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Processing the data from a large variety of zero-pressure-gradient boundary layer flows
shows that the Reynolds-number-dependent scaling law, which the present authors
obtained earlier for pipes, gives an accurate description of the velocity distribution
in a self-similar intermediate region adjacent to the viscous sublayer next to the wall.
The appropriate length scale that enters the definition of the boundary layer Reynolds
number is found for all the flows under investigation.

Another intermediate self-similar region between the free stream and the first
intermediate region is found under conditions of weak free-stream turbulence. The
effects of turbulence in the free stream and of wall roughness are assessed, and
conclusions are drawn.

1. Introduction
Asymptotic laws for wall-bounded turbulent shear flows at large Reynolds numbers

are considered. Classical examples of such flows are those in pipes, channels, and
boundary layers. This class of flows is of major fundamental and practical importance.
All these flows share as dimensional governing parameters the shear stress at the wall
τ and the fluid’s properties: its density ρ and dynamic viscosity µ. From these
parameters two important quantities can be formed: the dynamic or friction velocity
u∗ = (τ/ρ)1/2 and the length scale δ = ν/u∗, where ν = µ/ρ is the fluid’s kinematic
viscosity. The length scale δ is tiny at large Reynolds numbers, and in the layer where
the dimensionless distance from the wall y/δ is less than, say, 70 (viscous sublayer)
the viscous stress is comparable with the Reynolds stress created by vortices. Outside
this viscous sublayer, at y/δ > 70, the contribution of the viscous stress is small. We
emphasize that ‘small’ is not always synonymous with ‘negligible’, and indeed we will
see that here is a case where it is not.

In 1930, Th. von Kármán proposed in explicit form the hypothesis that outside the
viscous sublayer the contribution of viscosity can be neglected. On the basis of this
assumption he derived the universal (i.e. Reynolds-number independent) logarithmic
law for the distribution of the mean velocity u over the cross-section:

φ =
u

u∗
=

1

κ
ln η + C, η =

u∗y
ν
, (1)
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264 G. I. Barenblatt, A. J. Chorin and V. M. Prostokishin

where y is the distance from the wall; the constants κ (the von Kármán constant) and
C should be identical for all turbulent wall-bounded shear flows at high Reynolds
numbers, and the law (1) should be valid in intermediate regions between, on one
hand, the viscous sublayer and, on the other, the external parts of the flows, e.g. the
vicinity of the axis in pipe flow, or the vicinity of the external flow in the boundary
layer. In 1932, L. Prandtl came to the law (1) using a different approach, but effectively
with the same basic assumption. The law (1) is known as the von Kármán–Prandtl
universal logarithmic law. More recent derivations which, however, follow the same
ideas and the same basic assumption, often in an implicit form, can be found in
monographs by Landau & Lifshits (1987), Monin & Yaglom (1971), Schlichting
(1968) and in a recent textbook by Spurk (1997).

According to the von Kármán–Prandtl law (1), all experimental points correspond-
ing to the intermediate region should collapse on a single universal straight line in
the traditional coordinates ln η, φ.

Subsequent investigations showed, however, that this is not what happens. First,
the experiments showed systematic deviations from the universal logarithmic law (1)
even if one is willing to tolerate a variation in the constants κ and C (from less
than 0.4 to 0.45 for κ, and from less than 5.0 to 6.3 for C). Furthermore, using
analytic and experimental arguments, the present authors showed (Barenblatt 1991,
1993; Barenblatt & Prostokishin 1993; Barenblatt, Chorin & Prostokishin 1997b;
Chorin 1998) that the fundamental von Kármán hypothesis on which the derivation
of the universal law (1) was based, i.e. the assumption that the influence of viscosity
disappears totally outside the viscous sublayer, is inadequate. In fact, this hypothesis
should be replaced by the more complicated one of incomplete similarity, so that
the influence of viscosity in the intermediate region remains, but the viscosity enters
only in power combination with other factors. This means that the influence of the
Reynolds number, i.e. both of the viscosity and the external length scale, e.g. the pipe
diameter, remains and should be taken into account in the intermediate region.

For the readers’ convenience we present here briefly the concept of incomplete
similarity; a more detailed exposition can be found in Barenblatt (1996). The mean
velocity gradient ∂yu in turbulent shear flows can be represented in the general form
suggested by dimensional analysis

∂yu =
u∗
y
Φ(η, Re).

