms, neither the other way

around. It is hard to make a fair judgement for real world usage.

3 A conservative atom garbage collector

This section describes AGC as it is currently implemented in SWI-Prolog. We briefly

describe the simple single threaded and stop-the-world algorithms before introducing

our current asynchronous marking algorithm. For AGC purposes we distinguish two

types of references to atoms.

1. Volatile references come from highly dynamic memory areas. Currently these are

the Prolog stacks (global and environment), the buffer area used by findall/3 and

terms in message queues (streams of terms used to exchange messages between

threads). Atoms referenced from these areas are identified by scanning these

areas during the mark phase of AGC.

2. Explicit references come from mostly static data structures such as clauses,

records, Prolog flags and code using the C interface. The number of such

references is stored with the atom and maintained using PL register atom()

and PL unregister atom().

The atom lookup functions (PL new atom() and variations) increment the reference

count of the returned atom to avoid it being collected immediately after creation.

Functions such as PL put atom chars(), which bind a Prolog term to an atom

created from a string call PL new atom(), bind the term to the atom and decrements

the reference count of the atom. Thus, calling PL put atom chars() with a new

unique string creates an atom that is referenced from a term and has its references

field set to zero. The highest bit of the reference (marked) field is used for marking

that there is a reference from a volatile memory area. Now, AGC performs the steps

outlined in algorithm 1

Algorithm 1 Simple AGC
1: function agc

2: for all volatile area do
3: mark atoms in(volatile area)
4: end for
5:
6: for all a in atoms do
7: if a.references = 0 then � no mark, no explicit rereferences
8: reclaim atom(a)
9: else

10: clear mark(a)
11: end if
12: end for
13: end function

https://doi.org/10.1017/S1471068416000272 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000272


Lock-free atom garbage collection for multithreaded Prolog 955

The above works for single-threaded execution. If we add threads to the picture,

we need to take care of volatile references from other threads. We describe two

approaches for this. First we provide a brief description of our old stop-the-world

collector (Wielemaker 2003), followed by a description of our current conservative

collector.

3.1 Stop the world AGC

Stop-the-world agc is similar to the single-threaded of algorithm 1. It merely has to

mark the volatile areas of all threads. To do so, it stops each thread and marks all

atoms reachable from the volatile areas of the stopped thread. Next, it collects the

unreachable atoms and finally it resumes the stopped threads. Note that we cannot

resume the threads immediately after marking because they may add new atoms to

their volatile areas.

On Unix systems, each thread is signalled. The signal handler marks the reachable

atoms and then suspends using sigwait(). On Windows, threads are stopped using

SuspendThread(), after which the AGC thread marks the atoms of the suspended

thread. Later we discovered that SuspendThread() returns immediately and only

prevents the target thread from resuming after its current time slice finishes. After

many workaround attempts we concluded there is no reliable way to suspend a

thread and wait for it to be really suspended.

Although only one thread is accessing the thread’s stacks during marking, the

marking happens asynchronously as to avoid AGC (and thus all threads) having

to wait until all threads reach a safe check point. This requires careful ordering of

modifications to the stacks.

3.2 Conservative AGC

Blocking threads during the entire AGC process, the requirement to scan the stacks

asynchronously and the portability issue around suspending threads were the major

reasons to seek for another solution for marking the volatile areas. The inspiration

came from the Boehm-Demers-Weiser garbage collector (BDWGC, Boehm 1993)

which performs garbage collection on C data structures by scanning all memory for

values that can be interpreted as a pointer to a location inside an allocated block

of memory. Otherwise, BDWGC is a stop-the-world collector.

Instead of obtaining a root pointer to the current environment frame and choice

point and examining all reachable frames and atoms from there, we simply scan the

environment and global stack and mark anything that looks ‘atom-like’, but can of

course be an accidental bit pattern appearing in, e.g., a floating point number or

string. This is the conservative aspect: the marker might mark atoms that are in fact

not referenced and thus the collector might not collect all atoms. The probability

for false marks is reduced by using a tag on the lower bits of an atom handle that

excludes clashes with aligned pointers.

