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We study the following polyharmonic Hénon equation:

(−∆)mu = K(|y|)u(m)∗−1, u > 0 in B1(0), u ∈ Dm,2
0 (B1(0)),

where (m)∗ = 2N/(N − 2m) is the critical exponent, B1(0) is the unit ball in RN ,
N � 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely
many non-radial positive solutions, whose energy can be made arbitrarily large.
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1. Introduction

We consider the following polyharmonic equation with critical exponent (m)∗ =
2N/(N − 2m):

(−∆)mu = K(|y|)u(m)∗−1, u > 0 in B1(0), u ∈ Dm,2
0 (B1(0)), (1.1)

where B1(0) is the unit ball in R
N , N � 2m + 2 and K : [0, 1] → R is a bounded

function. Dm,2
0 (B1(0)) denotes the closure of C∞

0 (B1(0)) with respect to the norm

‖u‖ =

{
|∆m/2u|2 if m is even,

|∇∆(m−1)/2u|2 if m is odd,
(1.2)

where | · |p denotes the Lp norm on B1(0).
When K(|y|) = |y|α and m = 1, (1.1) is reduced to the classical Hénon equation,

−∆u = |x|αup−1 in B1(0),
u > 0 in B1(0),
u = 0 on ∂B1(0),

⎫⎪⎬
⎪⎭ (1.3)

371
c© 2017 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210516000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000196


372 Y. Guo, B. Li and Y. Li

with p = 2N/(N − 2), which was first introduced by Hénon [15] in the study
of astrophysics. Mathematically, due to the lack of compactness, solving problem
(1.3) for L2N/(N−2)(B1(0)) is more difficult than solving it for H1

0 (B1(0)). Ni [16]
observed that the non-autonomous term |y|α changes the global homogeneity of
the equation and also shifts the original critical exponent p = 2N/(N − 2) up to a
new exponent pα = 2(N + α)/(N − 2). Ni proved that for any α > 0 problem (1.3)
admits a radial solution.

It is natural to ask whether (1.3) has a non-radial solution. Smets et al . [21]
studied problem (1.3) when N = 2, with exponent very near to critical, i.e. −∆u =
|y|αu(N+2)/(N−2)−ε with ε > 0 small. They proved that there exists a constant
α∗ > 0 such that problem (1.3) admits at least one non-radial solution for any
α > α∗. Cao and Peng [6] proved that when N � 3 the mountain-pass solution
for (1.3) is non-radial and blows up as ε → 0. For the purely critical case p = 2∗,
Serra [20] proved that (1.3) has at least one non-radial solution provided that
N � 4 and α > 0 is sufficiently large. Recently, Wei and Yan [24] considered the
multiplicity for problem (1.3); they proved that there exist infinitely many non-
radial solutions for N � 4 and any α > 0.

On the other hand, when m = 1 and K is defined in the entire space R
N , problem

(1.1) turns out to be the limit case

−∆u = K(y)u(N+2)/(N−2)u > 0 in R
N , u ∈ D1,2(RN ), (1.4)

where D1,2(RN ) is the completion of C∞
0 (RN ) under the norm

‖u‖ :=
( ∫

RN

|∇u|2
)1/2

.

In this case, it is known (see [4]) that any solution of (1.4) is radially symmetric if
there is an r0 > 0 such that K(r) is non-increasing in (0, r0] and non-decreasing in
[r0, +∞).

It is natural to ask whether or not there exist non-radial solutions to (1.4) under
some other assumptions on the function K(y). This question was first raised by
Bianchi himself [4]. Wei and Yan [23] obtained infinitely many non-radial solutions
in the elliptic case by constructing a large number of bubbles. This result was later
extended to the polyharmonic case by Guo and Li [13]. For the non-radial solutions
in [13, 23], the alternative assumption on the function K(y) satisfies the following
condition:

K(r) = K(1) − K0|r − 1|t + o(|r − 1|t+θ) as r → 1, where t ∈ [2, N − 2m), θ > 0.
(1.5)

As far as we know, there are few results for the polyharmonic Hénon equation on
the unit ball B1(0). The aim of this paper is to prove the existence of infinitely many
non-radial solutions for the polyharmonic Hénon equation on the unit ball B1(0).
The polyharmonic operators have long been of interest due to their application in
conformal geometry and elastic mechanics. For example, the conformal covariant
operator P4 (m = 2) was first introduced by Paneitz [17] in 1983 when studying
smooth 4-manifolds, and the application of P4 was generalized to any N -manifold
by Branson [5] in 1993. Problems relating to polyharmonic operators to the elliptic
operator (when m = 1) present new challenges. For more interesting results related
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to polyharmonic operators, we refer the reader to [1–3,7,11,12,18] and the references
therein.

Before stating the main results, we recall (see [22]) that the family of functions{
Ux,Λ(y) = P

(N−2m)/4m
m,N

(
Λ

1 + Λ2|y − x|2

)(N−2m)/2 ∣∣∣∣ x ∈ R
N , Λ > 0

}

are the only radial solutions (usually called bubbles) of the following problem:

(−∆)mu = u(N+2m)/(N−2m), u > 0 in R
N , (1.6)

where

Pm,N =
m−1∏

h=−m

(N + 2h)

is a constant, Λ > 0 is the scaling parameter and x ∈ R
N .

For any fixed positive integer k � k0 with k0 large enough, we define the scaling
parameter µk := k(N−2m+l)/(N−2m), N � 2m + 2, l ∈ (0, 2]. Using the transforma-
tion

u(y) �→ µ
−(N−2m)/2
k u

(
y

µk

)
,

problem (1.1) becomes

(−∆)mu = K

(
|y|
µk

)
u(N+2m)/(N−2m), u > 0 in Bµk

(0), u ∈ Dm,2
0 (Bµk

(0)).

(1.7)
We define

Hs,µk
:= {u ∈ Dm,2

0 (Bµk
(0)) | u(ȳ, y′′) = u(e2πi/kȳ, y′′), ȳ ∈ R

2, y′′ ∈ R
N−2}.

Choose {xj}k
j=1 as the k vertices of the regular k-polygon inside Bµk

(0), where

xj =
(

rk cos
(

2(j − 1)π
k

)
, rk sin

(
2(j − 1)π

k

)
,0

)
,

0 ∈ R
N−2, rk ∈

(
µk

(
1 − r0

k

)
, µk

(
1 − r1

k

))
, r0 > r1

are positive constants. Let PkUxj ,Λk
denote the solution of the following Dirichlet

problem (1.8) on Bµk
(0):

(−∆)m(PkUxj ,Λk
) = U

(2m)∗−1
xj ,Λk

in Bµk
(0),

(PkUxj ,Λk
) ∈ Dm,2

0 (Bµk
(0)).

}
(1.8)

Let Wrk,Λk
(y) :=

∑k
j=1 PkUxj ,Λk

(y) be the approximate solution.
Our main result is as follows.

Theorem 1.1. Suppose N � 2m + 2. If K(1) > 0 and K ′(1) > 0, then there exists
an integer k0 > 0 such that for any integer k � k0 the boundary-value problem (1.7)
has a solution uk = Wrk,Λk

+ φk, where φk ∈ Hs,µk
, ‖φk‖L∞(Bµk

(0)) → 0 as k → ∞
and L0 � Λk � L1 for some large constants L0, L1 > 0.
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As a consequence, we obtain the following.

Theorem 1.2. Suppose N � 2m + 2. If K(1) > 0 and K ′(1) > 0, then there exist
infinitely many non-radial solutions for the polyharmonic problem (1.1).