In the intermediate region, η = u∗y/ν is large, and we consider the case of large
Reynolds number. The basic von Kármán hypothesis corresponds to the assumption
that the dimensionless function Φ(η, Re) at large η and Re can be replaced by a
constant 1/κ, its limit as η→∞, Re→∞. This corresponds to complete similarity both
in η and Re. The assumption of incomplete similarity in η means that at large η a finite
limit of the function Φ does not exist, but that this function can be represented as

Φ = C(Re)ηα(Re),

i.e. the velocity gradient has a scaling intermediate asymptotics. Here the functions
C (Re) and α (Re) should be specified.

Using some additional analytic and experimental arguments the present authors
came to the Reynolds-number-dependent scaling law of the form

φ =
u

u∗
= (C0 ln Re+ C1)η

c/lnRe, (2)
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where the constants C0, C1 and α must be universal. The scaling law (2) was compared
with what seemed (and still seems to us up to now) to be the best available data for
turbulent pipe flows, obtained by Nikuradze (1932), under the guidance of Prandtl at
his Institute in Göttingen. The comparison has yielded the following values for the
coefficients:

c = 3
2
, C0 =

1√
3
, C1 = 5

2
(3)

when the Reynolds number Re was taken in the form

Re =
ūd

ν
. (4)

Here ū is the average velocity (the total flux divided by the pipe cross-section area)
and d is the pipe diameter. The final result has the form

φ =
( 1√

3
lnRe+ 5

2

)
η3/2lnRe (5)

or, equivalently

φ =

(√
3 + 5α

2α

)
ηα, α =

3

2lnRe
. (6)

The scaling law (5) produces separate curves φ(ln η, Re) in the traditional (ln η, φ)-
plane, one for each value of the Reynolds number. This is the principal difference
between the law (5) and the universal logarithmic law (1). We showed that the family
(5) of curves having Re as parameter has an envelope, and that in the (ln η, φ)-plane
this envelope is close to a straight line, analogous to (1) with the values κ = 0.4 and
C = 5.1. Therefore, if the experimental points are close to the envelope they can lead
to the illusion that they confirm the universal logarithmic law (1).

The Reynolds-number-dependent scaling law can be reduced to a self-similar
universal form

ψ =
1

α
ln

(
2αφ√
3 + 5α

)
= ln η, α =

3

2lnRe
, (7)

so that contrary to what happens in the (ln η, φ)-plane, in the (ln η, ψ)-plane the
experimental points should collapse onto a single straight line – the bisectrix of the
first quadrant. This statement received a ringing confirmation from the processing of
Nikuradze’s (1932) data (Barenblatt & Prostokishin 1993; Barenblatt et al. 1997b).

An important remark should be made here. Izakson, Millikan & von Mises (IMM,
see e.g. Monin & Yaglom 1971) gave an elegant derivation of the universal logarithmic
law based on what is now known as matched asymptotic expansions. This derivation,
which seemed to be unbreakable, persuaded fluid dynamicists that this law was a
truth which will enter future turbulence theory essentially unchanged. In the papers
of the present authors (Barenblatt & Chorin 1996, 1997), it was demonstrated that
the scaling law (2) is compatible with the properly modified IMM procedure. The
method of vanishing viscosity (Chorin 1988, 1994) was used in this modification.

Let us turn now to shear flows other than flows in pipes. By the same logic,
the scaling law (5) should also be valid for an intermediate region adjacent to the
viscous sublayer for all good quality experiments performed in turbulent shear flows
at large Re.
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The first question is, what is the appropriate definition of the Reynolds number
for these flows which will make the formula (5) applicable? This is a very important
point – if the universal Reynolds-number-independent logarithmic law were valid, the
definition of the Reynolds number would be irrelevant provided it were sufficiently
large. For the scaling law (5) this is not the case. Indeed, if the scaling law (5) has
general applicability it should be possible to find, for every turbulent shear flow at
large Reynolds number, an appropriate definition of the Reynolds number which will
make the scaling law (5) valid.