As we do not want to stop threads, we need to deal with the fact that the target

thread is running and changing the stacks as we mark them. Because we merely
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Fig. 1. Race when conditional marking is used.

examine the cells in the volatile areas, trying to interpret the bit pattern as an

atom, our marker is safe as long as the location of the volatile areas of a thread

remains unchanged while the area is scanned and atoms in the area are not somehow

made invisible or moved. The location of volatile areas is changed during a stack

shift, while atoms can be invisible and be moved during a thread-local stack-GC.

Therefore, these two operations needs to be synchronized between the target thread

and the marking thread using locks.

The running thread may create volatile references to new atoms as it proceeds, e.g.,

by pushing an atom to a stack. Without precaution, this atoms may not be marked.

Therefore, we introduce a global variable to indicate that AGC is in progress. When

AGC is in progress, operations that add an atom to one of the volatile areas also

mark the atom. Similarly, PL unregister atom() must mark an atom if the last

reference is lost while AGC is in progress. A simple conditional mark is insufficient

due to the race condition illustrated in figure 1. This is solved by placing such atoms

in a designated field in the thread structure that is marked by AGC as illustrated

in algorithm 2. In this figure, LD represents the thread structure. Now, the atom

is marked either by AGC thread scanning LD->atoms.unregistering or by the

calling thread.

Algorithm 2 Safe conditional marking
1: function cond mark atom(a)
2: LD.atoms.unregistering ← a
3: if agc is running = true then
4: mark atom(a);
5: end if
6: end function

With these changes the AGC implementation becomes as illustrated in algorithm 3.

This implementation has the following properties:

• Threads continue during AGC marking. Currently, AGC is performed by the

initiating threads. Future versions may pass this to a dedicated thread and

may use multiple threads for the marking.

• Threads suspend on stack shifts or garbage collection while their volatile areas

are being scanned. This is acceptable because the additional marking delay is

proportional to the delay involved with GC or stacks shifts. More fine grained

locking, e.g., by volatile area, is possible.

• Threads creation and destruction suspends during the marking phase of AGC.

This also allows for more fine grained locking.

• Atom lookup suspends during the collect phase.
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• No non-portable constructs such as suspending other threads are needed. The

algorithm can be fully implemented using posix thread primitives, although our

implementation uses atomic operations for, e.g., updating the atom reference

count.

Algorithm 3 Conservative AGC control
1: function agc

2: lock(agc)
3: if agc is running = true then
4: unlock(agc) return
5: end if
6: agc is running ← true
7: for all t in threads do
8: mark volatile(t)
9: end for

10: lock(atom table)
11: for all a in atoms do
12: if a.references = 0 then
13: reclaim atom(a)
14: else
15: unmark(a)
16: end if
17: end for
18: unlock(atom table)
19: agc is running ← false
20: unlock(agc)
21: end function

4 A lock free atom table

Although the in section 3.2 described atom garbage collector improves portability

and reduces the time in which no thread can make progress, it does not avoid

contention on the atom table lock and it still causes thread doing atom lookup to

block during the collect phase. We describe our implementation that solves these

problems in this section. We make the following assumptions and have the following

requirements:

• A particular application requires up to a certain number of live atoms. This

number is not known in advance and therefore the atom table needs to be

resized until the required size is reached.

• Although it is necessary to remove no-longer-used atoms from the table, there

is not much need to reduce the number of buckets in the atom table. This

implies that after a startup period, atom table resize operations no longer

take place and thus rather poor atom handling performance during the resize

operations is acceptable.

• However, atom garbage collection may remain a frequent activity and thus

atom lookup must perform well during AGC.

• The implementation must be portable to major operating systems and CPUs.

In particular, we wish to limit the required synchronisation primitives to

the POSIX mutexes (critical sections on Windows) and the atomic Compare
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Fig. 2. Dynamic array data structure.

And Swap (CAS) operation for pointers and integers up to the size of a

pointer. Modern C compilers generally provide CAS through documented

primitives such as GCC’s sync bool compare and swap(ptr,old,new ) rather

than relying on embedded assembly code.

4.1 Data structures

The atom-table consists of a dynamic array of atom structures. The dynamic array

is implemented using an array of base pointers to chunks that double in size as

illustrated in figure 2. Typically, the array is statically initialized to a specified size (8

in the figure). Using this representation, the atom at index I (I > 0) can be requested

using atomArray[MSB(I)][I].5 The dynamic array can be extended by allocating a

new block and adding it to the MSB index.

