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Università degli Studi di Milano, via C. Saldini 50,
20133 Milano, Italy (elena.villa@unimi.it)

(MS received 24 June 2014; accepted 13 February 2015)
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1. Introduction

The notion of Minkowski content was introduced by Minkowski in order to study an
intrinsic definition of the k-dimensional area of a compact set. Precisely, if S ⊂ R

n

is a closed set, the (n − 1)-dimensional Minkowski content of S is defined by

Mn−1(S) := lim
ε→0

|{x ∈ R
n : dist(x, S) � ε}|

2ε
(1.1)

whenever the limit on the right-hand side exists and is finite; here | · | denotes the
Lebesgue measure in R

n. Note that if B denotes the unit ball in R
n, then |{x ∈

R
n : dist(x, E) � ε}| = |E+εB|; in other words, we are thus looking for the limit of

the volume of the tube around S divided by the thickness 2ε. The set E+εB is called
the parallel set or Minkowski enlargement of E at distance ε. A natural question
arises: is it true that the (n−1)-dimensional Minkowski content of S coincides with
the (n− 1)-dimensional Hausdorff measure of S? A first result in this direction can
be found in [10], and the answer is affirmative if the set S is smooth enough in the
sense of geometric measure theory, i.e. it has good rectifiability properties (see § 2 for
details). The notion of the Minkowski content of sets recently played a fundamental
role in the approximation and estimation of the mean density of (n−1)-dimensional
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random closed sets (see, for example, [5,18]), and thus has applications in statistics,
stochastic geometry and image analysis. A computer graphics representation of
lower dimensional sets in R

2 is in any case provided in terms of pixels, which can
offer only a two-dimensional box approximation of points in R

2 (an interesting
discussion on this is given in [14]). Therefore, the possibility of evaluating and
estimating the surface measure of a set (the mean surface density for random sets)
by the volume measure of the Minkowski enlargement of the involved set, which is
much more robust and computable with respect to the Hn−1-measure, could provide
a solution to problems of this kind. Other examples of applications to statistical
problems concerning non-parametric estimation of the boundary of deterministic
sets can be found, for instance, in [3, 4].

More recently, in [2], motivated by problems arising in stochastic geometry, the
notion of outer Minkowski content of a set was introduced:

SM(E) := lim
ε→0

|{x ∈ R
n : dist(x, E) � ε} \ E|

ε
= lim

ε→0

|E + εB| − E|
ε

; (1.2)

in this case, we are looking for the limit of the volume of the part of the tube
‘outside’ E, now divided by the thickness ε. Ambrosio et al . [2] investigated the
general conditions that ensure the existence of SM; in particular, they prove that
SM(E) coincides with the perimeter P(E) of E whenever E has finite perime-
ter and Mn−1(∂E) equals the perimeter of E, where ∂E denotes the topological
boundary of E (see theorem 3.1).

A more general formula for the outer Minkowski content of a set has been inves-
tigated in [16], and also holds when some points of E have density 0 in the sense of
geometric measure theory; roughly speaking, the points of density 0 of E, denoted
by E0 (see § 2 for a precise definition), form the part of E that looks like a (n − 1)-
dimensional manifold, or any of its subsets. In order to understand what happens
in this case, take, for instance, the set E in R

2 given by a square and a line seg-
ment outside the square: the line segment is the set of points of E of density 0.
We expect that SM(E) takes into account the perimeter of the square plus twice
the H1-measure of the added line segment. A rigorous formula that formalizes this
intuition holds for a suitable class of sets that is stable under finite unions (see the-
orem 4.3), and such stability is a particularly relevant feature in connection with
applications to the study of some stochastic processes. Precisely, the formula takes
the form

SM(E) = P(E) + Hn−1(∂E ∩ E0). (1.3)

Possible applications of this are the study of the evolution equations of the mean
density of the surface measure of random sets evolving in time and modelling grain
growth in recrystallization processes in materials science (see, for example, [17] and
the references therein for a more exhaustive treatment). Note that isotropic growth
may be modelled by the Minkowski enlargement of the involved crystals, and so
the role played by the outer Minkowski content in the study of the surface measure
of the crystallized region is evident.

It thus seems crucially important to try to extend the above results on the (outer)
Minkowski content to the anisotropic case, in order to deal with the problem of
anisotropic growth in recrystallization processes. Very recently, an anisotropic vari-
ant of the outer Minkowski content of a set was considered in [7] from a purely
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mathematical point of view, also motivated by the study of anisotropic perimeters
arising from discrete perimeters (see [6]). So, by replacing B in (1.2) with a convex
body C ⊂ R

n, i.e. a compact and convex set with 0 in its interior, we may look at
the limit

SMC(E) := lim
ε→0

|E + εC| − |E|
ε

(1.4)

whenever it exists and is finite.
Note that SM(E) and Mn−1(∂E) may suggest using statistical methods to

estimate the Hn−1-measure of the boundary of E (see, for example, [8]); similarly,
their anisotropic generalizations SMC(E) and MC(∂E), and related results proved
in theorems 3.2, 3.4 and 4.4, may be applied analogously in order to estimate the
measure of the anisotropic perimeter of E, or, eventually, the Hn−1-measure of its
boundary, whenever they coincide. Moreover, the study of SMC(E) and MC(∂E)
with C = [−1, 1]2 may also be of interest in image analysis in order to compare
or improve the existing results in boundary estimation by taking into account the
fact that pixels are actually squares in digitized images. Finally, an anisotropic
version of the outer Minkowski content may be of further applications in stochastic
geometry concerning the so-called contact distribution function of random closed
sets (see, for example, [12, 13]).

