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AND RODRIGO DA SILVA RODRIGUES2∗
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1. Introduction

We are concerned with the existence of infinitely many solutions to the class of nonlinear
boundary-value problems of Kirchhoff type

L(u) = λ|x|−δf(x, u) + |x|−β |u|q−2u in Ω,

u = 0 on ∂Ω,

}
(1.1)

where

L(u) := −
[
M

( ∫
Ω

|x|−ap|∇u|p dx

)]
div(|x|−ap|∇u|p−2∇u)

and Ω ⊂ R
N is a bounded smooth domain with N � 3, 1 < p < N , a < (N − p)/p,

p � q � p∗, β � (a+1)q+N(1−q/p), with p∗ = Np/(N−dp) the critical Caffarelli–Kohn–
Nirenberg exponent, where d = 1+a−b with a � b < a+1, and with M : R

+∪{0} → R
+

a continuous function.
∗ Corresponding author.
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Problem (1.1) with a = b = δ = β = 0 and p = 2, that is,

−M

( ∫
Ω

|∇u|2 dx

)
Δu = g(x, u) in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.2)

is called non-local because of the presence of the term M(
∫

Ω
|∇u|2 dx), which implies

that (1.2) is no longer a pointwise identity. This phenomenon causes some mathemati-
cal difficulties, which makes the study of such a class of problem particularly interest-
ing. Besides this, this class of problem has a physical motivation. Indeed, the operator
M(

∫
Ω

|∇u|2 dx)Δu appears in the Kirchhoff equation, which arises in nonlinear vibra-
tions, namely,

utt − M

( ∫
Ω

|∇u|2 dx

)
Δu = g(x, u) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.3)

Such a hyperbolic equation is a general version of the Kirchhoff equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2 = 0, (1.4)

presented by Kirchhoff in [26]. This equation extends the classical d’Alembert wave
equation by considering the effects of the changes in the length of the strings during the
vibrations. The parameters in (1.4) have the following meanings: L is the length of the
string, h is the cross-sectional area, E is the Young’s modulus of the material, ρ is the
mass density and P0 is the initial tension.

When an elastic string with fixed ends is subjected to transverse vibrations its length
varies with time, which introduces changes in the tension in the string. This induced
Kirchhoff to propose a nonlinear correction of the classical d’Alembert equation. Later
on, Woinowsky-Krieger [34] (also Nash and Modeer [31]) incorporated this correction
into the classical Euler–Bernoulli equation for a beam (plate) with hinged ends. See, for
example, [4,5] and the references therein. The reader is referred to [1,2,9,10,20,30]
and the references therein for more information on non-local problems.

To enunciate the main result we need to give some hypotheses on the functions M

and f . The hypotheses on the continuous function M : R
+ ∪ {0} → R

+ are as follows.
There exists m0 > 0 such that

(M1) M(t) � m0 for all t � 0,

(M2) the function M is increasing.

The hypotheses on the Carathéodory function f : Ω × R → R are the following:

(f1) f(x,−t) = −f(x, t) ∀(x, t) ∈ Ω × R;

(f2) there exists r ∈ [1, p∗) and positive constants C1, C2 with C1 < C2 such that

C1|t|r−1 � f(x, t) � C2|t|r−1 ∀(x, t) ∈ Ω × (R+ ∪ {0});
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(f3) the function f satisfies the well-known Ambrosetti–Rabinowitz superlinear condi-
tion, that is,

0 < ξ

∫ t

0
f(x, s) ds � tf(x, t) ∀(x, t) ∈ Ω × R

+ for some ξ ∈ (p, p∗).

Moreover, we suppose that δ � (a + 1)r + N(1 − r/p).
The main results of this paper are listed below.
The first result gives us infinitely many solutions for problem (1.1) for the subcritical

case.

Theorem 1.1. Assume that (M1), (f1) and (f2) hold and that p � q < p∗, β <

(a + 1)q + N(1 − q/p) and 1 � r < p. There then exists λ0 > 0 such that problem (1.1)
has infinitely many solutions for each λ ∈ (0, λ0).

In the last two results, we obtain infinitely many solutions for problem (1.1) for the
critical case.

Theorem 1.2. Assume that (M1), (M2), (f1) and (f2) hold and that q = p∗, β = bp∗

and 1 � r < p. There then exists λ∗ > 0 such that problem (1.1) has infinitely many
solutions for each λ ∈ (0, λ∗).

Theorem 1.3. Assume that (M1), (M2), (f1), (f2) and (f3) hold and that q = p∗,
β = bp∗ and p < r < p∗. There then exists λ∗∗ > 0 such that problem (1.1) has a
non-trivial solution for each λ ∈ (λ∗∗, +∞).

In recent years interest in the study of non-local problems of type (1.2) has grown
exponentially. That was, probably, due to the difficulties existing in this class of problems
that do not appear in the study of local problems, as well as due to their significance in
applications. Without hope of being thorough, we mention some papers with multiplicity
results and that are related to our main result. We will restrict our comments to the work
that has emerged in the last four years.

Problem (1.2) was studied in [20]. The version with the p-Laplacian operator was
studied in [15]. In both cases the authors showed a multiplicity result using genus theory.
In [18,23–25,29,32] the authors showed a multiplicity result for problem (1.2) using the
fountain theorem and the symmetric mountain pass theorem. The case with discontinuous
nonlinearity was studied in [16], where Corrêa and Nascimento showed existence of two
solutions via the mountain pass theorem and Ekeland’s variational principle.

In [13] Chung and Quoc used the fountain theorem and showed a multiplicity result
of solutions for a problem involving a non-local operator and nonlinearity of Caffarelli–
Kohn–Nirenberg type and subcritical growth.