The atom structures in the dynamic array have the fields described below. In

the actual implementation they have more fields, but these are not relevant for our

description of the atom garbage collector.

next Pointer to the next atom in the open hash table.

name Pointer to the represented text.

references The atom reference count. The top three bits are named reserved, valid

and marked. The marked bit is used for marking references from volatile areas,

the reserved bit is used to indicate that the atom is not available for creating a

new atom and the valid bit indicates the atom is fully alive.

next invalid Pointer to next invalidated (but not yet reclaimed) atom. The use of

this field is clarified in algorithm 7.

The atom table is a classical open hash table. Following the RCU approach, the

atom table is represented using a structure that is atomically replaced by a new

(resized) version by making the global atomTable pointer point at the new version.

Old versions remain reachable through the prev pointer until they can safely be

reclaimed. Reclaiming old structures is described in section 4.2. See figure 3.

4.2 Algorithm

This section describes the algorithm to manage the atom hash table as well as

reclaiming atoms from AGC. Note that the AGC mark phase described in section 3.2

5 Many CPUs provide hardware support to compute the Most Significant Bit. For example, GCC provides
access to this using builtin clzl().
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Fig. 3. The atom table structure.

is not affected. The algorithm is provided as pseudo code. The description below

summarises the algorithm while pointing at the relevant fragments of the pseudo

code implementation.

1. Fetch the current global atom-table and do a classical open hash table lookup.

If the atom is found and marked valid, increment references using CAS while

validating that the atom remains marked as valid and return the atom. See

algorithm 4, lines 7 to 21 and algorithm 5.

2. If the table is too small (algorithm 4, lines 24 to 26), resize the table (algorithm 6).

While the resize is in progress, the next pointers linking atoms in the same bucket

are generally incorrect. If we have not found the atom and the current atom

table is too small we must either resize the table or some other thread is doing

that and we wait for the resize to complete. That is why the resize is locked

(algorithm 6, lines 4 and 14). If the atom table changed or the current bucked

changed (algorithm 4, lines 27 to 29), our lookup may have failed because the

table was being resized or a new atom was inserted. We restart the search using

the latest table and bucket.

3. Now, if we did not find the atom, it is not in the table. We reserve a new atom by

allocating it in the dynamic atom array (see algorithm 9). Next, if we can CAS

the reserved atom into the head and the table has not changed (algorithm 6, lines

33 to 36) we added a unique atom to the table. We make it valid and return it.

If something changed, we reset the references to zero, invalidating the atom and

restart the search. This deals with three scenarios: (1) the table was resized while

we added the atom, (2) someone else inserted the same atom or (3) someone else

inserted a different atom in the same bucket. The last scenario make us redo the

lookup and insert for no reason, but this only happens when two threads create

two different atoms in the same bucket which should be rare.

The above describes lookup of an atom, resizing the table and adding a new atom

to the table while maintaining the unique atom-to-string mapping.

Two issues still need to be addressed. First, AGC may find the atom is ready to

be collected. This is realised by algorithm 7, where we use CAS to clear the valid

bit (lines 4 to 7). This, together with algorithm 5 which is used to return a found

atom from the table ensures that while doing a lookup of an atom that is being

invalidated by AGC either makes the lookup win, cancelling collection by AGC or

AGC wins and a new atom with the same string is created by the lookup. Note
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Algorithm 4 Atom lookup
1: global var atomTable
2: thread var LD
3:
4: function lookup atom(string)
5: var table, buckets, head
6: loop
7: LD.atomTable = atomTable
8: table← LD.atomTable.table
9: buckets← LD.atomTable.buckets

10: key ← hash(string)&(buckets− 1)
11: head← table[key]
12: LD.atomBucket = &table[key]
13:
14: for a← head; a; a← a.next do
15: references← a.references
16: if is valid(references)

∧
string = a.name then

17: if bump ref(a, references) then
18: LD.atomBucket = LD.atomTable = NULL
19: return a
20: end if
21: end if
22: end for
23:
24: if table too full then
25: resize atom table

26: end if
27: if table or bucket not current then
28: continue loop
29: end if
30:
31: a← reserve atom(string)
32: a.next← table[key]
33: if cas(&table[key], head, a)

