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Conditional second-order short-crested water
waves applied to extreme wave episodes

By JØRGEN JUNCHER JENSEN
Department of Mechanical Engineering, Technical University of Denmark,

Nils Koppels Allé, Building 403, DK 2800 Kgs. Lyngby, Denmark

(Received 1 December 2004 and in revised form 4 May 2005)

A derivation of the mean second-order short-crested wave pattern and associated
wave kinematics, conditional on a given magnitude of the wave crest, is presented.
The analysis is based on the second-order Sharma and Dean finite-water wave theory.
A comparison with a measured extreme wave profile, the Draupner New Year Wave,
shows a good agreement in the mean, indicating that this second-order wave can be
a good identifier of the shape and occurrence of extreme wave events. A discussion
on its use as an initial condition for a fully nonlinear three-dimensional surface wave
analysis is given.

1. Introduction
In the past few years, a significant effort has been made to understand and model

extreme ocean waves. The research has in part been initiated by the measurement
on 1 January 1995 of an extreme wave in the location of the Draupner platform in
the North Sea, Haver & Andersen (2000). Two main questions concern the physics
and the statistical properties of such extreme waves. Obviously, the answers can have
a significant influence on the safety of ships and offshore structures and may even
explain some severe accidents and disasters encountered at sea, e.g. Faulkner (2000).
Currently, nonlinear self-modulation is believed to be a governing phenomenon for
the occurrence of such extreme waves, and models based on the nonlinear Schrödinger
equation have been widely used, e.g. Osborne, Onorato & Serio (2000), Dysthe et al.
(2003), Janssen (2003) and Krogstad et al. (2004). The governing equations are
solved by numerical simulation and thus depend on the initial conditions applied.
Encouraging results have been obtained for the understanding of the conditions under
which these extreme waves may occur. However, to obtain statistical estimates for
the extreme wave, the effect of the initial conditions as well as of the form of the
wave spectral density needs to be studied in greater detail. If the initial conditions
are chosen with a prescribed probability of occurrence then this probability can be
assigned to the resulting extreme waves provided there is a uniqueness of the numerical
simulations. This approach has been adopted by Bateman, Swan & Taylor (2001)
using a conditional mean linear wave profile (Tromans, Anaturk & Hagemeijer 1991),
and the associated kinematics as input. The linear solution is worked backwards
in time to become the initial condition for the fully nonlinear computations. This
approach has the clear advantage that the fully nonlinear computations can be
limited to a small set of short-duration (100–200 s) simulations each with a predefined
probability of occurrence. It was shown that directional spreading was very important
to nonlinear wave–wave interaction and must be included in a model for extreme
waves. It was also found that the linear input provided a good indicator for the
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30 J. J. Jensen

magnitude and position in time and space of the fully nonlinear crest. They used a
fully nonlinear spectral wave model, but other fully three-dimensional wave models,
for instance based on the Boussinesq theory, Madsen, Bingham & Schaffer (2003),
can equally well be applied to account for the possible strong energy transfer between
wavenumbers in the vicinity of an extreme wave.

The aim of the present paper is to present a complete conditional-mean second-
order short-crested wave theory for finite water. It is hoped that inclusion of second-
order terms in the initial conditions might trigger nonlinear phenomena in the fully
nonlinear simulations better than a linear input and thus give more consistent results.
Some corrections for second-order effects have already been incorporated by Bateman
et al. (2001), based on the Creamer transformation (Taylor 1992) for deep water waves.
In the present paper conditional-mean wave profiles and associated wave kinematics
as functions of space and time relative to the position of the given wave crest are
obtained in closed form and reflect the spectral content of the waves. The accuracy of
the second-order model is illustrated by a comparison with the extreme wave measured
at the Draupner platform on 1 January 1995. The second-order conditional-mean wave
taking into account wave spreading as well as finite water depth yields approximately
the same crest to trough profile as the measured wave, supporting the assumption that
the second order model can be a good identifier for a fully nonlinear extreme wave.

The paper starts with a derivation of nonlinear conditional processes to any order
followed by the derivation of second-order short-crested wave models for finite
water depth. Finally numerical results related to the Draupner New Year Wave are
presented.