Surprisingly, much less is known about the anisotropic case than the isotropic
case. In order to understand easily what happens in the anisotropic case, take
a convex body C that is not a ball: there exists a direction ν ∈ R

n for which
hC(ν) is not 1, where hC is the so-called support function of C, defined as hC(v) :=
supx∈C x ·v (for a very nice explanation of hC we refer the interested reader to [11]);
without loss of generality, we can assume ν = en, where en is the last vector of the
canonical basis of R

n. Consider thus the half-space E = {x ∈ R
n : xn � 0}, which

has ν as exterior normal, and measure locally (see what happens on a bounded
set A that intersects ∂E) its anisotropic Minkowski content using (1.4): note that,
since E has a flat boundary, it is very easy to compute the measure of the ε-
tube around ∂E, and we obtain εhC(ν)Hn−1(∂E ∩ A) + o(ε) for any A such that
Hn−1(∂E ∩ ∂A) = 0. This very simple computation suggests that for sufficiently
smooth sets the anisotropic outer Minkowski content of E takes the form

SMC(E) =
∫

∂E

hC(νE) dHn−1, (1.5)

where νE is the exterior unit normal at E: therefore, SMC(E) is not, in general,
the perimeter of E, unless C = B, when we have hC = 1 identically; of course
it may be that, for particular sets E and for a particular choice of C, SMC(E)
coincides with Hn−1(∂E) (think of sets with flat boundaries and take a suitable
C), but this is not the general case, as (1.5) shows. As a very simple example in
R

2, take E = [0, L1] × [0, L2] ⊂ R
2; if C = [−1, 1]2, then

SMC(E) = 2(L1 + L2) = H1(∂E),

whereas if C̃ is the rotation of C through π/4, then SMC(E) =
√

2H1(∂E). Cham-
bolle et al . [7] prove that for sufficiently smooth sets (always in the sense of geo-
metric measure theory) (1.5) holds.
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In this paper, first of all we want to find an integral formula for the anisotropic
Minkowski content of a set, i.e. the quantity, whenever it is well defined, given by

MC(S) := lim
ε→0

|S + εC|
2ε

.

Note that if S is a boundary, taking S = ∂E, the anisotropic Minkowski content of
S should be equal to

SMC(E) + SMC(Rn \ E)
2

.

Therefore, we expect that

MC(S) = 1
2

∫
S

(hC(νS) + hC(−νS)) dHn−1,

where νS is a unit normal to S. We are able to prove such a formula under suitable
conditions on S similar to those one must assume for the isotropic case (see theo-
rems 3.4 and 3.7). Actually, we need to show the anisotropic Minkowski content, as
is this essential, following our approach, in order to prove a general formula for the
anisotropic outer Minkowski content SMC(E) that also takes into account points
with density 0, as done in the isotropic case: such a general formula is stated in
theorem 4.4, coincides with (1.3) when C = B and holds for a suitable class of sets
that is stable under finite unions.

2. Notation and preliminaries

2.1. Notation

Let n � 1 be integer. Given a measurable set A ⊂ R
n, we shall denote by |A| its

Lebesgue measure. If k ∈ {0, . . . , n}, the k-dimensional Hausdorff measure of S ⊂
R

n will be denoted by Hk(S). We shall use the notation x ·y for the standard scalar
product between x and y in R

n, and Br(x) for the closed ball of radius r centred
in x. For each k ∈ N with k � n we denote by Gk the set of unoriented k-planes on
R

n; for any π ∈ Gk we denote by π⊥ ∈ Gn−k the (n − k)-plane orthogonal to π.
Finally, if µ is a positive, real or vector measure on some space X and f : X → Y
is measurable, we define the measure f�µ on Y as f�µ(F ) := µ(f−1(F )) for any F
measurable in Y ; a positive and real measure µ on X is said to be a probability
measure if µ(X) = 1.

2.2. Geometric measure theory

In this subsection we recall some basic notions of geometric measure theory that
we shall need; for details we refer the reader to [1,10,15]. Let n � 1 be integer and
let k ∈ N with k � n. The following general property of Radon measures holds;
here ωk is the volume of the k-dimensional unit ball.

Theorem 2.1. Let Ω ⊂ R
n be an open set and let µ be a positive Radon measure

on Ω. Then, for any t > 0 and for any B Borel set in Ω, the following implications
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hold:

lim sup
ρ→0

µ(Bρ(x))
ωkρk

� t ∀x ∈ B =⇒ µ � tHk �B,

lim sup
ρ→0

µ(Bρ(x))
ωkρk

� t ∀x ∈ B =⇒ µ � 2ktHk �B.

A very useful consequence of theorem 2.1 turns out to be the following:

B Borel in Ω with µ(B) = 0

=⇒ lim
ρ→0

µ(Bρ(x))
ωkρk

= 0 for Hk-almost every (a.e.) x ∈ B. (2.1)

Now let S ⊂ R
n. We say that S is k-rectifiable if there exist a bounded set B ⊂ R

k

and a Lipschitz function f : B → R
n such that S = f(B). We say that S ⊂ R

n is
countably Hk-rectifiable if there exist countably many Lipschitz functions fh : R

k →
R

n such that

Hk

(
S\

+∞⋃
h=0

fh(Rk)
)

= 0.

If, in addition, Hk(S) < +∞, then S is said to be Hk-rectifiable. A classical rectifi-
ability criterium says that a Borel set S ⊂ R

n with Hk(S) < +∞ is Hk-rectifiable
if and only if

lim
ρ→0

Hk(S ∩ Bρ(x))
ωkρk

= 1 for Hk-a.e. x ∈ S. (2.2)

It turns out that if S is countably Hk-rectifiable, then for Hk-almost any point
x0 ∈ S, the approximate tangent space Tank(S, x0) ∈ Gk is well defined, i.e.

lim
ρ→0

1
ρk

∫
S

φ

(
x − x0

ρ

)
dHk(x) =

∫
Tank(S,x0)

φ(y) dHk(y) ∀φ ∈ C∞
c (Rn).

In particular, if k = n − 1, then Tann−1(S, x0)⊥ is generated by some unit vector
denoted by νS .