In this paper we study a different class of non-local operators to that considered in [13].
Moreover, our class of non-local operators includes, but is not restricted to, the type
(1.4). Besides this, our results are true for the subcritical and critical case. For this, the
arguments found in [13] could not be repeated and it was necessary to make a truncation
on the function M in the critical case.
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Our proofs of the main theorems are inspired by [6], where the authors showed a
multiplicity result for a problem involving the p-Laplacian operator. But since we are
working with a non-local operator, some refined estimates were necessary; for example,
the proof of Lemma 4.1, which does not appear in [6].

Before concluding this introduction, it is very important to say that recently we found
many papers in the literature in which the authors study the existence and multiplicity
of solution to problems involving nonlinearities of Caffarelli–Kohn–Nirenberg type (see,
for example, [11,22,35,37] and references therein).

This paper is organized as follows. In § 2 we provide some preliminary results on the
Krasnoselskii genus and the variational framework. The Palais–Smale condition for the
Euler–Lagrange functional associated with problem (1.1) and the proof of Theorem 1.1
are found in § 3. In § 4, by using the concentration–compactness principle, we prove the
Palais–Smale condition, some auxiliary results and Theorems 1.2 and 1.3.

2. Preliminary results and variational framework

We start by considering some basic notions on the Krasnoselskii genus that we will use
in the proofs of our main results.

Let E be a real Banach space. We denote by A the class of all closed subsets A ⊂ E\{0}
that are symmetric with respect to the origin, that is, u ∈ A implies that −u ∈ A.

Definition 2.1. Let A ∈ A. The Krasnoselskii genus of A, γ(A), is defined as being
the least positive integer k such that there is an odd mapping φ ∈ C(A, Rk) such that
φ(x) 	= 0 for all x ∈ A. If k does not exist, we set γ(A) = +∞. Furthermore, by definition,
γ(∅) = 0.

In what follows we enunciate some results on the Krasnoselskii genus that may be
found in [3,12,17,27].

Proposition 2.2. Suppose that E = R
N and that ∂Ω is the boundary of an open

symmetric and bounded subset Ω ⊂ R
N with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 2.3. If ∂Ω = SN−1 is the unit sphere in R
N , then γ(SN−1) = N .

We now establish a result due to Clark [14].

Proposition 2.4. Consider Φ ∈ C1(X, R) a functional satisfying the Palais–Smale
condition and suppose that

(i) Φ is bounded from below and even,

(ii) there is a compact set K ∈ A such that γ(K) = k and supx∈K Φ(x) < Φ(0).

Then Φ possesses at least k distinct pairs of critical points and their corresponding critical
values are less than Φ(0).

We point out that this result is a consequence of a basic multiplicity theorem involving
an invariant functional under the action of a compact topological group.
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Proposition 2.5. If K ∈ A, 0 /∈ K and γ(K) � 2, then K has infinitely many points.

Now we will introduce the basic variational framework. Consider Ω ⊂ R
N to be a

bounded smooth domain with 0 ∈ Ω, N � 3, 1 < p < N , a < (N − p)/p, a � b < a + 1,
and p∗ = Np/(N − dp), where d = 1 + a − b. From [8,36] we have

(∫
Ω

|x|−α|u|r dx

)p/r

� C

∫
Ω

|x|−ap|∇u|p dx ∀u ∈ C∞
0 (Ω), (2.1)

where 1 � r � Np/(N − p), α � (a + 1)r + N(1 − r/p), and D1,p
a is the completion of

C∞
0 (Ω) with respect to the norm

‖u‖ =
(∫

Ω

|x|−ap|∇u|p dx

)1/p

,

that is, we have the continuous embedding of D1,p
a in Lr(Ω, |x|−α), where Lr(Ω, |x|−α)

is the weighted Lr(Ω) space with the norm

‖u‖r,α =
(∫

Ω

|x|−α|u|r dx

)1/r

.

Moreover, this embedding is compact if Ω is a bounded smooth domain, 1 � r < Np/(N−
p), and α < (a + 1)r + N(1 − r/p). The best constant of the weighted Caffarelli–Kohn–
Nirenberg type (see [8]) inequality will be denoted by C∗

a,p, which is characterized by

C∗
a,p = inf

u∈D1,p
a \{0}

∫
Ω

|x|−ap|∇u|p dx

(
∫

Ω
|x|−bp∗ |u|p∗ dx)p/p∗ .

We will look for solutions of problem (1.1) by finding critical points of the Euler–
Lagrange functional I : D1,p

a → R given by

I(u) =
1
p
M̂(‖u‖p) − λ

∫
Ω

|x|−δF (x, u) dx − 1
q

∫
Ω

|x|−β |u|q dx,

where M̂(t) :=
∫ t

0 M(s) ds and F (x, t) =
∫ t

0 f(x, s) ds. Note that I ∈ C1 and

I ′(u)(φ) = M(‖u‖p)
∫

Ω

|x|−ap|∇u|p−2∇u∇φ dx

− λ

∫
Ω

|x|−δf(x, u)φ dx −
∫

Ω

|x|−β |u|q−2uφ dx

for all φ ∈ D1,p
a .

Theorems 1.1 and 1.2 will be proved by using Proposition 2.4. From (f1) and (f2)
we have that I is even and I(0) = 0. However, we encounter the common difficulty of
ensuring that I is bounded from below in D1,p

a , so we will use a modified functional to
obtain the critical points of I. In the following we will construct the auxiliary functional.
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We obtain, by (M1), (f1), (f2) and the Caffarelli–Kohn–Nirenberg inequality (2.1),
that

I(u) � m0

p
‖u‖p − λC̃2‖u‖r − 1

q
C̃‖u‖q = gλ(‖u‖p),

where gλ : [0, +∞) → R is given by

gλ(t) =
m0

p
t − λC̃2t

r/p − 1
q
C̃tq/p.

