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Various microfluidic systems, such as chemical and biological lab-on-a-chip devices,
involve motion of multiple droplets within an immersing fluid in shallow microchannels.
Modelling the dynamics of such systems requires calculation of the forces of
interaction between the moving droplets. These forces are commonly approximated
by superposition of dipole solutions, which requires an assumption of sufficiently
large distance between the droplets. In this work we obtain exact solutions (in the
Hele-Shaw limit) for two moving droplets, and a droplet within a droplet, located
within a moving immersing fluid, without limitation on the distance between the
droplets. This is achieved by solution of the pressure field in a bipolar coordinate
system and calculation of the force in Cartesian coordinates. Our results are compared
with numerical computations, experimental data and the existing dipole-based models.
We utilize the results to calculate the dynamics of a droplet within a droplet, and of
two close droplets, located within an immersing fluid with oscillating speed. Overall,
the obtained results establish the solid base for the rather important future extensions
for modelling the complex, long-range interdroplet interactions in the limit of dense
droplet media.

Key words: drops and bubbles, Hele-Shaw flows, microfluidics

1. Introduction

The motion of multiple droplets contained within a moving immersing fluid in a
Hele-Shaw geometry is relevant to various microfluidic systems, such as chemical
and biological lab-on-a-chip devices (Stone, Stroock & Ajdari 2004; Squires & Quake
2005; Zhao 2013). Generation of such configurations is commonly done by controlled
injection, via T-junction, of one liquid into a second immiscible liquid (Garstecki
& Whitesides 2006; Christopher et al. 2008; Desreumaux et al. 2013, among many
others).

Since inertial effects and gravity are commonly negligible due to the small size
associated with microfluidic configurations, the flow field is governed by surface
related effects such as capillarity and viscosity. Modelling the dynamics of such
systems requires calculation of the forces of interaction between multiple droplets
moving relatively to each other and the surrounding fluid. These forces are commonly
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Interaction between droplets in a Hele-Shaw cell 265

approximated by superposition of dipole solutions (Beatus, Tlusty & Bar-Ziv 2006;
Uspal & Doyle 2012; Shani et al. 2013; Fleury et al. 2014), which requires an
assumption of a sufficiently large distance between the droplets. Given the lack of
exact models of interaction forces between closely spaced droplets, models based
on the dipole approximation are frequently applied for cases which violate the
fundamental assumption of long distances between the droplets (e.g. Liu, Goree
& Feng 2012; Shen et al. 2014). In addition, some systems involve droplet within
a droplet configurations (He et al. 2005; Hindmarsh et al. 2005; Hanson et al.
2008), which, to the best of our knowledge, have not been previously modelled in a
Hele-Shaw geometry.

Exact solution of the interaction forces between closely spaced droplets in a
Hele-Shaw cell requires applying no-penetration boundary conditions for circular
droplets moving relative to one another, which due to the interaction experience a
non-uniform external flow. For two droplets of identical radii Beatus, Bar-Ziv & Tlusty
(2012) obtained such an exact solution by application of the method of images. The
aim of this work is to apply transformation to a bipolar coordinate system to obtain
an exact solution for the general case of two relatively moving droplets of different
radii and viscosities, as well as a droplet within a droplet configuration, located within
a moving immersing fluid in a Hele-Shaw cell. This paper is organized as follows.
In § 2 we describe the microfluidic droplet configuration and relevant assumptions
made in the model. In § 3 we obtain the pressure field created by two closely spaced,
droplets, in the bipolar coordinate system, moving relative to one another. In § 4
we calculate the interaction forces between two droplets in the Cartesian coordinate
system. We compare our model to experimental results, the existing dipole model as
well as numerical computations. We then apply our results to examine the dynamics
of two closely spaced droplets, and a droplet within a droplet, subject to an external
oscillating velocity. In § 5 we give concluding remarks.

2. Problem formulation

We focus on the interaction forces between two closely spaced droplets (see
figure 1a), or a droplet within a droplet (see figure 1b), positioned between two
parallel flat plates separated by a small gap. The droplets are immersed within a
different immiscible liquid flowing uniformly far from the droplets.