There exists nowadays a large amount of data for an important class of wall-
bounded turbulent shear flows: turbulent zero-pressure-gradient boundary layers.
These data were obtained over the last 25 years by various authors using various
set-ups. For boundary layers the traditional definition of the Reynolds number is

Reθ =
Uθ

ν
(8)

where U is the free-stream velocity, and θ is a characteristic length scale – the
momentum displacement thickness. The question which we asked ourselves was, is
it possible to find for each of these flows a particular lengthscale Λ, so that the
scaling law (5) will be valid for all of them with the same values of the constants. Of
course, in each case the length scale Λ could be influenced by the contingencies of
the particular experiment, but the question of decisive importance is whether such a
length scale exists. The answer within the accuracy of the experiments is affirmative.

We present here the results of the processing all the experimental data available
to us, in particular all the data collected in a very instructive review by Fernholz &
Finley (1996). We show that for all of these flows, without any exception, the scaling
law (5) is observed with an appropriate accuracy over the whole intermediate region,
if the Reynolds number is defined properly, i.e. if the characteristic length Λ entering
the Reynolds number

Re =
UΛ

ν
(9)

is properly determined. Moreover, we show that for all the flows where the turbulence
in the external flow is small, there exists a sharply distinguishable second intermediate
region between the first one where the scaling law (5) is valid and the external
homogeneous flow. The average velocity distribution in this second intermediate
region is also self-similar of scaling type:

φ = Bηβ (10)

where B and β are constants.
However, a Reynolds-number dependence of the power β was not observed. Within

the accuracy of the experimental data β is close to 1/5. When the turbulence in the
external homogeneous flow becomes significant, the second self-similar region becomes
smaller and the power β decreases with growing external turbulence until the second
intermediate region disappears completely.

2. The first group of zero-pressure-gradient boundary layer experiments
We will explain later why we divided the experimental data into three groups. Here

it is sufficient to note that all available sets of experimental data were eventually
taken into account.
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(b)

lg φ

lg η
1.5

(a)

φ

lg η

Figure 1. (a) Schematic representation of the experimental data in traditional coordinates ln η, φ.
(b) Schematic representation of the experimental data in (lg η, lgφ) coordinates for experiments of
the first group.

The original data were always presented by their authors in the form of graphs
in the traditional (ln η, φ)-plane, suggested by the universal logarithmic law (1). The
shape of the original graphs was always similar to the one presented qualitatively
in figure 1(a). Therefore, the first rather trivial step was to replot the data in the
doubly logarithmic coordinates (lg η, lgφ) appropriate for revealing the scaling laws.
The result was instructive: for all experiments of the first group (in chronological
order), specifically: Collins, Coles & Hike (1978)†; Erm & Joubert (1991); Smith
(1994)†; Naguib (1992)‡, and Nagib & Hites (1995)‡; Krogstad & Antonia (1999),
the data outside the viscous sublayer (lg η > 1.5) have the characteristic shape of a
broken line, shown qualitatively in figure 1(b) and quantitatively in figures 2–6.

† The data were obtained by scanning the graphs in the review by Fernholz & Finley (1996).
‡ The data in digital form were provided to us by Dr M. Hites.
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Figure 2. The experiments by Collins, Coles & Hike (1978) (data taken from Fernholz & Finley
1996). (a) Reθ = 5938, (b) Reθ = 6800, (c) Reθ = 7880. Both self-similar intermediate regions (I)
and (II) are clearly seen.
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Figure 3. The experiments by Erm & Joubert (1991). (a) Reθ = 697, (b) Reθ = 1003, (c) Reθ = 1568,
(d) Reθ = 2226, (e) Reθ = 2788. Both self-similar intermediate regions (I) and (II) are clearly seen.
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Figure 4. (a,b) The experiments by Naguib (1992): (a) Reθ = 4550, (b) Reθ = 6240. Both self-similar
intermediate regions (I) and (II) are clearly seen. (c–h) The experiments by Nagib & Hites (1995):
(c) Reθ = 9590, (d) Reθ = 13 800, (e) Reθ = 21 300, (f) Reθ = 29 900, (g) Reθ = 41 800, (h) Reθ =
48 900. Both self-similar intermediate regions (I) and (II) are clearly seen.
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Figure 5. The experiments of Smith (1994) (data taken from Fernholz & Finley 1996).
(a) Reθ = 4996, (b) Reθ = 12 990. The first self-similar intermediate region (I) is clearly seen,
the second region (II) can be revealed.
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4
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Figure 6. The experiments of Krogstad & Antonia (1998). Reθ = 12 570. Both self-similar
intermediate regions (I) and (II) are clearly seen.

