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We report on a refined macroscopic model for slightly compressible gas slip flow
in porous media developed by upscaling the pore-scale boundary value problem.
The macroscopic model is validated by comparisons with an analytic solution
on a two-dimensional (2-D) ordered model structure and with direct numerical
simulations on random microscale structures. The symmetry properties of the apparent
slip-corrected permeability tensor in the macroscale momentum equation are analysed.
Slip correction at the macroscopic scale is more accurately described if an expansion
in the Knudsen number, beyond the first order considered so far, is employed at
the closure level. Corrective terms beyond the first order are a signature of the
curvature of solid–fluid interfaces at the pore scale that is incompletely captured
by the classical first-order correction at the macroscale. With this expansion, the
apparent slip-corrected permeability is shown to be the sum of the classical intrinsic
permeability tensor and tensorial slip corrections at the successive orders of the
Knudsen number. All the tensorial effective coefficients can be determined from
intrinsic and coupled but easy-to-solve closure problems. It is further shown that the
complete form of the slip boundary condition at the microscale must be considered
and an important general feature of this slip condition at the different orders in the
Knudsen number is highlighted. It justifies the importance of slip-flow correction
terms beyond the first order in the Knudsen number in the macroscopic model and
sheds more light on the physics of slip flow in the general case, especially for
large porosity values. Nevertheless, this new nonlinear dependence of the apparent
permeability with the Knudsen number should be further verified experimentally.

Key words: low-Reynolds-number flows, porous media, rarefied gas flow

1. Introduction
The interest for studying slightly compressible gas slip flow in channels of

characteristic dimension comparable to the gas mean free path at the pressure and
temperature under consideration is tremendous for many applications that encompass

† Email address for correspondence: didier.lasseux@ensam.eu
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An improved macroscale model for gas slip flow in porous media 119

gas flow in microchannels and nanofluidic systems (Porodnov et al. 1974; Harley et al.
1995; Karniadakis, Beskok & Aluru 2005; Cai, Sun & Boyd 2007), characterization of
low permeable porous materials (Lasseux et al. 2011; Jannot & Lasseux 2012; Profice
et al. 2012) involved in processes ranging from gas production (Darabi et al. 2012),
gas or nuclear waste storage, filtration and separation (Chmielewski & Goren 1972),
composite manufacturing (Zhang et al. 2009) among many others. Consequently, a
great deal of interest may also be focused on the prediction and estimation of the
coefficients governing the physics of gas transport at the macroscale. The emergence
of powerful imaging methods together with the increase of computational capabilities
make this prediction from direct numerical simulation, based upon images performed
on a representative elementary volume (REV) of the porous structure at the microscale
a realistic and promising approach to avoid sophisticated experiments (Ghaddar 1995;
Nakashima & Watanabe 2002; deSocio & Marino 2006; Prodanović, Lindquist &
Seright 2007).

To progress towards this goal, our purpose is to carefully derive an accurate
macroscopic model for gas flow in homogeneous porous media in the slip regime.
The existing model obtained so far in this context (Skjetne & Auriault 1999; Lasseux
et al. 2014) is inaccurate. In fact, we show that the existing macroscopic slip
correction filters out some important pore-scale topological information related to
the curvature of solid–fluid interfaces, which can have significant impact in some
circumstances at the macroscopic level. The model derived in this work avoids such
a simplification and yields a macroscale model together with associated closures that
are easy-to-solve boundary value problems defined at the microscale on a REV, which
provide the required macroscopic coefficients.

The development proposed hereafter is organized as follows. The problem statement
is presented first in § 2 together with the main steps of the upscaling leading to the
non-closed macroscopic form. The procedure to close the macroscopic momentum
equation is reported in §§ 3.1 and 3.2 providing the closure problem that defines
the apparent slip-corrected permeability, K s, the non-intrinsic effective coefficient
appearing in the macroscopic model. Validation of the upscaled model is presented in
§ 3.3. Solutions obtained from direct numerical simulations (DNS) of incompressible
slip flow performed on random two-dimensional (2-D) structures are used in the
predictive macroscopic averaged model to identify K s that is further compared to the
solution of the closure problem. In addition, the analytic estimation of K s is compared
to the values obtained from numerical solutions of the closure over a periodic unit
cell of the structure. In both cases, K s depends nonlinearly on the Knudsen number
at the macroscale, Kn, based on the characteristic length scale within the fluid phase,
a behaviour that can not be predicted from porous media slip-flow models reported
so far (Skjetne & Auriault 1999; Lasseux et al. 2014).

In order to elucidate the nonlinearity and to obtain a macroscale model involving
coefficients that are intrinsic to the micro-structure, an expansion in Kn is provided in
§ 4. Effective coefficients in this model correspond to the intrinsic permeability tensor
at the zeroeth order and to slip-correction tensors at the successive higher orders in
Kn, all of them being obtained from the solution of coupled closure problems. This
is detailed in § 4.1. The existing Darcy–Klinkenberg model extensively used for gas
slip flow in porous media, corresponds to the expansion up to the first order, together
with an ideal gas law. In § 4.2, it is shown that a more accurate description of the
macroscopic behaviour, capturing the nonlinearity in Kn previously observed, requires
higher-order terms of the expansion. These terms are an explicit signature of the solid–
fluid interface curvature that is not present in the first-order term. This is assessed
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L

FIGURE 1. (Colour online) Averaging domain and characteristic lengths of the system.

in § 4.3, where important features of the slip boundary condition with respect to the
successive orders of the expansion are reported, shedding more light on the physics
of slip flow far beyond the application to porous media. Symmetry properties of the
tensor K s are investigated in appendix A. Conclusions are drawn in § 5.

2. Problem statement and upscaling
The starting point of the analysis is the initial boundary value problem at the pore

scale with characteristic length `β (see figure 1) describing the isothermal, Newtonian
and slightly compressible flow of a barotropic fluid β occupying the sub-domain Vβ
inside an averaging domain V of radius r0.

We recall the problem statement as

∂ρβ

∂t
+∇ · (ρβvβ)= 0 in Vβ (2.1a)

0=−∇pβ +µβ∇2vβ in Vβ (2.1b)

ρβ = F(pβ) in Vβ (2.1c)

B.C.1 vβ =−ξλβ(I − nn) · (n · (∇vβ +∇vT
β)) at Aβσ (2.1d)

B.C.2 vβ = f (t) at Aβe (2.1e)
I.C. ρβ = ρβ,0 when t= 0. (2.1f )

In these equations, ρβ , vβ and pβ are the density (of initial value ρβ,0), velocity and
pressure in the β-phase obeying the state equation (2.1c), µβ is the dynamic viscosity,
taken as a constant, λβ is the mean free path, ξ is a parameter related to the tangential
momentum accommodation coefficient, σv, given by ξ = (2− σv)/σv (Agrawal &
Prabhu 2008; Selden et al. 2009). In practice, ξ ranges from approximately 1.3–1.7
(Suetin et al. 1973; Arkilic, Breuer & Schmidt 2001; Perrier et al. 2011). The unit
normal vector at the solid–fluid interface Aβσ , directed from the β- to the solid
σ -phase, is denoted by n while Aβe represents the entrance and exit surfaces of the
β-phase at the boundaries of the averaging domain on which the fluid velocity is f (t).
The first-order slip boundary condition expressed in (2.1d) and originally derived by
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Navier and Maxwell (Maxwell 1879), includes the complete strain rate (∇vβ +∇vT
β).

The ∇vT
β term plays an important role in general (Einzel, Panzer & Liu 1990; Panzer,

Liu & Einzel 1992; Barber et al. 2004; Lockerby et al. 2004; Lasseux et al. 2014),
although it has been often omitted for porous media flow (Skjetne & Auriault 1999;
Pavan & Chastanet 2011). More physical insight will be provided into this boundary
condition in § 4.2 below.