The Cartesian coordinate system is denoted by (x, y, z) and time is denoted by t.
The coordinate x is defined as parallel to a line connecting the centres of the droplets.
The upper and lower plates are parallel to the x–y plane. The gap between the parallel
plates is denoted by g and is assumed to be small compared to all other length scales
of the problem. The droplets are assumed circular in the x–y plane due to dominant
surface tension effects. The centres of droplets 1 and 2 are denoted by (x1, y1) and
(x2, y2), respectively. The distance between the centres of the droplets is denoted by h.
The radii of droplets 1 and 2 are denoted by r1 and r2, respectively. The z-averaged
liquid velocity in the x–y plane is denoted by (u, v) and the uniform z-averaged
velocity of the surrounding liquid far from the location of the droplets is denoted by
(u∞, v∞). The velocities of droplets 1 and 2 are (u1, v1) and (u2, v2), respectively.
The viscosity of the surrounding liquid is µs and the viscosities of droplets 1 and 2
are denoted by µ1 and µ2, respectively. We focus on configurations with negligible
inertial effects.

Hereafter, normalized variables will be denoted by a capital letter and characteristic
values will be denoted by an asterisk superscript. We define the normalized
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FIGURE 1. Schematic description of the droplet configuration and coordinate system. The
coordinate x is defined as parallel to a line connecting the centres of the droplets. Panel
(a) presents two closely spaced droplets and panel (b) presents a droplet within a larger
droplet. r1, r2 are the radii of droplets 1 and 2, respectively. h is the distance between the
centres of the droplets, g is the gap between the upper and lower plates.

coordinates (X, Y, Z) and time T ,

X = x
l∗
, Y = y

l∗
, Z = z

g
, T = t

l∗/u∗
, (2.1a−d)

where l∗ and u∗ are characteristic length scale and speed in the X–Y plane. The
normalized Z-averaged velocity in the X–Y plane and normalized pressure P are,

U = u
u∗
, V = v

u∗
, P= p

12µiu∗l∗/g2
, (2.1e−g)

where µi is the viscosity of the liquid in the region of calculation (see figure 2b,c).
The normalized droplet radii and distance between the droplets centres are (R1,R2)=
(r1/l∗, r2/l∗) and H = h/l∗, respectively. The normalized velocities of the droplets
and the velocity far from the droplets are (U1, V1) = (u1/u∗, v1/u∗), (U2, V2) =
(u2/u∗, v2/u∗) and (U∞, V∞)= (u∞/u∗, v∞/u∗), respectively.

Using the assumptions of negligible inertial effects and a small gap between the
plates, we apply the Hele-Shaw approximation, and thus the governing equation is the
Laplace equation for the liquid pressure ∇2

‖P = 0, where ∇‖ is the two-dimensional
nabla operator in the X–Y plane and ∂P/∂Z= 0. The relation between the Z-averaged
normalized velocity, (U, V), and the normalized pressure gradient is (U, V)=−∇‖P.
The Laplace equation is supplemented by the no-penetration condition at the boundary
of the droplets,

(∇‖P+ (Ui, Vi)) · n̂= 0, (2.2)

where n̂ is a unit vector normal to the boundary of droplet i and pointing outward,
i= 1, 2 correspond to droplets 1, 2 respectively, and the uniform velocity far from the
droplets, (U, V)→ (U∞, V∞).

3. Calculation of pressure distribution in a bipolar coordinate system

We define auxiliary coordinates, denoted by tildes, as (X̃, Ỹ)

X̃ = X +U∞T, Ỹ = Y + V∞T, (3.1a,b)

where the velocity of droplet i is (Ũi, Ṽi)= (Ui−U∞,Vi−V∞) and (Ũ∞, Ṽ∞)= (0, 0).
We apply the bipolar coordinate transformation from the X̃–Ỹ plane to the σ–τ plane
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FIGURE 2. (Colour online) Illustration of the bipolar coordinate system. Panel (a) presents
isosurfaces of τ (red dashed), isosurfaces of σ (blue smooth) and two focal points at
(−A, 0), (A, 0). σ is the angle between the lines connecting point L and the two focal
points and τ is the natural logarithm of the ratio of the lengths of the lines connecting L
to the focal points. Panels (b) and (c) present two closely spaced droplets and a droplet
within a droplet, respectively, in the σ–τ plane.

as described in figure 2(a), where the curves of constant σ (blue solid) and of constant
τ (red dashed) are perpendicular and describe circles. The (σ , τ ) coordinates have
two focal points, denoted by F1 and F2, located at (A, 0) and (−A, 0), respectively,
on the X̃-axis of the Cartesian coordinate system. The conformal transformation from
the Cartesian coordinate system (X̃, Ỹ) to the bipolar coordinates (σ , τ ) is (Polyanin
2001)