2. Nonlinear conditional processes
Consider two correlated normalized stationary stochastic processes U (x), V (x).

Provided both processes are slightly non-Gaussian, their properties may conveniently
be expressed as Gram–Charlier series by means of the cumulant generating function.
This is so because the higher-order cumulants vanish in the limit of Gaussian
processes.

The mean value of V (x) conditional on the value U (0) and the slope U ′(0) of U (x)
at x = 0 is given by

E[V (x)|U (0) = u, U ′(0) = u̇] =
1

p(u, u̇)

∫ ∞

−∞
vp(u, u̇, v)dv (2.1)

where p denotes the joint probability density of the arguments. From a Gram–
Charlier series representation of p, it follows, see Jensen (1996), that p can be written
as a series involving terms of the type

Aabc =
1

(2π)3/2(1 − ρ2 − ρ̇2)1/2
HabcJ (2.2)

where ρ, ρ̇ are the correlation coefficients between U (0), V (x) and U ′(0), V (x),
respectively. The generalized Hermite polynomials Habc are defined by

HabcJ ≡ (−1)a+b+c ∂a

∂ua

∂b

∂u̇b

∂c

∂vc
J (2.3)

with

J = J (u, u̇, v) = exp

[
−u2(1 − ρ̇2) + u̇2(1 − ρ2) + v2 − 2ρuv − 2ρ̇u̇v + 2ρρ̇uu̇

2(1 − ρ2 − ρ̇2)

]
. (2.4)
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The integration in (2.1) is then easily performed as terms of the type, see Jensen
(1996),

Mabc(u, u̇) ≡ 2π exp
(

1
2
(u2 + u̇2)

) ∞∫
−∞

vAabc dv (2.5)

become

Mab0 = ρHea+1(u)Heb(u̇) + ρ̇Hea(u)Heb+1(u̇),

Mab1 = Hea(u)Heb(u̇),

Mabc = 0 if c � 2,


 (2.6)

where Hei are the usual Hermite polynomials (He1(u) = u, He2(u) = u2 − 1, He3(u) =
u3 − 3u, etc.). Thus, the result can be written

E[V (x)|U (0) = u, U ′(0) = u̇] =

ρu + ρ̇u̇ +
∑
a+b

∑
�3

[Λab0H0 + Λab1H1]

1 +
∑
a+b

∑
�3

Λab0H1

,

H0 ≡ ρHea+1(u)Heb(u̇) + ρ̇Hea(u)Heb+1(u̇),

H1 ≡ Hea(u)Heb(u̇).




(2.7)

The coefficients Λabc are functions of the joint cumulants λijk of u, u̇, v:

Λabc = Kabc +
1

2!

∑
i+

∑
j+

∑
k�3

KijkKa−i,b−j,c−k

+
1

3!

∑
i+

∑
j+

∑
k�3

∑
l+m

∑
+n

∑
�3

KijkKlmnKa−i−l,b−j−m,c−k−n + . . . (2.8)

where

Kabc =
λabc

a!b!c!
,

Kabc = 0 if a + b + c < 3; a, b, c � 0.


 (2.9)

For slightly non-Gaussian processes, (2.7) can be approximated as

E[V (x)|U (0) = u, U ′(0) = u̇] � ρu + ρ̇u̇+
∑
a+

∑
b�3

[Λab1Hea(u)Heb(u̇)

− Λab0(aρHea−1(u)Heb(u̇) + bρ̇Hea(u)Heb−1(u̇))]. (2.10)

To lowest order (a + b + c = 3):

E[V (x)|U (0) = u, U ′(0) = u̇] = ρu + ρ̇u̇ + 1
2
(u2 − 1)(λ201 − ρλ300)

+ 1
2
(u̇2 − 1) (λ021 − ρλ120 − ρ̇λ030) + uu̇(λ111 − ρ̇λ120) (2.11)

as λ210 = 0. The second-order result, (2.11), is derived in Jensen (1996), together with
applications to ocean wave kinematics. The linear result

E[V (x)|U (0) = u, U ′(0) = u̇] = ρu + ρ̇u̇ (2.12)

is identical to the result in Tromans et al. (1991). The general result, (2.7), is believed
to be new.
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32 J. J. Jensen