While writing the initial boundary value problem given by (2.1), a set of constraints
were assumed that can be listed as

ρβ

1ρβ

vβ t∗ρ
`β(1+ ξKn)

Lρ
`β
� 1 (2.2)

ρβ

1ρβ

1
1+ ξKn

(
Lρ
`β

)2

� 1 (2.3)

ρβ(1+ ξKn)`2
β

µβ t∗v
� 1. (2.4)

The first two constraints are required to neglect viscous terms related to compressible
effects in the momentum equation whereas the last one is necessary to neglect the
temporal acceleration; in both cases the comparisons are made with respect to the
viscous diffusion term. In addition, to neglect the convective acceleration term, we
require

Re= ρβ`βvβ
µβ

� 1. (2.5)

In the above constraints, which are easily met in practice and were thoroughly
discussed in a recent article (Lasseux et al. 2014), vβ represents the order of
magnitude of vβ whereas Lρ and t∗ρ are the characteristic length and time scales over
which ρβ experiences significant variations 1ρβ , Kn= λβ/`β is the Knudsen number,
which is assumed to remain smaller than approximately 0.1–0.4, characterizing the
slip-flow regime in straight channels (Harley et al. 1995; Maurer et al. 2003). The
left-hand side in the relationship (2.4) is nothing other than the frequency parameter
of the flow with t∗v being the characteristic time over which vβ experiences significant
variations and Re in (2.5) is the Reynolds number of the flow.

Upscaling of the problem given by (2.1) can be performed with the aid of the
volume averaging method (Whitaker 1999) for which the intrinsic and superficial
averages of any physical variable ψβ are defined as

〈ψβ〉β = 1
Vβ

∫
Vβ

ψβ dV (2.6)

〈ψβ〉 = ε〈ψβ〉β = 1
V

∫
Vβ

ψβ dV (2.7)

ε denoting the porosity of the medium. The development of the averaged equations
makes use of the averaging theorem (or Leibnitz rule) (Howes & Whitaker 1985)
given by

〈∇ψβ〉 =∇〈ψβ〉 + 1
V

∫
Aβσ

nψβ dA (2.8)
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along with the Reynolds theorem (Truesdell & Toupin 1960) and the classical
decomposition (Gray 1975)

ψβ = 〈ψβ〉β + ψ̃β . (2.9)

With this decomposition, it must be noted that 〈ψβ〉β has a typical length scale
of variation L (see figure 1), while ψ̃β varies at the scale `β . The upscaling is
subject to the scale hierarchy defined by `β � r0 � L, which can be used to prove
that 〈〈ψβ〉β〉β = 〈ψβ〉β and consequently that 〈ψ̃β〉β = 0 (Whitaker 1999). When the
procedure is applied to the initial boundary value problem in (2.1), the following
averaged mass, momentum and state equations are obtained (Lasseux et al. 2014)

∂〈ρβ〉β
∂t
+∇ · (〈ρβ〉β〈vβ〉β)= 0 (2.10)

0=−∇〈pβ〉β +µβ∇2〈vβ〉β + 1
Vβ

∫
Aβσ

n · (−I p̃β +µβ∇ṽβ) dA (2.11)

〈ρβ〉β = F(〈pβ〉β). (2.12)

To arrive at this form, the assumption of a slightly compressible flow, that is expressed
through the constraint

ρ̃β�〈ρβ〉β (2.13)

was employed, along with the homogeneity of the medium that allows the treating of
ε as a constant.

The macroscale momentum equation (2.11) is not closed as it involves pressure and
velocity deviations that are essentially varying at the pore scale. Therefore, one needs
to derive and solve the associated closure problem that is written in terms of p̃β and
ṽβ over a periodic unit cell representative of the macroscopic region as (Lasseux et al.
2014)

∇ · ṽβ = 0 in Vβ (2.14a)

0=−∇p̃β +µβ∇2ṽβ − 1
Vβ

∫
Aβσ

n · (−I p̃β +µβ∇ṽβ) dA in Vβ (2.14b)

ṽβ + ξλβ(I − nn) · (n · (∇ṽβ +∇ṽ
T
β))=−〈vβ〉β at Aβσ (2.14c)

〈p̃β〉β = 0 (2.14d)

Periodicity ṽβ(r+ li)= ṽβ(r),
p̃β(r+ li)= p̃β(r), i= 1, 2, 3.

}
(2.14e)

This problem simply results from the subtraction of the averaged equations from their
initial counterparts expressed in (2.1). In (2.14c), λβ represents the mean free path
at the average density, which defines the macroscale Knudsen number, Kn = λβ/`β
that will be used throughout this work. This definition of the Knudsen number is the
most physically relevant as it reflects the wall effect occurring in the Knudsen layer
(of thickness approximately given by the mean free path) relative to the size of the
channel where the flow is taking place. Upon assuming molecular collisions between
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An improved macroscale model for gas slip flow in porous media 123

hard spheres and considering the slightly compressible hypothesis, λβ can be expressed
as (Cowling 1950)

λβ = M√
2πNA〈ρβ〉βδ2

. (2.15)

Here, NA is Avogadro’s number, M the molar mass of the gas and δ the gas particle
diameter, πδ2 being the effective collision section.

While (2.14d) is necessary to define a well-posed problem, the analogue for the
velocity deviation 〈ṽβ〉β = 0 is not, although this last relationship will be employed
later. Equations (2.14) are subject to the slightly compressible flow hypothesis
expressed in (2.13) and to the constraint of scale hierarchy `β � L similar to that
employed in homogenization (Skjetne & Auriault 1999).

At this point, a closure procedure relating deviations to average quantities in the
boundary value problem (2.14) is required in order to derive a closed macroscopic
model. This is carried out in the next section, where a Darcy-like average momentum
equation is obtained in which the apparent slip-corrected permeability, K s, is
determined from the associated closure problem.

3. Closure and macroscopic model
A procedure to close the averaged momentum equation (2.11) from the deviation

equations (2.14) was proposed and validated earlier, yielding a macroscopic model at
O(ξKn), which involves the intrinsic permeability tensor K and a slip-flow correction
tensor S (Lasseux et al. 2014). Both tensors are obtained from the solution of intrinsic
closure problems that are coupled through a ‘slip-like’ boundary condition. Whereas
the closure problem for K can be written in a ‘Stokes-like’ form, S derived from an
integro-differential closure. In terms of solution strategy and physical interpretation,
this represents a real difficulty that is removed in the development presented below.

3.1. Closure problem
A convenient closure is now derived by noticing that the boundary value problem
for the deviations (2.14) at the pore scale is made non-homogeneous due to the
macroscopic source term 〈vβ〉β on the right-hand side of the boundary condition (2.14c).
Since this problem is incompressible in nature, λβ can be regarded as a parameter
and does not represent a source for p̃β and ṽβ despite its dependence on 〈ρβ〉β . Due
to the linearity of the problem, the solution can be sought as a linear combination of
the source, namely

ṽβ = C · 〈vβ〉β (3.1)
p̃β =µβc · 〈vβ〉β . (3.2)

Any additive constant in the representations of ṽβ and p̃β can be shown to be
unimportant in the final macroscopic model, just as for the upscaling of the classical
incompressible Stokes flow with no slip (Whitaker 1999). Using these representations
in the closure equations (2.14), while treating 〈vβ〉β as a constant due to the contrast
of scale between `β and L, yields the following closure problem in terms of the
closure variables C and c

∇ · C = 0 in Vβ (3.3a)
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0=−∇c+∇2C − 1
Vβ

∫
Aβσ

n · (−Ic+∇C) dA in Vβ (3.3b)

C + ξλβ(I − nn) · (n · (∇C + (∇C)T1))=−I at Aβσ (3.3c)
〈c〉β = 0 (3.3d)

Periodicity C(r+ li)= C(r),
c(r+ li)= c(r), i= 1, 2, 3.

}
(3.3e)

In (3.3c), the superscript T1 designates the transpose of a third-order tensor that
permutes the two first indices (in Lasseux et al. 2014, equation (83c), we simply
used the superscript T for this transpose and this was ambiguous). Note that (3.3d)
follows from (2.14d) along with the pressure representation in (3.2) and is required
for (3.3) to form a well-posed problem.