We recall that by a Lipschitz k-graph we mean the graph of a Lipschitz function
φ : π → π⊥, where π ∈ Gk. Given a countably Hk-rectifiable set S, it is well
known that S can be covered, up to a Hk-negligible set, by a countable family
of pairwise disjoint compact subsets of S that are contained in some Lipschitz k-
graph and with finite k-dimensional Hausdorff measure. We now recall the notion
of a k-dimensional Jacobian and the area formula. Let L : R

k → R
n be a linear

map. The k-dimensional Jacobian of L is defined by JkL :=
√

det(L∗ ◦ L), where
L∗ : R

n → R
k denotes the transpose of L. The Jacobian is related, as is well known

in the smooth case, to the change-of-variable formula for multiple integrals: more
precisely, if f : R

k → R
n is Lipschitz, then for any measurable set E ⊂ R

k the
multiplicity function y 
→ H0(E ∩ f−1({y})) is measurable and the area formula∫

Rn

∑
x∈E∩f−1({y})

g(x) dHk(y) =
∫

E

g(x)Jk dfx dx (2.3)
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holds for each g : E → R Borel, where dfx : R
k → R

n is the differential of f at x,
which exists for a.e. x ∈ R

k by Rademacher’s theorem.
There is another useful formula, known as the coarea formula: if Ω is open in R

n,
f : Ω → R is Lipschitz continuous and g : Ω → [0, +∞] is Borel, then∫

Ω

g(x)|∇f(x)| dx =
∫ +∞

−∞

∫
Ω∩{f=t}

g(y) dHn−1(y) dt. (2.4)

Now, let E ⊂ R
n be a measurable set and let Ω ⊂ R

n be an open domain; we
denote by χE the characteristic function of E. We say that E has finite perimeter
in Ω if the distributional derivative of χE , denoted by DχE , is an R

n-valued Radon
measure on Ω with finite total variation; the perimeter of E in Ω is defined by
P(E; Ω) := |DχE |(Ω), where |DχE | denotes the total variation of DχE . We also
let P(E) := P(E; Rn). For sufficiently smooth boundaries, the perimeter coincides
with the (n − 1)-dimensional Hausdorff measure of the topological boundary. An
interesting situation is the following: given a Lipschitz map f : A → R, with A open
and bounded in R

n−1, the subgraph of f turns out to be a set with finite perimeter in
A × R, and its perimeter coincides with the (n − 1)-dimensional Hausdorff measure
of the graph of f . The upper and lower n-dimensional densities of E at x are
respectively defined by

Θ∗
n(E, x) := lim sup

ρ→0

|E ∩ Bρ(x)|
ωnρn

, Θ∗n(E, x) := lim inf
ρ→0

|E ∩ Bρ(x)|
ωnρn

.

If Θ∗
n(E, x) = Θ∗n(E, x), their common value is denoted by Θn(E, x). For every

t ∈ [0, 1] we define Et := {x ∈ R
n : Θn(E, x) = t}. The essential boundary of E

is defined as ∂∗E := R
n \ (E0 ∪ E1). It turns out that if E has a finite perimeter

in Ω, then Hn−1(∂∗E \ E1/2) = 0, and P(E; Ω) = Hn−1(∂∗E ∩ Ω). Moreover, one
can define a subset of E1/2 as the set of points x where there exists a unit vector
νE(x) such that

E − x

ρ
→ {y ∈ R

n : y · νE(x) � 0} in L1
loc(R

n) as ρ → 0,

which is referred to as the outer normal to E at x. The set where νE(x) exists
is called the reduced boundary and is denoted by FE: roughly speaking, if we
zoom in around a point on the reduced boundary (more properly, blow up), we
see something flat and precisely a half-space orthogonal to what we call normal
at that point. Note that the standard definition of reduced boundary, which can
be found in [1], is different from that presented here, and in [1, definition 3.54]
the reduced boundary is defined precisely in terms of the distributional deriva-
tive of χE and its behaviour with respect to the total variation of such a deriva-
tive; we admit that the distributional definition is more intuitive, but the defini-
tion given here, based on a result obtained by De Giorgi in 1954, turns out to
be more practical. One can show that Hn−1(∂∗E \ FE) = 0. Moreover, one has
the decomposition DχE = (−νE)Hn−1 �FE. We also introduce the set ∂2E :=
{x ∈ ∂E ∩ E0 : ∃Tann−1(∂E, x)}. Let us collect some elementary properties of sets
with a countably Hn−1-rectifiable boundary and with finite perimeter in Ω; for any
E ⊆ R

n we let Ec := R
n \ E.
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Lemma 2.2. Assume that E has a finite perimeter in Ω and that ∂E is countably
Hn−1-rectifiable. Then the following hold:

Hn−1(FE) = Hn−1(FEc); (2.5)

Hn−1(∂E \ FE) = Hn−1(∂2E) + Hn−1(∂2Ec); (2.6)
νEc(x) = −νE(x) for any x ∈ FE; (2.7)

Hn−1(∂E) = Hn−1(∂2(∂E)). (2.8)

Proof. Properties (2.5), (2.7) and (2.8) are trivial. In order to prove (2.6) we note
that

Hn−1(∂E) = Hn−1(∂Ec)

= Hn−1(FEc) + Hn−1(∂Ec ∩ (Ec)1) + Hn−1(∂Ec ∩ (Ec)0)

= Hn−1(FE) + Hn−1(∂E ∩ E0) + Hn−1(∂2Ec)

= Hn−1(FE) + Hn−1(∂2E) + Hn−1(∂2Ec).

Therefore, Hn−1(∂E \ FE) = Hn−1(∂2E) + Hn−1(∂2Ec), which is (2.6).

Remark 2.3. Using lemma 2.2, we may observe that if E is such that its topological
boundary ∂E is a set countably Hn−1-rectifiable and bounded, then one of the
following holds for Hn−1-a.e. x ∈ ∂E:

(1) x ∈ FE, and the outer normal νE(x) to E at x exists;

(2) x ∈ E1 ∩ ∂E (in such a case no outer normal exists);

(3) x ∈ ∂2E, and two outer normals to E at x exist, say νE(x) and −νE(x).

This is in accordance with known results in the literature for sets with positive reach
(see, for example, [9]); namely, it can be shown that the topological boundary of
a compact subset E of R

n with positive reach is (n − 1)-rectifiable, and that, for
Hn−1-a.e. x ∈ ∂E, either x ∈ FE or x ∈ ∂2E (see also [2]).

We now recall the well-known Besicovitch theorem.

Theorem 2.4. Let A ⊂ R
n be a bounded set and let ρ : A → (0, +∞) be a function.

There exists a set S ⊂ A at most countable such that

A ⊂
⋃
x∈S

Bρ(x)(x).

Moreover, every point of R
n belongs to at most ξ balls Bρ(x)(x) centred at a point

S, where ξ is a constant depending only on n.

