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We consider scalar hyperbolic conservation laws with non-convex flux and vanishing,
nonlinear and possibly singular, diffusion and dispersion terms. The diffusion has the
form R(u, ux)x and we cover, for instance, the singular diffusion (|ux|pux)x, where
p � 0 is arbitrary. We investigate the existence, uniqueness and various properties of
classical and non-classical travelling waves and of the kinetic function. The latter
serves to characterize non-classical shock waves, via an additional algebraic constrain
called a kinetic relation. We discover that p = 1

3 is a somewhat unexpected critical
value. For p � 1

3 , we obtain properties that are qualitatively similar to those we
established earlier for regular and linear diffusion. However, for p > 1

3 , the behaviour
of the kinetic function is very different, as, for instance, non-classical shocks can have
arbitrary small strength. The behaviour of the kinetic function near the origin is
carefully investigated and depends on whether p < 1

2 , p = 1
2 or p > 1

2 . In particular,
in the special case of the cubic flux-function and for the regularization (|ux|pux)x

with p = 0, 1
2 or 1, the kinetic function can be computed explicitly. When p = 1

2 , the
kinetic function is simply a linear function of its argument.

1. Introduction

This paper is part of a series by the authors [4–7] concerned with the effect of
vanishing diffusion and dispersion terms on discontinuous solutions of hyperbolic
(or hyperbolic–elliptic) systems of conservation laws. The existence of travelling
waves and the properties of the associated shock waves were investigated for vari-
ous models arising in fluid dynamics and solid mechanics. In the present paper, we
investigate whether our earlier results [4] extend to rather general, strongly nonlin-
ear and possibly singular diffusion terms. Our motivation is twofold. On the one
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hand, nonlinear, degenerate diffusion has been found useful in many applications
of fluid and solid mechanics and has been studied mathematically (for instance,
in [19, 21, 28]). On the other hand, the kinetic function generated by singular dif-
fusion turns out to have unusual properties, which are of interest by themselves in
connection with the general theory of non-classical shock waves recently developed
in [18].

Consider the nonlinear hyperbolic conservation law

ut + f(u)x = 0, u(x, t) ∈ R, x ∈ R, t > 0, (1.1)

where the flux f : R → R is a given smooth function satisfying the (so-called)
concave–convex property

uf ′′(u) > 0 for all u �= 0, lim
±∞

f ′ = +∞. (1.2)

The case f(u) = u3, for instance, is typical in applications. Solutions of (1.1) are
discontinuous and fail to be uniquely determined from their initial data. It is cus-
tomary to add a vanishing right-hand side to (1.1) based on second- (or higher-)
order derivatives in order to regularize the solutions and, in the limit, select physi-
cally meaningful solutions. Here, we consider a regularization of the general form

ut + f(u)x = (R(u, βux))x + γ(c1(u)(c2(u)ux)x)x, u = uβ,γ(x, t), (1.3)

where β > 0 and γ � 0 are some parameters tending to zero. The nonlinear
dispersion coefficients c1, c2 > 0 are given, Lipschitz continuous functions. The
diffusion function R = R(u, v) is such that

(H1) R(u, 0) = 0;

(H2) R(u, v) is Lipschitz continuous and monotone increasing in v, for every u;

(H3) there exists p � 0 such that, by setting R(u, v) = b(u, v)|v|pv, the function b
is continuous and, for all u

¯
< ū, there exist constants 0 < b

¯
< b̄ such that

b
¯

� b(u, v) � b̄ for all u
¯

� u � ū, v ∈ R.

Our objective is to generalize to the model (1.3) the results obtained earlier in [4]
about the existence and properties of diffusive–dispersive travelling wave solutions.
We will be able to cover general diffusions of the form described in (H1)–(H3)
for arbitrary p � 0. Interestingly enough, when p is sufficiently large (specifically
when p > 1

3 ), the diffusion is ‘so degenerate’ that non-classical shocks of arbitrary
small amplitude are found in the zero diffusion–dispersion limit. This is not so for
smaller values p � 1

3 (in particular, for the case p = 0 studied in [4]), in which all
trajectories with sufficiently small strength are always classical.

For the terminology used in the present paper (non-classical shocks, undercom-
pressive waves, kinetic relations, etc.), we refer the reader to the textbook [18]. It is
well known that (second-order) diffusion terms have a smoothing effect on the solu-
tions of (1.1), while (third-order) dispersion terms tend to generate high-frequency
oscillations. The regime in which both effects are kept in balance is of particular
interest and, from now on, we assume that

the ratio γ/β2 is constant.

https://doi.org/10.1017/S0308210500003504 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003504


Travelling waves with singular diffusion 817

Consider the entropy–entropy flux pair (U, F ) given by

U ′′(u) =
c2(u)
c1(u)

, F (u) =
∫ u

0
U ′(s)f ′(s) ds, u ∈ R.

In the entropy variable û = U ′(u), we can rewrite equation (1.3) in the form

∂tu + ∂xf(u) = (R(u, βux))x + γ(c1(u)(c1(u)ûx)x)x.

Clearly, any (smooth) solution of (1.3) satisfies the balance law:

∂tU(u) + ∂xF (u) = Ω,

Ω := (U ′(u)R(u, βux))x − U ′′(u)R(u, βux)ux

+ γ(ûc1(u)(c1(u)ûx)x − 1
2c1(u)2|ûx|2)x.

⎫⎪⎬
⎪⎭ (1.4)

Observe that, in the right-hand side of (1.4), the contribution from the diffusion
decomposes into a conservative term and a non-positive one, while the contribution
from the dispersion is entirely conservative. Henceforth, in the limit β, γ → 0, the
function u = lim uβ,γ is a solution of (1.1) satisfying the entropy inequality

∂tU(u) + ∂xF (u) � 0. (1.5)

This entropy inequality is going to play a central role in the present paper. It
is now well recognized that the so-called kinetic relation must be prescribed to
uniquely determine the propagation speed of non-classical shocks within general
discontinuous solutions of (1.1). For further material on the entropy inequality in
connection with classical and non-classical shock waves, we refer to [18] and the
references therein.

Recall that a travelling wave solution of (1.3) is a smooth function of the form

uβ,γ(x, t) = u(y), y = x − λt,

where the constant λ is the wave speed. It satisfies the ordinary differential equation

−λuy + f(u)y = (R(u, βuy))y + γ(c1(u)(c2(u)uy)y)y, u = uβ,γ , (1.6)

together with the boundary conditions

lim
y→±∞

u(y) = u±, lim
y→±∞

uy(y) = lim
y→±∞

uyy(y) = 0, (1.7)

where u± are constant states. Letting β, γ → 0, we see that the pointwise limit

u(x, t) = lim
β,γ→0

uβ,γ(x, t) =

{
u−, x < λt,

u+, x > λt,
(1.8)

is a weak solution of (1.1) satisfying the inequality (1.5). From (1.6) and (1.7), one
deduces that u−, u+ and λ satisfy the Rankine–Hugoniot relation

−λ(u+ − u−) + f(u+) − f(u−) = 0. (1.9)
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A travelling wave connecting two states u− and u+ and converging to a classi-
cal (respectively, non-classical) shock will be called a classical (respectively, non-
classical) trajectory. The existence of travelling waves with linear diffusion and dis-
persion were studied by Bona and Schonbek [9], Jacobs et al . [16] and the authors
in [4]. In particular, the paper [4] covers the class of diffusions

R(u, βux) = βb(u)ux.

On the other hand, when f(u) = u3 and with the nonlinear diffusion–dispersion
term

R(u, βux) = β2|ux|ux,

Hayes and LeFloch [13] proved the existence of non-classical trajectories by exhibit-
ing an explicit formula for the kinetic function (see § 3 below). Other works on
the effect of dispersive terms on shock waves and the properties of kinetic func-
tions for systems include Slemrod [24, 25], Truskinovsky [22, 26, 27], Abeyaratne
and Knowles [1–3], Fan and Slemrod [12], Shearer et al . [8, 20, 23], LeFloch et
al . [13–15, 17, 18], Colombo and Corli [10] and Corli and Fan [11]. See [18] for an
overview of recent results.

Our objective in the present paper is to investigate to what extent the qualitative
properties of Hayes–LeFloch’s example are valid for more general concave–convex
flux-functions f and for a large class of possibly singular regularizations. We will
derive detailed information on the non-classical shocks in terms of the associated
kinetic function ϕ(u). In particular, we will prove the following results.