At this point, a simple transformation, similar to that employed while upscaling
the incompressible creeping flow with no slip leading to Darcy’s law, can be used to
obtain a pure differential form of this closure (Barrère, Gipouloux & Whitaker 1992;
Whitaker 1999). Letting

K−1
s =−ε−1 1

Vβ

∫
Aβσ

n · (−Ic+∇C) dA (3.4)

defining D and d as

D = ε−1(C + I) · K s (3.5)
d= ε−1c · K s (3.6)

and returning to (3.3) yields the following local closure problem

∇ · D = 0 in Vβ (3.7a)
0=−∇d+∇2D + I in Vβ (3.7b)

D =−ξλβ(I − nn) · (n · (∇D + (∇D)T1)) at Aβσ (3.7c)
〈d〉β = 0 (3.7d)
〈D〉 = K s (3.7e)

Periodicity D(r+ li)= D(r),
d(r+ li)= d(r), i= 1, 2, 3.

}
(3.7f )

From this tractable form having the structure of an incompressible Stokes problem
with a slip boundary condition, K s can be computed from a simple average on D as
indicated in (3.7e). This last equation is not required in the solution procedure but is
used as a direct consequence of the definition of D in (3.5) together with the intrinsic
average of the velocity decomposition in (3.1), which yields 〈C〉β = 0. Although local,
the closure (3.7) is non-intrinsic due to the presence of ξλβ in the boundary condition
of (3.7c) and we shall come back to this in § 4.

3.2. Closed macroscopic model
When the representation of the deviations given in (3.1) and (3.2) are reported in
the unclosed from of the averaged momentum equation (2.11), one readily obtains a
Darcy-like macroscopic law

0=−∇〈pβ〉β −µβK−1
s · 〈vβ〉 +µβε−1∇2〈vβ〉, (3.8)
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which, along with (2.10) and (2.12), forms the closed averaged model for the slightly
compressible slip flow considered in this work. In (3.8), K s, defined in (3.7e), is
identified as the apparent slip-corrected permeability.

The last term on the right-hand side of (3.8) is referred to as the Brinkman
correction. An order of magnitude analysis can be used to show that this macroscale
viscous diffusion term has a negligible contribution in the bulk of the porous medium.
Indeed, as can be inferred from the boundary condition in (2.14c)

ṽβ =O
( 〈vβ〉β

1+ ξKn

)
, (3.9)

where 〈vβ〉β represents the leading order of 〈vβ〉β . This shows that

C =O((1+ ξKn)−1) (3.10)

and consequently, from the definition of K s in (3.4), the order of magnitude of the
Darcy term in (3.8) can be estimated as

µβK−1
s · 〈vβ〉 =O(µβε−2`−1

β (1+ ξKn)−1av〈vβ〉β). (3.11)

In this estimate, av = Aβσ/V represents the interfacial area per unit volume of the
medium that is expected to scale as `−1

β . Similarly, the order of magnitude of the
Brinkman term can be estimated to be

µβε
−1∇2〈vβ〉 =O(µβL−2〈vβ〉β), (3.12)

which, when compared to (3.11), clearly indicates that the Brinkman term is
completely negligible in the context of slip flow, i.e. when ξKn . 0.1. The
macroscopic model can hence be written, to within an approximation O(`β/L),
as

∂〈ρβ〉β
∂t
+∇ · (〈ρβ〉β〈vβ〉β)= 0 (3.13a)

0=−∇〈pβ〉β −µβK−1
s · 〈vβ〉 (3.13b)

〈ρβ〉β = F(〈pβ〉β). (3.13c)

It must be noted that the apparent slip-corrected permeability, K s, in the Darcy-
like form of the macroscopic momentum equation (3.13b) is non-intrinsic as it lumps
together topological properties, intrinsic to the microstructure of the medium, and slip
effects that depend on the slip length ξλβ . Moreover, a detailed analysis, provided in
appendix A, indicates that, unlike the intrinsic permeability that is the fundamental
coefficient in the classical Darcy’s law when no slip occurs, K s is not symmetric in
the general case. Quasi-symmetry is observed under the constraint

ξKn�O(ε) (3.14)

that is also detailed and illustrated in appendix A, completing a previous analysis of
this property (Skjetne & Auriault 1999). An important consequence is that the full
characterization of the tensor K s from a measurement point of view is significantly
simplified when the constraint in (3.14) is satisfied.

In § 3.3 below, the validity of the macroscopic model and of the associated closure
problem (3.7) yielding K s is verified by comparison with analytic solutions in a simple
configuration and with direct numerical simulations on a more complex medium.
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xd

y

FIGURE 2. Unit cell for the square lattice of cylinders of circular cross-section.

3.3. Validation
The finite element solver Comsol Multiphysics 4.4 was used to carry out the numerical
solutions of both the pore-scale equations (2.1) and the closure problem (3.7).
Meshing tests were carried out to reach convergence and led to the use of nearly
13 000 domain mesh elements with more than 500 boundary elements. This mesh was
built by adding a boundary layer at the solid–fluid interface with a stretching factor
of 1.2. As a first validation, a simple structure made of a periodic square pattern of
parallel circular cylinders was considered, as represented in figure 2.

The slip flow orthogonal to the cylinder axes is such that K s = ksI , where ks can
be computed from the solution of the projection of the closure problem either on
ex or ey. Due to the unit cell symmetry, the projection leads to a boundary value
problem equivalent to the initial incompressible pore-scale problem when symmetry
on the velocity and Dirichlet boundary conditions on the pressure are applied on faces
respectively parallel and orthogonal to the mean flow direction. Taking the projection
of the closure problem (3.7) on ex, the equivalence is obvious when D · ex and d · ex

are respectively identified as µvβ/‖∇〈pβ〉β‖ and p̃β/‖∇〈pβ〉β‖ in the incompressible
version of the pore-scale flow problem (2.1). The validation of the macroscopic
model through a comparison of ks obtained either from the closure problem solution
or from a DNS of the initial boundary value problem is hence trivial in that case.
Nevertheless, further validation can be made by comparing numerical results on ks

with analytic predictions obtained on a Chang’s unit cell (Chai et al. 2011; Lasseux
et al. 2014) which has been shown to be a reliable estimate for the periodic structure
under consideration.

The closure problem was solved on the unit cell of figure 2 for ε= 0.8. Examples
of the dimensionless xx component of D and x component of d are reported
in figure 3 for two values of the cell Knudsen number ξλ

∗
β = ξλβ/`. Note that

ξλ
∗
β = ξKn`∗β = ξKn`β/`. The closure fields represented in figures 3(a) and 3(b) are,

in fact, the x components of the velocity field made dimensionless by `2‖∇〈pβ〉β‖/µβ
whereas the closure fields in figures 3(c) and 3(d) are the pressure deviation fields
made dimensionless by `‖∇〈pβ〉β‖.

Numerical results on k∗s = ks/`
2 are reported in figure 4a versus ξλ

∗
β = ξλβ/`, for

ε= 0.8. As discussed elsewhere (Lasseux et al. 2014), a Chang’s unit cell, composed
of the solid cylinder immersed in a circular fluid shell, may be used, along with a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.562


An improved macroscale model for gas slip flow in porous media 127

0 0.02 0.04 0.06 0.08

0.1 0.3 0.5–0.1–0.3–0.5

(a) (b)

(c) (d )

FIGURE 3. (Colour online) Dimensionless closure variable fields computed on the unit cell
of figure 2, ε= 0.8: (a) Dxx/`

2, ξλ
∗
β = 10−4; (b) Dxx/`

2, ξλ
∗
β = 0.1; (c) dx/`, ξλ

∗
β = 10−4;

(d) dx/`, ξλ
∗
β = 0.1.

zero vorticity boundary condition at the outer edge, to derive an approximate analytic
solution. For this relatively large value of the porosity, it is given by

k∗s =
1

8π

(
1+ 2ξλ

∗
β

√
π

φ

) (− ln φ − 3
2
+ 2φ − φ

2

2

+ 2ξλ
∗
β

√
π

φ

(
− ln φ − 1

2
+ φ

2

2

))
, (3.15)

where φ = 1− ε.
The agreement of the prediction from (3.15) with our numerical results is excellent,

as shown in figure 4. The relative error on k∗s , taking the computed value as the
reference, is less than 0.4 % over the interval 10−4 6 ξλ

∗
β 6 0.13. Within this range

of ξλ
∗
β , ξKn remains smaller than ∼0.23 when `∗β = `β/` is estimated from the

slit aperture of the equivalent bundle of regularly spaced parallel plates given by
`∗β = 2

√
3k∗/ε, k∗ = k/`2 being the dimensionless intrinsic permeability, i.e. the

permeability without slip. As clearly indicated in figure 4b, representing k∗s /k
∗ versus

ξKn, k∗s exhibits a nonlinear dependence on the Knudsen number even though the
flow is expected to remain in the slip regime at the microscale. This important remark
will be analysed in more detail in § 4.2.