We shall also need the following variant of the Vitali covering theorem concerning
the Lebesgue measure: if A ⊂ R

n, we say that F is a fine cover of A if for each
x ∈ A there exist balls in F centred at x and with arbitrarily small radii.
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Theorem 2.5. Let A ⊂ R
n be a bounded and Borel set and let F be a fine cover

of A. Then, for any positive Radon measure µ in R
n, there exists a disjoint family

F ′ ⊂ F such that

µ

(
A\

⋃
F∈F ′

F

)
= 0.

3. The anisotropic Minkowski content

Let C ⊂ R
n be a convex body, i.e. a compact and convex subset of R

n with 0
in its interior; here and in what follows a, b ∈ R are such that 0 < a < b and
Ba(0) ⊂ C ⊂ Bb(0). We denote by hC its support function, i.e.

hC(v) := sup
x∈C

x · v, v ∈ R
n.

Define, for any S ⊂ R
n closed,

M∗
C(S) := lim sup

ε→0

|S + εC|
2ε

, M∗C(S) := lim inf
ε→0

|S + εC|
2ε

.

If M∗
C(S) = M∗C(S), their common value is denoted by MC(S). As we saw in § 1,

there exists a relation between MB1(0)(∂E) and SM(E). To be more precise, let

SM(E; Ω) := lim
ε→0

|{x ∈ Ω : dist(x, E) � ε} \ E|
ε

= lim
ε→0

|(E + εB1(0)) \ E|
ε

whenever such a limit exists; of course we have SM(E) = SM(E; Rn). Hence, the
following theorem holds (see [2]).

Theorem 3.1. If E has finite perimeter in Ω and MB1(0)(∂E) = P(E; Ω), then
SM(E; Ω) = P(E; Ω).

Moreover, we need to give the precise statement of the main result in [7]; let

SMC(E; Ω) := lim
ε→0

|(E + εC) ∩ Ω| − |E|
ε

.

Note that in this case we also have SMC(E) = SMC(E; Rn).

Theorem 3.2 (Chambolle et al . [7, theorem 3.4]). If E has finite perimeter in Ω
and SM(E; Ω) = P(E; Ω), then

SMC(E; Ω) =
∫

FE
hC(νE) dHn−1.

Lemma 3.3. Let A ⊂ R
n−1 be open and bounded and let f : A → R be Lipschitz

continuous. Let G be the graph of f , i.e. G := {(x, y) ∈ A × R : y = f(x)}. Then
MC(G) exists and

MC(G) =
∫

G

φC(νG) dHn−1,

where

φC(v) :=
hC(v) + hC(−v)

2
∀v ∈ R

n.
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Proof. Let E := {(x, y) ∈ A × R : y < f(x)} be the subgraph of f . Since f is
Lipschitz, E has finite perimeter in A × R and Mn−1(∂E) = MB1(0)(∂E) =
P(E; A × R). Applying theorem 3.1, we deduce that also SM(E; Ω) = P(E; Ω).
Thus, using (2.7) and theorem 3.2 we get

MC(G) =
SMC(E; Ω) + SMC(Ω \ E; Ω)

2

=
∫

FE

hC(νE) + hC(−νE)
2

dHn−1

=
∫

G

φC(νG) dHn−1,

which yields the conclusion.

We are ready to prove the first main theorem of this section, which may be seen
as the generalization to the anisotropic case of theorem 2.104 in [1]. Of course, the
next proofs are similar to those for the classical Minkowski content in [1], which are
anyway not elementary, but for the convenience of the reader we shall give details.

Theorem 3.4. Let S ⊂ R
n be a compact and countably Hn−1-rectifiable set such

that
η(Br(x)) � γrn−1

holds for all x ∈ S and for all r ∈ (0, 1) for some γ > 0 and some Radon measure η
on R

n that is absolutely continuous with respect to Hn−1. Then MC(S) exists and

MC(S) =
∫

S

φC(νS) dHn−1. (3.1)

Proof. Let {Sh}h∈N be a countable family of pairwise disjoint compact subsets of S
that covers S, up to a Hn−1-negligible set and that is contained in some Lipschitz
(n − 1)-graph and with finite Hn−1 measure. Applying lemma 3.3 and using the
subadditivity of the lim inf operator, we get, for any N ∈ N,

M∗C(S) � lim inf
ε→0

|
⋃N

h=1(Sh + εC)|
2ε

�
N∑

h=0

lim inf
ε→0

|Sh + εC|
2ε

=
N∑

h=0

M∗C(Sh) =
N∑

h=0

∫
Sh

φC(νS) dHn−1.

Passing to the limit as N → +∞, we find the estimate from below:

M∗C(S) �
∫

S

φC(νS) dHn−1. (3.2)

The main point of the proof concerns the proof of the estimate from above, i.e.

M∗
C(S) �

∫
S

φC(νS) dHn−1. (3.3)

The idea is to use a suitable covering argument to control what remains outside a
region covered by a finite number of subsets of S, where we can say that MC exists
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by lemma 3.3. Fix σ ∈ (0, 1). We can find a finite number N of pairwise disjoint
compact subsets Sh of S that are contained in some Lipschitz (n − 1)-graph, with
finite Hn−1-measure and such that

η(S) � σ +
N∑

h=1

η(Sh).

Consider the set

E := S\
N⋃

h=1

Sh

and, for any ε ∈ (0, 1),

Sσ,ε :=
{

x ∈ S : dist
(

x,

N⋃
h=1

Sh

)
� σ1/nε

}
.

Using Besicovitch’s theorem (theorem 2.4) we are able to cover Sσ,ε by many balls
{Baσ1/nε(xj)}j∈J (recall that a has been chosen such that Ba(0) ⊂ C) with xj ∈
Sσ,ε for each j ∈ J , and such that, for ε small enough, using the assumption on η,
we have

∑
j∈J

γ(aσ1/nε)n−1 �
∑
j∈J

η(Baσ1/nε(xj)) � ξη

(
(S + σ1/nεC)\

N⋃
h=1

Sh

)
� ξσ,

where ξ is as in theorem 2.4. As a consequence we get the estimate

H0(J) � ξσ1/n

γan−1εn−1 .