Remark 1.3. The solutions of theorem 1.2 are constructed with bubbles near the
boundary of the unit ball B1(0), and the bubbles are all constrained in B1(0)
instead of diverging to infinity in R

N (see [13]).

Since there is no small parameter in (1.1), in order to prove the main theorem
we follow the idea in [24]: we use the scaling parameter Λk as the blow-up param-
eter. More precisely, we place a large number of bubbles inside a k-polygon in the
domain B1(0) but near the boundary ∂B1(0). Then the scaling parameter will be
determined by the number of bubbles. The proof of the theorem consists of lin-
earizing the equation around an approximation solution (the sum of the k bubbles)
and studying the linearized problem. This is done in § 2. Section 3 is devoted to
the energy expansion. Then the solution of the problem is reduced to finding the
critical points of a perturbed energy functional with parameters µk and Λk. The
proof of the theorem is completed in § 4.

2. Finite-dimensional reduction

In this section, we study the linearized problem by using the Lyapunov–Schmidt
reduction method.

Let

Zi,1 =
∂PkUxi,Λk

(y)
∂γk

, Zi,2 =
∂PkUxi,Λk

(y)
∂Λk

, γk = |xi|, i = 1, 2, . . . , k.

We introduce the Banach space

X := {u ∈ Hs,µk
| 〈U (m)∗−2

xi,Λk
Zi,l, u〉 = 0, i = 1, 2, . . . , k, l = 1, 2; ‖u‖∗ < +∞},

with the norm

‖u‖∗ := sup
y∈Bµk

(0)

[ k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

]−1

|u(y)|,

and the Banach space

Y = {h ∈ Hs,µk
| 〈h, Zi,l〉 = 0, i = 1, 2, . . . , k, l = 1, 2; ‖h‖∗∗ < ∞}

with the norm

‖h‖∗∗ := sup
y∈Bµk

(0)

[ k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

]−1

|h(y)|,

where

〈u, v〉 =
∫

Bµk
(0)

uv, τ =
N − 2m

N − 2m + l
.
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We consider the following linearized problem:

Lk(φk) = hk +
2∑

j=1

cj

k∑
i=1

U
(m)∗−2
xi,Λk

Zi,j in Bµk
(0),

φk ∈ X, hk ∈ Y,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where

Lk := (−∆)m − ((m)∗ − 1)K
(

|y|
µk

)
Wm∗−2

rk,Λk
(y).

Then it is known that (see [2, theorem 2.1])

span{Zi,1 | i = 1, 2, . . . , k, l = 1, 2}

is the kernel space of the linear operator Lk.

Lemma 2.1. Assume N � 2m + 2. Then, for any constant σ ∈ (0, N − 2m), there
is a constant C > 0 such that∫

RN

dz

|y − z|N−2m(1 + |z|)2m+σ
� C

(1 + |y|)σ
.

Lemma 2.2. Assume N � 2m + 2, τ ∈ (0, 2). Then there exists a small θ > 0 such
that

∫
RN

k∑
j=1

W
4m/(N−2m)
rk,Λk

(z)

|y − z|N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

� C

k∑
j=1

1
(1 + |z − xj |)(N−2m)/2+τ+θ

.

The proofs of lemmas 2.1 and 2.2 can be found in [13].

Proposition 2.3. Assume that φk solves (2.1) for given values of hk and that
‖hk‖∗∗ → 0 as k → ∞. Then ‖φk‖∗ → 0 as k → ∞.

Proof. We argue by contradiction. Without loss of generality, we may assume that
‖φk‖∗ ≡ 1 and ‖hk‖∗∗ → 0 as k → ∞. By the potential theory, we have

φk(y) = ((m)∗ − 1)
∫

Bµk
(0)

K(|z|/µk)
|y − z|N−2m

W
(m)∗−2
rk,Λk

(z)φk(z) dz

+
∫

Bµk
(0)

1
|y − z|N−2m

[
hk(z) +

2∑
j=1

cj

k∑
i=1

U
(m)∗−2
xi,Λk

(z)Zi,j(z)
]

dz. (2.2)
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For the first term on the right-hand side of (2.2), we make use of lemma 2.2 such
that

|((m)∗ − 1)
∫

Bµk
(0)

K(|z|/µk)
|y − z|N−2m

W
(m)∗−2
rk,Λk

(z)φk(z) dz|

� C‖φk‖∗

∫
Bµk

(0)

k∑
j=1

W
(m)∗−2
rk,Λk

(z)

|y − z|N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

� C‖φk‖∗

∫
RN

( k∑
j=1

W
(m)∗−2
rk,Λk

(z)

|y − z|N−2m(1 + |z − xj |)(N−2m)/2+τ

)
dz

� C‖φk‖∗

k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ+θ

. (2.3)

For the second term on the right-hand side of (2.2), we use lemma 2.1 and obtain
that

∣∣∣∣
∫

Bµk
(0)

1
|y − z|N−2m

[
hk(z) +

2∑
j=1

cj

k∑
i=1

U
(m)∗−2
xk,Λk

(z)Zi,j(z)
]

dz

∣∣∣∣
�

∫
Bµk

(0)

|hk(z)|
|y − z|N−2m

dz

+
2∑

j=1

|cj |
k∑

i=1

∫
Bµk

(0)

1
|y − z|N−2m

U
(m)∗−2
xi,Λk

(z)|Zi,j(z)| dz

� ‖hk‖∗∗

∫
Bµk

(0)

1
|y − z|N−2m

( k∑
j=1

1
(1 + |z − xj |)(N+2m)/2+τ

)
dz

+
( 2∑

j=1

|cj |
) k∑

i=1

1
(1 + |y − xk|)(N−2m)/2+τ+θ

. (2.4)

Now we estimate cj , j = 1, 2, as follows. Multiply both sides of the linearized
equation (2.1) by the function Zi,l, l = 1, 2, and integrate both sides on the ball
Bµk

(0), such that

∫
Bµk

(0)

[
(−∆)mφk − ((m)∗ − 1)K

(
|z|
µk

)
W

(m)∗−2
rk,Λk

(z)φk(z)
]
Z1,l(z) dz

−
∫

Bµk
(0)

hk(z)Z1,l(z) dz

=
2∑

j=1

cj

k∑
i=1

∫
Bµk

(0)
U

(m)∗−2
xi,Λk

(z)Zi,j(z)Z1,l(z) dz

= [c̄ + ok(1)]cl. (2.5)
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The left-hand side of (2.5) can be decomposed into three terms, i.e.

∫
Bµk

(0)

[
(−∆)mφk(z) − ((m)∗ − 1)K

(
|z|
µk

)
W

(m)∗−2
rk,Λk

(z)φk(z)
]
Zi,l(z) dz

−
∫

Bµk
(0)

hk(z)Zi,l(z) dz = I + II + III, (2.6)

where

I = ((m)∗ − 1)
∫

Bµk
(0)

[U (m)∗−2
xi,Λk

(z) − W
(m)∗−2
rk,Λk

(z)]Zi,l(z)φk(z) dz,

II = ((m)∗ − 1)
∫

Bµk
(0)

[
1 − K

(
|z|
µk

)]
W

(m)∗−2
rk,Λk

(z)φk(z)Zi,l(z) dz,

III = −
∫

Bµk
(0)

hk(z)Zi,l(z) dz.