An additional validation is now investigated in the case of a more complex 2-D
structure featuring no special symmetry properties and for which no analytic solution
is available. In that case, validation of both the upscaling procedure and macroscopic
model can be achieved through the comparison of DNS of the pore-scale flow
problem (2.1) with the numerical solution of the closure problem (3.7).
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2.0

2.5

3.0
Prediction

10–110–210–310–4 0 0.05 0.10 0.15 0.20 0.25
1.0

1.2

1.4

1.6

(a) (b)

FIGURE 4. (Colour online) Dimensionless apparent slip-corrected permeability k∗s = ks/`
2

for the unit cell of figure 2, ε=0.8, k∗= k/`2'0.01938, k being the intrinsic permeability:
(a) k∗s versus ξλ

∗
β = ξλβ/`, comparison between the computed values obtained from the

solution of the closure problem (3.7) and the analytic prediction from (3.15); (b) k∗s /k
∗

versus ξKn = ξλ∗β/`∗β , `∗β being the dimensionless distance between parallel plates that
would exhibit the same intrinsic permeability, i.e. `∗β = 2

√
3k∗/ε.

The structure at scale L for DNS is obtained by duplicating n times, in the direction
of the applied macroscopic pressure gradient, a periodic unit cell of size ` made of
randomly placed cylinders of circular cross-sections with randomly chosen radii within
a prescribed interval [rmin, rmax] according to a log-normal distribution. Placement of
cylinder centres is constrained to ensure periodicity in the x and y directions and is
repeated until a target porosity is achieved, while controlling cylinders overlapping.

Two random unit cells, of porosity ε= 0.375 and ε= 0.804, were generated using
respectively rmin = 0.023`, rmax = 0.062` and rmin = 0.016`, rmax = 0.031`. They were
used to compute the xx dimensionless component, k∗sxx = ksxx/`

2, of the apparent slip-
corrected permeability tensor from the closure problem solution. In addition, DNS
were performed on structures at scale L obtained from these generic unit cells with
n, the number of unit cell replicas, ranging from 3 to 9. Constant pressures were
prescribed at the entrance (x = 0) and exit (x = L) of the structure while periodic
boundary conditions were applied in the y direction. Superficial and intrinsic averages
of vβ · ex and pβ were performed on the central unit cell (n+ 1)/2 to compute k∗sxx.
Computations were carried out for 10−4 6 ξλ∗β 6 10−2.

The DNS procedure is illustrated in figure 5 where we have represented an example
of the two L-scale structures, along with the two generic unit cells on which maps of
vβ · ex were superimposed. In this figure, we have also reported the pressure profiles
computed on the left vertical edge of the central unit cell. The evident non-uniformity
of pβ explains why DNS cannot be carried out on a single unit cell with predefined
entrance/exit constant Dirichlet boundary conditions on the pressure.

As shown in table 1 and in figure 6a, results on k∗sxx obtained from DNS and the
closure problem solution are in excellent agreement since the relative error is less
than 1.3 % and decreases when n increases, confirming the validity of the macroscopic
model and associated closure.

In figure 6b, a clear nonlinear dependence of k∗sxx on ξKn, most pronounced for the
largest value of the porosity, is again highlighted for the two unit cells of figure 5b,
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(a)

(b)

(c)

FIGURE 5. (Colour online) Slip-flow DNS on 2-D packs of cylinders. (a) Large-scale
structures obtained from periodic replicas along ex of random unit cells. Velocity maps
in the x direction are superimposed. (b) Random unit cells of respective porosity ε =
0.375 and ε = 0.804 used to generate large-scale structures along with x-velocity maps.
(c) Pressure profiles at the left edge of the central unit cells.

ξλ
∗
β = 10−4 ξλ

∗
β = 10−2

n ε= 0.375 ε= 0.804 ε= 0.375 ε= 0.804
k∗sxx × 10−6 Error % k∗sxx × 10−4 Error % k∗sxx × 10−5 Error % k∗sxx × 10−4 Error %

3 2.711 1.25 1.647 0.56 1.043 1.07 2.542 0.54
5 2.695 0.62 1.642 0.29 1.035 0.33 2.536 0.32
7 2.685 0.26 1.640 0.17 1.028 0.40 2.535 0.27
9 2.678 0.02 1.639 0.06 1.029 0.24 2.534 0.25

TABLE 1. Comparison of the predictions of k∗sxx from DNS with those from volume
averaging. n is the number of unit cell replicas. k∗sxx values are those obtained from DNS
taking the average at the (n+ 1)/2 unit cell. The error per cent is computed relative to
the DNS predictions.

although ξKn remains smaller than approximately 0.23, a range typical of the slip-
flow regime as justified by some measurements for even larger Knudsen numbers in
straight channels (Harley et al. 1995). This confirms the behaviour reported above for
the regular square pattern of cylinders.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

56
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.562


130 D. Lasseux, F. J. Valdés Parada and M. L. Porter
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10–210–310–4
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Volume averaging

1.0
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1.4
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1.8

2.0

0 0.05 0.10 0.15 0.20 0.25

(a) (b)

FIGURE 6. (Colour online) (a) Comparison of computed values of k∗sxx obtained from DNS
and volume averaging for the two unit cells of figure 5(b). (b) Dependence of k∗sxx/k

∗
xx on

ξKn = ξλ∗β`/`β = ξλ∗β/`∗β for ξKn . 0.2. Here ξKn is estimated from the dimensionless
distance between plane parallel plates, `∗β = 2

√
3k∗/ε, that would lead to the same intrinsic

permeability k∗ = k∗xx. k∗xx ' 2.44× 10−6 (ε= 0.375); k∗xx ' 1.60× 10−4 (ε= 0.804).

At this point it is worth mentioning that, in the seminal work of Klinkenberg (1941),
the linear dependence of the apparent permeability with the Knudsen number was
regarded as an approximation resulting from a representation of the porous medium as
a system of straight capillaries. As a matter of fact, Klinkenberg (1941) noticed some
nonlinearities in his experimental results with the same tendency as the one observed
here. However, the porous media that he considered were relatively tight with intrinsic
permeabilities that could go as low as 2.4 mDarcy. As a consequence, the porosity
is expected to be quite small and this may explain why the observed nonlinearity
remained not too drastic in his experimental results. As shown in figure 6(b), our
predictions indicate that the nonlinearity decreases as porosity decreases and becomes
almost insignificant for a porosity of 0.25, which is in a qualitative agreement with
Klinkenberg’s results.