Therefore, recalling that C ⊂ Bb(0), we obtain

|Sσ,ε + (1 + σ1/n)εC| �
∑
j∈J

|Bb(1+2σ1/n)ε(xj)| � ωnbn(1 + 2σ1/n)nσ1/nξε

γan−1

� ωnbn3nσ1/nξε

γan−1 .

Now, since it holds that

S + εC ⊂ (E + εC) ∪
N⋃

h=1

(Sh + εC) ⊂ (Sσ,ε + (1 + σ1/n)εC) ∪
N⋃

h=1

(Sh + εC),

we deduce that, by lemma 3.3,

M∗
C(S) = lim sup

ε→0

|S + εC|
2ε

� lim sup
ε→0

|Sσ,ε + (1 + σ1/n)εC|
2ε

+
N∑

h=1

lim sup
ε→0

|Sh + εC|
2ε

� ωnbn3nσ1/nξ

2γan−1 +
∫

S

φC(νS) dHn−1,

and (3.3) follows by sending σ → 0.
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We now move towards the case of (n−1)-rectifiability, as the first existence result
for the Minkowski content, which can be found in [10, p. 275].

Theorem 3.5. If S is compact and (n−1)-rectifiable, then MB1(0)(S) = Hn−1(S).

The next lemma can be found in [1, lemma 2.105].

Lemma 3.6. Let K ⊂ R
n−1 be a compact set and let f : K → R

n be Lipschitz.
Assume that Jn−1 dfx = 0 a.e. x ∈ K. Then MB1(0)(f(K)) = 0.

Theorem 3.7. Let S ⊂ R
n be compact and (n − 1)-rectifiable. Then MC(S) exists

and
MC(S) =

∫
S

φC(νS) dHn−1.

Proof. The estimate from below,

M∗C(S) �
∫

S

φC(νS) dHn−1,

can be proved as in theorem 3.4. Let f : K → R
n be Lipschitz with K ⊂ R

n−1

compact such that S = f(K) and fix σ ∈ (0, 1). Consider the subset of K given by

F := {x ∈ K : ∃dfx and Jn−1 dfx > 0}.

Let K ′ ⊂ K \ F be compact and such that Ln−1(K \ (F ∪ K ′)) < σ, where Ln−1 is
the Lebesgue measure of dimension n − 1. Moreover, let S0 := f(K ′). Combining
theorem 3.5 with lemma 3.6, we get Hn−1(S0) = 0; thus, we obtain

MC(S0) � lim sup
ε→0

|S0 + εBb(0)|
2ε

= bMn−1(S0) = bHn−1(S0) = 0,

which means that MC(S0) = 0. Now, consider the measure η := f�(Ln−1 �F ). By
definition, η is concentrated on f(K) = S; moreover, if S′ ⊂ S is Hn−1-negligible,
then by the area formula we deduce that∫

F∩f−1(S′)
Jn−1 dfx dx =

∫
S′

H0(F ∩ f−1({y})) dHn−1(y) = 0.

Since, by the very definition of F , it holds that Jn−1 dfx > 0 on F , we get Ln−1(F ∩
f−1(S′)) = 0, which proves that η is absolutely continuous with respect to Hn−1.
Now we are ready to use the same covering argument as in the proof of theorem 3.4
in order to control the ‘bad’ part of S using the properties of the measure η. More
precisely, we can find a finite number N of pairwise disjoint compact subsets Sh

of S that are contained in some Lipschitz (n − 1)-graph, with finite Hn−1-measure
and such that

η(S) � σ +
N∑

h=1

η(Sh).

Consider the set

E := S\
N⋃

h=0

Sh.
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Now, note that η(E) < σ and f−1(E) \ F ⊂ K \ (F ∪ K ′) since E ∩ S0 = ∅; we
deduce that Ln−1(f−1(E)) < 2σ. If L now denotes the Lipschitz constant of f and
we choose ε̄ > 0 such that Ln−1((K + ε̄L−1C) \ K) < σ, we can consider, for any
ε ∈ (0, ε̄), the set

Sσ,ε :=
{

x ∈ S : dist
(

x,

N⋃
h=0

Sh

)
� σ1/nε

}
.

Applying Besicovitch’s theorem, we are able to cover Sσ,ε by many balls

{Baσ1/nε(xj)}j∈J

centred at points of Sσ,ε and such that, for ε small enough,∑
j∈J

ωn−1(aL−1σ1/nε)n−1 �
∑
j∈J

Ln−1((K + εL−1C) ∩ f−1(Baσ1/nε(xj)))

� ξLn−1
(

(K + εL−1C) ∩ f−1
( ⋃

j∈J

Baσ1/nε(xj)
))

� ξ(Ln−1(f−1(E)) + Ln−1((K + ε̄L−1C) \ K))
� 3ξσ,

where ξ is as in Besicovitch’s theorem. Therefore,

H0(J) � 3ξσ1/n

ωn−1an−1L1−nεn−1 ;

hence,

|Sσ,ε + (1 + σ1/n)εC| �
∑
j∈J

|Bb(1+2σ1/n)ε(xj)|

� ωnbn(1 + 2σ1/n)nσ1/n3ξε

ωn−1an−1L1−n

� ωnbn3n+1σ1/nξε

ωn−1an−1L1−n
.

Using

S + εC ⊂ (E + εC) ∪
N⋃

h=0

(Sh + εC) ⊂ (Sσ,ε + (1 + σ1/n)εC) ∪
N⋃

h=0

(Sh + εC)

again, we deduce that, by lemma 3.3,

M∗
C(S) = lim sup

ε→0

|S + εC|
2ε

� lim sup
ε→0

|Sσ,ε + (1 + σ1/n)εC|
2ε

+
N∑

h=0

lim sup
ε→0

|Sh + εC|
2ε

� ωnbn3n+1σ1/nξ

2ωn−1an−1L1−n
+

∫
S

φC(νS) dHn−1

and the conclusion follows.
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4. A more general formula for SMC

In this section we prove the generalization of (4.1). First, let us introduce the classes
O and O′

C .

Definition 4.1. Let O be the class of Borel sets E of R
n such that

(i) ∂E is a countably Hn−1-rectifiable bounded set,

(ii) there exist γ > 0 and a probability measure η in R
n absolutely continuous

with respect to Hn−1 such that η(Br(x)) � γrn−1 for all x ∈ ∂E and for all
r ∈ (0, 1).