(1) If 0 � p � 1
3 , then

(i) given any value of the ratio γ/β2, all shocks with sufficiently small
strength are always classical;

(ii) given any left-hand value u−, the shocks are all classical if the ratio γ/β2

is sufficiently small, i.e. if the diffusion is sufficiently large;
(iii) given any left-hand value u−, there always exist non-classical trajectories

leaving from u− provided the ratio γ/β2 is sufficiently large, i.e. provided
the dispersion is sufficiently large.

(2) If p > 1
3 , then, for any given left-hand value u−, there always exist non-

classical trajectories leaving from u−.

Furthermore, the arguments in [4] could also extend to show that, under some
mild assumption on the flux f and for any given ratio γ/β2, there always exist
non-classical trajectories associated with shocks of sufficiently large strength.

We will also be able to describe the behaviour of the kinetic function near the
origin. Assume that f satisfies f ′′′(0) �= 0 and set α = β/

√
γ. Then the kinetic

function ϕ(u) := ϕ�
α(u) has the following asymptotic behaviour in u = 0.

Case 1. If 0 � p < 1
2 , then ϕ�′

pα(0) = − 1
2 .

Case 2. If p = 1
2 , then ϕ�′

pα(0) ∈ (−1,− 1
2 ), with

lim
α→0+

ϕ�′
pα(0) = −1 and lim

α→+∞
ϕ�′

pα(0) = − 1
2 .

Case 3. If 1
2 < p, then ϕ�′

pα(0) = −1.

https://doi.org/10.1017/S0308210500003504 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003504


Travelling waves with singular diffusion 819

In addition, we will describe three rather interesting, explicit examples of kinetic
functions associated with the cubic flux f(u) = u3. In fact, no explicit formula
for the non-classical shocks is available, except in the cubic-flux case first treated
in [16] for p = 0 and in [13] for p = 1 and, in the present paper, for p = 1

2 . In the
latter case, we discover here that the kinetic function is linear in u.

An outline of this paper follows. The main results are stated in § 2. In § 3, we
describe examples of kinetic functions. Sections 4 and 5 contain the proofs of the
main results. The proofs consist of suitable extensions of the techniques developed
earlier by Jacobs et al . [16] and by the authors [4]. There are several new difficulties.
For instance, when p > 1, the trajectories may blow up even when u is bounded. On
the other hand, the critical value p = 1

3 is quite unexpected. (To have transition at
p = 1 could have been expected.) In addition, the behaviour of the kinetic function
at the origin is associated with yet another critical value, p = 1

2 .

2. Main results

Observe that, using (1.7), equation (1.6) can be integrated once:

γc1(u)(c2(u)uy)y + R(u, βuy) = −λ(u − u−) + f(u) − f(u−). (2.1)

From (1.7) and (2.1), and by letting y → +∞, we obtain the Rankine–Hugoniot
relation

−λ(u+ − u−) + f(u+) − f(u−) = 0. (2.2)

Throughout this paper, we are interested in β, γ > 0, except in theorem 2.4, where
we will take γ = 0. When γ = 0, equation (2.1) is an ordinary differential equation
on the real line: all of the solutions are monotone and their behaviour is easily
determined by straightforward monotonicity arguments (see theorem 2.4 below for
a statement of the result in this case). The (more interesting) case γ > 0 requires
a phase-plane analysis.

Since c2(u) > 0, by the simple rescaling

d
dy

→ 1
√

γc2(u)
d
dy

,

we get the simpler equation

uyy + R̂(u, αuy) = c(u)(−λ(u − u−) + f(u) − f(u−)), (2.3)

where

α =
β

√
γ

, c(u) =
c2(u)
c1(u)

= U ′′(u)

and
R̂(u, v) = c(u)R(u, v/c2(u)).

Clearly, the function R̂ satisfies the same assumptions as R, which we restate here
for convenience.

(H1) R̂(u, 0) = 0.

(H2) R̂(u, v) is Lipschitz continuous and monotone increasing in v, for every u.
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(H3) R̂(u, v) = b̂(u, v)|v|pv, where b̂ is continuous in (u, v) and satisfies the following
bounds: for all u

¯
< ū, there exist constants 0 < b

¯
< b̄ such that

b
¯

� b̂(u, v) � b̄ for all u
¯

� u � ū, v ∈ R.

Here, the functions b̂ and b are related by

b̂(u, v) =
1

c1(u)c2(u)p
b(u, v/c2(u)).

In the rest of this paper, without loss of generality, we can therefore assume that

γ = 1, c2(u) = 1,

and we set c(u) = 1/c1(u) and α = β. We then rewrite (2.3) in the form

uy = v, (2.4 a)
vy = −c(u)R(u, αv) + c(u)(g(u, λ) − g(u−, λ)) (2.4 b)

and
lim

y→±∞
u(y) = u±, lim

y→±∞
v(y) = 0, (2.4 c)

where
g(u, λ) := f(u) − λu. (2.5)

The relation (2.2) then reads

g(u−, λ) = g(u+, λ).

We will need the following notation:

f ′(ϕ�(u)) =
f(u) − f(ϕ�(u))

u − ϕ�(u)
for all u �= 0. (2.6)

Note that uϕ�(u) < 0 and, by continuity, ϕ�(0) = 0. Thanks to (1.2), the map
ϕ� : R → R is strictly monotone decreasing and onto, and so is invertible. Its
inverse function is denoted by ϕ−�. Finally, for each u−, we set

λ�(u−) = f ′(ϕ�(u−)),

which is a lower bound for all shock speeds λ satisfying (2.2) for some u+. We
denote by λ−� the inverse function of λ�.

Given u−, let us define the global entropy dissipation function by

H(u−, u+) =
∫ u+

u−

c(u)(g(s, λ) − g(u−, λ)) ds, u+ ∈ R, (2.7)

where

λ = ā(u−, u+) :=

⎧⎪⎨
⎪⎩

f(u+) − f(u−)
u+ − u−

, u+ �= u−,

f ′(u−), u+ = u−.

(2.8)

Based on (1.4), it can be checked (see [4]) that the following result holds.
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Lemma 2.1. If there exists a travelling wave of (2.4) connecting u− to u+, then

H(u−, u+) � H(u−, u−) = 0,

where the inequality is strict if u− �= u+ and β > 0. In addition, there exists a
strictly monotone decreasing function ϕ�

0 : R → R such that, for all u− �= 0,

H(u−, u+) = 0 and u+ �= u− if and only if u+ = ϕ�
0(u−).

For all u−, u+, we have

H(u−, u+) > 0 if and only if sgn(u−)ϕ�
0(u−) < sgn(u−)u+ < sgn(u−)u−

and
sgn(u−)ϕ−�(u−) � sgn(u−)ϕ�

0(u−) � sgn(u−)ϕ�(u−).

The function ϕ�
0 corresponds to the maximal negative entropy dissipation. From

lemma 2.1, we deduce that, if there exists a travelling wave of (2.4) connecting u−
to u+, then

u+ lies between ϕ�
0(u−) and u−.

Define the function ϕ�
0 and λ0 by the conditions λ0(0) = 0 and, for u− �= 0,

λ0(u−) =
f(u−) − f(ϕ�

0(u−))
u− − ϕ�

0(u−)
=

f(u−) − f(ϕ�
0(u−))

u− − ϕ�
0(u−)

(2.9)

and sgn(u−)ϕ�
0(u−) � sgn(u−)ϕ�

0(u−). The speed λ0(u−) is the maximal admissible
speed for the range of right-hand states u+ included between ϕ�

0(u−) and ϕ�(u−),
at least. Recall that λ�(u−) is a lower bound for the speeds.

To state the results, for each left-hand state u−, we define the shock set generated
by the equation (2.1) as

Sα(u−) := {u+/ there exists a travelling wave satisfying (1.6), (1.7)}.

Theorem 2.2 (classical and non-classical shock waves). Consider the travelling
wave solutions of (1.6), (1.7) under the assumptions that the flux satisfies (1.2)
and the diffusion–dispersion ratio α = β/

√
γ belongs to the interval (0,∞). Then

there exists a function ϕ�
α : R → R satisfying

sgn(u)ϕ�
0(u) < sgn(u)ϕ�

α(u) � sgn(u)ϕ�(u) for all u �= 0. (2.10)

The shock set is given by

Sα(u) =

{
{ϕ�

α(u)} ∪ (ϕ�
α(u), u], u � 0,

[u, ϕ�
α(u)) ∪ {ϕ�

α(u)}, u � 0.
(2.11)

Here, the function ϕ�
α is defined from ϕ�

α by

f(u) − f(ϕ�
α(u))

u − ϕ�
α(u)

=
f(u) − f(ϕ�

α(u))
u − ϕ�

α(u)
for all u �= 0,
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with the constraint sgn(u)ϕ�(u) � sgn(u)ϕ�
α(u). Furthermore, the function ϕ�

α is
strictly monotone decreasing, and, in particular, the shock speed

λ�
α(u) := ā(u, ϕ�

α(u))

is strictly monotone increasing for u > 0 and strictly monotone decreasing for
u < 0.