Before considering in more detail the above mentioned nonlinearity, the impact
of an incomplete version of the slip boundary condition, in which the ∇vT

β term
is omitted, shall be illustrated. When such an incomplete boundary condition is
employed, the analytic form of the apparent slip-corrected permeability of the periodic
square pattern of parallel circular cylinders, for a sufficiently large porosity (ε& 0.55),
is given by

k∗s =
1

8π
(

1+ 2ξλ
∗
β

√
π

φ

) (− ln φ − 3
2
+ 2φ − φ

2

2

+ ξλ∗β
√

π

φ

(
− ln φ + 1

2
− 2φ + 3φ2

2

))
(3.16)

instead of (3.15) above, with again φ = 1 − ε. This last expression underestimates
k∗s obtained from (3.15). The two slip-flow corrections can be extracted from (3.15)
and (3.16) as k∗s /k

∗ − 1, where k∗ = 1/8π(− ln φ − (3/2) + 2φ − φ2/2) is again the
dimensionless intrinsic permeability and the relative error between the two, taking the
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(a) (b)

FIGURE 7. (Colour online) Relative error on the slip correction while using an incomplete
slip boundary condition (i.e. omitting the ∇vT

β term). (a) Unit cell of figure 2. The error
is computed from the analytic expressions (3.15) and (3.16). (b) Random pack of parallel
cylinders (see figure 5b), ε = 0.804. The error is computed from the closure problem
solutions using complete and incomplete boundary conditions at Aβσ .

former as the reference, is given by (−2 ln φ − 3+ 4φ − φ2)/(4(1− 2φ + φ2)). This
relative % error, independent of ξKn, is represented versus the porosity in figure 7a
showing an increasingly significant error with ε, as it can reach approximately 62 %
for ε= 0.9.

When the ∇vT
β term is omitted in the pore-scale slip boundary condition, the closure

problem (3.7) is unchanged, except the term (∇D)T1 that is no longer present in (3.7c).
This form of the closure was solved on the unit cell of the random pack of parallel
cylinders (see figure 5b) for ε = 0.804, yielding k∗sxx that turns out to be larger than
that obtained with the complete boundary condition. The slip correction can again
be estimated from k∗sxx/k

∗ − 1 computed with and without the complete shear rate
in the boundary condition and the relative error can be formed taking the former as
the reference. This % error, represented versus ξKn in figure 7b, remains small at
exceedingly small values of the Knudsen number (approximately 7 % for ξKn' 0.04),
but strongly increases with ξKn as it reaches approximately 26 % for ξKn' 0.2. This
clearly evidences that the complete strain rate must be kept in the expression of the
slip at the solid boundary. More insight on the impact of the form of the boundary
condition and on the nonlinear behaviour mentioned above will be provided in § 4,
following a reformulation of the closure problem.

4. Reformulation and effective intrinsic coefficients
In the macroscopic model developed above, both viscous and slip effects are

lumped together in the apparent slip-corrected permeability K s that is determined by
a non-intrinsic closure problem. To isolate the Knudsen contribution to the flow at
the macroscopic scale and to identify intrinsic macroscopic coefficients, the closure
problem in (3.7) needs to be further developed.

4.1. Expansion in ξKn
The development is carried out on the dimensionless form of the closure given by the
starred dimensionless quantities d∗ = d/`β , D∗ = D/`2

β , ∇∗ = `β∇ as

∇∗ · D∗ = 0 in Vβ (4.1a)
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0=−∇∗d∗ +∇∗2D∗ + I in Vβ (4.1b)
D∗ =−ξKn(I − nn) · (n · (∇∗D∗ + (∇∗D∗)T1)) at Aβσ (4.1c)

〈d∗〉β = 0 (4.1d)
〈D∗〉 = K s`

−2
β (4.1e)

Periodicity D∗(r∗ + l∗i )= D∗(r∗),
d∗(r∗ + l∗i )= d∗(r∗), i= 1, 2, 3.

}
(4.1f )

Since ξKn remains smaller than unity in the context of slip flow, d∗ and D∗ can be
developed up to the mth order in Maclaurin series expansions that we shall write as

d∗ = d∗0 +
m∑

j=1

(ξKn)je∗j + Rdm (4.2)

and

D∗ = D∗0 +
m∑

j=1

(ξKn)jE∗j + RDm, (4.3)

where Rdm and RDm are the residuals at the mth order. When these expansions are
introduced back into (4.1), the closure problem can be split in a series of closures
that ensue from the identification at the successive orders in ξKn. Returning to the
dimensional form, the closure problem at the 0th order takes the form

0th order:

∇ · D0 = 0 in Vβ (4.4a)
0=−∇d0 +∇2D0 + I in Vβ (4.4b)

D0 = 0 at Aβσ (4.4c)
〈d0〉β = 0 (4.4d)

Periodicity D0(r+ li)= D0(r),
d0(r+ li)= d0(r), i= 1, 2, 3.

}
(4.4e)

This closure problem exactly corresponds to that defining the intrinsic permeability, K ,
while carrying out the upscaling of the incompressible Stokes problem without slip
(Barrère et al. 1992; Whitaker 1999), and this means that

〈D0〉 = K . (4.5)

Taking this relationship into account, along with the expansion of (4.3) and the
definition of K s in (3.7e), allows writing, at the mth order

K s ' K ·
(

I +
m∑

j=1

(ξλβ)
jSj

)
. (4.6)

Here Sj ( j = 1, . . . , m) is the macroscopic coefficient obtained from the closure
problem at the jth order given, in its dimensional form, by
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jth order ( j= 1, . . . ,m):

∇ · Dj = 0 in Vβ (4.7a)

0=−∇dj +∇2Dj in Vβ (4.7b)

Dj =−(I − nn) · (n · (∇Dj−1 + (∇Dj−1)
T1)) at Aβσ (4.7c)

〈dj〉β = 0 (4.7d)
〈Dj〉 = K · Sj (4.7e)

Periodicity Dj(r+ li)= Dj(r),
dj(r+ li)= dj(r), i= 1, 2, 3.

}
(4.7f )

In this jth-order problem, dj and Dj represent the closure variables defined from their
analogues, ej = `βe∗j and E j = `2

βE∗j ( j= 1, . . . ,m), after applying the rescaling

dj = ej/(`β)
j (4.8)

Dj = E j/(`β)
j. (4.9)

As a consequence, the macroscopic model at the mth order in ξKn takes the form

ε
∂〈ρβ〉β
∂t
+∇ · (〈ρβ〉β〈vβ〉)= 0 (4.10a)

〈vβ〉 '− 1
µβ

K ·
(

I +
m∑

j=1

(ξλβ)
jSj

)
· ∇〈pβ〉β (4.10b)

〈ρβ〉β = F(〈pβ〉β) (4.10c)

in which (ξλβ)
jSj is the macroscopic jth-order slip-flow correction. The tensors K

and Sj are respectively given by (4.5) and (4.7e) once the closure problems of (4.4)
and (4.7) are solved. All these macroscopic coefficients are intrinsic as they derive
from boundary value problems that only depend on the microstructure of the medium.
At the first order, the macroscopic model is formally identical to that previously
derived (Lasseux et al. 2014), and generalizes the classical Darcy–Klinkenberg form
(Klinkenberg 1941) when the gas is ideal. However, it must be noted that the form
of the first-order correction can be more complex than the dependence on 1/〈pβ〉β
predicted by the classical Klinkenberg correction if a different state law is to be
considered.

One must be clear that the expansion carried out in ξKn at the closure level is
an alternative representation of the original closure problem given by (3.7) that is
basically local, and this is quite a different approach from the one followed by Skjetne
& Auriault (1999) that requires an additional constraint on the Knudsen number. The
approach, in this last reference, potentially allows us to take into account non-local
effects that could play a role while studying gas slip momentum transport near
macroscopic boundaries.

Under the form of (4.10b), the macroscopic momentum equation clearly indicates
that the apparent slip-corrected permeability, up to the first order, remains linear in
ξKn. As a consequence, the nonlinear behaviour observed in figures 4(b) and 6(b)
can only be captured by higher-order terms in the macroscopic model, and this is a
major result of the present development. In this perspective, a more thorough analysis
of the macroscopic slip-flow correction, beyond the first order is proposed in § 4.2.
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FIGURE 8. (Colour online) Dimensionless closure variable fields up to the second order
computed on the unit cell of figure 2, ε = 0.8; (a) D0xx/`

2; (b) D1xx/`
2; (c) D2xx/`

2;
(d) d0x/`; (e) d1x/`; ( f ) d2x/`.