Thus, the two straight lines forming the broken line that were revealed in the
(lg η, lgφ)-plane have as equations

(I) φ = Aηα; (II) φ = Bηβ. (11)

The coefficients A, α, B, β were obtained by us through statistical processing.
We assume as before that the effective Reynolds number Re has the form (9):

Re = UΛ/ν, where U is the free-stream velocity and Λ is a length scale. The basic
question is, whether one can find in each case a length scale Λ which plays the same
role for the intermediate region (I) of the boundary layer as the diameter does for pipe
flow. In other words, whether it is possible to find a length scale Λ, perhaps influenced
by individual features of the flow, so that the scaling law (5) is valid for the first
intermediate region (I). To answer this question we have taken the values of A and
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Figure Reθ α A ln Re1 ln Re2 ln Re Reθ/Re β

Collins, Coles & Hiks (1978)

2(a) 5938 0.129 9.10 11.43 11.63 11.53 0.06 0.203
2(b) 6800 0.125 9.23 11.66 12.00 11.83 0.05 0.195
2(c) 7880 0.123 9.41 11.97 12.21 12.09 0.04 0.202

Erm & Joubert (1991)

3(a) 697 0.163 7.83 9.23 9.20 9.22 0.07 0.202
3(b) 1003 0.159 7.96 9.46 9.43 9.45 0.08 0.192
3(c) 1568 0.156 7.97 9.47 9.62 9.54 0.11 0.202
3(d) 2226 0.148 8.26 9.98 10.14 10.06 0.10 0.214
3(e) 2788 0.140 8.66 10.67 10.71 10.69 0.06 0.206

Naguib (1992) and Hites & Nagib (1995)

4(a) 4550 0.156 7.87 9.30 9.62 9.46 0.36 0.22
4(b) 6240 0.148 8.24 9.94 10.14 10.04 0.27 0.20
4(c) 9590 0.143 8.37 10.17 10.49 10.33 0.31 0.206
4(d) 13 800 0.131 8.94 11.15 11.45 11.30 0.17 0.193
4(e) 21 300 0.138 8.61 10.58 10.87 10.73 0.47 0.22
4(f) 29 900 0.130 8.99 11.24 11.54 11.39 0.34 0.204
4(g) 41 800 0.124 9.30 11.78 12.10 11.94 0.27 0.201
4(h) 48 900 0.124 9.28 11.74 12.10 11.92 0.33 0.192

Smith (1994)

5(a) 4996 0.146 8.36 10.15 10.27 10.21 0.18 0.20
5(b) 12 990 0.129 9.19 11.59 11.63 11.61 0.12 0.167

Krogstad & Antonia (1999)

6 12 570 0.146 8.38 10.18 10.27 10.23 0.45 0.201

Table 1. Values of parameters for the first group of experiments.

α, obtained by statistical processing of the experimental data in the first intermediate
scaling region, and then calculated lnRe1, lnRe2, by solving the equations suggested
by the scaling law (5):

1√
3

lnRe1 + 5
2

= A,
3

2lnRe2

= α. (12)

If these values of lnRe1, lnRe2 obtained by solving the two different equations (12)
are indeed close, i.e. if they coincide within experimental accuracy, then the unique
length scale Λ can be determined and the experimental scaling law in region (I)
coincides with the basic scaling law (5).

Table 1 shows that these values are close, the difference slightly exceeds 3% in only
two cases; in all other cases it is less. Thus, for instance, we can introduce for all
these flows the mean Reynolds number

Re =
√
Re1Re2, lnRe = 1

2
(lnRe1 + lnRe2) (13)

and consider Re as an estimate of the effective Reynolds number of the boundary
layer flow. Naturally, the ratio Reθ/Re = θ/Λ is different for different flows.
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Figure 7. (a) The experiments by Hancock & Bradshaw (1989) – a general view:◦, see figure 8(a); +,
see figure 8(b); ×, see figure 8(c); �, see figure 8(d); ∆, see figure 8(e); �, see figure 8(f); ∗, see figure

8(g). (b) The same data as in (a) with the coordinates (x = ln η − 2
3

lnRe(ln[φ( 5
2

+ lnRe/
√

3)]), φ).
The deviations from the axis x = 0 reflect the influence of the turbulence of the free stream.