Also, the kinetic function satisfies the following property. If 0 � p � 1
3 , then

there exists a Lipschitz continuous function A�
p : R → [0,∞), u0 �→ A�

p(u0), with
A�

p(0) = 0, called the threshold diffusion–dispersion function, such that

ϕ�
α ≡ ϕ� if and only if α � A�

p(u0). (2.12)

If p > 1
3 , then

ϕ�
α(u) �= ϕ�(u) for all u �= 0. (2.13)

The function ϕ�
α : R → R is called the kinetic function associated with the

model (1.3). It completely characterizes the dynamics of the non-classical shock
waves of the hyperbolic conservation law (1.1).

Theorem 2.3 (properties of the kinetic functions at the origin). When the func-
tion f satisfies f ′′′(0) �= 0, the kinetic functions has the following behaviour near the
origin.

(i) For p = 0, we have

ϕ�′
pα(0) = − 1

2 , A�
p(0) = 0, |A�′

p (0±)| > 0.

(ii) For 0 < p � 1
3 , we have

ϕ�′
pα(0) = − 1

2 , A�
p(0) = 0, A�′

p (0±) = +∞.

(iii) For 1
3 < p < 1

2 , we have
ϕ�′

pα(0) = − 1
2 .

(iv) For p = 1
2 , we have

ϕ�′
pα(0) ∈ (−1,− 1

2 ),

ϕ�′
pα(0) depends on α and

lim
α→0+

ϕ�′
pα(0) = −1, lim

α→+∞
ϕ�′

pα(0) = − 1
2 .

(v) For 1
2 < p, we have

ϕ�′
pα(0) = −1.

Theorems 2.2 and 2.3 are the main results of the present paper. The proofs are
the subject of §§ 3–5 below. The dispersion-free case is much simpler and is dealt
with in the next theorem.
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Theorem 2.4 (diffusive shock waves). For any p � 0, consider the travelling wave
solutions of (1.6), (1.7) under the assumptions that the flux satisfies (1.2) and
α := β/

√
γ = ∞. Then the shock set is given by

S∞(u) =

{
[ϕ�(u), u], u � 0,

[u, ϕ�(u)], u � 0.
(2.14)

Moreover, the travelling waves have ‘compact support’ if p > 0, in the sense that
they are identically constant outside a bounded interval.

Proof. When γ = 0, equation (2.1) becomes

R(u, βuy) = f(u) − f(u0) − λ(u − u0).

Assume that u0 < 0. Then, thanks to (H2), the implicit function theorem shows
that, for u0 < u < u1, we can write uy = K(u), where K is a smooth function.
From this we deduce that

y(u) =
∫ u

ũ

du

K(u)
,

where it is convenient to choose ũ := 1
2 (u1 + u0). Now, using (H3) and for some

constants lp, Lp, we obtain

lim
u→u0

y(u) =

{
lp > −∞, p > 0,

−∞, p = 0,

and

lim
u→u1

y(u) =

{
Lp < +∞, p > 0,

+∞, p = 0.

This completes the proof of theorem 2.4.

We complete this section with some further notation, which will be useful later
on. For definiteness, we always suppose that the left-hand state is negative,

u− < 0.

It will be convenient to set
u0 = u−.

Since the flux-function f is concave–convex, given any speed in the interval

λ ∈ (λ�(u−), f ′(u−)),

there exist exactly three distinct solutions u0, u1 and u2 of (2.4) with

u0 < u1 < ϕ�(u0) < u2. (2.15)

Define the local entropy dissipation function by

G(u, u0, λ) :=
∫ u

u0

(g(s, λ) − g(u0, λ))c(s) ds.

Observe that ∂uG(u, u0, λ) = 0 if and only if u is an equilibrium point. The following
properties of the function G were established by the authors in [4].
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Lemma 2.5. Given u0 < 0 and λ in the interval λ ∈ (λ�(u−), f ′(u−)), the function
G̃(u) := G(u, u0, λ) satisfies

G̃′(u) > 0 for all u ∈ (u0, u1) or u > u2,

G̃′(u) < 0 for all u < u0 or u ∈ (u1, u2).

Moreover, if λ ∈ (λ�(u0), λ0(u0)), we have

G̃(u0) = 0 < G̃(u2) < G̃(u1).

If λ = λ0(u0), then
G̃(u0) = G̃(u2) = 0 < G̃(u1).

If λ ∈ (λ0(u0), f ′(u0)), then

G̃(u2) < 0 = G̃(u0) < G̃(u1).

From lemmas 2.1 and 2.5, we conclude that

if there exists a trajectory connecting u0 to u1, then λ ∈ [λ�(u0), f ′(u0)] (2.16)

and

if there exists a trajectory connecting u0 to u2, then λ ∈ [λ�(u0), λ0(u0)]. (2.17)

3. Kinetic functions when f(u) = u3 and R(u, ux) = |ux|pux

When the flux is taken to be the cubic function f(u) = u3 and when c1(u) =
c2(u) = 1, and R(u, v) = |v|pv, p � 0, then

ϕ�(u) = − 1
2u, ϕ�

0(u) = −u. (3.1)

In the case p = 0, Jacobs et al . [16] were able to derive an explicit formula for the
kinetic function, precisely,

ϕ�
α(u) =

⎧⎪⎪⎨
⎪⎪⎩

−u − 1
3

√
2α, u � − 2

3

√
2α,

− 1
2u, |u| < 2

3

√
2α,

−u + 1
3

√
2α, u � 2

3

√
2α.

(3.2)

They also proved that the threshold diffusion–dispersion ration is given by

A�
0(u0) =

3
2
√

2
|u0|. (3.3)

In the case p = 1, Hayes and LeFloch [13] discovered that the kinetic function is
given by the (implicit) formula

∫ ϕ�
α(u0)

u0

(f(u) − f(u0) − λ(u − u0)) exp(2αu) du = 0,

where λ =
f(ϕ�

α(u0)) − f(u0)
ϕ�

α(u0) − u0
. (3.4)

In addition, when p = 1, the kinetic function satisfies ϕ�′
α(0) = −1.

Our result for general p is the following one.
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Theorem 3.1. When f(u) = u3 and R(u, αux) = αp+1|ux|pux, the critical diffu-
sion satisfies

A�
p(u0) =

{
ap|u0|(1−2p)/(p+1), 0 < p � 1

3 ,

+∞, p > 1
3 ,

(3.5)

where ap is a positive constant depending only on p.
The kinetic function satisfies (for all α > 0)

ϕ�′
pα(0) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 , 0 < p < 1

2 ,

kα ∈ (−1,− 1
2 ), p = 1

2 ,

−1, p > 1
2 .

(3.6)

Moreover, when p = 1
2 , the kinetic function is linear,

ϕ�
pα(u) := kαu, (3.7)

where the coefficient kα < 0 and α �→ kα is a strictly monotone increasing function
of α, mapping (0, +∞) onto (−1,− 1

2 ).

Proof. Equation (2.3) becomes

uyy + αp+1|uy|puy = u3 − u3
0 − λ(u − u0). (3.8)

This equation is invariant by the transformation u → −u. This allows us to restrict
our attention to u0 < 0, since the values u0 > 0 are dealt with by a symmetry
argument. Setting z = u/u0, z0 = 1, z2 = u2/u0 and using the scaling ξ = |u0|y,
we obtain

zξξ + κp+1|zξ|pzξ = z3 − z3
0 − λ∗(z − z0), (3.9)

where

λ∗ =
z3
2 − z3

0

z2 − z0
=

λ

u2
0

(3.10)

and

κ = α|u0|(2p−1)/(p+1). (3.11)

This means that for κ and α related by (3.11), we have

ϕ�
α(u0)
u0

= ϕ�
κ(1). (3.12)

It can be checked, using theorem 5.1 with u0 = 1, that, by setting ap = A�
p(1) and

considering (3.11), we can derive (3.5). On the other hand, using (3.11), (3.12) and
the fact that

lim
κ→0

ϕ�
κ(1) = ϕ�

0(1) = −1, lim
κ→+∞

ϕ�
κ(1) = ϕ�(1) = − 1

2 ,

and that κ = α if p = 1
2 , we get (3.6) and (3.7). Finally, the monotonicity of

α �→ kα is a direct consequence of the monotonicity of the mapping α �→ ϕ�
α(1), to

be established later in § 4 (lemma 4.4).
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4. Existence of non-classical trajectories

From now on, we suppose that p > 0, since the (regular) case p = 0 can be treated
easily from the ideas in [4], where there is a minor difference that is that the diffusion
coefficient b here depends not only on u, but also on v.