Moreover, let O′
C be the class of Borel sets E of R

n such that

(i′) ∂E is a countably Hn−1-rectifiable bounded set and

MC(∂E) =
∫

∂E

φC(ν∂E) dHn−1,

(ii′) there exist γ > 0 and a probability measure η in R
n such that η(Br(x)) �

γrn−1 for all x ∈ ∂E and for all r ∈ (0, 1).

Remark 4.2. Condition (ii′), and therefore also condition (ii), implies, by theo-
rem 2.1, that Hn−1(∂E) is finite; in particular, any set in O or O′

C has a finite
perimeter.

We now recall the main result of [16].

Theorem 4.3 (Villa [16, theorem 3.1]). The classes O and O′
B1(0) are stable under

finite unions, and, for any E ∈ O (or O′
B1(0)), it holds that

SM(E) = P(E) + 2Hn−1(∂E ∩ E0). (4.1)

Now we are ready to state the main result of this section.

Theorem 4.4. The classes O and O′
C are stable under finite unions, and, for any

E ∈ O (or O′
C), it holds that

SMC(E) =
∫

FE

hC(νE) dHn−1 + 2
∫

∂2E

φC(νE) dHn−1. (4.2)

Remark 4.5. If E ∈ O (or E ∈ O′
C) is such that SM(E) = P(E), then by (4.1) it

follows that Hn−1(E0 ∩ ∂E) = 0, and so Hn−1(∂2E) = 0. As a consequence, from
(4.2) we get

SMC(E) =
∫

FE

hC(νE) dHn−1,

in accordance with theorem 3.2. Moreover, if

SM(E) + SM(Ec)
2

= P(E),
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then by (4.1) it follows that Hn−1(E0 ∩ ∂E) + Hn−1(E1 ∩ ∂E) = 0, and so

Hn−1(∂2E) = Hn−1(∂2Ec) = 0.

In this case, again as a consequence of (4.2), we get

SMC(E) + SMC(Ec)
2

=
1
2

( ∫
FE

hC(νE) dHn−1 +
∫

FEc
hC(νEc) dHn−1

)

=
∫

FE

hC(νE) + hC(−νE)
2

dHn−1,

in accordance with [7, theorem 3.7].

We shall now prove theorem 4.4 by using the arguments in the proof of [16,
theorem 3.1]; for the reader’s convenience we shall also give complete proofs for the
series of auxiliary lemmas that we need. First, it is easy to observe that E ∩W ∈ O
for any E ∈ O and any closed W ⊂ R

n; the following lemma implies that the same
also holds for the class O′

C .

Lemma 4.6. If S ⊂ R
n is a countably Hn−1-rectifiable compact set such that

MC(S) =
∫

S

φC(νS) dHn−1,

then

MC(S ∩ W ) =
∫

S∩W

φC(νS) dHn−1

for all W ⊂ R
n closed.

Proof. Since S ∩ W is countably Hn−1-rectifiable and compact, by (3.2) we know
that

M∗C(S ∩ W ) �
∫

S∩W

φC(νS) dHn−1.

Let us show that the opposite inequality holds for M∗
C(S ∩ W ). Consider the

sequence {Wh}h∈N of closed sets Wh := {x ∈ W c : dist(x, W ) � b/h}, which implies
that (

x +
1
h

C

)
∩ W = ∅

for any x ∈ W c, since

x +
1
h

C ⊆ Bb/h(x).

Note that Wh ↗ W c as h goes to infinity. Let us observe that

S + εC ⊇ ((S ∩ W ) + εC) ∪ ((S ∩ Wh) + εC)

and
((S ∩ W ) + εC) ∩ ((S ∩ Wh) + εC) = ∅

for all ε sufficiently small. Hence, for all h ∈ N,

M∗
C(S∩W ) � M∗

C(S)−M∗C(S∩Wh) �
∫

S

φC(νS) dHn−1−
∫

S∩Wh

φC(νS) dHn−1.
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Now, by taking the limit for h, which goes to infinity, we get

M∗
C(S ∩ W ) �

∫
S∩W

φC(νS) dHn−1

and so prove the assertion.

Observing that for each G ⊂ R
n Borel set and for each r, ρ > 0 it holds that

|(∂G + rC) ∩ G ∩ Bρ(x)| ⊂ |(∂G + rbB1(0)) ∩ G ∩ Bρ(x)|,

the following assertion is a direct application of [2, lemma 2].

Lemma 4.7. Let G ⊂ R
n be a Borel set and assume that there exist γ > 0 and a

probability measure η on R
n such that η(Br(x)) � γrn−1 for all x ∈ ∂G and for all

r ∈ (0, 1). Then

lim sup
ε→0

|(∂G + εC) ∩ G ∩ Bρ(x)|
ε

= o(ρn−1)

for Hn−1-a.e. x ∈ G0 ∩ ∂G.

For each Borel subset A of R
n let SM∗C(E; A) and SM∗

C(E; A) be given by

SM∗C(E; A) := lim inf
ε→0

|((E + εC) \ E) ∩ A|
ε

,

SM∗
C(E; A) := lim sup

ε→0

|((E + εC) \ E) ∩ A|
ε

.

We also let SM∗C(E) := SM∗C(E; Rn) and SM∗
C(E) := SM∗

C(E; Rn).

Lemma 4.8. For any E ∈ O (or O′
C), the following hold:

SM∗C(E; Bρ(x)) = o(ρn−1) for Hn−1-a.e. x ∈ E1 ∩ ∂E, (4.3)

SM∗C(E; Bρ(x)) �
∫

FE∩int Bρ(x)
hC(νE) dHn−1 for Hn−1-a.e. x ∈ E1/2, (4.4)

SM∗C(E; Bρ(x)) � 2
∫

∂2E∩int Bρ(x)
φC(νE) dHn−1 + o(ρn−1)

for Hn−1-a.e. x ∈ ∂2E. (4.5)

Proof. Equality (4.3) follows directly from lemma 4.7 with the choice G := Ec, and
by taking into account that

|∂E + εC| = |(E + εC) \ E| + |(Ec + εC) \ Ec|. (4.6)

Equality (4.4) can be found in [7]. It remains to prove (4.5). Since 0 ∈ intC, for
any closed set W ⊂⊂ Bρ(x) there exists ε̃ > 0 such that W + εC ⊂ Bρ(x) for all
ε < ε̃. So, noting that ∂E ∩ W satisfies the assumption of theorem 3.4 if E ∈ O (or
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(i′) in the definition of the class O′
C if E ∈ O′

C), we get that

2
∫

∂E∩W

φC(νE) dHn−1 = lim inf
ε→0

|(∂E ∩ W ) + εC|
ε

� lim inf
ε→0

|(∂E + εC) ∩ (W + εC)|
ε

� lim inf
ε→0

|(∂E + εC) ∩ Bρ(x)|
ε

.