∧
table is current then

34: a.references← 1|VALID|RESERVED
35: LD.atomBucket = LD.atomTable = NULL
36: return a
37: else
38: a.references← 0
39: end if
40: end loop
41: end function

that if AGC wins the atom changes identity. As the old identity is not in use, this

is harmless. Second, we must reclaim old data structures: (1) tables that have been

resized accessible through the prev from atomTable and (2) invalidated atoms that

are linked into invalidAtoms in lines 8 and 9 of algorithm 7. For this, we keep a

pointer at the table and bucket being processed in the thread’s local data. These

pointers are updated in algorithm 4, lines 7, 12, 18 and 35. At the end of AGC,

algorithm 8 is called. This collects all bucket pointers in use by all threads and

actually reclaims the atom if none of the buckets in which the atom must appear in

any of the tables is referenced by any thread. Note that the collected bucket pointers

is just a snapshot, but as none of the current buckets contain the atom, new bucket

pointers will never encounter the atom. Likewise, old tables (prev) that are not in

use by any thread are reclaimed. This step is trivial and not included in the pseudo

code.
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Algorithm 5 Claim an atom as valid
1: function bump ref(a, references)
2: loop
3: if cas(&a.references, references, references + 1) then
4: return true
5: else
6: references← a.references
7: if ¬is valid(references) then
8: return false
9: end if

10: end if
11: end loop
12: end function

Algorithm 6 Resize atom table
1: global var atomTable
2:
3: function resize atom table

4: lock(agc)
5: if table too full then
6: newtable← alloc atom table(atomTable.buckets ∗ 2)
7: newtable.prev ← atomTable
8: for all atom a in atomTable do
9: if is valid(a.references) then

10: add to table(newtable)
11: end if
12: end for
13: end if
14: atomTable← newtable
15: unlock(agc)
16: end function

Algorithm 7 Invalidate atom (during AGC collect phase)
1: global var invalidAtoms
2:
3: function invalidate atom(a, references)
4: newrefs← references&˜valid � Clear valid bit
5: if ¬cas(&a.references, references, newrefs) then
6: return false
7: end if
8: a.next invalid← invalidAtoms
9: invalidAtoms← a

10: return true
11: end function

5 Evaluation

We evaluated the atom table using an artificial test that stresses the atom table to the

limit. Although many applications hardly stress the atom table, we also identified

scenarios from existing applications where the new atom table significantly improves

performance.

For the artificial test we enumerate all answers of the ISO predicate sub atom/5

where the first argument is instantiated to an atom consisting of the (Unicode)

characters 0..1000. This tests looks up 502,503 atoms. The test is run on multiple

threads concurrently. The hardware is a dual Intel Xeon E5-2650 CPU system

(2 × 8 = 16 cores, 32 threads) running Ubuntu 14.04. We ran the tests in four
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Algorithm 8 Reclaim invalidated atoms (during AGC collect phase)
1: global var invalidAtoms
2: global var atomTable
3:
4: function destroy atoms

5: buckets = atom buckets in use � Collects LD.atomBucket of threads
6: for all atom a in invalidAtoms do
7: if destroy atom(a, buckets) then
8: remove a from invalidAtoms
9: end if

10: end for
11: free(buckets)
12: end function
13:
14: function destroy atom(a, buckets)
15: t← atomTable
16: key ← hash(a.string)
17: while t! = NULL do
18: v = key&(t.buckets− 1)
19: if &t.table[v] in buckets then
20: return false � A thread scans this bucket
21: end if
22: t← t.prev
23: end while
24: a.name← NULL
25: a.references← 0
26: return true
27: end function

Algorithm 9 Reserve a new atom
1: global var atomArray
2:
3: function reserve atom

4: loop
5: for all a in atomArray do
6: refs← a.references
7: if is free(refs)

∧
cas(&a.references, refs, refs|reserved) then

8: return a
9: end if

10: end for
11: Add new block to atomArray (locked)
12: end loop
13: end function

conditions, comparing version 6.5.1 (prior to conservative AGC) to 7.3.20 and both

while collecting the volatile atoms and pre-allocating these atoms, testing only

lookup. The results are shown in table 2. We make the following observations:

• Concurrent lookup (rows 13 . . . 24) shows that, if atom lookup is dominant,

there is no speedup from using multiple cores when using a lock based atom

table. Our lock-free version shows good scalability up to 16 threads (the

number of physical cores).

