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Abstract. In this note, we prove that a four-dimensional compact oriented half-
conformally flat Riemannian manifold M4 is topologically S4 or CP2, provided that the

sectional curvatures all lie in the interval [ 3
√

3−5
4 , 1]. In addition, we use the notion of

biorthogonal (sectional) curvature to obtain a pinching condition which guarantees that a
four-dimensional compact manifold is homeomorphic to a connected sum of copies of the
complex projective plane or the 4-sphere.

2010 Mathematics Subject Classification. Primary 53C25, 53C20, 53C21; Secondary
53C65

1. Introduction. A classical topic in Riemannian geometry is to study manifolds
with positive sectional curvature. The sectional curvature is the most natural generaliza-
tion to higher dimensions of the Gaussian curvature of a surface, given that it controls the
behavior of geodesics. However, very few topological obstructions to positive sectional
curvature are known, and many conjectures about this subject remain open, as, for exam-
ple, the Hopf conjecture on S2 × S2, which is one of the oldest conjectures in global
Riemannian geometry.

A compact (without boundary) Riemannian manifold (Mn, g) is said δ-pinched if the
sectional curvature K satisfies

1 ≥ K ≥ δ. (1.1)

If the strict inequality holds, we say that Mn is strictly δ-pinched.
The notion of curvature pinching was introduced by Rauch [25] in 1951. In consid-

ering this notion, Rauch was able to show that a compact simply connected Riemannian
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manifold which is strictly (3/4)-pinched is a topological sphere. This curvature pinching
was improved to δ = 1/4 in 1960 by Berger [1] and Klingenberg [19]. Such an improve-
ment became known as the Topological Sphere Theorem. After almost 50 years, Brendle
and Schoen [8] showed by an outstanding method that under the same curvature pinching
of Berger and Klingenberg such a manifold must be diffeomorphic to the sphere, this result
has been known as the Differentiable Sphere Theorem; see also [7]. Moreover, by combin-
ing the results of Berger [2] and Petersen and Tao [24], it is known that given a Riemannian
manifold Mn, there is a real number ε (unknown) such that if Mn is ( 1

4 − ε)-pinched, then
Mn is either homeomorphic to Sn or diffeomorphic to a spherical space form of rank 1.

In [18], Hulin used the classical Weitezenböck formula to show that if a four-dimensional
connected manifold (M4, g) is ( 1

4 − γ )-pinched, for γ < 2, 5 . 10−4, then the second Betti
number of M4 is less than or equal to 1. These results stimulated many interesting works.
In the next subsection, we quickly review some related results in order to draw the state of
the art and put our results in perspective.

1.1. Four-manifolds with positive sectional curvature. In the last decades, many
mathematicians have been studied four-dimensional manifolds under suitable curvature
pinching conditions. It is well known that four-manifolds display peculiar features. In
large part, this is attributed to the fact that on a four-dimensional oriented compact
Riemannian manifold (M4, g), the bundle of 2-forms, denoted by �2M, can be invariantly
decomposed as

�2M = �+M ⊕ �−M,

where �±M are the ±1-eigenspaces of the Hodge star operator ∗. Hence, the space of har-
monic 2-forms H2(M4; R) can be split as H2(M4; R) = H+(M4; R) ⊕ H−(M4; R), where
H±(M4; R) stands for the space of positive and negative harmonic 2-forms, respectively.
Furthermore, the second Betti number b2 of M4 can be written as b2 = b+ + b−, where
b± = dimH±(M4; R).

For our purposes, it is important to recall that a four-dimensional Riemannian manifold
M4 is said to be positive definite if and only if b− = 0. In particular, when the signature of
M4 is nonzero, we will always orient the manifold so as to make the signature positive.

It follows from Bourguignon [6] and Ville [31] that a ( 4
19 ≈ 0.2105)-pinched four-

dimensional compact manifold is topologically the sphere S4 or the complex projective
space CP

2
. This pinching constant was improved in 1991 by Seaman [27] to ≈ 0.1714.