For the first term on the right-hand side of (2.6), we estimate that

|I| =
∣∣∣∣((m)∗ − 1)

∫
Bµk

(0)
[U (m)∗−2

xi,Λk
(z) − W

(m)∗−2
rk,Λk

(z)]Zi,l(z)φk(z) dz

∣∣∣∣
� C

∑
j �=i

∫
Bµk

(0)

|xj − xi||φk(z)| dz

(1 + |z − xj |)2m(1 + |z − xi|)N

� C‖φk‖∗
∑
j �=i

∫
RN

[ k∑
l=1

(|xj − xi|)((1 + |z − xj |)2m(1 + |z − xi|)N

× (1 + |z − xl|)(N−2m)/2+τ )−1
]

dz

� o(‖φk‖∗). (2.7)

For the second term on the right-hand side of (2.6), we choose an annular region

Ak = {z ∈ Bµk
(0) | |z| − µkr0| � µ

1/2
k }

such that

|II| =
∣∣∣∣((m)∗ − 1)

∫
Bµk

(0)

[
1 − K

(
|z|
µk

)]
W

(m)∗−2
rk,Λk

(z)φk(z)Zi,l(z) dz

∣∣∣∣
� C‖φk‖∗

( ∫
Bµk

(0)∩Ak

k∑
j=1

|1 − K(|z|/µk)|W (m)∗−2
rk,Λk

(z)

(1 + |z − xi|)N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

+
∫

Bµk
(0)\Ak

k∑
j=1

|1 − K(|z|/µk)|W (m)∗−2
rk,Λk

(z)

(1 + |z − xi|)N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

)
.

(2.8)
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Recall that K(1) = 1, K ′(1) > 0 in lemma 2.2 and the right-hand side of (2.8) are
all bounded, with

‖φk‖∗

( ∫
Bµk

(0)∩Ak

k∑
j=1

|1 − K(|z|/µk)|W (m)∗−2
rk,Λk

(z)

(1 + |z − xi|)N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

+
∫

Bµk
(0)\Ak

k∑
j=1

|1 − K(|z|/µk)|W (m)∗−2
rk,Λk

(z)

(1 + |z − xi|)N−2m(1 + |z − xj |)(N−2m)/2+τ
dz

)

� C‖φk‖∗

∫
RN

W
(m)∗−2
rk,Λk

(z)
(1 + |z − xi|)N−2m

×
k∑

j=1

[
µ−l

k

(1 + |z − xj |)(N−2m)/2+τ
+

µ−σ
k

(1 + |z − xj |)(N−2m)/2+τ−2σ

]
dz

� C‖φk‖∗

k∑
j=1

[
µ

−l/2
k

(1 + |xi − xj |)(N−2m)/2+τ+θ
+

µ−σ
k

(1 + |xi − xj |)(N−2m)/2+τ−2σ+θ

]

� C‖φk‖∗[µ
−l/2
k + µ−σ

k ]. (2.9)

For the third term on right-hand side of (2.6), we estimate that

|III| =
∣∣∣∣
∫

Bµk
(0)

hk(z)Zi,l(z) dz

∣∣∣∣
� C‖hk‖∗∗

∫
Bµk

(0)

1
(1 + |z − xj |)N−2m

k∑
j=1

1
(1 + |z − xj |)(N+2m)/2+τ

dz

� C‖hk‖∗∗

k∑
j=1

1
(1 + |xi − xj |)(N−2m)/2+τ

� C‖hk‖∗∗. (2.10)

Combining (2.7)–(2.10), and considering the assumption ‖φk‖∗ ≡ 1, we get the
weighted estimate of φk such that

1 = sup
y∈Bµk

(0)

{
|φk(y)|

[ k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

]−1}

� sup
y∈Bµk

(0)

{
((m)∗ − 1)

∫
Bµk

(0)

K(|z|/µk)W (m)∗−2
rk,Λk

(z)|φk(z)|
|y − z|N−2m

dz

×
[ k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ

]−1

+
∫

Bµk
(0)

hk(z)
|y − z|N−2m

dz

[ k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

]−1
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+
2∑

l=1

|cl|
∫

Bµk
(0)

∑k
i=1 U

(m)∗−2
xi,Λk

(z)Zi,l(z)
|y − z|N−2m

dz

×
[ k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ

]−1}

� C

[
ok(1) + ‖hk‖∗∗ +

k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ+θ

×
( k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)−1]
. (2.11)

We claim that there exist some i0 ∈ {1, 2, . . . , k}, a > 0 and R > 0 large enough
such that ‖φk‖L∞(BR(xi0 )∩Bµk

(0)) � a > 0. Otherwise, there exist some k large
enough, a ∈ (0, 1

2 ), R > 0 such that C[ok(1) + ‖hk‖∗∗] < 1
2 and

‖φk‖L∞(BR(xi)∩Bµk
(0)) < a < 1 for all i = 1, 2, . . . , k.

Therefore, at some point y ∈ Bµk
(0) \

⋃k
i=1 BR(xi), we get

C
k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ+θ

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)−1

� C max
1�j�k

1
(1 + |y − xj |)θ

� C

(1 + R)θ
<

1
2
. (2.12)

Thus, ‖φk‖∗ can be bounded by a number strictly less than 1, such that

1 = ‖φk‖∗

� C sup
y∈Bµk

(0)\
⋃k

i=1 BR(xi)

[
ok(1) + ‖hk‖∗∗

+
k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ+θ

×
( k∑

j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)−1]
<

1
2
, (2.13)

which is a contradiction. Hence, we have proved that ‖φk‖L∞(BR(xi0 )∩Bµk
(0)) � a >

0 for some positive a and R. Therefore, the translated form φ̄k(y) =: φk(y − xi0)
converges to a non-trivial φ̄ with ‖φ̄‖L∞(RN ) � a > 0, and φ̄ solves the eigenvalue
problem

(−∆)mφ̄ − ((m)∗ − 1)U (m)∗−2
0,Λ0

φ̄ = 0 in R
N for some Λ0 ∈ [L0, L1], (2.14)

which means φ̄ ∈ Ker(L), where L := [(−∆)m − ((m)∗ − 1)U (m)∗−2
0,Λ0

I].
In addition, by passing to the limit k → ∞ in∫

Bµk
(0)

U
(m)∗−2
xi,Λk

(y)Zi,l(y)φk(y) dy = 0,
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we have ∫
RN

U
(2m)∗−2
0,Λ0

(y)Zp(y)φ̄(y) dy = 0, p = 1, 2, . . . , N + 1,

where

Ker(L) = span
{

Zi(y) :=
∂U0,Λ0

∂yi
, i = 1, 2, . . . , N ;

ZN+1(y) := y · ∇U0,Λ0(y) +
N − 2m

2
U0,Λ0(y)

}
.

Hence, φ̄ ∈ Ker(L)∩Ker(L)⊥ = {0}, which contradicts the condition ‖φ̄‖L∞(RN ) �
a > 0.

Similarly to the proofs of [8, proposition 4.1] and [14, proposition 3.1], we can find
the unique solution of (2.1) by the Fredholm alternative and Riesz representation
arguments. The existence result can be stated as follows.

Proposition 2.4. There exist some k0 > 0 and a constant C > 0, both independent
of k, such that, for all k � k0 and all h ∈ L∞(RN ), the linearized problem (2.1)
has a unique solution φk = L−1

k (h) with ‖L−1
k (h)‖∗ � C‖h‖∗∗.