In this section, a propagation speed λ and a left-hand state u0 < 0 are given, and
we look for non-classical trajectories connecting u0 to the associated equilibrium u2
introduced in § 2. According to our earlier discussion (see the conclusion (2.17)),
we necessarily have

u2 ∈ [ϕ�(u0), ϕ�
0(u0)], λ ∈ [λ�(u0), λ0(u0)], (4.1)

which will thus be assumed throughout the discussion. We want to prove that a
trajectory connecting u0 to u2 exists if and only if the parameter α = β/

√
γ has

a specific value, depending, of course, on u0 and λ. For all p > 0, the eigenvalues
associated with the system (2.4) linearized at the equilibrium points u0, u1 and u2
satisfy

µ2 = c(u)(f ′(u) − λ).

So we set

µ
¯
(u, λ) := −

√
c(u)(f ′(u) − λ), µ̄(u, λ) :=

√
c(u)(f ′(u) − λ). (4.2)

We have the following properties of equilibria u0, u1, and u2, in the general case
β � 0 and γ ∈ R\{0}. Note that (4.1) is not needed at this stage yet. If f ′(u)−λ > 0,
then (u, 0) is a saddle point having, by definition, two real eigenvalues with opposite
sign, µ

¯
< 0 < µ̄. If f ′(u) − λ < 0, then (u, 0) is a centre having two purely

imaginary eigenvalues. We now state our main result in this section, relying now
on the conditions (4.1).

Theorem 4.1 (non-classical trajectories). Assume that p > 0. Given two states
u0 < 0 and u2 > 0 corresponding to a propagation speed λ satisfying

λ = ā(u0, u2) =
f(u2) − f(u0)

u2 − u0
∈ (λ�(u0), λ0(u0)] (4.3)

or, equivalently, λ ∈ [λ0(u2), λ−�(u2)), there is a unique value of the diffusion
parameter α � 0 such that u0 can be connected to u2 by a travelling wave solution
of (2.4).

Since µ̄(u0) > 0, by general properties of differential equations, there exist two
trajectories leaving from u0 at y = −∞ and satisfying

lim
y→−∞

v(y)
u(y) − u0

= µ̄(u0, λ) =
√

c(u)(f ′(u) − λ). (4.4)

One trajectory approaches this point in the quadrant Q1 = {u < u0, v < 0}, while
the other approaches it in the quadrant Q2 = {u > u0, v > 0}. On the other hand,
there are two trajectories reaching u2 at y = +∞ and satisfying

lim
y→+∞

v(y)
u(y) − u2

= µ
¯
(u2, λ) = −

√
c(u)(f ′(u) − λ). (4.5)
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One trajectory approaches this point in the quadrant Q3 = {u < u2, v > 0}; the
other approaches it in the quadrant Q4 = {u > u2, v < 0}. As in [4], it is easy
to deduce that, in the phase plane, a travelling wave solution connecting u0 to u2
necessarily approaches the equilibrium (u0, 0) at y = −∞ through the quadrant
Q2, and the equilibrium (u2, 0) at y = +∞ through the quadrant Q3. It is not
difficult to check that any travelling wave is monotone in some limited range, at
least of the variable u. More precisely, if u = u(y) is a solution of (2.4) defined on
an interval (−∞, ȳ) and satisfies limy→−∞u(y) = u0 and u0 < u(y) < u1 for all
y < ȳ, then we must have uy > 0 on the interval (−∞, ȳ). Similarly, if u = u(y) is a
solution of (2.4) defined on an interval (ȳ, +∞) and satisfying limy→+∞u(y) = u2
and u1 < u(y) < u2 for all y > ȳ, then we have uy > 0 on the interval (ȳ, +∞).

The above property justifies and motivates the re-parametrization of the trajec-
tories with the variable u instead of y for both of the semi-trajectories leaving from
u0 and from u2, respectively.

Lemma 4.2. The trajectories leaving from u0 in Q2 cross the line u = u1 for the
‘first time’ at some point (u1, v

−
1 (α)). This part of the trajectory is the graph of a

function
[u0, u1] 	 u �→ v−(u, λ, α).

Moreover, for all fixed u ∈ (u0, u1), the function [0, +∞) 	 α �→ v−(u, λ, α) is
strictly monotone decreasing.

Proof. Multiplying (2.4 b) by uy, using (H1) and (H2), and finally integrating over
(−∞, y], we get

0 � v �
√

2G(u, u0, λ).

Thus the trajectory defining in the neighbourhood of (u0, 0) remains bounded in
Q2 for all u ∈ [u0, u1], and this concludes the first statement of lemma 4.2. Now,
combining (2.4 a) and (2.4 b), we see that the function u �→ v−(u, λ, α) satisfies the
following key equation in the phase plane:

v
dv

du
+ c(u)R(u, αv) = Gu(u, u0, λ). (4.6)

Take two diffusion values 0 � α
¯

< ᾱ and consider the corresponding trajectories
issuing from u0, say, v

¯
(u) = v−(u, λ, α

¯
) and v̄(u) = v−(u, λ, ᾱ), respectively. Then,

using (4.4), we get that, for all u ∈ (u0, u0 + ε] with ε 
 1,

R(u, α
¯
v
¯
) − R(u, ᾱv̄)

∼ b(u, 0)(α
¯

p+1 − ᾱp+1)(u − u0)p+1c(u)(p+1)/2(f ′(u0) − λ)(p+1)/2

< 0.

Thus we obtain from (4.6) that

d
du

(v
¯
2 − v̄2) > 0,

and then
v
¯
(u) > v̄(u) for u ∈ (u0, u0 + ε].
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Now assume that there exists a first point u∗ ∈ [u0 + ε, u1) such that v
¯
(u∗) =

v̄(u∗) = v∗. Then, on the one hand,

dv
¯

du
(u∗) � dv̄

du
(u∗),

and, on the other hand, from (H2), we get

R(u∗, α
¯
v∗) < R(u∗, ᾱv∗).

But this contradicts the identity obtained from (4.6),

v∗
(

dv
¯

du
(u∗) − dv̄

du
(u∗)

)
+ c(u∗)(R(u∗, α

¯
v∗) − R(u∗, ᾱv∗)) = 0.

This completes the proof of lemma 4.2.

Lemma 4.3. For each p > 0, there exists a constant αp ∈ (0, +∞] satisfying

αp =

{
+∞, 0 < p � 1,

< +∞, p > 1,

such that, for all α < αp, the trajectory converging to u2 in Q3 crosses the line
u = u1 for the ‘last’ time at some point of the form (u1, v

+
1 (α)). This part of the

trajectory is the graph of a function

[u1, u2] 	 u �→ v+(u, λ, α).

Moreover, for each u ∈ [u1, u2), the function [0, αp) 	 α �→ v+(u, λ, α) is strictly
monotone increasing and satisfies

lim
α→αp

v+
1 (α) = +∞.

Proof. First, the monotonicity of α �→ v+(u, λ, α) is obtained in the same manner
as the function α �→ v−(u, λ, α). In comparison with our earlier results [4], we note
that, when p � 1, the existence of v+

1 (α) is not guaranteed for all values of α � 0.
Thanks to (H3), and to the continuity of the function u �→ c(u), for some positive

constants d
¯

and d̄, we have

d
¯

� c(u)b(u, v) � d̄ for all (u, v) ∈ [u1, u2] × R.

We distinguish between three cases.

Case 1 (0 < p < 1). Integrating equation (4.6) over [u, u2] with u1 � u � u2, we
get

1
2v2(u) = G(u, u2, λ) +

∫ u2

u

c(u)R(u, αv) du.

But, since Gu � 0 on [u1, u2], the function u �→ v(u) is necessarily monotone
decreasing on the same interval. Then

1
2v2(u) � αp+1d̄(u2 − u)vp+1(u) + G(u, u2, λ),

which clearly implies that v remains bounded and v+
1 (α) exists for all α � 0.
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Consider now equation (4.6) divided by vp+1, that is,

1
vp

dv

du
+ αp+1c(u)b(u, αv) =

Gu(u, u0, λ)
vp+1 . (4.7)

Since Gu � 0 on [u1, u2], integrating (4.7) over the latter interval yields

1
1 − p

(0 − v+
1 (α)1−p) � −d

¯
αp+1(u2 − u1).