Let {Wk}k∈N be an increasing sequence of closed sets with Wk ⊂⊂ Bρ(x) and such
that Wk ↗ intBρ(x). By taking the limit as k tends to ∞, we obtain that

lim inf
ε→0

|(∂E + εC) ∩ Bρ(x)|
ε

� 2 lim
k→∞

∫
∂E∩Wk

φC(νE) dHn−1

= 2
∫

∂E∩int Bρ(x)
φC(νE) dHn−1. (4.7)

Finally, we have that

SM∗C(E; Bρ(x))

= lim inf
ε→0

|(∂E + εC) ∩ Bρ(x)| − |(∂E + εC) ∩ E ∩ Bρ(x)|
ε

� lim inf
ε→0

|(∂E + εC) ∩ Bρ(x)|
ε

− lim sup
ε→0

|(∂E + εC) ∩ E ∩ Bρ(x)|
ε

.

Thus (4.5) follows from (4.7), lemma 4.7 and by taking into account that

Hn−1(∂E ∩ E0) = Hn−1(∂2E).

Now we are ready to prove the main result of this section.

Proof of theorem 4.4. Let E ∈ O (or E ∈ O′
C). Let us show that the following lower

bound for SM∗C(E) holds:

SM∗C(E) �
∫

FE

hC(νE) dHn−1 + 2
∫

∂2E

φC(νE) dHn−1. (4.8)

Let µ be the measure in R
n defined by

µ(A) :=
∫

FE∩A

hC(νE) dHn−1 + 2
∫

∂2E∩A

φC(νE) dHn−1 A ⊂ R
n Borel.

By rectifiability we can say that

lim
ρ→0

Hn−1(∂E ∩ E0 ∩ Bρ(x))
ρn−1 =

{
ωn−1 for Hn−1-a.e. x ∈ ∂E ∩ E0,

0 for Hn−1-a.e. x ∈ (∂E ∩ E0)c;

the same conclusions hold for the quantities

Hn−1(∂E ∩ E1 ∩ Bρ(x))
ρn−1 and

Hn−1(FE ∩ Bρ(x))
ρn−1 .
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Taking into account all this information and using lemma 4.8 we get that, for any
ε > 0 and for Hn−1-a.e. x ∈ ∂E,

lim inf
ρ→0

SM∗C(E; Bρ(x)) + εHn−1(E1 ∩ ∂E ∩ Bρ(x))
µ(intBρ(x))

� 1. (4.9)

(Note that the term εHn−1(E1 ∩ ∂E ∩ Bρ(x)) in the above fraction is to avoid an
indetermination of type 0/0 at points x ∈ E1 ∩∂E.) Since the family of closed balls
Bρ(x) with µ(∂Bρ(x)) = 0 is a fine cover of ∂E, by the Vitali–Besicovitch covering
theorem (theorem 2.5) for any δ > 0 there exist finitely many disjoint closed balls
W1, . . . , WN with µ(∂Wi) = 0 such that

µ

(
∂E\

N⋃
i=1

Wi

)
< δ.

The balls Wi can be chosen with centres in ∂E and such that

SM∗C(E; Wi) + εHn−1(E1 ∩ ∂E ∩ Wi)
(4.9)
� (1 − δ)µ(Wi), i = 1, . . . , N.

Then, the following chain of inequalities holds:

SM∗C(E) + εHn−1(E1 ∩ ∂E)

� SM∗C

(
E;

N⋃
i=1

Wi

)
+ εHn−1

(
E1 ∩ ∂E ∩

N⋃
i=1

Wi

)

�
N∑

i=1

(SM∗C(E; Wi) + εHn−1(E1 ∩ ∂E ∩ Wi))

� (1 − δ)
N∑

i=1

µ(Wi) = (1 − δ)
(

µ(Rn) − µ

(
R

n\
N⋃

i=1

Wi

))

� (1 − δ)
( ∫

FE

hC(νE) dHn−1 + 2
∫

∂2E

φC(νE) dHn−1 − δ

)
.

By taking the limit first as δ → 0 and then as ε → 0, we obtain the inequality (4.8).
Observing now that Ec also belongs to O (respectively, O′

C), we can also claim
that

SM∗C(Ec) �
∫

FEc
hC(νEc) dHn−1 +

∫
∂2Ec

φC(νEc) dHn−1. (4.10)

Let us now define, for any ε > 0,

aε :=
|(E + εC) \ E|

ε
, bε :=

|(Ec + εC) \ Ec|
ε

.

Observe that, by taking into account (2.6) for Hn−1-a.e. x ∈ ∂E \ FE,∫
∂E\FE

φC(νE) dHn−1 =
∫

∂2E

φC(νE) dHn−1 +
∫

∂2Ec
φC(νEc) dHn−1. (4.11)
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Moreover, it holds that

lim inf
ε→0

aε = SM∗C(E)
(4.8)
�

∫
FE

hC(νE) dHn−1 + 2
∫

∂2E

φC(νE) dHn−1 =: a,

and, using also (2.5) and (2.7),

lim inf
ε→0

bε = SM∗C(Ec)

(4.10)
�

∫
FE

hC(−νE) dHn−1 + 2
∫

∂2Ec
φC(νEc) dHn−1 =: b.