3. Short-crested second-order waves
In the following the theory is applied to short-crested finite water waves in water

depth h. The second-order wave theory derived by Sharma & Dean (1979) & Dalzell
(1999) is applied. The mean wave profile is considered conditional on a peak (crest)
at x ≡ s = 0, t = 0, i.e. u̇= 0. The derivative can be taken with respect to either space
or time. Here the wave profile as a function of space for a given instant of time is of
most concern and thus ( )′ = ∂/∂s. The analogous formulas using ( )′ = ∂/∂t become
very similar and should be applied when the variation in time is needed at different
space locations, e.g. for buoy measurements.

With M wave components in each of N wave directions, the linear wave profile
H (1)(s, ψ , t) in the direction ψ relative to the wind direction can be expressed as

H (1)(s, ψ, t) =

M∑
i

N∑
j

aij cos(ψij ) (3.1)

in a polar coordinate system (s, ψ). Here

ψij = kis cos(ψ − ϕj ) − ωit + θij = φij + θij . (3.2)

Furthermore, aij is the wave amplitude for the long-crested wave component ij with
wavenumber ki and wave frequency ωi travelling in the direction φj relative to the
wind direction and θij is the random phase lag for this wave. The time t included
in (3.2) is retained in order to be able to work the solution backwards in time for
application as initial condition in a fully nonlinear three-dimensional analysis.

Within the second-order wave theory by Sharma & Dean (1979), the second order
part of the wave elevation can be written as follows (Madsen 1987):

H (2)(s, ψ, t) =

M∑
i

N∑
j

aij

M∑
m

N∑
n

amn[h
+
ijmn cos(ψij + ψmn) + h−

ijmn cos(ψij − ψmn)] (3.3)

where

h
±
ijmn =

1

4

[
D

±
ijmn − kij · kmn ± RiRm√

RiRm

+ Ri + Rm

]
,

D
±
ijmn =

(
√

Ri ±
√

Rm)
{√

Rm

(
k2

i − R2
i

)
±

√
Ri

(
k2

m − R2
m

)}
(
√

Ri ±
√

Rm)2 − k
±
ijmn tanh(k±

ijmnh)

+
2(

√
Ri ±

√
Rm)2(kij · kmn ∓ RiRm)

(
√

Ri ±
√

Rm)2 − k
±
ijmn tanh(k±

ijmnh)
,

kij · kmn = kikm cos(ϕj − ϕn),

k
±
ijmn = |k±

ijmn| = |kij ± kmn| =
√

k2
i + k2

m ± 2kikm cos(ϕj − ϕn),

Ri =
ω2

i

g
= ki tanh(kih).




(3.4)

In a stationary stochastic seaway the first-order wave phase angles θij can be taken
to be uniformly distributed. Thus, the stochastic variables ξij

ξij = aij cos θij , ξi+M,j = aij sin θij (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

68
41

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005006841


Conditional second-order waves applied to extreme wave episodes 33

become pairwise jointly normally distributed with zero mean values and variances Vij

related to the directional wavenumber spectral density S(k,ϕ) through

Vij = S(ki, ϕj )
ki
ϕj . (3.6)

The variance of the linear part of the waves is

σ 2
h =

M∑
i

N∑
j

S(ki, ϕj )
ki
ϕj . (3.7)

Introducing the variables ξij into (3.1)–(3.3) the second order stochastic wave profile
can be expressed as

H (s, ψ, t) =

2M∑
i

N∑
j

βij (s, ψ, t)ξij+

2M∑
i

N∑
j

2M∑
m

N∑
n

βijmn(s, ψ, t)ξij ξmn (3.8)

where, with φi+M,j = φij ; i � M and βij = βij (s, ψ, t),

βij =

{
cos(φij ), i � M

− sin(φi−Mj ), i > M
(3.9)

and, with βijmn = βijmn (s, ψ , t),

βijmn =




h+
ijmnG

c+
ijmn + h−

ijmnG
c−
ijmn, i, m � M

−h+
i−MjmnG

s+
i−Mjmn − h−

i−MjmnG
s−
i−Mjmn, i > M, m � M

−h+
ijm−MnG

s+
ijm−Mn + h−

ijmnG
s−
ijm−Mn, i � M, m > M

−h+
i−Mjm−MnG

c+
i−Mjm−Mn + h−

i−Mjm−MnG
c−
i−Mjm−Mn, i, m > M

(3.10)

with

G
c±
ijmn = cos(φij ± φmn), G

s±
ijmn = sin(φij ± φmn). (3.11)