Thus we obtain that

v+
1 (α)1−p � (1 − p)d

¯
αp+1(u2 − u1)

and limα→+∞ v+
1 (α) = +∞.

Case 2 (p = 1). Let us define the two functions

z(u) := v2(u) exp(2d
¯
α2u), w(u) := v2(u) exp(2d̄α2u).

Then, on the one hand,

dw

du
(u) = 2 exp(2d̄α2u)

(
v

dv

du
(u) + d̄α2v2

)
� 2 exp(2d̄α2u)Gu(u, u2, λ),

and a simple integration over [u, u2] gives that w is bounded and thus v is also
bounded. The existence of v+

1 (α) is ensured for all α. On the other hand, the
function z satisfies

dz

du
(u) = 2 exp(2d

¯
α2u)

(
v

dv

du
(u) + d

¯
α2v2

)
� 2 exp(2d

¯
α2u)Gu(u, u2, λ).

Then we get

z(u1) � 2
∫ u2

u1

exp(2d
¯
α2s)|Gu(s, u2, λ)| ds (4.8)

� 2
∫ u2−u1

0
exp(2d

¯
α2(s + u1))|Gu(s + u1, u2, λ)| ds (4.9)

� 2 exp(2d
¯
α2u1)

∫ u2−u1

(u2−u1)/2
exp(2d

¯
α2s)|Gu(s + u1, u2, λ)| ds. (4.10)

Finally,

v+
1 (α)2 � 2

∫ u2−u1

(u2−u1)/2
exp(2d

¯
α2s)|Gu(s + u1, u2, λ)| ds (4.11)

� 2 exp(d
¯
α2(u2 − u1))

∫ u2−u1

(u2−u1)/2
|Gu(s + u1, u2, λ)| ds (4.12)

� C exp(d
¯
α2(u2 − u1)), (4.13)

where C is some positive constant. Then limα→+∞ v+
1 (α) = +∞.
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Case 3 (p > 1). First, note that, since the function u �→ v+(u, λ, 0) is bounded in
[u1, u2], by continuity, this property remains valid for the function u �→ v+(u, λ, α),
for small values of α. Taking ũ = 1

2 (u1 + u2) and ṽα = v+(ũ, λ, α), integration
of (4.7) over the interval [u1, ũ] gives

1
p − 1

(ṽ1−p
α − v+

1 (α)1−p) � αp+1d
¯
(ũ − u1).

Then
v+
1 (α)1−p � ṽ1−p

α − 1
2 (p − 1)d

¯
αp+1(u2 − u1).

Thanks to the monotonicity of α → ṽα, we have

v+
1 (α)1−p � ṽ1−p

0 − 1
2 (p − 1)d

¯
αp+1(u2 − u1).

Since the right-hand side of the last inequality is negative for large values of α, we
obtain the existence of a finite αp for which v+

1 (α) exists for all α ∈ [0, αp) and, at
the same time, we obtain that limα→αpv+

1 (α) = +∞. This completes the proof of
lemma 4.3.

Proof of theorem 4.1. The continuous function

[0, +∞) 	 α �→ v±(α) := v+(u1, λ, α) − v−(u1, λ, α) = v+
1 (α) − v−

1 (α)

measures the distance (in the phase plane) between the two trajectories when they
reach the value u = u1. Therefore, the condition v±(α) = 0 characterizes the
travelling wave solution of interest connecting u0 to u2.

Suppose first that α = 0. Integrating (4.6), on the one hand, with v = v− and
over the interval [u0, u1], and on the other hand with v = v+ and over the interval
[u1, u2], we get

1
2 (v−

1 (α))2 = G(u1, u0, λ)

and

1
2 (v+

1 (α))2 = G(u1, u0, λ) − G(u2, u0, λ) = G(u1, u2, λ),

respectively. Since G(u2, u0, λ) > 0 by lemma 2.5, we conclude that v±(0) < 0. But,
from lemmas 4.2 and 4.3, we have that α �→ v±(α) is strictly monotone increasing
and

lim
α→αp

v±(α) = +∞.

Together with v±(0) < 0, this completes the proof of theorem 4.1.

The existence of the non-classical travelling waves is thus established. We can
also prove the following result.

Lemma 4.4 (properties of the critical diffusion–dispersion ratio). Define

∆ = {(u0, u2) ∈ R− × R+/u2 ∈ (ϕ�(u0), ϕ�
0(u0)]}

= {(u0, u2) ∈ R− × R+/u0 ∈ (ϕ−�(u2), ϕ�
0(u2)]}
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and consider the function

∆ 	 (u0, u2) �→ A(u0, u2),

which associates the (unique) value α such that there is a (non-classical) travelling
wave connecting u0 to u2 (theorem 4.1). Then we have the following.

(1) A(u0, u2) is a strictly monotone decreasing function of u2, mapping the inter-
val (ϕ�(u0), ϕ�

0(u0)] onto some interval of the form [0, A�
p(u0)), where A�

p(u0) ∈
(0,∞].

(2) A(u0, u2) is a strictly monotone decreasing function of u0, mapping the inter-
val (ϕ−�(u2), ϕ�

0(u2)] onto the interval [0, A�
p(ϕ

−�(u2))).

Following [18, ch. III], we refer to A(u0, u2) as the critical diffusion–dispersion
ratio at (u0, u2), where the value A�

p(u0) is called the threshold diffusion–dispersion
ratio at u0: non-classical trajectories leaving from u0 exists only when α < A�

p(u0).

Proof. We will prove the first statement; the proof of the second one being similar.
We fix u0 < 0 and u0 < u2 < u∗

2 so that

λ�(u0) < λ = ā(u0, u2) < λ∗ = ā(u0, u
∗
2) � λ0(u0),

and, in particular,
µ̄(u0, λ) > µ̄(u0, λ

∗).

Proceeding by contradiction, we assume that

α∗ := A(u0, u
∗
2) � α := A(u0, u2).

Let v = v(u) and v∗ = v∗(u) be the solutions of (4.6) associated with α and α∗,
respectively, and connecting u0 to u2 and u0 to u∗

2, respectively. By continuity, there
would exist some u3 ∈ (u0, u2) such that

v(u3) = v∗(u3),
dv∗

du
(u3) � dv

du
(u3).

Combining (4.6) for v and v∗, we get

v(u3)
(

dv∗

du
(u3) − dv

du
(u3)

)
+ c(u3)(R(u3, α

∗v(u3)) − R(u3, αv(u3)))

= c(u3)(λ∗ − λ)(u0 − u3),

which leads to a contradiction, since the left-hand side is positive and the right-hand
side is negative. Namely, we have, on the one hand,

v(u3) > 0 and
dv∗

du
(u3) − dv

du
(u3) � 0,

and on the other hand, thanks to (H3),

R(u3, α
∗v(u3)) − R(u3, αv(u3)) � 0.

Furthermore, λ∗ − λ > 0 and u0 − u3 < 0. We conclude that α∗ < α.
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5. Properties of the kinetic function and classical trajectories

In this section, we derive some important asymptotic properties of the non-classical
trajectories. First we check that the threshold diffusion–dispersion ratio does not
remain finite for all values of p.

Theorem 5.1. With the notation of lemma 4.4, we have the following.

Case 1. If 0 < p � 1
3 , then

A�
p(u0) < ∞ for all u0.

Moreover, there exists a travelling wave connecting u0 to u2 = ϕ�(u0) for the critical
diffusion α = A�

p(u0).

Case 2. If p > 1
3 , then

A�
p(u0) = +∞ for all u0.

Proof. Consider some value u0 < 0 together with the corresponding values ϕ�(u0)
and

λ�(u0) =
f(ϕ�(u0)) − f(u0)

ϕ�(u0) − u0
.

By theorem 4.1, for each given λ ∈ (λ�(u0), λ0(u0)], there exists a unique non-
classical trajectory, denoted by u �→ v(u) and connecting u0 to some u2 satisfying

v
dv

du
+ c(u)R(u, αv) = Gu(u, u0, λ), (5.1)

with

λ = ā(u0, u2) =
f(u2) − f(u0)

u2 − u0
, u2 > ϕ�(u0), α = A(u0, u2).

Then it is easy to see that, for all u � u0,

Gu(u, u0, λ) � Gu(u, u0, λ
�(u0)). (5.2)

Now, setting

C = 1
2 sup{c(u)} sup{f ′′(u)2}, u ∈ [u0, ϕ

�(u0)],

and using (5.1) and (5.2), we obtain

v
dv

du
+ R(u, αv) � Ch(u)2 for all u ∈ [u0, ϕ

�(u0)], (5.3)

where
h(u) = ϕ�(u0) − u. (5.4)

Consider the case 0 < p � 1
3 . Then there exists δ such that

1
1 − p

� δ � 2
p + 1

. (5.5)
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Consider the function

u → v∗(u) = (ϕ�(u0) − u)δ = h(u)δ.