Next we consider the following problem in terms of µk and Λk:

(−∆)m(Wrk,Λk
+ φk)

= K

(
|y|
µk

)
(Wrk,Λk

+ φk)(m)∗−1 +
2∑

j=1

cj

k∑
i=1

U
(m)∗−2
xi,Λk

Zi,j in Bµk
(0). (2.15)

Proposition 2.5. There exists an integer k0 > 0 such that, for each k � k0,
Λk ∈ [L0, L1] and

rk ∈
[
µk

(
1 − r0

µk

)
, µk

(
1 − r1

k

)]
,

the perturbation problem (2.15) has a unique solution φk satisfying

‖φk‖∗ � C

(
1
µk

)l/2+σ

,

where σ > 0 is a small constant.

In order to prove proposition 2.5, we rewrite the perturbation problem (2.15) as
the following linearized problem:

Lk(φk) = Nk(φk) + lk +
2∑

j=1

cj

k∑
i=1

U
(m)∗−2
xi,Λk

Zi,j in Bµk
(0), (2.16)

where

Nk(φk) = K

(
|y|
µk

)
[(Wrk,Λk

+ φk)(m)∗−1 − W
(m)∗−1
rk,Λk

− ((m)∗ − 1)W (m)∗−2
rk,Λk

φk]
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is the nonlinear term dependent on φk, while

lk = K

(
|y|
µk

)
W

(m)∗−1
rk,Λk

(y) −
k∑

j=1

U
(m)∗−1
xj ,Λk

(y)

is the other nonlinear term, which is independent of φk.

Lemma 2.6. If N � 2m + 2, then ‖Nk(φk)‖∗∗ � C‖φk‖min{(m)∗−1,2}
∗ .

Proof. Observe that the number (m)∗ − 1 = (N + 2m)/(N − 2m) is less than or
equal to 2 if N � 6m and remains greater than 2 if 2m + 2 < N � 6m − 1. By
applying the mean-value theorem twice, there exists some s ∈ (0, 1) such that

|Nk(φk)| = 1
2 ((m)∗ − 1)((m)∗ − 2)|Wrk,Λk

+ sφk|(m)∗−3|φk|2

�
{

C|φk|(m)∗−1, N � 6m,

CW
(m)∗−3
rk,Λk

|φk|2, N < 6m.
(2.17)

In the following, we make use of the discrete version of the Hölder inequality,

k∑
j=1

ajbj �
( k∑

j=1

ap
j

)1/p( ∑
j=1

bq
j

)1/q

, aj , bj � 0,
1
p

+
1
q

= 1, (2.18)

and discuss the estimates for Nk(φk) for two cases.

Case 1 (N � 6m). Observe that

τ
N − 2m

N − 2m + l
� C and

k∑
j=1

1
(1 + |y − xj |)τ

� C.

It then follows from (2.17) and (2.18) that

|Nk(φk)(y)| � C‖φk‖(m)∗−1
∗

[( k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

)(N−2m)/(N+2m)

×
( k∑

j=1

1
(1 + |y − xj |)τ

)4m/(N+2m)](N+2m)/(N−2m)

� C‖φk‖(m)∗−1
∗

k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

. (2.19)

Hence, ‖Nk(φk)‖∗∗ � C‖φk‖(m)∗−1
∗ .

Case 2 (2m + 2 � N � 6m − 1). By the same reasoning as case 1, we have

|Nk(φk)| � C‖φk‖2
∗

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)2

×
[ k∑

j=1

1
(1 + |y − xj |)N−6m

](6m−N)/(N−2m)
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� C‖φk‖2
∗

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)(m)∗−1

� C‖φk‖2
∗

( k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

)
. (2.20)

Thus, we get ‖Nk(φk)‖∗∗ � C‖φk‖2
∗, as desired.

Lemma 2.7. Assume N � 2m + 2, rk ∈ [µk(1 − r0/µk), µk(1 − r1/k)]. Then

‖lk‖∗∗ � C

(
1
µk

)l/2+σ

.

Proof. We divide the ball region Bµk
(0) into k slices:

Ωj :=
{

y ∈ Bµk
(0)

∣∣∣∣ y = (y′, y′′) ∈ R
2 × R

N−2,

〈
y′

|y′| ,
xj

|xj |

〉
� cos

(
π

k

)}
,

j = 1, 2, . . . , k.

Then we set lk = J0 + J1 + J2, where

J0(y) := K

(
|y|
µk

)
(W (m)∗−1

rk,Λk
−

k∑
j=1

(Pµk
Uxj ,Λk

)(m)∗−1),

J1(y) := K

(
|y|
µk

)( k∑
j=1

(Pµk
Uxj ,Λk

)(m)∗−1 −
k∑

j=1

U
(m)∗−1
xj ,Λk

)
,

J2(y) :=
k∑

j=1

U
(m)∗−1
xj ,Λk

(
K

(
|y|
µk

)
− 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.21)

Note that the ball region Bµk
(0) is evenly divided by k slices Ω1, Ω2, . . . , Ωk. It

is sufficient to consider Ω1; the discussion on the other regions Ω2, . . . , Ωk is similar.
Let y ∈ Ω1. Then

|y − xj | � |y − x1| and
1

1 + |y − xj |
� C

|xj − x1|
for all j �= 1.

Choosing some α ∈ (max{ 1
2 (N − 2m), 1}, min{4m, N − 2m}), we have

|J0(y)| � C

k∑
j=2

1
(1 + |y − x1|)4m(1 + |y − xj |)N−2m

+ C

( k∑
j=2

1
(1 + |y − xj |)N−2m

)(m)∗−1

� C
1

(1 + |y − x1|)N+2m−α

1
|xj − xi|α

+ C

k∑
j=2

1
(1 + |y − xj |)(N+2m)/2+τ
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×
[ k∑

j=2

1
(1 + |y − xj |)((N+2m)/4)((N−2m)/2−τ(N−2m)/(N+2m))

]4/(N−2m)

� C

k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

(
1
µk

)l/2+σ

. (2.22)

Thus, ‖J0‖∗∗ � C(1/µk)l/2+σ.
On the other hand, it is known that there exists a Green function Gm : (B1(0) ×

B1(0)) → R (see [9, ch. 4] for Boggio’s formula) such that

(−∆x)mGm(x, y) = δ(x),
Gm(x, y) = Gm(y, x) ∀x, y ∈ B1(0),

DγGm(x, y)|∂B1(0) = 0, |γ| � m − 1,

⎫⎪⎬
⎪⎭ (2.23)

where δ represents the Dirac function on the unit ball B1(0).
We define the regular part Hm : (B1(0) × B1(0)) → R such that

Hm(x, y) =
Pm,N

|x − y|N−2m
− Gm(x, y).