Substitution of (3.9) into the correlation ρ yields

ρ(s, ψ, t) =
E [H (0, 0, 0)H (s, ψ, t)]

σ 2
h

�
2M∑
i

N∑
j

νijαijβij =

M∑
i

N∑
j

νij cos(φij ) (3.12)

where the non-dimensional variances νij = Vij/σ
2
h have been introduced and terms of

the type αijmnβijmn have been omitted since they are small compared to the leading
terms in the normalized cumulants λijk . Here

αij = βij |
s=0,t=0 , αijmn = βijmn|

s=0,t=0 ,

α′
ij =

∂βij

∂s

∣∣∣∣
s=0,t=0

, α′
ijmn =

∂βijmn

∂s

∣∣∣∣
s=0,t=0

.
(3.13)

At s =0 the results do not depend on the angle ψ so H (0,ψ , 0) = H (0, 0, 0). The
normalized cumulants λijk needed in (2.11) become (see Longuet-Higgins (1963),
Jensen (1996)), by using irreducible products and keeping only the leading terms:

λ201(s, ψ, t) =
E[H (0, 0, 0)2H (s, ψ, t)]

σ 3
h

� 2σh

2M∑
i

N∑
j

νij

2M∑
m

N∑
n

νmn[αijαmnβijmn + 2αijβmnαijmn]
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34 J. J. Jensen

= 2σh

M∑
i

N∑
j

νij

M∑
m

N∑
n

νmn[h
+
ijmn{cos(φij + φmn) + cos(φij ) + cos(φmn)}

+h−
ijmn{cos(φij − φmn) + cos(φij ) + cos(φmn)}] (3.14)

and

λ021(s, ψ, t) =
E[H ′(0, 0, 0)2H (s, ψ, t)]

σ 2
ḣ
σh

� 2
σ 3

h

σ 2
ḣ

2M∑
i

N∑
j

νij

2M∑
m

N∑
n

νmn[α
′
ijα

′
mnβijmn + 2α′

ijβmnα
′
ijmn]

= 2
σ 3

h

σ 2
u̇

M∑
i

N∑
j

νij

M∑
m

N∑
n

νmn

[
h+

ijmn

{
− ke

ij
ke

mn cos(φij + φmn)

+
(
ke

ij
+ ke

mn

)(
ke

mn cos(φij ) + ke

ij
cos(φmn)

)}
+ h−

ijmn

{
ke

ij
ke

mn cos(φij − φmn)

−
(
ke

ij
− ke

mn

)(
ke

mn cos(φij ) − ke

ij
cos(φmn)

)}]
(3.15)

with ke
ij = ki cos (ψ − ϕj ) and

σ 2
ḣ

=

M∑
i

N∑
j

k2S(ki, ϕj )
ki
ϕj . (3.16)

If the derivative is with respect to time, then ke
ij should be replaced by the wave

frequency ωi in (3.15). The skewness λ030 of the wave slope is zero due to the
vertical symmetry of the Stokes wave profile and, furthermore, λ300 = λ201|s=0,t=0 and
λ120 = λ021|s=0,t=0 as V (x) = U (x) = H (s, ψ, t) in (2.11) for the wave profile.