By (4.6) and by (3.1) if E ∈ O (respectively, by (i′) in the definition of the class
O′

C if E ∈ O′
C) it follows that

lim sup
ε→0

(aε + bε) = lim sup
ε→0

|∂E + εC|
ε

= 2MC(∂E) = 2
∫

∂E

φC(ν∂E) dHn−1

= 2
∫

∂E∩FE

φC(νE) dHn−1 + 2
∫

∂E\FE

φC(νE) dHn−1

(4.11)
=

∫
FE

(hC(νE) + hC(−νE)) dHn−1

+ 2
∫

∂2E

φC(νE) dHn−1 + 2
∫

∂2Ec
φC(νEc) dHn−1

= a + b.

Since

lim sup
ε→0

(aε + bε) � a + b, lim inf
ε→0

aε � a ∈ R and lim inf
ε→0

bε � b ∈ R

imply aε → a and bε → b, (4.2) follows.
To conclude the proof it remains only to show that the class O′

C is stable under
finite unions, since the stability of the class O under finite unions has already been
proved in [16]. Let E1, E2 ∈ O′

C and let E := E1 ∪ E2. As ∂E ⊆ ∂E1 ∪ ∂E2, it
is clear that ∂E is a countably Hn−1-rectifiable bounded set, and that (ii′) in the
definition of the class O′

C is fulfilled. We know that, from (3.2),

M∗C(∂E) �
∫

∂E

φC(νE) dHn−1. (4.12)

Next, we have to prove that

M∗
C(∂E) �

∫
∂E

φC(νE) dHn−1. (4.13)

We first localize the lower and upper anisotropic Minkowski content: if S is compact
and Hn−1-rectifiable, A ⊂ R

n is closed and B ⊂ R
n is open, let

M∗
C(S; A) := lim sup

ε→0

|(S + εC) ∩ A|
2ε

, M∗C(S; B) := lim inf
ε→0

|(S + εC) ∩ B|
2ε

.
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Of course, we obtain M∗
C(S; Rn) = M∗

C(S) and M∗C(S; Rn) = M∗C(S); further-
more, following the proof of (3.2), we can see that, for any B ⊂ R

n open, the
following holds:

M∗C(S; B) �
∫

S∩B

φC(νS) dHn−1. (4.14)

By observing that χ∂E+εC +χ(∂E1∩∂E2)+εC � χ∂E1+εC +χ∂E2+εC and using (4.14),
we get, for any x ∈ R

n and for H1-a.e. ρ > 0,

M∗
C(∂E; Bρ(x)) �

∫
∂E1∩Bρ(x)

φC(νE1) dHn−1 +
∫

∂E2∩Bρ(x)
φC(νE2) dHn−1

−
∫

∂E1∩∂E2∩int Bρ(x)
φC(νE1∩E2) dHn−1

=
∫

(∂E1∪∂E2)∩Bρ(x)
φC(νE1∪E2) dHn−1

+
∫

∂E1∩∂E2∩Bρ(x)
φC(νE1∩E2) dHn−1 (4.15)

and thus

M∗
C(∂E; Bρ(x)) �

∫
∂E∩Bρ(x)

φC(νE) dHn−1

+
∫

(∂E1∪∂E2)∩(∂E)c∩Bρ(x)
φC(νE) dHn−1

+
∫

∂E1∩∂E2∩∂Bρ(x)
φC(νE1∩E2) dHn−1. (4.16)

We note that now, for Hn−1-a.e. x ∈ ∂E,∫
(∂E1∪∂E2)∩(∂E)c∩Bρ(x)

φC(νE1∪E2) dHn−1 = o(ρn−1),

since we can apply (2.1) to the Radon measure η given by

η(D) :=
∫

(∂E1∪∂E2)∩(∂E)c∩D

φC(νE1∪E2) dHn−1, D Borel in R
n.

Moreover, observe that Hn−1(∂E1 ∩ ∂E2 ∩ ∂Bρ(x)) = 0 for H1-a.e. ρ > 0. Indeed,
if for any ρ ∈ A with L1(A) > 0 we had Hn−1(∂E1 ∩ ∂E2 ∩ ∂Bρ(x)) > 0, then, by
the coarea formula,

Ln(∂E1 ∩ ∂E2) =
∫ +∞

0
Hn−1(∂E1 ∩ ∂E2 ∩ ∂Bρ(x)) dρ

�
∫

A

Hn−1(∂E1 ∩ ∂E2 ∩ ∂Bρ(x)) dρ
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and therefore Ln(∂E1 ∩ ∂E2) > 0, which implies that Hn−1(∂E1 ∩ ∂E2) = +∞,
which is a contradiction (see remark 4.2). Thus,∫

∂E1∩∂E2∩∂Bρ(x)
φC(νE1∩E2) dHn−1 = 0, H1-a.e. ρ > 0.

From this we obtain, by (4.16), the key estimate

M∗
C(∂E; Bρ(x)) �

∫
∂E∩Bρ(x)

φC(νE) dHn−1 + o(ρn−1) for Hn−1-a.e. x ∈ ∂E.

(4.17)
Now the assertion follows on applying theorem 2.5. For any D ⊂ R

n Borel, let

σ(D) :=
∫

∂E∩D

φC(νE) dHn−1.

As a consequence of (4.17) and (2.2) we may claim that

lim sup
ρ→0

M∗
C(∂E; Bρ(x))
σ(Bρ(x))

� 1 for Hn−1-a.e. x ∈ ∂E.

Since ∂E is bounded, for any δ > 0 there exists a finite covering B1, . . . , BN of ∂E,
where Bi are disjoint closed balls in R

n with

σ

(
∂E\

N⋃
i=1

Bi

)
< δ;

note that the balls Bi can be assumed to have centres in ∂E, such that σ(∂Bi) = 0
and

M∗
C(∂E; Bi)
σ(Bi)

� 1 + δ.

Finally, let B := R
n \

⋃N
i=1 intBi. Note that M∗

C(∂E; B) = 0, and thus

M∗
C(∂E) � M∗

C(∂E, B) + M∗
C

(
∂E,

N⋃
i=1

Bi

)

�
N∑

i=1

M∗
C(∂E, Bi) � (1 + δ)

N∑
i=1

σ(Bi)

= (1 + δ)σ
( N⋃

i=1

Bi

)
� (1 + δ)

∫
∂E

φC(νE) dHn−1.

Inequality (4.13) follows by sending δ → 0, and this completes the proof.
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