4.2. Effective coefficients
All the closure problems providing the tensors K and Sj have an incompressible
Stokes structure, the latter being coupled to each other and to the 0th-order problem
through the slip-like boundary condition, which makes them non-homogeneous.
Therefore, a unique numerical procedure can be used to determine all the macroscopic
coefficients in a simple manner.

The same computational tool as the one employed for the determination of the
apparent slip-corrected permeability, K s, (see §§ 3.1 and 3.3), was used to solve the
closure problems (4.4) and (4.7) up to m= 3 on the model structure represented by
the unit cell of figure 2 and ε ranging from 0.25 to 0.8. Due to the symmetries in this
particular case, all the macroscopic coefficients are spherical tensors (K = kI , Sj= sjI),
thus requiring the solution of the projection of the corresponding closure problems
on ex (or ey) only. Fields of the xx component of the tensors D0, D1, D2 and of the
x components of the vectors d0, d1, d2 are reported in their dimensionless forms in
figure 8.

In figure 9(a), we have represented k∗ = k/`2 versus ε, which shows an excellent
agreement with our previous results (Lasseux et al. 2014) as well as with predictions
available in the literature in the range of small (Bruschke & Advani 1993) and large
(Kuwabara 1959) porosities.

Dimensionless slip-flow corrective terms, k∗s∗j = k∗(`)jsj are represented versus ε
in figure 9b for j = 1 to 3. In this figure, we have also reported the O(ξKn) slip-
flow corrective term k∗s∗ appearing in the classical macroscopic model as the one
reported earlier (Lasseux et al. 2014). A perfect agreement with the first-order term
of the present model can be observed, showing the equivalence of the two approaches
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FIGURE 9. (Colour online) Dimensionless effective coefficients for slip flow versus ε. Unit
cell of figure 2. (a) Intrinsic permeability. (b) Slip-flow corrective terms k∗s∗j for j= 1–3.
Note that s∗2 is negative.

restricted to the first order in ξKn. Higher-order terms in the present model are such
that sj is positive when j is odd and negative otherwise.

As can be inferred from the nonlinear dependence of ks on the Knudsen number
reported above, the first-order macroscopic slip correction might become relatively
inaccurate in some circumstances. This is highlighted in figure 10 where we have
reported the apparent slip-corrected permeability, k∗s , versus ξKn for ε = 0.25, 0.4,
0.6 and 0.8., keeping ξKn smaller than ∼0.19 so that slip flow is expected to remain
physically relevant. The apparent slip-corrected permeability was computed from the
closure problem (3.7), on the one hand, and from (4.6) (i.e. from the solutions of
problems (4.4) and (4.7)) for m up to 3, on the other hand. Figure 10 shows that the
inaccuracy of the classical first-order approximation increases with ξKn and becomes
much more significant while increasing ε.

For a more quantitative picture of the above, the relative error on the slip
correction in ks at the jth order, given by (|(ks/k)− 1−∑m

j=1(ξλβ)
jsj|)/((ks/k)− 1)=

(|k∗s − k∗(1+∑m
j=1(ξλ

∗
β)

js∗j )|)/(k∗s − k∗), is reported, up to the third order, versus ξKn
in figure 11, for the four values of ε. When ks is estimated at the first order, the
relative error on the slip correction is ∼3.7 % for ε = 0.25 and ξKn ∼ 0.19 but
reaches ∼20.3 % for ε = 0.6 and ξKn ∼ 0.1. The estimation of the slip correction
is significantly improved while taking into account the second-order term, or further,
the third-order term. In fact, for m = 3 and the structure under consideration, the
relative error on the slip correction falls to approximately 0.6 % for ε = 0.25 and
ξKn∼ 0.19 or 1.7 % for ε= 0.6 and ξKn∼ 0.1. This is clearly illustrated in figure 11.
If a different Knudsen number, say Knσ , based on the characteristic size, `σ , of the
solid phase is used instead of Kn, one would observe that the nonlinearity appears
for ξKnσ = `β/`σ ξKn' 0.02, a value smaller than, or, when ε is large, almost equal
to ξKn, as `β/`σ takes the values 1.98× 10−2, 1.49× 10−1, 4.21× 10−1 and 1.07 for
ε= 0.25, 0.4, 0.6 and 0.8 respectively.

One must however be clear about the physical meaning of the macroscopic
slip-correction terms for j > 2 obtained from the development leading to (4.10b).
In fact, it must be kept in mind that the pore-scale physical model from which
the macroscale balance equations derive involves a slip boundary condition and a
momentum equation that are both first-order accurate in ξKn. As a consequence,
the macroscopic slip-correction terms beyond the first order in ξKn account for
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FIGURE 10. (Colour online) Comparison of the dimensionless apparent slip-corrected
permeability, k∗s = ks/`

2, computed from the solution of the closure problem (3.7), on the
one hand, and estimated at the first, second and third orders with (4.6) and the solutions
of expanded closure problems (4.4) and (4.7), on the other hand. Periodic model structure
of figure 2: (a) ε= 0.25; (b) ε= 0.4; (c) ε= 0.6; (d) ε= 0.8. Here Kn is the macroscale
Knudsen number based on the fluid-phase characteristic length scale: ξKn= ξ(λβ/`β).

the contribution of microstructural effects, i.e. the signature of pore topology on
the averaged slip effect that can significantly depend upon local constrictions,
enlargements and curvature of pore walls through the strain rate at Aβσ . One can
note, in particular, that the macroscopic model and associated closures provide an
exact macroscopic solution in the case of slip flow in a bundle of straight capillary
tubes or slits made of plane parallel plates. Indeed, this solution exactly corresponds
to that obtained by averaging the pore-scale flow solution. In this situation with no
curvature at the pore scale in the direction of the flow, which is 1-D, the macroscopic
slip correction remains at the first order that is exactly obtained from the closure
problem (4.7) for j= 1, all the higher-order closure problems yielding Dj = 0 ( j > 2).
To be more precise, specific general properties of the slip boundary condition and
the consequences on the closure problems are highlighted in the following section.

Before moving on, it is important to mention that some results obtained from
a numerical solution of an approximate version of the Boltzmann equations
(i.e. Bhatnagar Gross and Krook (BGK) model) under a linearized approach, predict
a linear dependence of the apparent permeability with the Knudsen number over the
whole range of ξKn investigated here for ε = 0.8 (these results were provided by an
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FIGURE 11. (Colour online) Relative error on the slip-flow correction in ks estimated at
the first, second and third orders taking the slip correction extracted from ks computed
from the solution of the closure problem (3.7) as the reference (see complete expression
in the text). Periodic model structure of figure 2: (a) ε = 0.25; (b) ε = 0.4; (c) ε = 0.6;
(d) ε= 0.8.

anonymous reviewer and are available from the authors). The contrast with the present
results would suggest that the range of application of the slip-flow model should be
drastically reduced as the porosity increases. This result is however difficult to justify
physically. Moreover, the linear dependence of k∗s with the Knudsen number resulting
from this linearized BGK approach seems to hold for Knudsen number values up to
approximately 0.5, fitting the predictions of Chang’s unit cell solution that is however
expanded at the first order in the limit of ξKn� 1; the reason for such a surprising
behaviour remains unclear. Some possible sources for explaining this linear behaviour
are the use of a linearized BGK model, along with the numerical method used to
solve it.

The above remarks should not be considered as a definitive argument to accept
a nonlinear dependence of the apparent permeability with the Knudsen number. In
this regard, the finding of this behaviour should motivate the performance of slightly
compressible rarefied gas flow experiments in highly permeable porous media.

4.3. Some important features of the slip boundary condition

An incomplete slip boundary condition, in which the ∇vT
β term has been dropped,

has often been used for porous media flow (Skjetne & Auriault 1999; Pavan &
Chastanet 2011), and we have shown, in accordance with some previous references
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(Barber et al. 2004; Lockerby et al. 2004; Panzer et al. 1992), that this physically
unjustified form can lead to a significant error in some circumstances (see § 3.3).
Together with the nonlinear dependence of the slip correction on ξKn, this suggests
a close attention to the slip-like boundary condition of (4.7c) in the jth-order closure
problem.