(X̃, Ỹ)= A
(

sinh τ
cosh τ − cos σ

,
sin σ

cosh τ − cos σ

)
, (3.2)

where σ of the point L is the angle 6 F2LF1 and τ is the natural logarithm of the
ratio of distances |LF1| and |LF2| respectively, τ = ln |LF1|/|LF2|. Equation (3.2) can
be presented as

(X̃ − A · coth τ)2 + Ỹ2 = A2

sinh2 τ
, (3.3)

and thus the radius of droplet i is given by Ri = A/ sinh τ and the droplet radius
centre is located at A coth τ . From (3.2) R1, R2 and H are related to τ1, τ2 and A (see
figure 2a),

τ1 = sinh−1

(
A
R1

)
, τ2 =C sinh−1

(
A
R2

)
(3.4a,b)

and

A=
√
(H2 − (R1 + R2)2)(H2 − (R1 − R2)2)

2H
, (3.5)

where C = −1 for two closely spaced droplets (figure 2b) and C = 1 for a droplet
within a droplet (figure 2c).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

40
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.403


268 I. Sarig, Y. Starosvetsky and A. D. Gat

The governing equation in the σ–τ plane is

∂2P̃
∂σ 2
+ ∂

2P̃
∂τ 2
= 0, (3.6)

in the rectangular domain τ1 6 τ 6 τ2 and −π 6 σ 6 π. Since σ → π and σ →−π
both represent the line connecting the centres of the circles, from opposing directions,
equation (3.6) is supplemented by the periodic boundary conditions at σ =−π,π

P̃(σ =−π, τ )= P̃(σ =π, τ ),
∂P̃
∂σ

∣∣∣∣∣
σ=−π

= ∂P̃
∂σ

∣∣∣∣∣
σ=π

, (3.7a,b)

as well as no-penetration condition on the boundary of the droplets at τi (i = 1, 2
corresponds to droplets 1, 2 respectively).

∂P
∂τ

∣∣∣∣
τ=τi

+ ŨiA
1− cosh τi cos σ
(cosh τi − cos σ)2

− ṼiA
sin σ sinh τi

(cosh τi − cos σ)2
= 0. (3.8)

Applying the separation of variables and solving the eigenvalue problem yields the
general form of the solution

P̃(σ , τ )=
∞∑

n=1

(αn cos nσ + βn sin nσ)(γn cosh nτ + δn sinh nτ). (3.9)

Utilizing (3.8) on τ = τi yields,

αnδn = −I1 sinh(nτ2)+ I2 sinh(nτ1)

n sinh(n(τ1 − τ2))
, αnγn = I1 cosh(nτ2)− I2 cosh(nτ1)

n sinh(n(τ1 − τ2))
,

βnδn = −J1 sinh(nτ2)+ J2 sinh(nτ1)

n sinh(n(τ1 − τ2))
, βnγn = J1 cosh(nτ2)− J2 cosh(nτ1)

n sinh(n(τ1 − τ2))
,

 (3.10)

where

Ii = ŨiA
π

∫ π

−π

cos nσ
cosh τi cos σ − 1
(cosh τi − cos σ)2

dσ = 2ŨiAne−n|τi|, (3.11a)

Ji = ṼiA
π

∫ π

−π

sin nσ
sinh τi sin σ

(cosh τi − cos σ)2
dσ =

{
2ṼiAne−nτi if τi > 0
−2ṼiAnenτi if τi < 0.

(3.11b)

The pressure field in the (X, Y) coordinates is thus obtained from (3.9) to (3.11)
together with (3.2) and the transformation

P(X, Y)= P̃(X̃, Ỹ)+U∞X + V∞Y. (3.12)

4. Interaction forces and dynamics of two closely spaced droplets and a droplet
within a droplet
In order to calculate the force acting on droplet i in the Cartesian coordinates (X,Y)

we integrate

(FX,i, FY,i)=−
∮

droplet
P(X, Y)

(
∂Y
∂S
,
∂X
∂S

)
dS, (4.1)
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where S is a coordinate across the droplet boundary. In the σ–τ plane, S corresponds
to the variation of σ for the fixed value of τ . Thus the Jacobian simply reads ∂S/∂σ .
The dependence of the Jacobian in S eliminates its dependence in the reflection of the
pressure in both X, Y directions leading to the simplified expression

(FX,i, FY,i)=−
∫ π

−π

P̃(σ , τ1)