Similar results can be obtained for the associated wave kinematics. For instance,
the conditional mean horizontal wave particle velocity profile V (s, ψ , z, t) to second
order in direction ψ relative to the wind direction is obtained from, see Madsen
(1987),

V (1)(s, ψ, z, t) =

M∑
i

N∑
j

aijfij cos(ψij ),

V (2)(s, ψ, z, t) =

M∑
i

N∑
j

aij

M∑
m

N∑
n

amn[f
+
ijmn cos(ψij + ψmn) + f −

ijmn cos(ψij − ψmn)],

(3.17)

with

fij =
gki cosh(ki(z + h))

ωi cosh(kih)
cos(ψ − ϕj ),

f
±
ijmn =

1

4

g2

ωiωm

cosh(k±
ijmn(z + h))

cosh(k±
ijmnh)

D
±
ijmn

ωi ± ωm

{ki cos(ψ − ϕj ) ± km cos(ψ − ϕn)}, (3.18)

and where z is the vertical distance from the still water surface. Thus, λ201 and λ021

are obtained by substituting fij , f
±
ijmn for βij , β

±
ijmn in (3.14)–(3.15). The values of λ300

and λ120 are unchanged as they depend only on H (0, 0, 0) and H ′(0, 0, 0).
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4. Modelling an extreme wave episode
Numerical results for conditional mean wave elevations and associated horizontal

wave particle velocity for a fixed point in time have been presented in Jensen (2004).
The results show that finite water depth, directional spreading and superimposed
current can have a significant effect on the conditional wave.

To investigate whether the conditional mean second-order wave is a good indicator
of an extreme wave, a comparison is made with the Draupner New Year Wave,
Haver and Andersen (2000). Averaged over 20 minutes, the sea state associated with
this extreme wave event can be characterized by a significant wave height Hs of
about 12 m and a zero-crossing period Tz around 12 s. The water depth is 70 m. The
measurements were made by a downward-looking laser device and no information
on directional spreading is available. Satellite measurements close to this location on
the same day show, however, that the very large waves observed are fairly short-
crested, Nieto-Borge et al. (2004). With only this information available, inevitably a
number of assumptions must be made. Hence, no current is included and a standard
Pierson–Moskowitz spectrum with an adiabatic transformation for finite water depth
and a cosine square spreading function is considered here. Possible errors in the
measurements are unknown and ignored. It has previously been shown by Haver &
Andersen (2000) that a second-order representation of the wave elevation yields peak
value statistics in good agreement with these measurements, except for the single
Draupner extreme peak crest. The intention of the present comparison between the
second-order conditional wave and the Draupner wave is therefore only to show that
even if the magnitude of the wave crest of this extreme event cannot be predicted by
standard statistics applied to a second-order wave theory the choice of phase relations
inherent in the conditional second-order wave still yields a rather good agreement with
the measured extreme crest profile. The comparison is thus a mathematical ‘fitting’
using the measured crest height as the prescribed second-order crest height and is not
a physical second-order reproduction of the measured wave. Such a mathematical
wave could be a candidate as a design wave similar to the standard Stokes’ fifth-order
wave, Tromans et al. (1991).

The wavenumber range is taken from 0 to 5km, where the mean wavenumber

km =
1

g

(
2π

Tz

)2

. (4.1)

The upper limit on the wavenumber is chosen such that the bandwidth√
1 − m2

2/m4m0 in terms of the usual spectral moments mi of the Pierson–Moskowitz
part of the wave spectrum becomes approximately 0.6, a number often quoted for
deep-water ocean waves.

The conditional mean wave crest a at time t = 0 is taken to be equal to the Draupner
New Year Wave crest of 18.5 m. The results are shown in figure 1 and compared with
the measured elevation as a function of time. The linear conditional mean waves (both
the deep-water unidirectional wave and the finite-water short-crested wave) cannot
predict the rather small troughs measured just before and after the extreme crest.
Neither can the conditional-mean second-order unidirectional deep-water wave. The
conditional-mean finite-water second-order wave including wave spreading is seen to
agree better with the measured adjacent troughs and peaks. However, the importance
of wave spreading and water depth is seen to be not as important as the effect of the
second-order contribution.
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Figure 1. Draupner New Year Wave elevation: measurements from Haver & Andersen
(2000). Conditional-mean wave elevations based on Hs =12m, Tz =12 s, no current. Uni:
unidirectional, sc: short-crested waves. Deep water and finite water depth h = 70 m.