Note that r < p � q � p∗ implies that limt→+∞ gλ(t) = −∞. Hence, I is not bounded
from below in D1,p

a and we cannot apply Proposition 2.4. But there exists λ0 > 0 such
that for each λ ∈ (0, λ0) the function gλ(t) achieves a positive maximum, and there exist
t1, t2 ∈ (0, +∞) with t1 < t2 and gλ(t1) = gλ(t2) = 0. Now, consider φ ∈ C1

0 ([0, +∞))
with 0 � φ � 1, φ(t) = 1 for all t ∈ [0, t1], φ(t) = 0 for all t ∈ [t2, +∞), and φ′(t) � 0 for
all t ∈ [0, +∞). Define the function ḡλ : [0, +∞) → R given by

ḡλ(t) =
m0

p
t − λC̃2t

r/p − C̃

q
φ(t)tq/p.

Note that ḡλ(0) = 0, ḡλ(t) � 0 for all t � t1, and

lim
t→+∞

ḡλ(t) = lim
t→+∞

m0

p
t − λC̃2t

r/p = +∞, (2.2)

because r/p < 1 and φ(t) = 0 for all t ∈ [t2, +∞).
The auxiliary Euler–Lagrange functional that we will use is J : D1,p

a → R, given by

J(u) =
1
p
M̂(‖u‖p) − λ

∫
Ω

|x|−δF (x, u) dx − φ(‖u‖p)
q

∫
Ω

|x|−β |u|q dx,

where M̂(t) :=
∫ t

0 M(s) ds and λ ∈ (0, λ0). Since J(u) � ḡλ(‖u‖p) and (2.2) hold, we
obtain that J is coercive in D1,p

a , which implies that J is bounded from below in D1,p
a .

Thus, the functional J is appropriate for proving Theorem 1.1.
The next lemma could be proved by using [21, Lemma 4.1]

Lemma 2.6 (S+ condition). Suppose that Ω ⊂ R
N is a bounded smooth domain,

that 0 ∈ Ω, 1 < p < N , −∞ < a < (N − p)/p, (un) ⊂ D1,p
a and u ∈ D1,p

a are such that
un ⇀ u as n → ∞, and

lim sup
n→∞

∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u) dx � 0.

There then exists a subsequence strongly convergent in D1,p
a .

3. Subcritical case: Theorem 1.1

We will prove the next lemma, which states that a critical point of J with energy less
than 0 is a critical point of I. We also note that the critical level from Proposition 2.4 is
less than I(0) = J(0) = 0.
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Lemma 3.1. If u0 is a critical point of J with J(u0) < 0, then u0 is a critical point
of I.

Proof. Let u0 be a critical point of the functional J with J(u0) < 0. Since J is
continuous, there exists R0 > 0 such that J(u) < 0 for all u ∈ B(u0, R0) ⊂ D1,p

a , which
implies that ‖u‖p < t1, because J(u) � ḡλ(‖u‖p) and ḡλ(t) � 0 if t � t1. Therefore, for all
u ∈ B(u0, R0) we have φ(‖u‖p) = 1, and consequently J(u) = I(u) for all u ∈ B(u0, R0).
In particular, it follows that u0 is a critical point of I. �

Lemma 3.2. Assume that (M1), (f1), (f2) hold, and that q < p∗ and β < (a + 1)q +
N(1 − q/p). Then J satisfies the Palais–Smale condition.

Proof. Let (un) ⊂ D1,p
a be a Palais–Smale sequence at level c, that is, J(un) → c

and J ′(un) → 0 (in the dual of D1,p
a ) as n → +∞. Since J is coercive, we have that

(un) ⊂ D1,p
a is bounded. Then, passing to a subsequence if necessary, we have u ∈ D1,p

a

such that
un ⇀ u in D1,p

a ,

un → u in Ls(Ω, |x|−σ),

un(x) → u(x) almost everywhere (a.e.) in Ω,

‖un‖ → t0 � 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

as n → +∞, where 1 � s < p∗ and σ < (a + 1)s + N(1 − s/p). Hence, J ′(un)(un − u) =
on(1), that is,

M(‖un‖p)
∫

Ω

|∇un|p−2∇un∇(un − u)
|x|ap

dx − λ

∫
Ω

f(x, un)(un − u)
|x|δ dx

− p

q
φ′(‖un‖p)

∫
Ω

|un|q
|x|β dx

∫
Ω

|∇un|p−2∇un∇(un − u)
|x|ap

dx

− φ(‖un‖p)
∫

Ω

|un|q−2un(un − u)
|x|β dx = on(1).

(3.2)

From Hölder’s inequality, (3.1) and since φ is continuous, we obtain∫
Ω

|un|q−2un(un − u)
|x|β dx = on(1) and φ(‖un‖p)

∫
Ω

|un|q−2un(un − u)
|x|β dx = on(1).

By using (f2), Hölder’s inequality and (3.1), we obtain∣∣∣∣
∫

Ω

|x|−δf(x, un)(un − u) dx

∣∣∣∣ � C2

∫
Ω

|x|−δ|un|r−1|un − u| dx = on(1).

Therefore, substituting into (3.2), we have[
M(‖un‖p) − p

q
φ′(‖un‖p)

∫
Ω

|un|q
|x|δ dx

]∫
Ω

|∇un|p−2∇un∇(un − u)
|x|ap

dx = on(1).
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Since M and φ′ are continuous functions, M(t) � m0 and φ′(t) � 0 for all t ∈ [0,∞),
there exists C > 0 such that

m0 � M(‖un‖p) − p

q
φ′(‖un‖p)

∫
Ω

|x|−β |un|q dx � C.