Let x̄j = xj/µk, ȳ = y/µk ∈ B1(0). Then it holds (see [10, proposition 3.1] and
[3, 19]) that

Hm(ȳ, x̄j)
µN−2m

k

=
C

µN−2m
k |ȳ − x̄j |N−2m

� C

(1 + |y − xj |)N−2m
, (2.24)

Uxj ,Λk
(y) − PkUxj ,Λk

(y) =
Hm(ȳ, x̄j)
µN−2m

k

+ O

(
1

dN
k µN

k

)
, dk =

(
1 − rk

µk

)1/l

. (2.25)

Using (2.24) and (2.25), and letting t = 1/2 + σ/l, we have

|J1(y)| � C

k∑
j=1

|PkUxj ,Λk
(y) − Uxj ,Λk

(y)|
(1 + |y − xj |)4m

�
k∑

j=1

C

(1 + |y − xj |)4m

[
Hm(ȳ, x̄j)
µN−2m

k

+ O

(
1

dN
k µN

k

)]

�
k∑

j=1

C

(1 + |y − xj |)4m+(N−2m)t

(
Hm(ȳ, x̄j)
µN−2m

k

)t

+
k∑

j=1

C

dN
k µN

k (1 + |y − xj |)4m

� C

µ
(N−2m)t
k

k∑
j=1

1
(1 + |y − xj |)4m+(N−2m)t +

C

dN
k µN

k

k∑
j=1

1
(1 + |y − xj |)4m

� C

(
1
µk

)lt k∑
j=1

1
(1 + |y − xj |)4m+(N−2m)t + C

(
1
µk

)N k∑
j=1

1
(1 + |y − xj |)4m

� C

(
1
µk

)l/2+σ k∑
j=1

1
(1 + |y − xj |)(N+2m)/2+τ

. (2.26)

Hence, ‖J1‖∗∗ � C/µ
l/2+σ
k .

https://doi.org/10.1017/S0308210516000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000196


384 Y. Guo, B. Li and Y. Li

Now we define

J2 :=
k∑

j=2

(
K

(
|y|
µk

)
− 1

)
U

(m)∗−1
xj ,Λk

(y) + K

(
|y|
µk

)
U

(m)∗

x1,Λk
(y)

for the following two cases.

Case 1 ((K(|y|/µk) − 1)U (m)∗

xj ,Λk
(y), j = 2, 3, . . . , k). Using that |y − xj | � |y − x1|

and 1/(1 + |y − xj |) � C/|xj − x1| for j �= 1, we have∣∣∣∣
(

K

(
|y|
µk

)
− 1

)
U

(m)∗

xj ,Λk
(y)

∣∣∣∣ � C

(1 + |y − xj |)(N+2m)/2+τ (1 + |y − xj |)(N+2m)/2−τ

� C

(1 + |y − x1|)(N+2m)/2+τ |x1 − xj |(N+2m)/2−τ
.

(2.27)

Case 2 ((K(|y|/µk) − 1)U (m)∗−1
xj ,Λk

(y), j = 1). In this case, we divide Ω1 by I and
II, where I := {y ∈ Ω1 | ||y| − µk| � σµk} and II := {y ∈ Ω1 | ||y| − µk| < δµk}.
For y ∈ I ⊂ Ω1, we observe that ||y| − µk| � σµk, where σ > 0 is a fixed constant.
Then ||y| − |x1|| � ||y| − µk| − ||x1| − µk| � 1

2σµk, and hence∣∣∣∣
(

K

(
|y|
µk

)
− 1

)
U

(m)∗−1
x1,Λk

(y)
∣∣∣∣ � C

(1 + |y − x1|)N+2m

� C

(1 + |y − x1|)(N+2m)/2+τ

(
1
µk

)(N+2m)/2−τ

� C

(1 + |y − x1|)(N+2m)/2+τ

(
1
µk

)l/2+σ

. (2.28)

For y ∈ II ⊂ Ω1, we notice that ||y| − |x1|| � ||y| − µk| + |µk − |x1|| � 2σµk, and

||y| − |x1||l
µl

k(1 + |y − x1|)N+2m
� C|y − x1|l/2+σ

µ
l/2+σ
k (1 + |y − x1|)N+2m

� C

µ
l/2+σ
k (1 + |y − x1|)N+2m−l/2−σ

� C

(1 + |y − x1|)(N+2m)/2+τ

(
1
µk

)l/2+σ

. (2.29)

Therefore, the estimate on subregion II is as follows:∣∣∣∣
(

K

(
|y|
µk

)
− 1

)
U

(m)∗−1
x1,Λk

(y)
∣∣∣∣

� C||y| − |x1||l
µl

k(1 + |y − x1|)N+2m
+

C

µ
l/2+σ
k (1 + |y − x1|)(N+2m)/2+τ
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� C

µ
l/2+σ
k (1 + |y − x1|)(N+2m)/2+τ

+
C

µ
l/2+σ
k (1 + |y − x1|)(N+2m)/2+τ

� C

(1 + |y − x1|)(N+2m)/2+τ

(
1
µk

)l/2+σ

. (2.30)

Combining (2.28) and (2.30), the pointwise estimate of J2 in the slice Ω1 can be
written as

|J2(y)| �
k∑

j=2

∣∣∣∣
(

K

(
|y|
µk

)
− 1

)
Um∗−1

xj ,Λk
(y)

∣∣∣∣ +
∣∣∣∣K

(
|y|
µk

− 1
)

Um∗−1
x1,Λk

(y)
∣∣∣∣

� C

( k∑
j=2

1
|x1 − xj |(N+2m)/2−τ

+
1

µ
l/2+σ
k

)
1

(1 + |y − x1|)(N+2m)/2+τ

� C

µ
l/2+σ
k (1 + |y − x1|)(N+2m)/2+τ

. (2.31)

By symmetry, we have that the pointwise estimate (2.31) holds for all y ∈ Bµk
(0).

Thus,

‖lk‖∗∗ � ‖J0‖∗∗ + ‖J1‖∗∗ + ‖J2‖∗∗ � C

(
1
µk

)l/2+σ

,

as desired.

Now we are ready to prove proposition 2.5.

Proof of proposition 2.5. Let Ek = {ξk ∈ X | ‖ξk‖∗ � C(1/µk)l/2+σ}. Then the
linearized problem (2.16) is equivalent to the fixed-point problem φk = Ak(φk) :=
L−1

k (N(φk)) + L−1
k (lk). By propositions 2.3 and 2.4, we see that L−1

k is a bounded
operator from (Y, ‖ · ‖∗∗) to (X, ‖ · ‖∗). Considering lemmas 2.6 and 2.7, for any
φk ∈ Ek we have

‖Ak(φk)‖∗ � C[‖Nk(φk)‖∗∗ + ‖lk‖∗∗]

� C(‖φk‖min{m∗−1,2}
∗ + µ

−(l/2+σ)
k )

� C

(
1
µk

)l/2+σ

, (2.32)

which implies that Ak maps Ek to Ek itself. By the fixed-point theory, it is sufficient
to prove that Ak is a contraction map. Choose any two different elements ψ1, ψ2 in
Ek. Then, by applying the mean-value theorem twice, there exist some s, t ∈ (0, 1)
such that

‖Ak(ψ1) − Ak(ψ2)‖∗ = ‖L−1
k (Nk(ψ1) − Nk(ψ2))‖∗

� C‖Nk(ψ1) − Nk(ψ2)‖∗∗

� C‖N ′
k(sψ1 + (1 − s)ψ2)(ψ1 − ψ2)‖∗∗, (2.33)
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where

|N ′
k(sψ1 + (1 − s)ψ2)| = |(Wrk,Λk

+ sψ1 + (1 − s)ψ2)(m)∗−2 − W
(m)∗−2
rk,Λk

|

� C|Wrk,Λk
+ tsψ1 + t(1 − s)ψ2|(m)∗−3|sψ1 + (1 − s)ψ2|

�
{

C(|ψ1| + |ψ2|)(m)∗−2 if N � 6m,

CW
(m)∗−3
rk,Λk

(|ψ1| + |ψ2|) if N < 6m.
(2.34)

Similarly to the arguments in lemma 2.6, we estimate the difference Ak(ψ1) −
Ak(ψ2) by

‖Ak(ψ1) − Ak(ψ2)‖∗ �
{

C(‖ψ1‖(m)∗−2
∗ + ‖ψ2‖(m)∗−2

∗ )‖ψ1 − ψ2‖∗ if N � 6m,

C(‖ψ1‖∗ + ‖ψ2‖∗)‖ψ1 − ψ2‖∗ if N < 6m.