For a given α∗, we can write

v∗ dv∗

du
+ c(u)R(u, α∗v∗) = −δh(u)2δ−1 + α∗p+1c(u)b(u, α∗v∗)h(u)(p+1)δ.

Let us now introduce the positive constants d
¯

and d̄ such that

d
¯

� c(u)b(u, v) � d̄ for all (u, v) ∈ [u0, ϕ
�(u0)] × R.

Then, for all u ∈ [u0, ϕ
�(u0)],

v∗ dv∗

du
+ c(u)R(u, α∗v∗) � h(u)(p+1)δ(−δh(u)(1−p)δ−1 + d

¯
α∗p+1). (5.6)

It is clear that the curve u → v(u) crosses the curve u → v∗(u) at some point u3
such that

u0 < u3 < ϕ�(u0), v(u3) = v∗(u3),
dv

du
(u3) � dv∗

du
(u3).

Combining inequalities (5.3) and (5.6), we have

v(u3)
(

dv∗

du
(u3) − dv

du
(u3)

)
+ c(u3)(R(u3, α

∗v∗(u3)) − R(u3, αv(u3)))

� h(u3)(p+1)δ(−δh(u3)(1−p)δ−1 − Ch(u3)2−(p+1)δ + d
¯
α∗p+1).

Now, using the monotonicity of h, since (1 − p)δ − 1 � 0 and 2 − (p + 1)δ � 0
by (5.5) and by taking α∗ sufficiently large such that

d
¯
α∗p+1 � δh(u0)(1−p)δ−1 + Ch(u0)2−(p+1)δ,

we get

v(u3)
(

dv∗

du
(u3) − dv

du
(u3)

)
+ c(u3)(R(u3, α

∗v∗(u3)) − R(u3, αv(u3))) � 0,

and, by assumption (H2), we obtain that, necessarily,

α � α∗.

Finally, since A(u0, u2) remains bounded as u2 tends to ϕ�(u0) and thanks to the
continuity of the travelling wave u → v(u) with respect to the parameters λ and α,
we can define the travelling wave connecting u0 to ϕ�(u0) by

v(·, u0, A
�
p(u0)) = lim

u2→ϕ�(u0)
v(·, u0, A(u0, u2)).

Consider now the case p > 1
3 . Assume, by contradiction, that A�

p(u0) < ∞. Then,
by continuity, there exists a travelling wave u → v(u) connecting u0 to ϕ�(u0) for
α = A�

p(u0). Clearly, since

µ
¯
(u2, λ) = −

√
c(u2)(f ′(u2) − λ),
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passing to the limit when λ → λ�(u0), such a curve satisfies

dv

du
(ϕ�(u0)) = lim

λ→λ�(u0)
µ
¯
(u2, λ) = 0.

Furthermore, we have that v(u) > 0 for u ∈ (u0, ϕ
�(u0)). The last property

allows us to construct a strictly monotone increasing sequence (un) in the interval
( 1
2ϕ�(u0), ϕ�(u0)) ∈ (u0, ϕ

�(u0)) such that

dv

du
(un) � 0 and lim

n→∞
un = ϕ�(u0). (5.7)

On the other hand, the constant

K = 1
2 inf{c(u)} inf{f ′′(u)2}, u ∈ [ 12ϕ�(u0), ϕ�(u0)] (5.8)

is positive and we have

Gu(u, u0, λ
�(u0)) � Kh(u)2 for all ∈ [ 12ϕ�(u0), ϕ�(u0)], (5.9)

where h is defined by (5.4). Combining (5.7) and (5.9) and setting vn = v(un), we
get

d̄αp+1vp+1
n � c(un)R(un, αvn) � Kh(un)2,

which gives
vn � Ch(un)2/(p+1), (5.10)

where C is some positive constant.
On the other hand, using (4.7) and (H3), and since G′

u(u, u0, λ
�(u0)) � 0 for

u � u0, we get
1

v(u)p

dv

du
+ d

¯
αp+1 � 0 for all u � u0. (5.11)

Note that it is easy to check that if p � 1, any solution of (5.11) cannot satisfy
v(ϕ�(u0)) = 0. Now, when 1

3 � p < 1, an integration of (5.11) over [u, ϕ�(u0)], for
u ∈ [u0, ϕ

�(u0)], gives

1
1 − p

(0 − v(u)1−p) + d
¯
αp+1h(u) � 0 for u ∈ [u0, ϕ

�(u0)].

Then
vn � C ′h(un)1/(1−p), (5.12)

where C ′ is some positive constant. Finally, combining (5.10) and (5.12), we obtain
that, for some positive constant C ′′,

h(un)(2/(p+1)−1/(1−p)) � C ′′.

But this is not possible, since

2
p + 1

− 1
1 − p

=
1 − 3p

1 − p2 < 0

and h(un) → h(ϕ�(u0)) = 0 when n → ∞. This completes the proof of theorem 5.1.
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We now study classical trajectories. Given some u0 < 0 and α > 0, we study the
existence of the (classical) travelling waves connecting u− = u0 to u+ = u1 (see
the notation (2.15)). The shock speed here lies in the interval λ ∈ (λ�(u0), f ′(u0)).
According to the results in § 4, for u0 < 0 fixed, we obtain a critical diffusion value
A(λ, u0) for each speed (in some range), for which a non-classical trajectory exists
from u0 to u2. So we can consider the mapping

λ �→ A(λ, u0),

which is defined and strictly decreasing from the interval (λ�(u0), λ0(u0)] onto
[0, A�

p(u0)). Hence this mapping admits an inverse function

α �→ Λ(u0, α)

defined from the interval [0, A�
p(u0)) onto (λ�(u0), λ0(u0)]. By construction, given

any α ∈ [0, A�
p(u0)), there exists a non-classical trajectory (associated with the

shock speed Λ(α, u0)) leaving from u0 and solving the equation with the prescribed
diffusion α.

Theorem 5.2 (classical trajectories). Fix some u0 < 0 and α > 0. For every speed
satisfying Λ(u0, α) < λ � f ′(u0), there exists a unique travelling wave connecting
u− = u0 to u+ = u1. Moreover, in the case that α � A�

p(u0) (when p � 1
3 ), there also

exists a travelling wave connecting u− = u0 to u+ = u1 for all λ ∈ [λ�(u0), f ′(u0)].
If λ�(u0) < λ < Λ(u0, α), then there is no travelling wave connecting u− = u0 to

u+ = u1.

The proof of theorem 5.2 is similar to the case p = 0, given in [4, theorems 5.1
and 5.2].

We now return to the non-classical travelling waves, regarding now α as a fixed
parameter. We define the kinetic function for non-classical shocks,

(u0, α) �→ ϕ�
α(u0) = u2,

where u2 denotes the right-hand state of the non-classical trajectory. So we have

f(u0) − f(u2)
u0 − u2

= Λ(u0, α) = λ�
α(u0).

Note that, when p � 1
3 , ϕ�

α(u0) makes sense for all u0 ∈ R but α < A�
p(u0).

According to theorem 5.2, this function can be extended to all values of α by
setting

ϕ�
α(u0) = ϕ�(u0) for all α � A�

p(u0).

For the same reason, function Λ(α, u0) may be extended to arbitrary values α by
setting

Λ(α, u0) = λ�(u0) for all α � A�
p(u0).

The following is an important property of the kinetic function.

Lemma 5.3. For each α > 0, the mapping u0 �→ ϕ�
α(u0) is strictly monotone

decreasing.

The proof of lemma 5.3 is similar to the case p = 0, given in [4, theorem 5.3].
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Proof of theorem 2.2. The result in theorem 4.1 provides us with the existence and
uniqueness of the non-classical shocks, while theorem 5.2 is concerned with the clas-
sical trajectories. These results prove that the shock set (see § 2) is given by (2.11).
On the other hand, the monotonicity properties of the kinetic function is provided
by lemma 5.3, from which we can also immediately deduce the monotonicity of the
shock speed as a function of u0. Equations (2.12) and (2.13) are a consequence of
theorem 5.1.

We now give the proof of theorem 2.3. Assume that f satisfies f ′′′(0) > 0 and
set k := 1

6f ′′′(0). Given α � 0, there exists u2 = ϕ�
α(u0) such that there exists a

travelling wave solution of (2.4) connecting u0 to u2.
Since the cubic function satisfies theorem 3.1, the proof of theorem 2.3 is the

consequence of the following two lemmas.