Thus, ∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u) dx = on(1).

Then, by using Lemma 2.6, the proof is finished. �

Proof of Theorem 1.1. We have that D1,p
a is a reflexive and separable Banach

space. Then, for any k ∈ N, there is a k-dimensional linear subspace Xk of D1,p
a with

Xk ⊂ C+∞
0 (Ω). Therefore, all norms on Xk are equivalent. Hence, there exists a positive

constant C(k) that depends on k such that rC(k)‖u‖r � C1‖u‖r
Lr(Ω,|x|−δ) for all u ∈ Xk.

Hence, if u ∈ Xk, we obtain by (f2) that∫
Ω

|x|−δF (x, u) dx � C1

r

∫
Ω

|x|−δ|u|r dx � C(k)‖u‖r.

Thus, for all u ∈ Xk with ‖u‖ � 1, from continuity of the function M we conclude that
there exists C > 0 such that

J(u) � C‖u‖p − λC(k)‖u‖r.

Take R = min{1, (λC(k)/C)1/(p−r)} and consider S = {u ∈ Xk : ‖u‖ = s} with 0 < s <

R. Since 1 � r < p, for all u ∈ S we obtain

J(u) � sr[Csp−r − λC(k)] < 0 = J(0), (3.3)

which implies that supS J(u) < 0 = J(0).
Since Xk and R

k are isomorphic, and S and Sk−1 are homeomorphic, we conclude that
γ(S) = k. Moreover, J is coercive, even and satisfies the Palais–Smale condition (see
Lemma 3.2), so it follows from Proposition 2.4 that J has at least k pairs of different
critical points. Since k is arbitrary, we obtain infinitely many critical points of J . Then,
by using (3.3) and Lemma 3.1, we obtain infinitely many critical points of I. �

4. The critical case

In Theorems 1.2 and 1.3 we have β = bp∗, q = p∗, and by (M2) that M(t) is increas-
ing. Since we are working with critical growth and a non-local operator without more
information about the behaviour of function M at infinity, we need to make a truncation
on the function M (see Lemmas 4.2 and 4.11). In the case in which p < r < p∗ the
truncation is also necessary to prove Lemma 4.10.

Since p < p∗, we can obtain θ ∈ (p, p∗). From (M2) there exists t0 > 0 such that m0 �
M(0) < M(t0) < (θ/p)m0 for the 1 � r < p case, and m0 � M(0) < M(t0) < (ξ/p)m0
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for the p < r < p∗ case, where ξ is given by (f3). We set

M0(t) :=

{
M(t) if 0 � t � t0,

M(t0) if t � t0.

From (M2) we obtain

m0 � M0(t) � θ

p
m0 ∀t � 0 (4.1)

and

m0 � M0(t) � ξ

p
m0 ∀t � 0. (4.2)

The proofs of the Theorems 1.2 and 1.3 are based on a careful study of solutions of
the auxiliary problem

L0(u) = λ|x|−δf(x, u) + |x|−β |u|q−2u in Ω,

u = 0 on ∂Ω,

}
(4.3)

where

L0(u) :=: −
[
M0

( ∫
Ω

|x|−ap|∇u|p dx

)]
div(|x|−ap|∇u|p−2∇u).

We will look for solutions of problem (4.3) by finding critical points of the Euler–
Lagrange functional Iλ : D1,p

a → R given by

Iλ(u) =
1
p
M̂0(‖u‖p) − λ

∫
Ω

|x|−δF (x, u) dx − 1
q

∫
Ω

|x|−β |u|q dx,

where M̂0(t) :=
∫ t

0 M0(s) ds. Note that Iλ is C1 and for all φ ∈ D1,p
a we have

I ′
λ(u)(φ) = M0(‖u‖p)

∫
Ω

|∇u|p−2∇u∇φ

|x|ap
dx − λ

∫
Ω

f(x, u)φ
|x|δ dx −

∫
Ω

|u|q−2uφ

|x|β dx.

4.1. The 1 � r < p case

Lemma 4.1.
lim

λ→0+
t1(λ) = 0. (4.4)

Proof. From gλ(t1(λ)) = 0 and g′
λ(t1(λ)) > 0 we have

m0

p
= λC̃2(t1(λ))(r−p)/p +

1
p∗ C̃(t1(λ))(p

∗−p)/p (4.5)

and
m0 > λrC̃2(t1(λ))(r−p)/p + C̃(t1(λ))(p

∗−p)/p (4.6)
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for all λ ∈ (0, λ0). From (4.5) and (4.6) we obtain

λpC̃2(t1(λ))(r−p)/p +
p

p∗ C̃(t1(λ))(p
∗−p)/p > λrC̃2(t1(λ))(r−p)/p + C̃(t1(λ))(p

∗−p)/p,

which implies that

λC̃2(p − r)(t1(λ))(r−p)/p > C̃(1 − p

p∗ )(t1(λ))(p
∗−p)/p. (4.7)

From (4.7) we conclude that

0 < t1(λ) < λp/(p∗−r)
[

C̃2(p − r)
C̃(1 − p/p∗)

]p/(p∗−r)

. (4.8)

Since p∗ > r, passing to the limit as λ → 0+ in (4.8), we conclude the proof. �

As in the subcritical case, we can construct an auxiliary functional Jλ : D1,p
a → R given

by

Jλ(u) =
1
p
M̂0(‖u‖p) − λ

∫
Ω

|x|−δF (x, u) dx − φ(‖u‖p)
q

∫
Ω

|x|−bp∗ |u|p∗
dx,

where M̂0(t) :=
∫ t

0 M0(s) ds.

Lemma 4.2. Let (un) be a bounded sequence in D1,p
a such that

Iλ(un) → c and I ′
λ(un) → 0 in (D1,p

a )−1 as n → ∞.