(2.35)
Choose k sufficiently large that, for all ψ1, ψ2 ∈ Ek,

C(‖ψ1‖(m)∗−2
∗ + ‖ψ2‖(m)∗−2

∗ ) < 1
2 .

Then Ak is a contraction map from Ek to itself. By the Banach fixed-point theorem,
there is a unique fixed point φk ∈ Ek such that φk = Ak(φk) and

‖φk‖∗ = ‖Ak(φk)‖∗ � C

(
‖φk‖min{(m)∗−1,2}

∗ +
(

1
µk

)l/2+σ)

� C

(
1
µk

)l/2+σ

. (2.36)

3. Energy expansion

The idea of the energy expansion comes from the observation that the nonlinear
energy can be approximated by a linear combination of simple terms with the
parameters µk and Λk for k large enough. We define a perturbed energy functional
Fk : R

2 → R by
Fk(dk, Λk) := Ik(Wrk,Λk

+ φk),

where dk = (1 − rk/µk)1/l, φk is the perturbed solution obtained in the linearized
problem (2.1) and Ik : Dm,2(Bµk

(0)) → R is defined by

Ik(uk) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

∫
Bµk

(0)
|∆m/2uk|2 − 1

(m)∗

∫
Bµk

(0)
K

(
|y|
µk

)
|uk|(m)∗

, m even,

1
2

∫
Bµk

(0)
|∇∆(m−1)/2uk|2 − 1

(m)∗

∫
Bµk

(0)
K

(
|y|
µk

)
|uk|(m)∗

, m odd.

(3.1)

https://doi.org/10.1017/S0308210516000196 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210516000196


Solutions for the polyharmonic Hénon equation 387

Proposition 3.1. If N � 2m + 2, we have

Ik(Wrk,Λk
) = k

[
A +

B1H(x̄1, x̄1)
ΛN−2m

k µN−2m
k

+ B2K
′(1)dl

k

−
k∑

i=1

B3Gm(x̄i, x̄1)
ΛN−2m

k µN−2m
k

+ O

((
1
µk

)l/2+σ)]
, (3.2)

where A, B1, B2 and B3 are positive constants.

Proof. Since PkUxi,Λk
satisfies the projected problem (1.8), we can write

k∑
j=1

k∑
i=1

∫
Bµk

(0)
U

(m)∗−1
xj ,Λk

PkUxi,Λk
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Bµk

(0)
|∆m/2Wrk,Λk

|2, m even,

∫
Bµk

(0)
|∇∆(m−1)/2Wrk,Λk

|2, m odd.

(3.3)
Then the energy Ik(Wrk,Λk

) can be split into two parts: the positive kinetic energy

Kk(Wrk,Λk
) := 1

2

k∑
j=1

k∑
i=1

∫
Bµk

(0)
U (m)∗−1

xj ,µk
PkUxi,Λk

, (3.4)

and the potential energy

Pk(Wrk,Λk
) := − 1

(m)∗

∫
Bµk

(0)
K

(
|y|
µk

)
|Wrk,Λk

|(m)∗
. (3.5)

By changing variables, we have the following expansion of the kinetic term:

Kk(Wrk,Λk
) = 1

2k

[ ∫
Bµk

(x1)
U

(m)∗

0,1 −
∫

Bµk
(0)

U
(m)∗−1
x1,Λk

(Ux1,Λk
− PkUx1,Λk

)

+
k∑

i=2

∫
Bµk

(0)
U

(m)∗−1
x1,Λk

PkUxi,Λk

]

= 1
2k

[ ∫
RN

U
(m)∗

0,1 + O

( ∫
RN \Bµk/k(0)

U
(m)∗

0,1

)

−
∫

Bµk
(0)

U
(m)∗−1
x1,Λk

(y)
Hm(ȳ, x̄1)

ΛN−2m
k µN−2m

k

dy

+ O

(
1

µN
k

)
+

1
ΛN−2m

k µN−2m
k

×
( N∑

i=2

∫
Bµk

(0)
Uxi,Λk

(y)Gm(x̄i, ȳi) dy

)]
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= 1
2k

[
Ā + O

(
1

µ
l(m)∗/2
k

)
− B̄1Hm(x̄1, x̄1)

ΛN−2m
k µN−2m

k

+ O

(
1

µN
k

)
+

B̄2
∑k

i=2 Gm(x̄i, x̄i)
ΛN−2m

k µN−2m
k

]
. (3.6)

Next, we discuss the potential part, Pk(Wrk,Λk
). By the symmetry of the inte-

grations on the slices Ωj , j = 1, 2, . . . , k, we have

Pk(Wrk,Λk
) = − k

(m)∗

∫
Ω1

K

(
|y|
µk

)
|Wrk,Λk

|(m)∗

= − k

(m)∗

{ ∫
Ω1

K

(
|y|
µk

)
(PkUx1,Λk

)(m)∗

+ (m)∗
∫

Ω1

(PkUx1,Λk
)(m)∗−1

( k∑
j=2

PkUxj ,Λk

)

+ O

( ∫
Ω1

∣∣∣∣K
(

|y|
µk

)
− 1

∣∣∣∣
k∑

j=2

U
(m)∗−1
x1,Λk

Uxj ,Λk

+
∫

Ω1

U
N/(N−2m)
x1,Λk

( k∑
j=2

U
N/(N−2m)
xj ,Λk

))}
. (3.7)

The first term on the right-hand side of (3.7) can be calculated as∫
Ω1

K

(
|y|
µk

)
(PkUx1,Λk

)(m)∗

=
∫

Ω1

U
(m)∗

x1,Λk
+

∫
Ω1

K

(
|y|
µk

)
[(PkUx1,Λk

)(m)∗ − U
(m)∗

x1,Λk
]

+
∫

Ω1

(
K

(
|y|
µk

)
− 1

)
U

(m)∗

x1,Λk

= Ā − (m)∗ B̄1Hm(x̄1, x̄1)
ΛN−2m

k µN−2m
k

+ (K(|x1|) − 1)B̄3 + O

((
1
µk

)l/2+σ)

= Ā − (m)∗ B̄1Hm(x̄1, x̄1)
ΛN−2m

k µN−2m
k

− K ′(1)dlB̄3 + O

((
1
µk

)l/2+σ)
. (3.8)

By the definition of the Green function Gm, the second term can be estimated
as
∫

Ω1

(PkUx1,Λk
)(m)∗−1

( k∑
j=2

PkUxj ,Λk

)
=

B̄2
∑k

j=2 Gm(x̄j , x̄1)

ΛN−2m
k µN−2m

k

+ O

(
kN

µN
k

)

=
B̄2

∑k
j=2 Gm(x̄j , x̄1)

ΛN−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)
.

(3.9)
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Since |y − xj | � |y − x1| for all y ∈ Ω1, we can find some s close to N − 2m such
that the last term can be estimated as follows:∫

Ω1

(
K

(
|y|
µk

)
− 1

) k∑
j=2

U
(m)∗−1
x1,Λk

Uxj ,Λk
+ U

(m)∗/2
x1,Λk

( k∑
j=2

Uxj ,Λk

)(m)∗/2

� C

∫
Ω1

U
(m)∗−1
x1,Λk

(1 + |y − x1|)N−2m−s
dy

( k∑
j=2

1
|xj − x1|s

)

+ C

∫
Ω1

U
N/(N−2m)
x1,Λk

(1 + |y − x1|)(N−2m−s)N/(N−2m) dy

( k∑
j=1

1
|xj − x1|s

)N/(N−2m)

� C

(
1
µk

)l/2+σ

. (3.10)

We now combine the estimates (3.8)–(3.10) for the three terms on the right-hand
side of (3.7), such that the potential Pk(Wrk,Λk

) can be expanded in the following
form:

Pk(Wrk,Λk
) = − k

(m)∗

[
Ā − (m)∗ B̄1Hm(x̄1, x̄1)

ΛN−2m
k µN−2m

k

+ (m)∗
N∑

j=2

B̄2Gm(x̄j , x̄1)
ΛN−2m

k µN−2m
k

− K ′(1) dlB̄3 + O

((
1
µk

)l/2+σ)]
.