Lemma 5.4. Suppose that 0 < p � 1
3 . Consider the flux function f∗(u) = ku3 and

the constant coefficients c∗
1 = c1(0), c∗

2 = c2(0) and b∗ = b(0, 0). Define

A�
p(u0) = A�

p(u0, f, b, c) and A�∗
p (u0) = A�

p(u0, f
∗, b∗, c∗)

as the threshold diffusions at u0 for equation (2.4), with corresponding flux and
coefficients. Then we have

A�
p(u0) ∼ A�∗

p (u0) when u0 → 0.

The case p = 0 was already treated in [4, theorem 4.2]. It is clear that the
proof therein, modulo minor changes, immediately extends for all 0 < p � 1

3 . In
particular, one relies here on the fact that the threshold diffusion is finite.

Lemma 5.5. With the notation of lemma 5.4, consider the corresponding kinetic
functions,

ϕ�
α(u0) = ϕ�

α(u0, f, b, c) and ϕ�∗
α (u0) = ϕ�

α(u0, f
∗, b∗, c∗).

Then we have

ϕ�′
α(0) =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 if 0 < p < 1

2 ,

ϕ�∗′
α (0) if p = 1

2 ,

−1 if p > 1
2 .

(5.13)

Remark 5.6. Note that (5.13) is equivalent to saying that ϕ�′
α(0) = ϕ�∗′

α (0) for all
p � 0.

Proof. First, when 0 � p � 1
3 , we clearly have that ϕ�′

α(0) = − 1
2 . Indeed, in this

case, thanks to lemma 5.4, we have A�
p(0) = 0. Then, by continuity, α > A�

p(u0) for
small u0 and ϕ�

α(u0) = ϕ�(u0), which imply that

ϕ�′
α(0) = ϕ�′

(u0) = − 1
2 .

For p > 1
3 , A�

p(u0) = +∞ and the previous properties are not valid. We give a
rigorous proof, which is also valid for all p > 0. Without loss of generality, we can
assume that f(0) = f ′(0) = 0. Given ε > 0, there exists η > 0 such that, for |u| � η,
we have
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Travelling waves with singular diffusion 837

(i) |ϕ�(u) + 1
2u| � 1

2ε3|u|;

(ii) |f ′′(u) − 6ku| � 6ε3k|u|;

(iii) |c(u) − c(0)| � ε4c(0).

Also, using the continuity of b on (u, v) = (0, 0) and since the velocity satisfies

0 � v(u) �
√

2G(u, u0, λ) �
√

2G(ϕ�(u0), u0, λ�(u0)), u ∈ [u0, u2],

and
lim

u0→0
G(ϕ�(u0), u0, λ

�(u0)) = 0,

we can choose η sufficiently small such that, for all |u| � |u0| � η, and

|v| �
√

2G(ϕ�(u0), u0, λ�(u0)),

then

(iv) |b(u, v) − b(0, 0)| � εb(0, 0).

Fix −η � u0 < 0 (the proof being similar for 0 < u0 � η). Given α � 0, there exists
u2 = ϕ�

α(u0) such that there exists a travelling wave solution of (2.4) connecting u0
to u2. Consider the functions

f+(u) = k(1 + 2ε3)u3 = k+u3 and f−(u) = k(1 − 2ε3)u3 = k−u3

and the constant functions c+
1 , c+

2 , b+ and c−
1 , c−

2 , b− defined by

c+ = c(0)(1 + ε4), b+ = b(0, 0)(1 + ε),

c− = c(0)(1 − ε4), b− = b(0, 0)(1 − ε).

Thus we may define

u+
2 = ϕ�+

α (u0) = ϕ�
α(u0, f+, b+, c+), u−

2 = ϕ�−
α (u0) = ϕ�

α(u0, f−, b−, c−).

We also define the speeds

λ =
f(u2) − f(u0)

u2 − u0
, λ+ =

f+(u+
2 ) − f+(u0)
u+

2 − u0
and λ− =

f−(u−
2 ) − f−(u0)
u−

2 − u0
.

Step 1. We begin by proving the inequality

λ+ − λ � max(f ′
+(u0) − f ′(u0), f ′

+(u2) − f ′(u2)) + kε3u2
0. (5.14)

Thanks to (ii), and since u0 < 0 and u2 > 0, we obtain that f(u2) � k(1 − ε3)u3
2

and f(u0) � k(1 − ε3)u3
0. Thus

λ � k(1 − ε3)
u3

2 − u3
0

u2 − u0

and we can write

λ+ − λ � k(1 + 2ε3)
u+

2
3 − u3

0

u+
2 − u0

− k(1 − ε3)
u2

3 − u3
0

u2 − u0
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and

� k(1 − ε3)
(

u+3
2 − u3

0

u+
2 − u0

− u3
2 − u3

0

u2 − u0

)
+ 3kε3

u+3
2 − u3

0

u+
2 − u0

.

But, since u+
2 � −u0, we obtain

λ+ − λ � k(1 − ε3)
(

u+
2

3 − u3
0

u+
2 − u0

− u2
3 − u3

0

u2 − u0

)
+ 3kε3u2

0 (5.15)

On the other hand, thanks to (ii), we have

f ′
+(u0) − f ′(u0) � 3k(1 + 2ε3)u2

0 − 3k(1 + ε3)u2
0 � 3kε3u2

0. (5.16)

Assume, by contradiction, that (5.14) does not hold. Then

λ+ −λ > f ′
+(u0)−f ′(u0)+kε3u2

0 and λ+ −λ > f ′
+(u2)−f ′(u2)+kε3u2

0. (5.17)

Combining (5.15)–(5.17), we get

u+
2

3 − u3
0

u+
2 − u0

− u3
2 − u3

0

u2 − u0
> 0.

We can distinguish between two situations: if u2 < − 1
2u0, then, since u+

2 � − 1
2u0,

we have u+
2 > u2.

If u2 � − 1
2u0, using the monotonicity of the speed for u � − 1

2u0, we also get
that u+

2 > u2. Consider now the two travelling waves solutions of (2.4) connecting
u0 to u2 and u0 to u+

2 , respectively. The corresponding curves in the phase plan
u �→ v(u) and u �→ v+(u) satisfy

v
dv

du
+ c(u)R(u, αv) = c(u)(f(u) − f(u0) − λ(u − u0)) = c(u)l(u) (5.18)

and

v+ dv+

du
+ c+R+(u, αv+) = c+(f+(u) − f+(u0) − λ+(u − u0)) = c+l+(u), (5.19)

respectively. Here, R+ is clearly defined by

R+(u, αv+) = b+αp+1|v|pv.

We have

dv

du
(u0) =

√
c(u0)(f ′(u0) − λ) >

√
c+(f ′

+(u0) − λ+) =
dv+

du
(u0).

Indeed, using (5.17), we have

c+(f ′
+(u0) − λ+) − c(u0)(f ′(u0) − λ)

= c+((f ′
+(u0) − λ+) − (f ′(u0) − λ)) + (c+ − c(u0))(f ′(u0) − λ)

< −c+kε3u2
0 + (c+ − c(u0))(f ′(u0) − λ).

With our assumptions, (c+ − c(u0))(f ′(u0) − λ) � Cε4u2
0. Then, for small ε > 0,

the right-hand side is negative.
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Now, since

u+
2 > u2 and

dv

du
(u0) >

dv+

du
(u0),

the two curves meet at least at some value u3, u0 < u3 < u2, such that

dv+

du
(u3) � dv

du
(u3).

Combining (5.18) and (5.19), we get

v(u3)
(

dv+

du
(u3) − dv

du
(u3)

)
+ (c+b+ − c(u3)b(u3, v(u3)))v(u3)p+1

= c+l+(u3) − c(u3)l(u3)

= (c+ − c(u3))l+(u3) + c(u3)(l+(u3) − l(u3)). (5.20)

We can write

l+(u3) − l(u3) =
∫ u3

u0

(f ′
+(u) − f ′(u) − λ+ + λ) du =

∫ u3

u0

g(u) du.

Since g(u0) < −kε3u2
0 and g(u2) < −kε3u2

0 by (5.17), and

ug′(u) = u(f ′′
+(u) − f ′′(u)) > 0,

we deduce that g(u) < −kε3u2
0 for all u ∈ [u0, u2], and particularly for u ∈ [u0, u3].