Recently, Diógenes and Ribeiro [13] were able to show that a four-dimensional compact
oriented connected Riemannian manifold which is (≈ 0.16139)-pinched must be definite.
In particular, they showed that a four-dimensional compact oriented Einstein manifold
1

10 -pinched is either topologically S4 or homothetically isometric to CP
2
. Besides, the

main result in [26] implies that a four-dimensional compact Einstein manifold M4 with
normalized Ricci curvature Ric = 1 and sectional curvature K ≥ 1

12 must be isometric to

either S4 or CP
2; see also [9, 12, 33]. Indeed, it remains a challenging task to obtain new

classification results under weaker curvature pinching conditions.
Before stating our first result, let us also recall that a metric on a four-dimensional man-

ifold M4 is half-conformally flat if it is sefdual or antiselfdual, namely, W− = 0 or W+ = 0,

respectively, where W stands for the Weyl tensor. Typical examples of half-conformally flat
manifolds include the standard sphere, the complex projective plane, or K3 surfaces with
their Ricci-flat metrics. Other interesting examples were built by LeBrun [21]. For a nice
overview on half-conformally flat manifolds, see, for instance, ([3], Chapter 13).
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After these preliminary remarks, we may announce our first result as follows.

THEOREM 1. Let (M4, g) be a four-dimensional compact oriented connected half-
conformally flat Riemannian manifold whose sectional curvatures all lie in the interval

[ 3
√

3−5
4 , 1]. Then, M4 is topologically S4 or CP

2
.

An important observation comes from the fact that CP
2
�CP

2 admits metrics with
K ≥ 0, and moreover, it is definite but has b2 > 1. Indeed, it is very interesting to determine
if CP

2
�CP

2 admits a metric with positive sectional curvature. It should also be emphasized
that the lower bound for the sectional curvature considered in Theorem 1 (namely, ≈ 0.049)
improves significantly the constant considered in Theorem 1 of [13] (namely, ≈ 0.16139).
Besides, the conclusion of Theorem 1 is clearly an improvement.

As an attempt to better understand four-dimensional manifolds with positive sectional
curvature, it is natural to investigate other curvature positivity conditions. In this perspec-
tive, we recall that, for each plane P ⊂ TpM at a point p ∈ M4, the biorthogonal (sectional)
curvature of P is defined by the following average of the sectional curvatures:

K⊥(P) = K(P) + K(P⊥)

2
, (1.2)

where P⊥ is the orthogonal plane to P. Indeed, the sum of two sectional curvatures
on two orthogonal planes plays a very crucial role on four-dimensional manifolds. This
notion appeared previously in works by Singer and Thorpe [30], Gray [16], Seaman [29],
Noronha [23], Costa and Ribeiro Jr. [11], Bettiol [4], and many others. The positivity of the
biorthogonal curvature is an intermediate condition between positive sectional curvature
and positive scalar curvature s. Moreover, as it was observed by Singer and Thorpe [30],
a four-dimensional Riemannian manifold (M4, g) is Einstein if and only if K⊥(P) = K(P)

for any plan P ⊂ TpM at any point p ∈ M4. From Seaman [28] and Costa and Ribeiro
[11], S4 and CP

2 are the only compact simply connected four-dimensional manifolds with
positive biorthogonal curvature that can have (weakly) 1/4-pinched biorthogonal curva-
ture, or nonnegative isotropic curvature, or satisfy K⊥ ≥ s

24 > 0. In addition, by using this
approach, Costa and Ribeiro [11] showed that the Yau’s Pinching Conjecture is true in
dimension 4. In [5], Bettiol proved that the positivity of biorthogonal curvature is preserved

under connected sums. In particular, he showed that S4, �mCP
2
�nCP

2
, and �n

(
S2 × S2

)
admit metrics with positive biorthogonal curvature. For more details, see [4, 5, 11, 23]
and [29].

Now we may state our next result.

THEOREM 2. Let (M4, g) be a four-dimensional compact oriented connected
Riemannian manifold satisfying

K⊥ ≥ s2

24(3λ1 + s)
,

where λ1 is the first eigenvalue of Laplacian operator and s stands for the scalar curvature
of M4. Then, M4 must be definite.