Figure Reθ α A ln Re1 ln Re2 ln Re u′/U Reθ/Re β

8a 4680 0.140 8.66 10.67 10.71 10.69 0.0003 0.11 0.20
8b 2980 0.138 8.77 10.86 10.91 10.88 0.024 0.06 0.18
8c 5760 0.137 8.80 10.91 10.95 10.93 0.026 0.10 —
8d 4320 0.150 8.22 9.91 10.00 9.95 0.041 0.21 —
8e 3710 0.122 9.49 12.11 12.30 12.20 0.040 0.02 —
8f 3100 0.128 9.13 11.48 11.70 11.59 0.058 0.03 —
8g 3860 0.129 9.07 11.38 11.63 11.50 0.058 0.04

Table 2. Parameters for the experiments by Hancock & Bradshaw.

3. Zero-pressure-gradient boundary layer beneath a turbulent free stream:
the experiments of Hancock & Bradshaw

The experiments of Hancock & Bradshaw (1989) revealed a new feature important
for our analysis. Examination of these experimental data suggested that we separate
the other experiments into two groups. In the Hancock & Bradshaw experiments the
free stream was made turbulent by a grid in all series, except one. Thus, processing
the data from these experiments we were able not only to compare the scaling law
(5) with experimental data once again but also to investigate the influence of the
turbulence of the external flow on the second self-similar intermediate region. The
results of the processing are presented in table 2 and figures 7 and 8. In both table 2
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Figure 8. The experiments by Hancock & Bradshaw (1989). (a) Reθ = 4680, u′/U = 0.0003 – both
self-similar intermediate regions are clearly seen. (b) Reθ = 2980, u′/U = 0.024 – both self-similar
intermediate structures (I) and (II) are clearly seen. (c) Reθ = 5760, u′/U = 0.026; (d) Reθ = 4320,
u′/U = 0.041; (e) Reθ = 3710, u′/U = 0.040 – the first self-similar intermediate region (I) is clearly
seen, the second is not revealed. (f) Reθ = 3100, u′/U = 0.058; (g) Reθ = 3860, u′/U = 0.058 –
the first self-similar intermediate region (I) is seen, although with a larger scatter, the second is not
revealed.
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Figure Reθ α A lnRe1 lnRe2 lnRe Reθ/Re

Winter & Gaudet (1973)

9(a) 32 150 0.133 8.86 11.02 11.32 11.17 0.45
9(b) 42 230 0.122 9.37 11.90 12.30 12.10 0.24
9(c) 77 010 0.115 10.30 13.51 13.04 13.27 0.13
9(d) 96 280 0.107 10.56 13.96 14.02 13.99 0.08
9(e) 136 600 0.103 10.83 14.43 14.56 14.50 0.07
9(f) 167 600 0.101 11.20 15.07 14.85 14.96 0.05
9(g) 210 600 0.100 11.15 14.98 15.00 14.99 0.06

Purtell, Klebanov & Buckley (1981)

10(a) 1002 0.170 7.39 8.47 8.82 8.64 0.18
10(b) 1837 0.164 7.62 9.14 8.87 9.00 0.23
10(c) 5122 0.149 8.11 9.72 10.07 9.89 0.26

Erm (1988)

11(a) 2244 0.153 8.04 9.60 9.80 9.70 0.14
11(b) 2777 0.154 8.13 9.75 9.74 9.75 0.16

Petrie, H. L., Fontaine, A. A., Sommer, S. T. and Brungart, T. A. (1990)

12 35 530 0.119 9.76 12.57 12.61 12.59 0.12

Bruns, Dengel & Fernholz (1992) and Fernholz, Krause, Nockemann & Schober (1995)

13(a) 2573 0.151 8.46 10.32 9.93 10.13 0.10
13(b) 5023 0.144 8.85 11.00 10.42 10.70 0.11
13(c) 7139 0.148 8.49 10.37 10.14 10.25 0.25
13(d) 16 080 0.142 8.45 10.31 10.56 10.43 0.47
13(e) 20 920 0.37 8.51 10.41 10.95 10.68 0.48
13(f) 41 260 0.132 8.63 10.62 11.36 10.98 0.70
13(g) 57 720 0.130 8.71 10.76 11.54 11.14 0.84