• With AGC reclaiming the volatile atoms (rows 1 . . . 12) we see a similar

reduction of the total process CPU usage, but a much smaller reduction in

wall time usage. The AGC time column gives a hint. AGC time is small in the

old version, where marking is done by the threads in parallel. It is high in the

new version, where the AGC thread performs all the marking.
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Table 2. AGC performance for old (6.5.1) and new (7.3.20) versions of SWI-Prolog. Note

that the last row of each section relies on hyper-threading.

Time (sec) Atom GC

Row # Threads Process Wall # Invocations Reclaimed bytes Time

6.5.1, AGC active

1 1 0.657 0.657 49 660,818,627 0.049

2 2 3.587 2.140 85 1,167,071,837 0.159

3 4 10.725 3.965 169 2,299,293,054 0.339

4 8 33.082 5.098 183 2,304,928,223 0.380

5 16 117.574 8.295 54 719,046,656 0.176

6 32 429.078 30.666 849 9,388,585,427 3.121

7.3.20, AGC active

7 1 0.632 0.633 49 660,941,810 0.049

8 2 1.506 0.788 98 668,102,982 0.110

9 4 3.018 0.803 49 682,083,694 0.215

10 8 8.351 1.648 238 2,783,054,946 4.987

11 16 20.365 4.791 491 9,103,288,495 19.816

12 32 45.590 12.369 811 18,112,260,091 44.880

6.5.1, atoms pre-allocated

13 1 0.746 0.746 0 0 0.000

14 2 3.554 2.067 0 0 0.000

15 4 9.273 3.439 0 0 0.000

16 8 27.471 4.009 0 0 0.000

17 16 117.049 7.918 0 0 0.000

18 32 296.947 21.847 0 0 0.000

7.3.20, atoms pre-allocated

19 1 0.595 0.595 0 0 0.000

20 2 1.708 0.876 0 0 0.000

21 4 2.454 0.715 0 0 0.000

22 8 4.811 0.718 0 0 0.000

23 16 10.851 0.687 0 0 0.000

24 32 28.506 1.188 0 0 0.000

The first real-world evaluation was performed using ClioPatria6. ClioPatria is a

linked data platform running on SWI-Prolog. Node identifiers (IRIs) are represented

as atoms. Likewise, RDF literals are represented as atoms and a token → literal

index is created to allow for full text search. The Linked Politics project converted

the European parliament speeches to RDF, creating 26 million triples that require 9

million atoms to represent as described above. We timed the loading time. ClioPatria

loads the different sources (graphs) in parallel. The test ran on the same hardware

as above, using 32 threads for loading the data. The results are shown in table 3.

6 http://cliopatria.swi-prolog.org
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Table 3. ClioPatria load time for 26M triples. Times are in seconds.

Graphs Triples Wall time CPU % CPU time

7.2.3 (conservative AGC; Linux) 47 26,192,652 1667.73 1641 27365

7.3.20 (lock-free AGC; Linux) 47 26,192,652 861.85 1409 12140

Table 4. Time to answer FIX messages

Mean Time (ms) Stddev Max Time

7.2.3 (conservative AGC; Linux) 24.82 6.22 54.91

7.3.20 (lock free AGC; Linux) 16.66 0.42 17.99

7.2.3 (conservative AGC; Windows) 41.04 22.10 259.71

7.3.20 (lock free AGC; Windows) 24.32 0.50 26.59

The second real-world evaluation was performed using the SecuritEase stock-

broking system running on SWI-Prolog. The application was placed under a

representative load, decoding Financial Information eXchange (FIX) messages. For

the test, 500 client requests were processed. The time to service each request was

logged. Each test cycle used the same FIX message workload and client request

workload. The hardware used for this test is an Intel i7 2720-QM CPU system

(4 cores, 8 threads). Results were obtained for Gentoo Linux 4.1.15 and Windows

Server 2008 R2. The results are presented in table 4. Using the lock-free atom table,

the mean time to service requests was noticeably reduced. Of particular note is the

low variance in timings using the lock-free atom table.

6 Conclusions

We have presented a practical and portable approach to implement lock-free access

to the symbol table for concurrent dynamic languages such as Prolog, Erlang or

Ruby. Lookup of existing atoms scales nearly perfect up to 16 threads on 16 physical

cores. Atom garbage collection only cause thread heap expansion and garbage

collection to suspend. Performance can be further enhanced by using multiple threads

for the marking phase and more fine-grained locks that protect the marking phase.
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