Since S2 × S2 is not definite, Theorem 2 implies, in particular, that S2 × S2 does not
admit a metric satisfying

K⊥ ≥ s2

24(3λ1 + s)
.
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We also point out that this result was also independently observed by Cao and Tran (see
Remark 1.1 and Theorem 1.1 (3) in [10]). The methods designed for the proof of Theorem 2
were essentially inspired by [17] (see also [13]).

In the sequel, as an application of Theorem 2 combined with results by Freedman [15]
and Donaldson [14], we get the following corollary.

COROLLARY 1. Let (M4, g) be a four-dimensional simply connected compact ori-
ented Riemannian manifold satisfying

K⊥ ≥ s2

24(3λ1 + s)
.

Then, M4 is homeomorphic to a connected sum CP
2
� · · · �CP

2 of b2 copies of the complex
projective plane (if b2 > 0) or the 4-sphere (if b2 = 0).

It may be interesting to compare Corollary 1 with Theorem 1.3 in [26]. In fact, our
latter result requires the same pinching condition of Theorem 1.3 in [26]; however, it does
not require conditions on the Weyl tensor and analyticity of the metric.

2. Background. Throughout this section, we review some information and present
lemmas that will be useful in the proof of the main results. We start recalling that on a four-
dimensional oriented Riemannian manifold M4 the bundle of 2-forms can be invariantly
decomposed as a direct sum

�2 = �+ ⊕ �−.

In particular, the Weyl curvature tensor W is an endomorphism of the bundle of 2-forms
�2M = �+M ⊕ �−M such that

W = W+ ⊕ W−,

where W± : �±M −→ �±M are called of the selfdual and antiselfdual parts of W . Thus,
we may fix a point p ∈ M4 and diagonalize W± such that w±

i , 1 ≤ i ≤ 3, are their respective
eigenvalues. In particular, they satisfy

w±
1 ≤ w±

2 ≤ w±
3 and w±

1 + w±
2 + w±

3 = 0. (2.1)

Next, as it was pointed out in [11] as well as [26], the definition of biorthogonal curvature
provides the following identities:

K⊥
1 = w+

1 + w−
1

2
+ s

12
(2.2)

and

K⊥
3 = w+

3 + w−
3

2
+ s

12
, (2.3)
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where K⊥
1 (p) = min{K⊥(P); P ⊂ TpM} and K⊥

3 (p) = max{K⊥(P); P ⊂ TpM}.
Furthermore, if R denotes the curvature of M4, we get the following decomposition:

R=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W+ + s
12 Id R̊ ic

R̊ ic� W− + s
12 Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= U + W+ + W− + Z, (2.4)

where U = s
12 Id�2 , Z =

⎛
⎝ 0 R̊ ic

R̊ ic� 0

⎞
⎠, and R̊ ic : �− → �+ stands for the traceless part of

the Ricci curvature of M4.

Proceeding, we also remember that if ω is a 2-form we have the following Weitzenböck
formula:

1

2

|ω|2 = 〈
ω, ω〉 + |∇ω|2 + 〈N (ω), ω〉,

where N is the Weitzenböck operator given by

〈N (v1 ∧ v2), w1 ∧ w2〉 = Ric(v1, w1)〈v2, w2〉 + Ric(v2, w2)〈v1, w1〉
− Ric(v1, w2)〈v2, w1〉 − Ric(v2, w1)〈v1, w2〉
+ 2〈R(v1, v2)w1, w2〉. (2.5)

Here, vi and wi are tangent vectors; for more details, see [20] and [27]. We have adopted
the opposite of the usual sign convention for the Laplacian, that is, 
f = div(∇f ).

From now on, we assume that M4 is a four-dimensional δ-pinched manifold, that is,
the sectional curvature K of M4 satisfies

1 ≥ K ≥ δ. (2.6)

With this condition, as a slight modification of the proof of an useful inequality by Berger
[2] (see also [13], Lemma 1), we obtain the following lemma.