The analysis starts with an alternative expression of the second term on the right-
hand side of (4.7c) given by

(I − nn) · (n · (∇Dj−1)
T1) = (I − nn) · ∇(n · Dj−1)

− (I − nn) · (∇n · Dj−1) at Aβσ . (4.11)

For all j, n · Dj−1 = 0 at Aβσ since Dj−1 is either 0 ( j= 1) or purely tangential to
Aβσ at this interface ( j > 2). Consequently, ∇(n · Dj−1) is purely normal to Aβσ and
this allows rewriting (4.11) as

(I − nn) · (n · (∇Dj−1)
T1)=−∇sn · Dj−1 at Aβσ , (4.12)

where ∇s denotes the surface differentiation operator defined by ∇s ≡ (I − nn) · ∇.
For j= 1, this result can be further simplified due to the no-slip boundary condition

on D0 (see (4.4c)) leading to

(I − nn) · (n · (∇D0)
T1)= 0 at Aβσ (4.13)

and this proves that the ∇vT
β term in the slip boundary condition does not play any

role up to the first order of the expansion in ξKn at the closure level. At higher
orders, (4.12) cannot be further simplified and indicates that the contribution of (I −
nn) · (n · (∇Dj−1)

T1) depends on ∇sn that is related to the curvature of Aβσ . In
2-D, for instance, it can be easily demonstrated (see appendix B) that ∇sn=−κ(I −
nn) where κ =−∇s · n is exactly the curvature of Aβσ . This clearly shows that the
(∇Dj−1)

T1 term does play a role in the slip-like boundary condition (4.7c) of the
closure problem at the jth order, j > 2, in the general case. Its contribution vanishes
only in some special geometrical situations where the flow is 1-D and the curvature of
Aβσ is zero in the flow direction. This last remark applies to the boundary condition
of (2.1d) at the pore scale and justifies why the incomplete form of the slip boundary
condition can be used in the case of straight tubes, slits or channels that have been
extensively used for the study of Knudsen effects in the slip regime (Fishman &
Hetsroni 2005; Lauga & Cossu 2005; Shen et al. 2007).

The analysis is pursued with an alternative expression of the first term on the right-
hand side of (4.7c), which can be written as

(I − nn) · (n · ∇Dj−1)=∇s · (nDj−1)+ κDj−1 at Aβσ . (4.14)

This finally allows us to express the slip-like boundary condition in (4.7c) for the
jth-order closure problem as

Dj =−∇s · (nDj−1)+ (∇sn− κ I) · Dj−1 at Aβσ . (4.15)

In 2-D, this last expression takes the form Dj =−∇s · (nDj−1)− 2κDj−1. For j= 1, it
simplifies to

D1 =−(I − nn) · (n · ∇D0)=−∇s · (nD0) at Aβσ . (4.16)
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Equations (4.15) and (4.16) show that the slip-like boundary condition in the
jth-order closure problem contains an explicit dependence on the curvature of Aβσ

that is however filtered out at the first order in ξKn. This explains why the classical
first-order macroscopic slip-flow model remains inaccurate for systems presenting a
significant curvature of the solid–fluid interface. For the periodic square pattern of
circular cylinders, it clearly justifies why the error on the slip correction, when
restricted to the first order, increases with the porosity, as curvature scales as
(1 − ε)−1/2 in that case. This also justifies the necessity of taking into account
higher-order terms in the macroscopic model as in (4.10b).

Finally, it must be noted that the analysis carried out in this section may be
straightforwardly applied to an expansion in the Knudsen number performed on the
original initial boundary value problem given in (2.1). In that way, the slip boundary
condition properties at the successive orders in Kn may be generalized far beyond the
strict context of porous media flow, i.e. for any situation allowing such an expansion
in Kn.

5. Conclusion
Macroscopic modelling of slightly compressible gas slip flow in homogeneous

porous media was thoroughly revisited and several important results were highlighted.
Under a specified set of constraints, the macroscopic model was shown to have a

Darcy-like form in which the apparent non-intrinsic slip-corrected permeability tensor
is given by a non-intrinsic closure problem having the structure of an incompressible
Stokes flow problem with a slip-like boundary condition. The validity of the
macroscopic model and associated closure was verified through comparisons with
analytic solutions and DNS on model porous structures. The apparent slip-corrected
permeability was shown to be a non-symmetric tensor in the general case, whereas a
sufficient condition for quasi-symmetry to occur was derived. A nonlinear dependence
of the apparent slip-corrected permeability on the averaged Knudsen number was
evidenced that can become increasingly significant while increasing the porosity and
the Knudsen number on the model structure under concern.

A reformulation of the macroscopic model and closure was derived using an
expansion of the closure variables in the Knudsen number. This reformulation
identifies the viscous and slip contributions that are, otherwise, lumped together
in the apparent slip-corrected permeability. To the 0th order, the macroscopic model
corresponds to the classical flow problem without slip, the associated macroscopic
coefficient being the intrinsic permeability tensor. The successive higher-order terms
in the macroscopic model are characterized by intrinsic slip-flow correction tensors
that are all determined by easy-to-solve intrinsic closure problems that have basically
the same Stokes structure and are coupled to each other and to the 0th-order closure
problem through their slip-like boundary condition. The first-order correction was
found to be in excellent agreement with a previous existing and validated model
(Lasseux et al. 2014). Higher-order corrections account for the nonlinear behaviour
of the apparent slip-corrected permeability versus the Knudsen number observed
previously. Correction beyond the first order must be understood as a signature of
pure geometrical effects of the microstructure, through the strain rate at the solid–fluid
interface involved in the microscale slip boundary condition which is sensitive to local
interface curvatures. Within a simple model structure, at large values of the porosity,
errors of up to 45 % on the slip correction were found when restricted to an estimation
at the first order.
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The closure problem providing the first-order slip correction was shown to be
insensitive to an incomplete slip-flow boundary condition where the ∇vT

β term is
omitted and that has been often abusively used in the statement of the pore-scale
physical problem as reported in many references (Skjetne & Auriault 1999; Pavan
& Chastanet 2011). This result does not hold for higher-order slip-correction terms.
Moreover, it was shown that the explicit dependence of the slip-like boundary
condition on the curvature of solid–fluid interfaces is filtered out at the closure level
when the model is restricted to a first-order approximation, explaining the inaccuracy
of the existing model reported in the literature and justifying the importance of
higher-order slip-correction terms. This is an important general feature of the slip
boundary condition, that applies beyond the context of porous media flow, providing
a new physical insight into slip flow.

Supplementary work is needed for a further comparison of the present investigation
with experimental data in particular for highly porous structures.
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Appendix A
In this appendix, the symmetry properties of the apparent slip-corrected permeability

tensor, K s, in the Darcy-like form of the macroscopic momentum equation (3.13b), are
analysed. This apparent permeability is explicitly given by the closure problem (3.7)

∇ · D = 0 in Vβ (A 1a)
0=−∇d+∇2D + I in Vβ (A 1b)

D =−ξλβ(I − nn) · (n · (∇D + (∇D)T1)) at Aβσ (A 1c)
〈d〉β = 0 (A 1d)
〈D〉 = K s (A 1e)

Periodicity D(r+ li)= D(r),
d(r+ li)= d(r), i= 1, 2, 3.