Djenidi & Antonia (1993)

14(a) 1033 0.154 8.20 9.87 9.74 9.81 0.06
14(b) 1320 0.150 8.37 10.17 10.00 10.08 0.06

Warnack (1994)

15(a) 2552 0.152 8.29 10.03 9.87 9.95 0.12
15(b) 4736 0.149 8.20 9.87 10.07 9.97 0.22

Table 3. Parameters for the third group of experiments. Data taken from Fernholz & Finley 1996.

and figures 7 and 8 the intensity of turbulence is shown by the value of u′/U, where
u′ is the mean-square velocity fluctuation in the free stream.

First of all, our processing showed that the first self-similar intermediate layer is
clearly seen in all these experiments, both in the absence of the external turbulence,
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and in its presence. The values of lnRe1 and lnRe2 are close. This means that
the basic scaling law (5) is valid in the intermediate region adjacent to the viscous
sublayer. At the same time, the second self-similar region is clearly observed and
well-defined only when the external turbulence is weak (figure 8a and to a lesser
extent, figure 8b) so that the external turbulence leads to a drastic reduction of
the power β, and even to the reduction of the second self-similar intermediate
region so that β becomes indeterminate. We illustrate the influence of the free-
stream turbulence additionally by figure 7(b). Note, from figures 8(b) and 8(c) the
natural fact that a given level of free-stream turbulence has a bigger effect at larger
Re.

The experiments of Hancock & Bradshaw are instructive because they suggest at
least one possible reason for the destruction of the intermediate self-similar region
adjacent to the external flow that is observed in the experiments of the next group.

4. The remaining group of zero-pressure-gradient boundary layer
experiments

In this section the results of the processing are presented for all the remaining series
of experiments. For all of them we used the data presented in the form of graphs in
the review of Fernholz & Finley (1996). The results of the processing are presented
in table 3 and in figures 9–15.

All the data reveal the self-similar structure in the first intermediate region adja-
cent to the viscous sublayer. The scaling laws obtained for this region give values
of lnRe1 and lnRe2 close to each other, although the difference between lnRe1 and
lnRe2 is sometimes larger than in the experiments of the first group. The scaling
law (5) is confirmed by all these experiments. At the same time, for this group
of experiments the second self-similar structure adjacent to the free stream turns
out to be less clear-cut, if it is there at all. Therefore, for this group of experi-
ments, we did not present the estimates for the values of β. Nevertheless we note
that when it was possible to obtain estimates they always gave a β less than 0.2.
Note also that for all these experiments the number of experimental points belong-
ing to the region adjacent to the free stream was less than for the experiments of
the first group: this was an additional argument for our reluctance to show here
the second self-similar layer. As explained in § 3, we suggest that the turbulence
of the external flow in the experiments of this remaining group was more signifi-
cant.

5. Checking universality
The universal form of the scaling law

ψ =
1

α
ln

(
2αφ√
3 + 5α

)
= ln η (14)

gives another way to demonstrate clearly the applicability of the scaling law (5) to
the first intermediate region of the flow adjacent to the viscous sublayer. According
to relation (14), in the coordinates (ln η, ψ), all experimental points should collapse
onto the bisectrix of the first quadrant. In figure 16(a) are represented the data of
Erm & Joubert (1991), Smith (1994), and Krogstad & Antonia (1999). It is seen that
the data collapse on the bisectrix with sufficient accuracy to confirm the scaling law
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Figure 9. The experiments of Winter & Gaudet (1973) (data taken from Fernholz & Finley 1996).
(a) Reθ = 32 150, (b) Reθ = 42 230, (c) Reθ = 77 010, (d) Reθ = 96 280 – the first self-similar
intermediate region (I) is seen, although with a larger scatter, the second is not clearly revealed.
(e) Reθ = 136 600 – the first self-similar intermediate region (I) is seen, although with a larger
scatter; the number of points is not enough to make a definite estimate for the second region,
but the slope β is less than 0.2. (f) Reθ = 167 600 – the first self-similar intermediate region (I) is
seen, although with a larger scatter, the second is not clearly revealed. (g) Reθ = 210 600 – the first
self-similar intermediate region (I) is seen, although with a larger scatter, the second is not revealed.
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Figure 10. The experiments of Purtell, Klebanov & Buckley (1981) (data taken from Fernholz
& Finley 1996). (a) Reθ = 1002 – the first self-similar region (I) is revealed in spite of the small
number of points, the second self-similar region is not clearly revealed. (b) Reθ = 1837 – the first
self-similar region (I) is revealed in spite of the small number of points, the second self-similar
region is revealed. (c) Reθ = 5122 – the first self-similar region (I) is revealed, the second self-similar
region is not clearly revealed.
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Figure 11. The experiments of Erm (1988) (data taken from Fernholz & Finley 1996).
(a) Reθ = 2244, (b) Reθ = 2777. The first self-similar region (I) is revealed. The second self-similar
region is not revealed.