We obtain that
l+(u3) − l(u3) < −kε3u2

0(u3 − u0). (5.21)

On the other hand,

(c+ − c(u3))l+(u3) � 2ε4c(u0)|l+(u3)| � 2ε4c(u0)(u3 − u0)|f ′
+(u4) − λ+|

for some u4 ∈ (u0, u3). Then

(c+ − c(u3))l+(u3) � 2ε4c(u0)(u3 − u0)|f ′
+(u0) − λ�(u0)| � C(u3 − u0)ε4u2

0, (5.22)

where C is a positive constant. Using (5.21) and (5.22), we obtain that, for small
ε > 0, the right-hand side in (5.20) is negative, while, by assumption, the left-hand
side is non-negative. This gives us a contradiction and we conclude that (5.14)
holds.

Step 2. We now prove that inequality (5.14) implies that

u+
2 � u2(1 + ε).

Indeed, as in step 1, using (ii) and since u0 < 0 and u2 > 0, we obtain

f(u2) � k(1 + ε3)u3
2 and f(u0) � k(1 + ε3)u3

0.

Thus we have

λ+ − λ � k(1 + 2ε3)
u+3

2 − u3
0

u+
2 − u0

− k(1 + ε3)
u3

2 − u3
0

u2 − u0

� k(1 + ε3)
(

u+3
2 − u3

0

u+
2 − u0

− u3
2 − u3

0

u2 − u0

)
+ kε3

u+3
2 − u3

0

u+
2 − u0
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and, since u+
2 � − 1

2u0,

λ+ − λ � k(1 + ε3)
(

u+3
2 − u3

0

u+
2 − u0

− u3
2 − u3

0

u2 − u0

)
+ 3

4kε3u2
0. (5.23)

On the other hand, using (ii),

f ′
+(u0) − f ′(u0) � 3k(1 + 2ε3)u2

0 − 3k(1 − ε3)u2
0 � 9kε3u2

0. (5.24)

Now, by (5.14), assume that

λ+ − λ � f ′
+(u0) − f ′(u0) + kε3u2

0, (5.25)

the case λ+ − λ � f ′
+(u2) − f ′(u2) + kε3u2

0 being similar.
Combining (5.23), (5.24) and (5.25), we obtain

(1 + ε3)
(

u+3
2 − u3

0

u+
2 − u0

− u3
2 − u3

0

u2 − u0

)
� Cε3u2

0,

which we can rewrite in the form

(u+
2 − u2)(u+

2 + u2 + u0) � Cε3u2
0

for small ε > 0. Now assume, by contradiction, that u+
2 > u2(1 + ε). Then, on the

one hand, using (i), we get

u+
2 + u2 + u0 � (2 + ε)u2 + u0 � (2 + ε)(− 1

2u0)(1 − ε3) + u0 � C|u0|ε

and, on the other hand,
u+

2 − u2 > εu2 � C|u0|ε.
Combining the last three inequalities, we obtain a contradiction of the form ε2 �Cε3.
We conclude that

u+
2 � u2(1 + ε).

Finally, it is clear that, via some symmetry considerations, we also obtain that
u−

2 � u2(1 − ε) for small ε > 0. Finally, we have

u+
2

1 + ε
� u2 � u−

2

1 − ε
. (5.26)

Step 3. Using (5.26), we now prove (5.13).
As we have seen in the proof of theorem 3.1, this results from the property of scal-

ing of the cubic function. Indeed, the travelling waves connecting u0 to u∗
2 = ϕ�∗

α (u0)
and u0 to u+

2 = ϕ�+
α (u0), with the corresponding coefficients, result in, respectively,

uyy + αp+1c∗b∗|uy|puy = c∗k(u3 − u3
0 − λ(u − u0))

and

uyy + αp+1c+b+|uy|puy = c+k+(u3 − u3
0 − λ(u − u0)).

Then, with the notation given earlier, a simple rescaling gives

u+
2 = ϕ�+

α (u0) = ϕ�∗
α+(u0), (5.27 a)
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where
α+ = α(1 + ε)1/(p+1)(1 + 2ε3)(p−1)/(2(1+p))

√
1 + ε4. (5.27 b)

In addition, the transformation (3.11), (3.12) remains valid for f∗ and, using (5.27),
we get

u+
2

u0
= ϕ�∗

κ+(1), (5.28 a)

where

κ+ = α+|u0|(2p−1)/(p+1)

= α(1 + ε)1/(p+1)(1 + 2ε3)(p−1)/(2(1+p))
√

1 + ε4|u0|(2p−1)/(p+1). (5.28 b)

Similarly, we have
u−

2

u0
= ϕ�∗

κ−(1), (5.29 a)

where

κ− = α(1 − ε)1/(p+1)(1 − 2ε3)(p−1)/(2(1+p))
√

1 − ε4|u0|(2p−1)/(p+1). (5.29 b)

Finally, since u0 < 0, we can rewrite (5.26) in the form

1
1 − ε

ϕ�∗
κ−(1) � u2

u0
� 1

1 + ε
ϕ�∗

κ+(1). (5.30)

To conclude, we distinguish between three cases.

Case 1 (0 � p < 1
2 ). Here,

lim
u0→0

κ+ = lim
u0→0

κ− = +∞.

Thus, using (5.28) and (5.29),

lim
u0→0

ϕ�∗
κ+(1) = lim

u0→0
ϕ�∗

κ−(1) = ϕ�∗
∞(1) = ϕ�∗(1) = − 1

2 .

Choosing δ � η, we obtain that, for all |u0| � δ,

−3ε � u2

u0
+ 1

2 � 3ε,

which implies that ϕ�′
α(0) = − 1

2 .

Case 2 (p > 1
2 ). Here,

lim
u0→0

κ+ = lim
u0→0

κ− = 0.

Thus, similarly, using (5.28) and (5.29), we get ϕ�′
α(0) = −1.

Case 3 (p = 1
2 ). This case is a little bit more difficult, since κ+ and κ− do not

depend on u0. We proceed as follows. Given ε′ > 0, there exists δ > 0 such that, if
|γ − α| � δ, then |ϕ�∗

γ (1) − ϕ�∗
α (1)| � 1

3ε′. On the other hand, using (5.30), we get

ε

1 − ε
ϕ�∗

α (1) − 1
1 − ε

|ϕ�∗
κ−(1) − ϕ�∗

α (1)| � u2

u0
− ϕ�∗

α (1)

� 1
1 + ε

|ϕ�∗
κ+

(1) − ϕ�∗
α (1)| − ε

1 + ε
ϕ�∗

α (1).
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Choosing 0 < ε < 1
3 such that

|κ+ − α| � δ, |κ− − α| � δ and
ε

1 − ε
|ϕ�∗

α (1)| � 1
2ε′,

we obtain that ∣∣∣∣u2

u0
− ϕ�∗

α (1)
∣∣∣∣ � ε′,

and the proof of lemma 5.5 is completed.
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19 P. G. LeFloch and R. Natalini. Conservation laws with vanishing nonlinear diffusion and
dispersion. Nonlin. Analysis 36 (1999), 213–230.

20 P. G. LeFloch and M. Shearer. Non-classical Riemann solvers with nucleation. Proc. R.
Soc. Edinb. A134 (2004), 941–964.

21 P. A. Marcati and R. Natalini. Convergence of the pseudoviscosity approximation for con-
servation laws. Nonlin. Analysis 23 (1994), 621–628.

22 S.-C. Ngan and L. Truskinovsky. Thermal trapping and kinetics of martensitic phase bound-
aries. Mech. Phys. Solids 47 (1999), 141–172.

23 S. Schulze and M. Shearer. Undercompressive shocks for a system of hyperbolic conservation
laws with cubic nonlinearity. J. Math. Analysis Applic. 229 (1999), 344–362.

24 M. Slemrod. Admissibility criteria for propagating phase boundaries in a van der Waals
fluid. Arch. Ration. Mech. Analysis 81 (1983), 301–315.

25 M. Slemrod. A limiting viscosity approach to the Riemann problem for materials exhibiting
change of phase. Arch. Ration. Mech. Analysis 105 (1989), 327–365.

26 L. Truskinovsky. Kinks versus shocks. In Shock induced transitions and phase structures in
general media (ed. R. Fosdick, E. Dunn and M. Slemrod). IMA Volumes in Mathematics
and its Applications, vol. 52, pp. 185–229 (Springer, 1993).

27 L. Truskinovsky. Transition to detonation in dynamic phase changes. Arch. Ration. Mech.
Analysis 125 (1994), 375–397.

28 J. Von Neumann and R. D. Richtmyer. A method for the numerical calculation of hydro-
dynamical shocks. J. Appl. Phys. 21 (1950), 380–385.

(Issued 29 October 2004 )

https://doi.org/10.1017/S0308210500003504 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003504


https://doi.org/10.1017/S0308210500003504 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003504