(3.11)

Considering the kinetic expansion (3.6) and potential expansion (3.11), we get

Ik(Wrk,Λk
) = Kk(Wrk,Λk

) + Pk(Wrk,Λk
)

= 1
2k

[
Ā − B̄1Hm(x̄1, x̄1)

ΛN−2m
k µN−2m

k

+
B̄2

∑k
i=2 Gm(x1, x̄i)

ΛN−2m
k µN−2m

k

+ O(µ−l(m)∗/2
k )

]

− k

(m)∗

[
Ā − (m)∗ B̄1Hm(x̄1, x̄1)

ΛN−2m
k µN−2m

k

+ (m)∗
k∑

j=2

B̄2Gm(x̄j , x̄1)
ΛN−2m

k µN−2m
k

+ O

((
1
µk

)l/2+σ)]

= k

[
A +

B1Hm(x̄1, x̄1)
ΛN−2m

k µN−2m
k

−
B2

∑k
j=2 Gm(x̄j , x̄1)

ΛN−2m
k µN−2m

k

+ B3K
′(1) dl + O

((
1
µk

)l/2+σ)]
,

(3.12)

where

A =
(

1
2

− 1
(m)∗

)
Ā, B1 =

B̄1

2
, B2 =

B̄2

2
, B3 =

B̄3

(m)∗ .
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In the spirit of the expansion in proposition 3.1, we derive similar expansions for

∂Ik(Wrk,Λk
)

∂Λk
and

∂Ik(Wrk,Λk
)

∂γk
.

Proposition 3.2. If N � 2m + 2, then, for k large enough, we have

∂Ik(Wrk,Λk
)

∂Λk
= k(N − 2m)

[
− B1Hm(x̄1, x̄1)

ΛN+1−2m
k µN−2m

k

+
B3

∑k
j=2 Gm(x̄j , x̄1)

ΛN+1−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]
, (3.13)

Ik(Wrk,Λk
)

∂γk
= k

[
B1∂Hm(x̄1, x̄1)/∂γk

ΛN−2m
k µN−2m

k

− B2K
′
k(1)ldl−1

µk

−
k∑

j=2

B3∂Gm(x̄j , x̄1)/∂γk

ΛN+1−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]
. (3.14)

Now we study the respective expansions for the perturbed energy Fk(dk, Λk).

Proposition 3.3. If N � 2m + 2, then

Fk(dk, Λk) = k

[
A +

B1Hm(x̄1, x̄1)
ΛN−2m

k µN−2m
k

+ B2K
′
k(1) dl

−
k∑

j=2

B3Gm(x̄1, x̄j)
ΛN−2m

k µN−2m
k

+ O

((
1
µk

)l/2+σ)]
. (3.15)

Proof. Observe that φk is a solution of the linearized problem (2.1). Therefore,
uk = Wrk,Λk

+ φk satisfies the equation

〈I ′
k(Wrk,Λk

+ φk), φk〉 = 0.

Applying the mean-value theorem to F (dk, Λk) twice, there exist some t ∈ (0, 1),
s ∈ (0, 1) such that

Fk(dk, Λk)
= Ik(Wrk,Λk

) − 1
2 〈D2Ik(Wrk,Λk

+ tφk)(φk), φk〉

= Ik(Wrk,Λk
) +

(m)∗ − 1
2

∫
Bµk

(0)
K

(
|y|
µk

)
[(Wrk,Λk

+ tφk)(m)∗−2 − W
(m)∗−2
rk,Λk

]φ2
k

− 1
2

∫
Bµk

(0)
(Nk(φk) + lk)φk

= Ik(Wrk,Λk
)

+
((m)∗ − 1)((m)∗ − 2)

2

∫
Bµk

(0)
K

(
|y|
µk

)
t(Wrk,Λk

+ tsφk)(m)∗−3φ3
k

− 1
2

∫
Bµk

(0)
(Nk(φk) + lk)φk
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ik(Wrk,Λk
)

+ O

( ∫
Bµk

(0)
(|φk|(m)∗

+ |Nk(φk)||φk| + |lk||φk|)
)

if N � 6m,

Ik(Wrk,Λk
)

+ O

( ∫
Bµk

(0)
W

(m)∗−3
rk,Λk

|φk|3 + |Nk(φk)||φk| + |lk||φk|
)

if N < 6m.

(3.16)

Using lemma 2.6, we find the remainder term of F (dk, Λk) for two cases.

Case 1 (N � 6m). The main part of the remainder term,∫
Bµk

(0)
|φk|(m)∗

,

is given by∫
Bµk

(0)
|φk|(m)∗

� C‖φk‖(m)∗

∗

∫
Bµk

(0)

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)(m)∗

� Ck‖φk‖(m)∗

∗

[ ∫
Ω1

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)(m)∗]

� Ck‖φk‖(m)∗

∗

{ ∫
Ω1

1
(1 + |y − x1|)N+τ

+
∫

Ω1

[ k∑
j=2

1
(1 + |y − xj |)(N−2m)/2+τ

](m)∗}

� Ck‖φkµ−τ
k ‖(m)∗

∗ + Ck‖φk‖(m)∗

∗

( ∫
Ω1

1
(1 + |y − x1|)N

)( k∑
j=2

1
|xj − x1|τ

)(m)∗

� Ck ln k

(
1
µk

)(l/2+σ)(m)∗

� Ck ln k

(
1
µk

)l/2+σ

. (3.17)

Meanwhile, the remaining two nonlinear terms related to Nk(φk) and lk are
estimated as follows:

|Nk(φk)||φk| + |lk||φk|
� Ck‖φk‖∗(‖Nk(φk)‖∗∗ + ‖lk‖∗∗)

×
[ ∫

Bµk
(0)

dy

(1 + |y − x1|)N+2τ
+

∫
Bµk

(0)

dy

(1 + |y − x1|)N+τ

]
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� Ck‖φk‖∗(‖Nk(φk)‖∗∗ + ‖lk‖∗∗)

×
[
µ−2τ

k +
( k∑

j=2

1
|xj − x1|(N−2m)/2+τ

) ∫
Bµk

(0)

dy

(1 + |y − x1|)N+τ

]

� Ck‖φk‖∗(‖Nk(φk)‖∗∗ + ‖lk‖∗∗)

� Ck

(
1
µk

)l/2+σ

. (3.18)

Case 2 (2m + 2 � N � 6m − 1). It is sufficient to estimate the integral∫
Bµk

(0)
W

(m)∗−3
rk,Λk

|φk|3.