(5). The parameter α was calculated according to the formula α = (3/2 lnRe), lnRe
was taken here to be (lnRe1 + lnRe2)/2 (see tables 1 and 3).

In figure 16(b) the results of the experiments of Winter & Gaudet (1973), are
presented. These experiments are specially interesting because they cover a large
range of Reynolds numbers (see table 3). The collapse onto the bisectrix, although
with a larger scatter than for the data presented in figure 16(a), is clearly demonstrated.
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Figure 12. The experiments of Petrie, Fontaine, Sommer & Brungart (1990) (data taken from
Fernholz & Finley 1996). Reθ = 35 530. The first self-similar region (I) is revealed. The second
self-similar region is not revealed.

In figure 16(c) we present the results of the experiments of Bruns, Dengel &
Fernholz (1992), and Fernholz et al. (1995). Basically they also collapse onto the
bisectrix, although with yet larger scatter, and some systematic deviation at large η.
This deviation can be explained, at least partially, by the absence of a sharp outer
boundary of the first intermediate region, unlike the situation in the experiments of
the first group.

In figure 16(d) are presented the results of all the experiments except those by
Naguib (1992) and Nagib & Hites (1995), which will be discussed later, and the
experiments by Winter & Gaudet and Bruns et al. and Fernholz et al. which are
presented separately in figures 16(b) and 16(c). As is seen, the correspondence to the
universal form (14) of the scaling law (5) is reasonable. By contrast, figure 16(e) (i)
representing the experiments by Naguib (1992), and Nagib & Hites (1995), shows a
systematic deviation, in fact a parallel shift, from the bisectrix of the first quadrant.
We have already seen such a shift, in the analysis of the pipe experiments of the
Princeton group (Zagarola et al. 1996); in our papers on pipe flow (Barenblatt et
al. 1997a, b) we concluded that the shift was due to the effects of wall roughness,
which increases the effective viscosity. To understand the shift better, we also anal-
ysed the data in the paper of Krogstad & Antonia (1998) where a rough wall was
used deliberately, albeit for a very large roughness. We did indeed find that in these
experiments that the experimental points lie much below the bisectrix. Furthermore,
in these experiments lnRe1 and lnRe2 differed significantly, and we therefore picked
the value of α that corresponds to lnRe1. The result is a pair of lines parallel to the
bisectrix but far below it (figure 16(e, ii)).

More generally, it is very likely that any outside cause that increases the level of
turbulence should also increase the effective viscosity, and thus shift the points in the
(ln η, ψ)-plane downwards. A case in point is the set of experiments of Hancock &
Bradshaw (1989) discussed above, where turbulence was created by a grid in the free
stream. The parallel downward shift is indeed observed (figure 16f), and it is of the
same order of magnitude as the shift in the experiments of Nagib & Hites. Note that
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Figure 13. The experiments of Bruns, Dengel & Fernholz (1992) and Fernholz, Krause, Nockemann
& Schober (1995) (data taken from Fernholz & Finley 1996). (a) Reθ = 2573, (b) Reθ = 5023,
(c) Reθ = 7139, (d) Reθ = 16 080, (e) Reθ = 20 920, (f) Reθ = 41 260, (g) Reθ = 57 720. The first
self-similar region (I) is revealed. The second self-similar region is not revealed.
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Figure 14. The experiments of Djenidi & Antonia (1993) (data taken from Fernholz & Finley
1996). (a) Reθ = 1033 – the first self-similar region (I) is revealed although with a larger scatter, the
second self-similar region can be traced. (b) Reθ = 1320 – the first self-similar region (I) is revealed
although with a larger scatter, the second self-similar region is not revealed.
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Figure 15. The experiments of Warnack (1994) (data taken from Fernholz & Finley 1996).
(a) Reθ = 2552, (b) Reθ = 4736. The first self-similar region (I) is clearly seen, the second self-similar
region can be traced.