For a second-order Stokes wave theory the results are symmetric with respect
to t =0. It should be recognized that the conditional-wave elevation is a statistical
quantity except at t = 0 and that its standard deviation is already approaching
the unconditional value at the first trough. This time-varying standard deviation is
readily obtained from the conditional-mean wave analysis, see Lindgren (1972) and
Tromans et al. (1991) for Gaussian waves and Jensen (1996) for second-order waves.
Any strict agreement between the measurements and the conditional mean profile can
of course not be expected. It is noted that the measured steepness very close to the
crest is larger than obtained from the second-order model. Simulations using third-
order reconstructions in the modified nonlinear Schrödinger model show a similar
behaviour, Krogstad et al. (2004). This indicates that the second-order model is not
adequate in the close vicinity of large crests as also found by Haver & Anderson
(2000). For the Draupner wave no wave kinematics is recorded. However, to illustrate
the wave kinematics by the present theory the horizontal wave-particle velocity at
s = 0 at the passage of the crest (t = 0) and at t = 2 s before the passage is shown in
figure 2. Both the linear predictions and the present second-order results are included.
The very large reductions in wave-particle velocity above the still water level due
to the second-order terms are clearly seen. Generally, a much better agreement with
measurements is thus obtained, e.g. Anastasiou, Tickell & Chaplin (1983), Stansberg &
Gudmestad (1996), although the velocities close to the crest still are somewhat too
large. The reason is that the Stokes theory applied does not account for the shorter
waves riding on the longer waves. The results are thus very sensitive to the cut-off
value (here 5km) in the wavenumber range. For the wave profile no such strong
dependence is seen.

A theory based on Stokes’ second-order wave theory, like the present one, might be
of value in providing significant improvements compared to a linear analysis. However,
it can also be applied as the initial condition to a fully nonlinear three-dimensional
analysis. In that case inclusion of directional spreading of the waves is important
to capture relevant wave–wave interactions. Bateman et al. (2001) investigated this
possibility using a linear and a partly second-order solution (based on the Creamer
transformation) for their fully non-linear three-dimensional spectral procedure. Thus,
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Figure 2. Conditional-mean horizontal wave particle velocities at s = 0 at the passage of the
crest and 2 s before. Shown up to the second-order elevation. Legends and sea state as in
figure 1. Both the linear and second-order results use exponential extrapolation above the
mean water level.
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Figure 3. Calculated spatial variation of the second-order short-crested conditional-mean
wave profiles in the direction of the main wave direction at the time instants 0, 3, 10, 50 and
100 s before the extreme wave crest appears. Water depth h = 70 m. Sea state as in figure 1.

the computational effort can be reduced significantly as a time range of only 100 to
200 s needs to be considered. Still, a fairly large space region has to be covered when
three-dimensional waves are dealt with. As an example of possible initial conditions
the second-order conditional mean wave elevations at different time instants before
the appearance of the second order wave crest are shown in figure 3. The associated
second-order conditional-mean wave potentials are readily determined analogously to
the horizontal wave-particle velocity and, as for the velocity, a much larger difference
between the linear and the second-order solution is found than for the wave elevation.
Hence, the use of the second-order solution (elevation and potential) rather than the
linear solution as initial condition is expected to result in more reliable fully nonlinear
results. This is in line with the discussion given by Bateman et al. (2001). Provided
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the second-order extreme conditional-mean wave is a good identifier of an extreme
fully nonlinear wave, such a procedure might give answers about the importance of
wave–wave interactions involving four or more wave numbers for the magnitude of
the extreme crest heights.

The crest statistics of the fully nonlinear crest can then be derived from the statistics
for the second-order wave crest. As a first estimate the standard deviation σh and the
skewness λ300 of the waves can be used to estimate the probability distribution of the
wave crest. On the assumption that the nonlinearities are of second order the wave
elevation H can be modelled by a quadratic transformation of a standard normal
distributed process W , e.g. Winterstein (1988):

H = σh

(
W + 1

6
λ300(W

2 − 1)
)
. (4.2)

Provided (4.2) is monotonic and that the peak in W follows a Rayleigh distribution
the most probable largest crest a among N crests becomes

a = σh

(√
2 lnN + 1

6
λ300(2 lnN − 1)

)
. (4.3)