(A 1f )

The analysis starts with a pre-multiplication of (A 1b) by DT and when the
superficial average of the result is formed, one obtains

0=−〈DT · ∇d〉 + 〈DT ·∇2D〉 + K T
s . (A 2)

The first term on the right-hand side of the above equation can be equivalently
expressed as

〈DT · ∇d〉 = 〈∇ · (Dd)〉 − 〈(∇ · D)d〉 (A 3)

and, since D is a divergence-free tensor as stated in (A 1a), this is equivalent to

〈DT · ∇d〉 = 〈∇ · (Dd)〉. (A 4)
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Making use of the averaging theorem (see (2.8)) in its divergence form, one obtains

〈DT · ∇d〉 =∇ · 〈Dd〉 + 1
V

∫
Aβσ

n · Dd dA. (A 5)

Because D and d are periodic

∇ · 〈Dd〉 = 0 (A 6)

and, since D has no normal component at Aβσ as indicated by the boundary condition
in (A 1c),

n · D = 0 at Aβσ . (A 7)

From (A 5), it follows that

〈DT · ∇d〉 = 0. (A 8)

Returning to equation (A 2), we hence have

0= 〈DT ·∇2D〉 + K T
s . (A 9)

The first term on the right-hand side of this last relationship can be rewritten as

〈DT ·∇2D〉 = 〈∇2(DT) · D〉T (A 10)

in which we have used the trivial property (∇2D)T = ∇2(DT). Equation (A 10) can
be arranged according to the fact that, for any two second-order tensors A and B,
∇2A · B=∇ · (∇A · B)− (∇A)T1 : (∇B)T1 and, when A is identified to DT and B to
D, this yields

〈DT ·∇2D〉 = 〈∇ · (∇(DT) · D)〉T − 〈(∇DT)T1 : (∇D)T1〉T . (A 11)

In the above expressions, we have used the superscript T1 to designate the transpose
of a third-order tensor that permutes the two first indices and we adopted the classical
nested convention for double dot product. The last equation can be equivalently
written as

〈DT ·∇2D〉 = 〈∇ · (∇(DT) · D)〉T − 〈(∇D)T3 :∇D〉T, (A 12)

where the superscript T3 denotes the transpose of a third-order tensor that permutes
the first and third indices. When this result is inserted back into (A 9), we have

0= 〈∇ · (∇(DT) · D)〉 − 〈(∇D)T3 :∇D〉 + K s. (A 13)

The attention is now focused on the first term on the right-hand side of the last
relationship, which, upon use of the averaging theorem, can be equivalently written
as

〈∇ · (∇(DT) · D)〉 =∇ · 〈∇(DT) · D〉 + 1
V

∫
Aβσ

n · ∇(DT) · D dA. (A 14)
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Since D is periodic, ∇(DT) is also periodic and hence

∇ · 〈∇(DT) · D〉 = 0 (A 15)

so that

〈∇ · (∇(DT) · D)〉 = 1
V

∫
Aβσ

n · ∇(DT) · D dA. (A 16)

We can now make use of the general identity

u · ∇A ·B= (∇A)T1 : (uB)T1 (A 17)

valid for any two second-order tensors A and B and any vector u, and when A is
identified to DT , B to D and u to n, this provides an alternative form of the interfacial
integral term on the right-hand side of (A 16). When replaced in (A 13), the apparent
slip-corrected permeability, K s, can finally be recast into the following expression

K s = 〈(∇D)T3 :∇D〉 − 1
V

∫
Aβσ

(∇D)T3 : (nD) dA. (A 18)

While the tensor 〈(∇D)T3 : ∇D〉 in this expression can be easily shown to be
symmetric, the tensor represented in the area average term is not symmetric in the
general case, except if the interface Aβσ has specific symmetry properties. This is
the case, for example, of an ordered porous structure for which the solid σ -phase
exhibits symmetries about the three planes parallel to the edges of the periodic unit
cell and passing through its centroid. In such circumstances, the off-diagonal terms
of K s are all zero. The expression of K s in (A 18) shows that this tensor is generally
not symmetric (Skjetne & Auriault 1999).

The investigation can be further pursued by examining the condition under which
K s is close to a symmetric tensor. A sufficient condition is when the non-symmetric
part in (A 18) remains small compared to the symmetric part and this can be expressed
in terms of the orders of magnitude of these two respective terms as

O

(
1
V

∫
Aβσ

(∇D)T3 : (nD) dA

)
�O(〈(∇D)T3 :∇D〉). (A 19)

By making use of the boundary condition in (A 1c), the above constraint can be
expressed as

O

(
ξλβ

1
V

∫
Aβσ

(n(I − nn) · (n · (∇D + (∇D)T1))) : (∇D)T3 dA

)
� O(〈(∇D)T3 :∇D〉). (A 20)

The order of magnitude of the area average can be estimated to be

ξλβ
1
V

∫
Aβσ

(n(I − nn) · (n · (∇D + (∇D)T1))) : (∇D)T3 dA= ξλβO
(

av
D2

`2
β

)
, (A 21)
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FIGURE 12. Unit cell for the computation of the full apparent slip-corrected permeability
tensor. ε' 0.515, a∗v ' 11.935.

where D denotes the leading order of the components of D. Similarly, the symmetric
part can be estimated according to

〈(∇D)T3 :∇D〉 =O
(
ε

D2

`2
β

)
. (A 22)

These two estimates allow us to formulate the constraint (A 20) as

ξλβ�O
(
ε

av

)
. (A 23)

If av is thought to vary as `−1
β as is often accepted (Whitaker 1999), one would be

left with

ξKn�O(ε) (A 24)

as a sufficient condition for K s to remain quasi-symmetric. It should be noted that this
is consistent with the fact that, when no slip occurs, corresponding to Kn' 0, K s=K ,
which is a symmetric tensor as predicted by (A 18) when ξλβ = 0, i.e. when D= 0 at
Aβσ .

A short illustration of the symmetry properties can be provided from direct
computation of K s over a unit cell that does not possess any particular geometrical
symmetry as the one represented in figure 12 for which ε ' 0.515 and a∗v = av` '
11.935. The apparent slip-corrected permeability was determined from the solution
of the closure problem of (A 1) above and for a cell Knudsen number, ξλ

∗
β = ξλβ/`,

ranging from 10−4 to 1.
Results on the components of K ∗s = K s/`

2, reported in table 2, clearly show that
the contrast between the off-diagonal terms of K ∗s remains small when the constraint
expressed in (A 23), ξλ

∗
β�O(ε/a∗v ' 0.043), is satisfied and becomes very significant

otherwise.

Appendix B
The objective of this appendix is to demonstrate that, in the 2-D case and with the

notations used throughout the paper,

∇sn=−κ(I − nn), (B 1)
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ξλ
∗
β k∗sxx k∗syx k∗sxy k∗syy 2

| k∗syx − k∗sxy |
(k∗syx + k∗sxy)

(%)

1.00 10−4 1.26 10−4 5.87 10−6 5.80 10−6 9.28 10−5 1.15
0.01 2.13 10−4 6.87 10−6 9.09 10−6 1.59 10−4 27.80
0.10 4.95 10−4 6.91 10−6 1.57 10−5 3.40 10−4 78.00
1.00 7.24 10−4 5.82 10−6 1.87 10−5 4.62 10−4 105.00

TABLE 2. Components of the dimensionless apparent slip-corrected permeability tensor for
the unit cell of figure 12 and four values of ξλ

∗
β . The contrast between k∗syx and k∗sxy is

estimated in the last column.

where κ =−∇s · n is the curvature of Aβσ and ∇s the surface differentiation operator
defined by ∇s ≡ (I − nn) · ∇.

We shall start by noticing that, since n is a unit vector, n · n = 1 and hence
∇(n · n)= 0, which leads to the straightforward relationship

∇n · n= 0. (B 2)

When this result is employed in the expression of the product (I − nn) · ∇n, along
with the fact that n is a unit vector, one ends up with

∇sn= (I − nn)∇ · n (B 3)

in the specific 2-D case.
Let us now consider the expression of the curvature in the general case (2-D or

3-D) and write ∇s · n from its definition as

∇s · n= ((I − nn) · ∇) · n=∇ · n− (nn · ∇) · n. (B 4)

The last term in the right-hand side of (B 4) can be explicitly re-written as

((nn · ∇) · n)ij = ninj
∂ni

∂xj
= nj(∇n)jini, (B 5)

where we have implicitly used Einstein notation, and this means that

(nn · ∇) · n= n · ∇n · n. (B 6)

However, due to (B 2), the last result simplifies to

(nn · ∇) · n= 0. (B 7)

Coming back to (B 4), it follows that

∇s · n=∇ · n=−κ, (B 8)

which leads to the expected relationship expressed in (B 1), valid in 2-D, when the
result of (B 3) is taken into account.
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