in the experiments of Nagib & Hites the second intermediate region is intact, and it
is therefore likely that the shift in the universal description of the first intermediate
region is due to the disturbance close to the wall, i.e. to roughness, just as in the
experiment of Zagarola et al. (1996).

6. Conclusion
The Reynolds-number-dependent scaling law

φ =
u

u∗
=

(
1√
3

lnRe+ 5
2

)
η 3/2lnRe, η =

u∗y
ν

(15)
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Figure 16. For caption see page 282.
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was established earlier for the intermediate region of pipe flows between the viscous
sublayer and the close vicinity of the pipe axis. The Reynolds number Re was
determined as Re = ū d/ν, where ū is the average velocity, and d the pipe diameter.
Attempts (Zagarola & Smits 1998) to adjust the constants of the universal logarithmic
law so that this law is valid in a small region near the wall (y less than 0.07 of the
pipe radius) are immaterial because these data correspond to the envelope of the
family of scaling laws.

In the present work we show that the scaling law (5) gives an accurate description
of the mean velocity distribution over the self-similar intermediate region adjacent to
the viscous sublayer for a wide variety of zero-pressure-gradient boundary layer flows.
The Reynolds number is defined as Re = UΛ/ν, where U is the free-stream velocity
and Λ is a length scale which is well defined for all the flows under investigation.

We also show that under conditions of weak free-stream turbulence there exists a
second intermediate self-similar region between the first one, where the scaling law is
valid, and the free stream. This second region becomes smaller under the influence of
free stream turbulence.

The validity of the scaling law for boundary layer flows constitutes a strong
argument in favour of its validity for a wide class of wall-bounded turbulent shear
flows at large Reynolds numbers. The plotting of the experimental data in universal
coordinates yields a sensitive gauge of the presence of wall roughness.

Finally, we feel that the affirmation of the effectiveness of incomplete similarity
and of vanishing-viscosity asymptotics for turbulent shear flows at large Reynolds
numbers has broad implications for other manifestations of turbulence, e.g. in jets,
wakes, mixing layers, and local structure, and should lead to a reconsideration of the
basic tools used in the study of turbulent flows.

The authors would like to thank Professors P. Bradshaw and P.-A. Krogstad for
providing them with their recent data.
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Figure 16. (a) The experiments of: ∗, Erm & Joubert (1991); �, Smith (1994); /, Krogstad &
Antonia (1998); and ., Petrie et al. (1990). (b) ∇, The data of Winter & Gaudet (1973). (c) ∗, The
data of Bruns et al. (1973) and Fernholz et al. (1995). (d) The data of all experiments except of
those by Naguib (1992) and Nagib & Hites (1995), Bruns et al. (1992) and Fernholz et al. (1995):◦, Collins et al. (1978); ., Petrie et al. (1990); +, Erm (1988); �, Putell et al. (1981); ∗, Djenidi &
Antonia (1993); ×, Warnack (1994); /, Krogstad & Antonia (1998); ∇, Winter & Gaudet (1973).
All the data in (a–d) collapse on the bisectrix of the first quadrant in accordance with the universal
form (14) of the scaling law (5). (e) (i) The data of Naguib (1992) and Nagib & Hites (1995)
show a systematic deviation from the bisectrix of the first quadrant. (ii) The data of Krogstad &
Antonia (1998) related to rough walls: the experimental points lie much lower than bisectric. For
the evaluation of ψ the value α = 3/2 ln Re1 was taken. (f) The data of Hancock & Bradshaw
(1989) show the parallel shift from the bisectrix of the same order as in the experiments by Nagib
& Hites: •, Nagib & Hites; ∗, Hancock & Bradshaw, u′/U = 0.0003, 0.024, 0.026; ×, Hancock &
Bradshaw, u′/U = 0.040, 0.041; ◦, Hancock & Bradshaw, u′/U = 0.058.
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