LEMMA 1. Let (M4, g) be a four-dimensional oriented Riemannian manifold. Then,
we have

〈N (ω), ω〉 ≥ 4K⊥
1 |ω|2 − 1

3

(
s − 12K⊥

1

) ||ω+|2 − |ω−|2|,

where ω = ω+ + ω− and ω± ∈ �±M .

Proof. First of all, given a point p ∈ M , there exists an oriented orthonormal basis for
TpM {e1, e2, e3, e4} satisfying ∗(e1 ∧ e2) = e3 ∧ e4 and such that

ω =
√

2

2
(|ω+| + |ω−|)e1 ∧ e2 +

√
2

2
(|ω+| − |ω−|)e3 ∧ e4
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at point p. In view of the identity (2.5), we get

〈N (ω), ω〉 = |ω|2(K13 + K14 + K23 + K24) − 2R1234
(|ω+|2 − |ω−|2)

= 2|ω|2(K⊥
13 + K⊥

14) − 2R1234
(|ω+|2 − |ω−|2)

≥ 4K⊥
1 |ω|2 − 2R1234

(|ω+|2 − |ω−|2) , (2.7)

where K⊥
ij stands for the biorthogonal curvature of plane ei ∧ ej. Here, we used that

〈N (ω+), ω−〉 = 0. Next, we apply the Seaman’s estimate

|Rijkl| ≤ 2

3
(K⊥

3 − K⊥
1 )

in order to obtain

〈N (ω), ω〉 ≥ 4K⊥
1 |ω|2 − 4

3
(K⊥

3 − K⊥
1 )
(|ω+|2 − |ω−|2) . (2.8)

On the other hand, it follows from (2.1) that

w±
3 ≤ −2w±

1 .

These data combined with (2.2) and (2.3) yield

K⊥
3 = w+

3 + w−
3

2
+ s

12

≤ −(w+
1 + w−

1 ) + s

12

= −2K⊥
1 + s

6
+ s

12
,

so that

K⊥
3 ≤ s

4
− 2K⊥

1 . (2.9)

Putting together (2.9) and (2.8), we infer

〈N (ω), ω〉 ≥ 4K⊥
1 |ω|2 − 1

3
(s − 12K⊥

1 )||ω+|2 − |ω−|2|.
This finishes the proof of the lemma.

In order to introduce the next lemma, we need to fix notation. We consider the set
given by

G = {x ∧ y ∈ �2; x and y are unitary and orthogonal}.
Besides, let G = G/ ± 1 be the two-dimensional Grassmannian manifold of TpM . From
this, it follows that if H ∈ �+ and K ∈ �−, we have H+K√

2
∈ G if and only if ||H || = ||K|| = 1

(cf. Lemma 1 in [32]). Now, we may state a result obtained by Ville (cf. Lemma 2 in [32],
see also [31]), which plays an important role in this paper.

LEMMA 2 ([32]). Let M4 be a four-dimensional oriented δ-pinched Riemannian
manifold. Then,

(1) for all P ∈ G, we have δ ≤ 〈(U + W
)
(P), P

〉≤ 1;
(2) for all H ∈ �+, we have δ ≤ u + 1

2

〈
W+H, H

〉≤ 1, where u = s
12 .
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For what follows, since W+ is a symmetric endomorphism of �+, we may consider
an orthonormal basis of �+ given by {H1, H2, H3}, such that

W+Hi = w+
i Hi, for i = 1, 2 or 3.

Moreover, we consider Ki = R̊ ic�(Hi)

||R̊ ic�(Hi)|| ∈ �− and let zi = 〈R̊ ic�(Hi), Ki〉. Thus, we know

that it holds

||R̊ ic�(Hi)||2 = 〈ziKi, ziKi〉 = z2
i .

Hereafter, we set λ−
i = 〈W−Ki, Ki〉 and vi = u + 1

2 w+
i . In particular, it follows from Lemma

2 that δ ≤ vi ≤ 1. With these settings, we have the following lemma due to Ville (cf. Lemma
3 in [31], see also [32]).