Suppose that (M1), (M2), (f1) and (f2) hold, and that

c <

(
1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p)

−
[
λCC2(1/r + 1/θ)

1/θ − 1/p∗

]p∗/(p∗−r)[(
r

p∗

)r/(p∗−r)

−
(

r

p∗

)p∗/(p∗−r)]
,

where C = (
∫

Ω
(|x|−δ+br)p∗/(p∗−r) dx)(p

∗−r)/p∗
. Then there exists a subsequence strongly

convergent in D1,p
a .

Proof. Since (un) is bounded in D1,p
a , passing to a subsequence if necessary, we have

un ⇀ u in D1,p
a ,

un → u in Ls(Ω, |x|−σ),

un(x) → u(x) a.e. in Ω,

‖un‖ → t0 � 0

as n → +∞, where 1 � s < p∗ and σ < (a + 1)s + N(1 − s/p). Moreover, using the
concentration–compactness principle due to Lions (see [28,36]), we obtain an at most
countable index set Λ, and sequences (xi) ⊂ R

N , (μi), (νi) ⊂ (0,∞) such that

|x|−ap|∇un|p ⇀ |x|−ap|∇u|p + μ and |x|−bp∗ |un|p∗
⇀ |x|−bp∗ |u|p∗

+ ν (4.9)
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as n → +∞ in the weak∗ sense of measures, where

ν =
∑
i∈Λ

νiδxi , μ �
∑
i∈Λ

μiδxi and C∗
a,pν

p/p∗

i � μi (4.10)

for all i ∈ Λ, where δxi is the Dirac mass at xi ∈ Ω.
Now let k ∈ N. Without loss of generality we can suppose that B2(0) ⊂ Ω. Then for

every � > 0 we set ψ	(x) := ψ((x − xk)/�), where ψ ∈ C∞
0 (Ω, [0, 1]) is such that ψ ≡ 1

on B1(0), ψ ≡ 0 on Ω \ B2(0), and |∇ψ| � 1. Observe that (ψ	un) is bounded in D1,p
a .

So we have I ′
λ(un)(ψ	un) → 0, that is,

M0(‖un‖p)
∫

Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx + on(1)

= −M0(‖un‖p)
∫

Ω

|∇un|pψ	

|x|ap
dx + λ

∫
Ω

f(x, un)ψ	un

|x|δ dx +
∫

Ω

ψ	|un|p∗

|x|bp∗ dx.

It follows from (4.9) and (M1) that

M0(‖un‖p)
∫

Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx

� −m0

∫
Ω

|∇u|pψ	

|x|ap
dx − m0

∫
Ω

ψ	 dμ + λ

∫
Ω

f(x, un)ψ	un

|x|δ dx

+
∫

Ω

ψ	|u|p∗

|x|bp∗ dx +
∫

Ω

ψ	 dν + on(1).

Since un → u in Lr(Ω, |x|−δ), by using (f2) and the dominated convergence theorem
we obtain

λ

∫
Ω

|x|−δf(x, un)ψ	un dx → λ

∫
Ω

|x|−δf(x, u)ψ	u dx

as n → ∞. Thus, we obtain

lim sup
n→∞

[
M0(‖un‖p)

∫
Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx

]

� −m0

∫
Ω

|∇u|pψ	

|x|ap
dx − m0

∫
Ω

ψ	 dμ + λ

∫
Ω

f(x, u)ψ	u

|x|δ dx

+
∫

Ω

ψ	|u|p∗

|x|bp∗ dx +
∫

Ω

ψ	 dν.

From the dominated convergence theorem we obtain∫
Ω

|∇u|pψ	

|x|ap
dx = o	(1),

∫
Ω

f(x, u)ψ	u

|x|δ dx = o	(1) and
∫

Ω

ψ	|u|p∗

|x|bp∗ dx = o	(1),

where lim	→0+ o	(1) = 0. So, we obtain

lim
	→0+

{
lim sup

n→∞

[
M0(‖un‖p)

∫
Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx

]}

� lim
	→0+

[ ∫
Ω

ψ	 dν − m0

∫
Ω

ψ	 dμ

]
. (4.11)
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Now, we will show that

lim
	→0+

[
lim sup

n→∞
M0(‖un‖p)

∫
Ω

|x|−apun|∇un|p−2∇un∇ψ	 dx

]
= 0. (4.12)

Indeed, by Hölder’s inequality,∣∣∣∣
∫

Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx

∣∣∣∣ � ‖un‖p−1
( ∫

Ω

|un∇ψ	|p
|x|ap

dx

)1/p

.

Since un is bounded in D1,p
a , M0 is continuous and supp(ψ	) ⊂ B(xk; 2�), there exists

L > 0 such that

M0(‖un‖p)
∫

Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx � L

( ∫
B(xk;2	)

|un∇ψ	|p
|x|ap

dx

)1/p

.

Using the dominated convergence theorem and Hölder’s inequality we obtain

lim sup
n→∞

[
M0(‖un‖p)

∫
Ω

un|∇un|p−2∇un∇ψ	

|x|ap
dx

]

� L

(∫
B(xk;2	)

|u|p|∇ψ	|p
|x|ap

dx

)1/p

� L

(∫
B(xk;2	)

|∇ψ	|N dx

)1/N(∫
B(xk;2	)

(
|u|p
|x|ap

)N/(N−p)

dx

)(N−p)/Np

� L|B(xk; 2�)|1/N

(∫
Ω

χB(xk;2	)

(
|u|p
|x|ap

)N/(N−p)

dx

)(N−p)/Np

.