Observing that (m)∗ − 3 > 0 for N � 6m − 1, we have∫
Bµk

(0)
W

(m)∗−3
rk,Λk

|φk|3

� C‖φk‖3
∗

∫
Bµk

(0)
W

(m)∗−3
rk,Λk

( k∑
j=1

1
(1 + |y − xj |)(N−2m)/2+τ

)3

� C‖φk‖3
∗

∫
Bµk

(0)

( k∑
i=1

1
(1 + |y − xi|)6m−N

)

×
( k∑

j=1

1
(1 + |y − xj |)(3N−6m)/2+3τ

)

� Ck‖φk‖3
∗

∫
Bµk

(0)

1
(1 + |y − x1|)6m−N

×
k∑

j=1

1
(1 + |y − xj |)(3N−6m)/2+3τ

dy

� Ck‖φk‖3
∗

[ ∫
Bµk

(0)

dy

(1 + |y − x1|)(N+6m)/2+3τ

+
k∑

j=2

∫
Bµk

(0)

dy

(1 + |y − x1|)6m−N (1 + |y − xj |)(3N−6m)/2+3τ

]

� Ck‖φk‖3
∗

[
µ

−((6m−N)/2+3τ)
k

+
k∑

j=2

1
|x1 − xj |τ

∫
Bµk

(0)

dy

(1 + |y − x1|)(N+6m)/2+2τ

]

� Ck‖φk‖3
∗[µ

−((6m−N)/2+3τ)
k + µ

−((6m−N)/2+2τ)
k ]

� C

(
1
µk

)l/2+σ

. (3.19)
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Thus, the desired result is obtained by combining (3.17)–(3.19) with the expan-
sion (3.2) for Ik(Wrk,Λk

).

4. Proof of theorem 1.1

Observe that
∂

∂dk
= −lµkdl−1

k

∂

∂rk
∼ −lµk

∂

∂rk
.

Recall the energy expansion (3.15) for the perturbed energy functional Fk(dk, Λk).
Then we have

∂Fk(dk, Λk)
∂dk

= −lµkdl−1
k

∂Fk(dk, Λk)
∂rk

= −µkl

[
∂Ik(Wrk,Λk

)
∂rk

+ O

((
1
µk

)l/2+σ)]

= −µklk

[
B1∂Hm(x̄1, x̄1)/∂rk

ΛN−2m
k µN−2m

k

− B2K
′(1) dl−1

k l

µk

−
k∑

j=2

B3∂Gm(x̄j , x̄1)/∂rk

ΛN−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]

= k

[
lB1∂Hm(x̄1, x̄1)/∂dk

ΛN−2m
k µN−2m

k

+ B2K
′(1)l2dl−1

k

−
k∑

j=2

B3l∂Gm(x̄j , x̄1)/∂dk

ΛN−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]

= k

[
B1l∂Hm(x̄1, x̄1)/∂dk

ΛN−2m
k µN−2m

k

+ B2K
′(1) dl−1

k l2

−
B3l

∑k
j=2 ∂Gm(x̄j , x̄1)/∂dk

ΛN−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]
.

(4.1)

Similarly, we obtain

∂Fk(dk, Λk)
∂Λk

=
Ik(Wrk,Λk

)
∂Λk

+ O

((
1
µk

)l/2+σ)

= k(N − 2m)
[
− B1Hm(x̄1, x̄1)

ΛN+1−2m
k µN−2m

k

+
B2

∑k
i=2 Gm(x̄i, x̄1)

ΛN+1−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]
.

(4.2)

Since x̄j = xj/µk ∈ B1(0), j = 1, 2, . . . , k, letting x̄∗
1 = (1/(1 − dk),0) be the

reflection of x̄1 with respect to the unit sphere, we have the following asymptotic
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estimates for Hm and Gm:

Hm(y, x̄1) =
1

|y − x̄∗
1|N−2m

(1 + O(dk)), (4.3)

Hm(x̄1, x̄1) =
1 + O(dk)

2N−2m dN−2m
k

, (4.4)

Gm(y, x̄1) =
1

|y − x̄1|N−2m
− (1 + O(dk))

|y − x̄∗
1|

. (4.5)

For j = 2, 3, . . . , k, there exists some positive constant B4 > 0 such that

k∑
j=2

Gm(x̄j , x̄1)

=
k∑

j=2

[
1

|x̄j − x̄1|N−2m
− 1 + O(dk)

|x̄j − x̄∗|N−2m

]

=
k∑

j=2

kN−2m

|j − 1|N−2m|x̄1|N−2m

×
(

1 − (1 + O(dk))
(

1 +
4d2

k + 4dk|x̄j − x̄1| sin((j − 1)π/k)
|x̄i − x̄1|2

)2/(N−2m))
= B4k

N−2m + O(kN−2m dk). (4.6)

Let

A1 =
B1

2N−2m
, A2 = B2K

′(1) and A3 = B3B4.

Utilizing (4.4) and (4.6), we can obtain a more precise expansion for F (dk, Λk) and
∂F (dk, Λk)/∂Λk:

Fk(dk, Λk) = k

[
A +

A1

dN−2m
k ΛN−2m

k µN−2m
k

+ A2d
l
k

− A3k
N−2m

ΛN−2m
k µN−2m

k

+ O

((
1
µk

)l/2+σ)]
, (4.7)

∂Fk(dk, Λk)
∂Λk

= k

[
− A1(N − 2m)

dN−2m
k ΛN+1−2m

k µN−2m
k

+
A3k

N−2m(N − 2m)
ΛN+1−2m

k µN−2m
k

+ O

((
1
µk

)l/2+σ)]
, (4.8)

∂Fk(dk, Λk)
∂dk

= k

[
− A1(N − 2m)

dN−2m+1
k ΛN−2m

k µN−2m
k

+ lA2d
l−1
k + O

((
1
µk

)l/2+σ)]
. (4.9)
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Thus, the pair (dk, Λk) is the critical point of the perturbed functional F if and
only if (dk, Λk) satisfies the following system:

− A1(N − 2m)
dN−2m

k ΛN+1−2m
k µN−2m

k

+
A3k

N−2m(N − 2m)
ΛN+1−2m

k µN−2m
k

+ O

((
1
µk

)l/2+σ)
= 0,

− A1(N − 2m)
dN−2m+1

k ΛN−2m
k µN−2m

k

+ lA2d
l−1
k + O

((
1
µk

)l/2+σ)
= 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(4.10)

Letting Dk := kdk, we define a vector functional F = (f1, f2) as the principal
part of system (4.10):

f1(Dk, Λk) = − A1(N − 2m)
ΛN−2m+1

k DN−2m
k

+
A3(N − 2m)
ΛN−2m+1

k

,

f2(Dk, Λk) = − A1(N − 2m)
ΛN−2m

k DN−2m+l
k

+ lA2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

Then F = 0 has a solution

(D0
k, Λ0

k) =
((

A1

A3

)1/(N−2m)

,

(
(N − 2m)A(N−2m+l)/(N−2m)

3

lA
l/(N−2m)
1 A2

)1/(N−2m))
,

with

∂f1

∂Dk

∣∣∣∣
(D0

k,Λ0
k)

> 0,
∂f2

∂Λk

∣∣∣∣
(D0

k,Λ0
k)

> 0,
∂f1

∂Λk

∣∣∣∣
(D0

k,Λ0
k)

= 0,
∂f2

∂Dk

∣∣∣∣
(D0

k,Λ0
k)

> 0.

Hence, by (4.9) and (4.8), the Jacobian of the perturbed function Fk at (D0
k, Λ0

k)
is strictly positive. The implicit function theorem implies that there exists some
(Dk, Λk) near (D0

k, Λ0
k) that solves (4.10) for any k � k0, where k0 is sufficiently

large. Therefore, we obtain infinitely many solutions {uk = Wrk,Λk
+ φk}k�k0 in

accordance with the infinite series {(Dk, Λk)}k�k0 .
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