LEMMA 3 ([31]). Let M4 be a four-dimensional oriented δ-pinched Riemannian
manifold. Then,

||Z||2 ≤ 2
3∑

i=1

A2
i , (2.10)

where ||Z||2 = ||R̊ ic�||2 + ||R̊ ic||2 and Ai = min{(1 − vi + 1
2λ−

i ), (vi + 1
2λ−

i − δ)}.
Proof. Since the proof of this lemma is very short, we include it here for sake of

completeness. First of all, we easily compute

||Z||2 = ||R̊ ic�||2 + ||R̊ ic||2 = 2||R̊ ic�||2

= 2
3∑

i=1

||R̊ ic�(Hi)||2

= 2
3∑

i=1

〈R̊ ic�(Hi), Ki〉2. (2.11)

Now, we need to estimate the value of 〈R̊ ic�(Hi), Ki〉. To do so, notice that by Lemma 2,
we have

δ ≤
〈
R
(Hi ± Ki√

2

)
,

Hi ± Ki√
2

〉
≤ 1. (2.12)

Moreover, one has

〈
R
(Hi ± Ki√

2

)
,

Hi ± Ki√
2

〉
= u + 1

2
〈W+Hi, Hi〉 + 1

2
〈W−Ki, Ki〉

+ 2

〈
R̊ ic

(±Ki√
2

)
,

Hi√
2

〉

= u + 1

2
w+

i + 1

2
λ−

i ± 〈R̊ ic(Ki), Hi〉

= vi + 1

2
λ−

i ± 〈R̊ ic�(Hi), Ki〉. (2.13)
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This jointly with formula (2.12) gives

δ − vi − 1

2
λ−

i ≤ ±〈R̊ ic�(Hi), Ki〉 ≤ 1 − vi − 1

2
λ−

i ,

from which it follows that

|〈R̊ ic�(Hi), Ki〉| ≤ Ai,

as wished.

We are now in the position to present the proof of the main results.

3. Proof of the main results.

3.1. Proof of Theorem 1.

Proof. To begin with, since (M4, g) is a compact half-conformally flat smooth man-
ifold of positive scalar curvature, we can use Proposition 2.4 of [22] to infer that M4 is
definite. Moreover, it is known by Synge’s theorem that M4 is simply connected. Thus,
from Donaldson [14] and Freedman [15], M4 is homeomorphic to a connected sum
CP

2
� · · · �CP

2 of b2 copies of the complex projective plane (if b2 > 0) or the 4-sphere
(if b2 = 0).

Now, it remains to prove that either b2 = 0 or b2 = 1. To this end, it suffices to prove
that

|τ(M)| < 1

2
χ(M). (3.1)

Indeed, without loss of generality, we may assume that τ(M) > 0. Therefore, by using the
classical Gauss–Bonnet–Chern formula

χ(M) = 1

8π2

∫
M

(
s2

24
+ |W+|2 + |W−|2 − 1

2
|R̊ ic|2

)
dVg,

jointly with the Hirzebrush’s theorem

τ(M) = 1

12π2

∫
M

(|W+|2 − |W−|2) dVg,

we arrive at

χ(M) − 2τ(M) = 1

8π2

∫
M

(
s2

24
− 1

3
|W+|2 + 7

3
|W−|2 − 1

2
|R̊ ic|2

)
dVg.

Before proceeding, for simplicity, let us consider

F(g) =
(

s2

24
− 1

3
|W+|2 + 7

3
|W−|2 − 1

2
|R̊ ic|2

)
,

and hence, we easily see that

χ(M) − 2τ(M) = 1

8π2

∫
M
F(g)dVg. (3.2)
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So, we need to show the positivity of the right-hand side of (3.2). But, in view of the
pinching condition δ ≤ K ≤ 1, we may use equation (1) in [31] (see also Lemmas 1.3 and
1.4 in [31]) to obtain

F(g) ≥ 10

9

(
3∑

i=1

vi

)2

− 4

3

3∑
i=1

v2
i + 7

2
α2

− 2
3∑

i=1

min

{(
1 − vi − λ−

i

2

)2

,

(
vi + λ−

i

2
− δ

)2
}

, (3.3)

where α = max |λ−
i |. For more details, see [31].