Letting � → 0+ in the above expression, we obtain (4.12). Thus, we conclude from (4.11)
that

0 � lim
ρ→0+

[ ∫
Ω

ψ	 dν − m0

∫
Ω

ψ	 dμ

]
.

That is,

0 � lim
ρ→0+

[ ∫
B(xk;2	)

ψ	 dν − m0

∫
B(xk;2	)

ψ	 dμ

]

= ν({xk}) − m0μ({xk})

�
∑
i∈Λ

νiδxi
({xk}) − m0

∑
i∈Λ

μiδxi
({xk})

= νk − m0μk.

So, we have
m0μk � νk.

It follows from (4.10) that

νk � (m0C
∗
a,p)

p∗/(p∗−p) �
(

1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p). (4.13)
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Now we shall prove that the above expression cannot occur, and therefore the set Λ is
empty. Indeed, arguing by contradiction, let us suppose that (4.13) holds for some k ∈ Λ.
Thus, since m0 � M0(t) � (θ/p)m0 for all t ∈ R, and by using (f1) and (f2), we have

c = Iλ(un) − 1
θ
I ′
λ(un)(un) + on(1)

�
(

m0

p
− θm0

θp

)
‖un‖p − λ

∫
Ω

F (x, un) + (1/θ)|x|−δf(x, un)un

|x|δ dx

+
(

1
θ

− 1
p∗

)∫
Ω

|un|p∗

|x|bp∗ dx + on(1)

� −λC2

(
1
r

+
1
θ

)∫
Ω

|un|r
|x|δ dx +

(
1
θ

− 1
p∗

)∫
Ω

|un|p∗
ψ	

|x|bp∗ dx + on(1).

Letting n → +∞ we obtain

c � −λC2

(
1
r

+
1
θ

) ∫
Ω

|u|r
|x|δ dx +

(
1
θ

− 1
p∗

) ∫
Ω

|u|p∗
ψ	

|x|bp∗ dx +
(

1
θ

− 1
p∗

)
νk

� −λC2

(
1
r

+
1
θ

) ∫
Ω

|u|r
|x|δ dx +

(
1
θ

− 1
p∗

) ∫
Ω

|u|p∗
ψ	

|x|bp∗ dx

+
(

1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p).

By Hölder’s inequality,

∫
Ω

|u|r
|x|δ dx � C

( ∫
Ω

|u|p∗

|x|bp∗ dx

)r/p∗

,

where

C =
( ∫

Ω

(|x|−δ+br)p∗/(p∗−r) dx

)(p∗−r)/p∗

< ∞.

So, letting � → +∞, we obtain

c � −λCC2

(
1
r

+
1
θ

)( ∫
Ω

|u|p∗

|x|bp∗ dx

)r/p∗

+
(

1
θ

− 1
p∗

) ∫
Ω

|u|p∗

|x|bp∗ dx

+
(

1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p).

Define ϕ : R
+ → R by

ϕ(t) =
(

1
θ

− 1
p∗

)
tp

∗ − λCC2

(
1
r

+
1
θ

)
tr.

This function attains its absolute minimum at the point

t0 =
(

λrCC2(1/r + 1/θ)
p∗(1/θ − 1/p∗)

)1/(p∗−r)

> 0.
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Thus, we conclude that

c � ϕ(t0)

=
(

1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p)

−
(

1
θ

− 1
p∗

)[
λCC2(1/r + 1/θ)

(1/θ − 1/p∗)

]p∗/(p∗−r)[(
r

p∗

)r/(p∗−r)

−
(

r

p∗

)p∗/(p∗−r)]
.

But this is a contradiction. Thus, Λ is empty and it follows that un → u in Lp∗
(Ω, |x|−bp∗

).
Now we will prove that un → u in D1,p

a .
Indeed, since un → u in Lr(Ω, |x|−δ) and in Lp∗

(Ω, |x|−bp∗
), it follows from the domi-

nated convergence theorem that

lim
n→+∞

∫
Ω

f(x, un)(un − u)
|x|δ dx = lim

n→+∞

∫
Ω

|un|p∗−2un(un − u)
|x|bp∗ dx = 0.

Therefore, as (un) is bounded in D1,p
a , I ′

λ(un)(un − u) → 0 in (D1,p
a )−1, ‖un‖ → t0 as

n → ∞, and M is continuous and positive, we conclude that

lim
n→∞

∫
Ω

|x|−ap|∇un|p−2∇un∇(un − u) dx = 0.

It follows from Lemma 2.6 that un → u in D1,p
a . �

Remark 4.3. Due to Lemma 4.1, we can consider λ0 > 0 such that t1 = t1(λ) � t0
for each λ ∈ (0, λ0). Also, we can obtain λ∗ � λ0 such that(

1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p)

−
[
λCC2(1/r + 1/θ)

1/θ − 1/p∗

]p∗/(p∗−r)[(
r

p∗

)r/(p∗−r)

−
(

r

p∗

)p∗/(p∗−r)]
> 0

for each λ ∈ (0, λ∗).

Lemma 4.4. If Jλ(u) < 0, then ‖u‖p < t1 and Jλ(v) = Iλ(v) for all v in a sufficiently
small neighbourhood of u. Moreover, Jλ verifies a local Palais–Smale condition for c < 0
for all λ ∈ (0, λ∗).

Proof. Since ḡλ(‖u‖p) � Jλ(u) < 0, arguing as in § 3 we conclude that ‖u‖p < t1 and
Jλ(v) = Iλ(v) for all v ∈ B(u; R0). Moreover, if (un) is a sequence such that Jλ(un) →
c < 0 and J ′

λ(un) → 0 in D1,p
a , then for n sufficiently large, Iλ(un) = Jλ(un) → c < 0

and I ′
λ(un) = J ′

λ(un) → 0. Since J is coercive, we obtain that (un) is bounded in D1,p
a .