By comparison with measurements made in the North Sea, Vinje & Haver (1994)
show that (4.3) gives good estimates of the measured crest values. For unidirectional
deep water waves with a Pierson-Moskowitz spectrum, the skewness λ300 can be
derived analytically, Vinje & Haver (1994):

λ300 = 6π2

(
1 − 1√

2

)
Hs

gT 2
z

(4.4)

whereas (3.14) with s = 0, t = 0 can be used in general cases. The skewness is around
0.2 for very steep waves. Hence, the difference between a linear and a second-order
estimation of the most probable wave crest will be about 20 %, depending slightly on
N . For the Draupner wave the skewness becomes 0.155 by using the present spectral
density with a cut-off limit and including wave spreading and finite water depth.
The second-order conditional-mean wave is, for large values of the wave crest, nearly
independent of the significant wave height, but of course the wave crest itself depends
approximately linearly on Hs . Using a standard deviation of σh = 3 m yields N = 106

which is a rare event given that the sea state itself is rare. Thus, nonlinear effects not
included in a second-order wave model seem to be important for modelling of the
Draupner New Year Wave. This is supported by the observation mentioned above,
that the steepness very close to the crest is not accurately modelled by second-order
waves. However, as noted by Krogstad et al. (2004), the question is also whether
freak waves are real outliers from standard (second) order statistics, or merely at the
wrong place at the wrong time.

The second-order crest values a will according to (4.2) have a probability density
function p(a):

p(a) =
u e−0.5u2

σh

(
1 + 1

3
λ300u

) with u =
−3 +

√
9 + λ300(λ300 + 6a/σh)

λ300

(4.5)

and this probability might be associated with the fully nonlinear wave crest anl

through

p(anl) = p(a)

(
danl

da

)−1

(4.6)

using the numerically derived monotonic relation between anl and a.
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In the application of the conditional second-order wave as an initial condition for
fully nonlinear three-dimensional computations, the present conditional mean wave
can be superimposed with a time and space varying Gaussian component to investigate
the importance of slight changes in the initial conditions for the development of the
fully nonlinear extreme wave. This Slepian concept is exact for linear waves and
expected to be a good approximation for the second-order waves as the main second-
order contribution is due to the conditional mean wave when considering crest values
much larger than the linear standard deviation. The statistics of the fully nonlinear
wave are then obtained by unconditioning the conditional probability p(anl |a) with
respect to the second-order wave crests considered

p(anl) =

∫ ∞

0

p(anl |a)p(a) da. (4.7)

Such an approach has been used by Taylor, Johathan & Harland (1995) in the analysis
of jack-up platforms. Linear random conditional waves are used as input and the
statistics of the jack-up response is obtained by unconditioning with respect to the
linear wave amplitude. A somewhat similar approach is used by Dietz, Friis-Hansen &
Jensen (2004) in a recent study on the wave-induced bending moment in ships.
Whether or not such a ‘simple’ input model will be sufficient as an input to fully
nonlinear simulations of extreme wave events should of course be clarified further
before such models are accepted as a replacement of full-length simulations.

5. Conclusion
A derivation of nonlinear conditional processes to any order has been given followed

by the derivation of a second-order short-crested wave model for finite water depth.
Numerical results related to the Draupner New Year Wave have been presented.
Fairly good average agreement with the measured wave profile is obtained.

The second-order wave model might be used directly as a design wave, but for
the analysis of extreme wave events the second-order model could also be applied as
an initial condition for a fully nonlinear three-dimensional procedure to obtain very
accurate results with a reasonable computational effort. It could be interesting to
investigate this approach, possibly by including also a random wave superimposed on
the conditional mean wave to measure the sensitivity of slight changes in the initial
conditions to the extreme wave event.

A third-order conditional-mean wave model can be derived using the present results
for nonlinear conditional processes together with an appropriate third-order irregular
wave theory, e.g. Zhang & Chen (1999). Additional hypotheses might, however, be
needed to account for four-wave interactions. The advantage of a third-order wave
as initial conditions to the nonlinear simulations compared to the second-order wave
might, however, be limited.

The author would like to thank Dr Sverre Haver for providing the measured time
trace of the Draupner New Year Wave.
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