From now on, since (M4, g) is half-conformally flat, we assume that W− = 0. Whence,
it follows that λ−

i = 0 for i = 1, 2 or 3 and consequently, α = 0. Thus, by (3.3), one obtains

F(g)

2
≥ 5

9

(
3∑

i=1

vi

)2

− 2

3

3∑
i=1

v2
i −

3∑
i=1

m(vi)
2, (3.4)

where m(x) = min{1 − x, x − δ}.
In order to proceed, we introduce the function f : R3 → R given by

f (x1, x2, x3) = 5

9

(
3∑

i=1

xi

)2

− 2

3

3∑
i=1

x2
i −

3∑
i=1

m(xi)
2,

and moreover, let us consider the set

E = {(x1, x2, x3) ∈ R3; δ ≤ x1 ≤ x2 ≤ x3 ≤ 1}.
Then, easily one verifies that

Hess f = 10

9

⎛
⎜⎜⎜⎝

−2 1 1

1 −2 1

1 1 −2

⎞
⎟⎟⎟⎠ ,

whose the eigenvalues are {−3, −3, 0}. Therefore, f is concave in E, and then, it suffices to
show the positivity of f in the following points: (δ, δ, δ), (δ, δ, 1), (δ, 1, 1), and (1, 1, 1).

In fact, it is not hard to check that

� f (δ, δ, δ) = 3δ2;
� f (δ, δ, 1) = 8δ2 + 20δ − 1

9
;

� f (δ, 1, 1) = −δ2 + 20δ + 8

9
;

� f (1, 1, 1) = 3.

Whence, taking into account that δ ≥ 3
√

3−5
4 , we conclude that f is nonnegative, and we

therefore have

F(g)

2
≥ f (v1, v2, v3) ≥ 0.
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Next, since there exist points where f is positive on E, we deduce∫
M
F(g)dVg > 0,

and hence, these data into (3.2) yield |τ(M)| < 1
2χ(M). Finally, it is straightforward to

check that b2 = 0 or b2 = 1. Thereby, according to Freedman [15] (see also Donaldson
[14]), M4 is homeomorphic to the complex projective space CP

2 or the 4-sphere S4.

So, the proof is completed.

3.2. Proof of Theorem 2.

Proof. The first part of the proof follows the ideas outlined in [26], which was partially
inspired by [17]. For the sake of completeness, we include here all details. Indeed, we argue
by contradiction, assuming that M4 is indefinite. In this case, there exist nonzero harmonics
2-forms ω+ and ω− such that∫

M

( (|ω+|2 + ε
) 1

4 − t
(|ω−|2 + ε

) 1
4

)
dVg = 0,

for any ε > 0 and t = t(ε). Next, following the same steps of the first part of the proof of
Theorem 1 in [13] (see equation (3.6) in [13]), we achieve at

0 ≥ λ1

∫
M

(
|ω+| 1

2 − t|ω−| 1
2

)2
dVg

+
∫

M

(|ω+|−1〈N (ω+), ω+〉 + t2|ω−|−1〈N (ω−), ω−〉) dVg. (3.5)

Proceeding in analogy with [13], we choose X+ = |ω+|− 1
2 ω+ and X− = t|ω−|− 1

2 ω−.

Hence, easily one verifies that X± ∈ �±, |X+| = |ω+| 1
2 and |X−| = t|ω−| 1

2 . Therefore, by
considering X = X+ + X−, it follows from (3.5) that

0 ≥
∫

M

{
λ1 (|X+| − |X−|)2 + 〈N (X ), X 〉} dVg,

and then by Lemma 1, we deduce

0 ≥
∫

M

{
λ1 (|X+| − |X−|)2 + 4K⊥

1 |X |2 − 1

3
(s − 12K⊥

1 )
∣∣|X+|2 − |X−|2∣∣} dVg.