It follows from Remark 4.3 that for λ ∈ (0, λ∗),

c < 0 <

(
1
θ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p)

−
[
λCC2(1/r + 1/θ)

1/θ − 1/p∗

]p∗/(p∗−r)[(
r

p∗

)r/(p∗−r)

−
(

r

p∗

)p∗/(p∗−r)]

and from Lemma 4.2, up to a subsequence, (un) is strongly convergent in D1,p
a . �
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Now we will construct an appropriate minimax sequence of negative critical values for
the functional Jλ.

Lemma 4.5. Given k ∈ N there exists ε = ε(k) > 0 such that

γ(J−ε) � k,

where J−ε = {u ∈ D1,p
a : Jλ(u) � −ε}.

Proof. Fix k ∈ N and let Xk be a k-dimensional subspace of D1,p
a . Thus, there exists

C(k) > 0 such that C(k)‖u‖r � C1‖u‖r
Lr(Ω,|x|−δ) for all u ∈ Xk.

Considering ρ̄ > 0 such that 0 < ‖u‖ = ρ̄ and 0 < ‖u‖p < t1, we obtain that
Jλ(u) = Iλ(u). Arguing as in the proof of Theorem 1.1, we can take R > 0 such that

Iλ(u) < −ε

for all u ∈ S = {u ∈ Xk : ‖u‖ = s}, with 0 < s < min{R, ρ̄}. Hence, S ⊂ J−ε and, since
J−ε is symmetric and closed, from Corollary 2.3,

γ(J−ε) � γ(S) = k.

�

We define now, for each k ∈ N, the sets

Γk = {C ⊂ D1,p
a \{0} : C is closed, C = −C and γ(C) � k},

Kc = {u ∈ D1,p
a : J ′

λ(u) = 0 and Jλ(u) = c}

and the number
ck = inf

C∈Γk

sup
u∈C

Jλ(u).

Lemma 4.6. Given k ∈ N, the number ck is negative.

Proof. From Lemma 4.5, for each k ∈ N there exists ε > 0 such that γ(J−ε) � k.
Moreover, 0 /∈ J−ε and J−ε ∈ Γk. On the other hand,

sup
u∈J−ε

Jλ(u) � −ε.

Hence,
−∞ < ck = inf

C∈Γk

sup
u∈C

Jλ(u) � sup
u∈J−ε

Jλ(u) � −ε < 0.

�

The next lemma allows us to prove the existence of critical points of J .

Lemma 4.7. If c = ck = ck+1 = · · · = ck+r for some r ∈ N, then

γ(Kc) � r + 1

for all λ ∈ (0, λ∗).
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Proof. Let (un) be a sequence in Kc. Since Lemma 4.6 gives us c = ck = ck+1 =
· · · = ck+r < 0, from Lemma 4.4 we have that (un) is bounded and Jλ(un) = Iλ(un)
for all n ∈ N. Thus, we can apply Lemma 4.2 and we obtain a subsequence strongly
convergent in D1,p

a , that is, Kc is a compactness set. Moreover, Kc = −Kc. Suppose,
by contradiction, that γ(Kc) � r, so there exists a closed and symmetric set U with
Kc ⊂ U such that γ(U) = γ(Kc) � r. Note that we can choose U ⊂ J0 because c < 0.
By the deformation lemma [7], we have an odd homeomorphism η : D1,p

a → D1,p
a such

that η(Jc+δ − U) ⊂ Jc−δ for some δ > 0 with 0 < δ < −c. Thus, Jc+δ ⊂ J0 and by
the definition of c = ck+r there exists A ∈ Γk+r such that supu∈A Jλ(u) < c + δ, that is,
A ⊂ Jc+δ and

η(A − U) ⊂ η(Jc+δ − U) ⊂ Jc−δ. (4.14)

But γ(A − U) � γ(A) − γ(U) � k and γ(η(A − U)) � γ(A − U) � k. Then η(A − U) ∈
Γk and this contradicts (4.14). Hence, the lemma is proved. �

Remark 4.8. If −∞ < c1 < c2 < · · · < ck < · · · < 0, and since each ck is a critical
value of Jλ, then we obtain infinitely many critical points of Jλ, and hence problem (4.3)
has infinitely many solutions.

On the other hand, if there are two constants satisfying ck = ck+r, then c = ck =
ck+1 = · · · = ck+r and, from Lemma 4.7, there exists λ∗ > 0 such that

γ(Kc) � r + 1 � 2.

From Proposition 2.5, Kc has infinitely many points, that is, problem (4.3) has infinitely
many solutions.

Proof of Theorem 1.2. Let λ∗ be as in Remark 4.3 and, for 0 < λ < λ∗, let uλ be the
non-trivial solution of problem (4.3) found in Remark 4.8. Thus, Jλ(uλ) = Iλ(uλ) < 0.
Hence, using Lemma 4.4 we have

‖uλ‖p � t1 < t0, (4.15)

so we conclude that
M0(‖uλ‖p) = M(‖uλ‖p)

and uλ is a solution of problem (1.1). �

4.2. The p < r < p∗ case

In this section we adapt for our study the ideas in [19]. In what follows we prove that
the functional Iλ has the mountain pass geometry.

Lemma 4.9. Assume that conditions (M1), (f1) and (f2) hold. There exist positive
numbers ρ and α such that

Iλ(u) � α > 0 ∀u ∈ D1,p
a with ‖u‖ = ρ.
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Proof. From (M1), (f1), (f2) and the Caffarelli–Kohn–Nirenberg inequality, we obtain

Iλ(u) � m0

p
‖u‖p − λC̃2‖u‖r − 1

p∗ C̃‖u‖p∗
.

Since p < r < p∗, the result follows by choosing ρ > 0 small enough. �

Lemma 4.10. For all λ > 0 there exists e ∈ D1,p
a with Iλ(e) < 0 and ‖e‖ > ρ.

Proof. Fix v0 ∈ D1,p
a \{0} with v0 � 0 in Ω and ‖v0‖ = 1. Using (4.2) and (f2) we

obtain

Iλ(tv0) � ξ

p2 m0t
p‖v0‖p − λC1

r
tr

∫
Ω

|v0|r
|x|δ dx − tp

∗

p∗

∫
Ω

|v0|p
∗

|x|bp∗ dx.

Since p < r < p∗, we have limt→+∞ Iλ(tv0) = −∞. Thus, for t̄ > ρ large enough,
Iλ(t̄v0) < 0. The result follows by considering e = t̄v0. �

Using a version of the mountain pass theorem without the Palais–Smale condition
(see [33]), there exists a sequence (un) ∈ D1,p

a satisfying

Iλ(un) → cλ and I ′
λ(un) → 0 in (D1,p

a )−1,

where
cλ = inf

γ∈Γ
max

t∈[0,1]
Iλ(γ(t))

and
Γ := {γ ∈ C([0, 1],D1,p

a ) : γ(0) = 0, γ(1) = e}.

Lemma 4.11. If (M1), (M2) and (f2) hold, then

lim
λ→+∞

cλ = 0.

Proof. Since the functional Iλ has the mountain pass geometry, it follows that there
exists tλ > 0 verifying Iλ(tλv0) = maxt�0 Iλ(tv0), where v0 is given by Lemma 4.10.
Hence, from (4.2) and (f2) we obtain

0 = I ′
λ(tλv0)(tλv0) � ξ

p
m0t

p
λ‖v0‖p − λC1t

r
λ

∫
Ω

|v0|r
|x|δ dx − tp

∗

λ

∫
Ω

|v0|p
∗

|x|bp∗ dx,

that is,

ξ

p
m0t

p
λ � λC1t

r
λ

∫
Ω

|v0|r
|x|δ dx + tp

∗

λ

∫
Ω

|v0|p
∗

|x|bp∗ dx � tp
∗

λ

∫
Ω

|v0|p
∗

|x|bp∗ dx,

which implies that (tλ) is bounded. Thus, there exists a sequence (λn) and β0 � 0 such
that λn → +∞ and tλn → β0 as n → +∞. Consequently, there exists D > 0 such that

ξ

p
m0t

p
λn

� D ∀n ∈ N,
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and so
λnC1t

r
λn

∫
Ω

|x|−δ|v0|r dx + tp
∗

λn

∫
Ω

|x|−bp∗ |v0|p
∗
dx � D ∀n ∈ N. (4.16)

If β0 > 0, we obtain

lim
n→∞

[
λnC1t

r
λn

∫
Ω

|x|−δ|v0|r dx + tp
∗

λn

∫
Ω

|x|−bp∗ |v0|p
∗
dx

]
= +∞,

which is a contradiction with (4.16). Thus, we conclude that β0 = 0. Now, let us consider
the path γ∗(t) = te for t ∈ [0, 1], which belongs to Γ , to obtain the estimate

0 < cλ � max
t∈[0,1]

Iλ(γ∗(t)) = Iλ(tλv0) � ξ

p2 m0t
p
λ.

In this way, observing that (cλ) is a monotonous sequence, we conclude that

lim
λ→+∞

cλ = 0.

�

Remark 4.12. Due to Lemma 4.11, there exists λ1 > 0 such that

cλ <

(
1
p
m0 − 1

ξ
M0(t0)

)
t0

for all λ > λ1.

Lemma 4.13. Suppose that λ > λ1 and that (M1), (M2), (f2) and (f3) hold. Let
(un) ∈ D1,p

a be a bounded sequence such that

Iλ(un) → cλ and I ′
λ(un) → 0 in (D1,p

a )−1 as n → +∞.

Then, for all n ∈ N, we have
‖un‖p � t0.

Proof. Suppose by contradiction that for some n ∈ N we have ‖un‖p > t0. Thus, for
each λ > λ1, from the definition of M0(t), (f3) and (4.2), we have that

cλ = Iλ(un) − 1
ξ
I ′
λ(un)(un) + on(1)

� 1
p
M̂0(‖un‖p) − 1

ξ
M0(t0)‖un‖p + on(1)

�
(

1
p
m0 − 1

ξ
M0(t0)

)
‖un‖p + on(1). (4.17)

Since m0 < M(t0) < (ξ/p)m0 we have (1/p)m0 − (1/ξ)M0(t0) > 0. So we obtain

cλ �
(

1
p
m0 − 1

ξ
M0(t0)

)
t0 > 0.

But this contradicts Remark 4.12. Hence, we conclude that ‖un‖p � t0. �
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Proof of Theorem 1.3. It follows from Lemma 4.11 that there exists λ∗∗ � λ1 > 0
such that

cλ <

(
1
ξ

− 1
p∗

)
(m0C

∗
a,p)

p∗/(p∗−p) (4.18)

for all λ � λ∗∗. Now, fix λ � λ∗∗. From Lemmas 4.9 and 4.10 there exists a bounded
sequence (un) ⊂ D1,p

a such that Iλ(un) → cλ and I ′
λ(un) → 0 as n → ∞.

Arguing as in Lemma 4.2, from (4.18) we conclude that, up to a subsequence, un → uλ

in D1,p
a . Thus, uλ is a weak solution of problem (4.3). Moreover, by Lemma 4.13 we

conclude that uλ is a weak solution of problem (1.1). �
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