Since |X+| = |ω+| 1
2 and |X−| = t|ω−| 1

2 , the above expression can be written succinctly as

0 ≥
∫

M

(
λ1

(
|ω+| − 2t|ω+| 1

2 |ω−| 1
2 + t2|ω−|

)
+ 4K⊥

1 |ω+|

+ 4K⊥
1 t2|ω−| − 1

3
(s − 12K⊥

1 )||ω+| − t2|ω−||
)

dVg. (3.6)

Notice that the integrand of (3.6) is a quadratic function of t. Thus, for simplicity, we
may set

P(t) = λ1

(
|ω+| − 2t|ω+| 1

2 |ω−| 1
2 + t2|ω−|

)
+ 4K⊥

1 |ω+|

+ 4K⊥
1 t2|ω−| − 1

3

(
s − 12K⊥

1

) ||ω+| − t2|ω−||.
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Before proceeding, given a point p ∈ M4, let us consider the sets

A = {
t; |ω+| ≥ t2|ω−| at p

}
and

B = {
t; |ω+| < t2|ω−| at p

}
.

Therefore, the definition of P(t) implies that

P(t) =
[
λ1 + 4K⊥

1 − 1

3
(s − 12K⊥

1 )

]
|ω+| − 2λ1|ω+| 1

2 |ω−| 1
2 t

+
[
λ1 + 4K⊥

1 + 1

3
(s − 12K⊥

1 )

]
|ω−|t2, (3.7)

in A and

P(t) =
[
λ1 + 4K⊥

1 + 1

3
(s − 12K⊥

1 )

]
|ω+| − 2|ω+| 1

2 |ω−| 1
2 t

+
[
λ1 + 4K⊥

1 − 1

3
(s − 12K⊥

1 )

]
|ω−|t2, (3.8)

in B. In both cases, the discriminant 
 of P(t) is given by


 = 4λ2
1|ω+||ω−| − 4

[
λ1 + 4K⊥

1 − 1

3

(
s − 12K⊥

1

)] [
λ1 + 4K⊥

1 + 1

3
(s − 12K⊥

1 )

]
|ω+||ω−|

= 4|ω+||ω−|
{
λ2

1 −
[(

λ1 + 4K⊥
1

)2 − 1

9
(s − 12K⊥

1 )2

]}

= 4|ω+||ω−|
[
λ2

1 − (
λ2

1 + 8λ1K⊥
1 + 16(K⊥

1 )2
)+ 1

9

(
s2 − 24K⊥

1 s + 144(K⊥
1 )2

)]

= 4

9
|ω+||ω−| (−72λ1K⊥

1 + s2 − 24K⊥
1 s
)
.

Hence, the condition K⊥ ≥ s2

24(3λ1+s) guarantees that 
 ≤ 0.

On the other hand, it follows from (3.7) that[
λ1 + 4K⊥

1 + 1

3
(s − 12K⊥

1 )

]
|ω−| ≥ 0,

where we used that s − 12K⊥
1 = −6(w+

1 + w−
1 ) ≥ 0. Otherwise, if P(t) is given by (3.8), it

follows from our assumption that it holds(
λ1 + 4K⊥

1 − 1

3
(s − 12K⊥

1 )
)
|ω−| ≥

(
λ1 + s2

6(3λ1 + s)
− 1

3

(
s − s2

2(3λ1 + s)

))
|ω−|

= 6λ1(3λ1 + s) + s2 − 2(3λ1 + s)s + s2

6(3λ1 + s)
|ω−|

= 18λ2
1 + 6λ1s + 2s2 − 6λ1s − 2s2

6(3λ1 + s)
|ω−|

= 18λ2
1

6(3λ1 + s)
|ω−|

≥ 0.
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Thereby, in both cases, we have P(t) ≥ 0. Next, since p is an arbitrary point, we conclude
from (3.6) that P(t) ≡ 0. Now, it suffices to use (3.7) and (3.8) to deduce[

λ1 + 4K⊥
1 ± 1

3
(s − 12K⊥

1 )

]
|ω−| = 0.

But, taking into account that λ1 + 4K⊥
1 ± 1

3 (s − 12K⊥
1 ) > 0, we conclude |ω−| = 0. This

yields the desired contradiction and therefore forces the intersection form of M4 to be
definite. To conclude, we invoke again Freedman [15] and Donaldson [14] to deduce that
M4 is homeomorphic to the complex projective space CP

2 or the 4-sphere S4.

This finishes the proof of the theorem.
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