(
∂Y
∂σ
,
∂X
∂σ

)
dσ +πR2

i (U∞, V∞), (4.2)

in the σ–τ plane. Substituting (3.9)–(3.12) and (3.2) into (4.2) yields the force that
acts on droplet i due to the uniform flow and as well as the flow field interaction with
the neighbouring droplet j

(FX,i, FY,i) = −4πA2
∞∑

n=1

ne−2n|τi| coth(n(|τi| + |τj|)) · (Ui −U∞, Vi − V∞)

+ 4πA2
∞∑

n=1

n(coth(n(|τi| + |τj|))− 1) · (Uj −U∞,−Vj + V∞)

+πR2
i (U∞, V∞). (4.3)

The first and the second terms of the expression (4.3) can be attributed to the
interdroplet interaction forces exerted on the ith droplet which are induced by the
instantaneous displacement (first term in (4.3)) and velocity (second term in (4.3)) of
the second ( jth) droplet, accordingly. The third term in the expression (4.3) is related
to the force component exerted on a single droplet by the surrounding fluid (i.e. in
the absence of interdroplet interactions).

Details of the derivation of (4.3) are given in appendix A. For the case of a droplet
within a larger droplet we obtain

(FX,i, FY,i) = −4πA2
∞∑

n=1

ne−2nτi coth(n|τi − τj|) · (Ui, Vi)

− 4πA2
∞∑

n=1

ne−n(τi+τj)

sinh(n|τi − τj|) · (Uj, Vj), (4.4)

where (i, j) = (1, 2) represents the external droplet and (i, j) = (2, 1) represents the
inner droplet. The forces (FX,i, FY,i) are normalized by the characteristic force f ∗ =
12µu∗l∗2/g, where µ is defined by the liquid in the region of calculation (which is
the immersing fluid for (4.3) and the viscosity of the external droplet for (4.4)). In
the case of droplet within a droplet configuration the first and the second terms of the
expression (4.4) can be again attributed to the interdroplet interaction forces exerted
on droplet i, which are induced by the instantaneous displacement (first term in (4.4))
and velocity (second term in (4.4)) of droplet j.

Equations (4.3), (4.4) allow for exact (in the Hele-Shaw limit) solution of interaction
forces for arbitrarily chosen droplets positions and velocities. However, obtaining the
dynamics of the pair of droplets driven by external uniform flow (which may be
closely spaced) requires computing their velocities from force balance between the
forces applied by the surrounding fluid ( fx,i, fy,i) and the droplets’ internal friction,
denoted hereafter as (rx,i, ry,i). Given the dominant effect of capillary forces in
microconfigurations, surface tension significantly affects the friction force of the
droplet. Experimental works commonly estimate the total friction of the droplet
by measuring the ratio β = ud/u∞ (e.g. Beatus et al. 2012; Liu et al. 2012; Shen
et al. 2014), where ud is the speed of an isolated non-wetting droplet immersed in a
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perfectly wetting fluid. Recently, Huerre et al. (2015) related ud to the thickness of a
thin lubrication film of the immersing fluid above and below the droplet, where for
sufficiently small film thickness it was shown that β ≈ 0.25.

For simplicity, we hereafter use dimensional parameters and define µ1, µ2 and µs
are the viscosities of droplet 1, droplet 2 and the surrounding liquid, respectively. The
coefficient βi may be related to the internal friction force on droplet i, denoted as
(rx,i, ry,i)=−12(µiπr2

i /g− cπr2
i /g)(ui, vi), where ci = 2µs/βi −µi −µs. Applying the

aforementioned force balance (rx,in, ry,in)= ( fx,i, fy,i) yields the equations of motion for
two closely spaced droplets

ui

u∞
= (µsgi −µsg12 +µsr2

i )(µjr2
j + cjr2

j +µsgj)+µsg12(µsgj −µsg12 +µsr2
j )

µ2
s g2

12 + (µ1r2
1 + c1r2

1 +µsg1)(µ2r2
2 + c2r2

2 +µsg2)
, (4.5a)

vi

v∞
= (µsgi +µsg12 +µsr2

i )(µjr2
j + cjr2

j +µsgj)−µsg12(µsgj +µsg12 +µsr2
j )

µ2
s g2

12 + (µ1r2
1 + c1r2

1 +µsg1)(µ2r2
2 + c2r2

2 +µsg2)
. (4.5b)

For a configuration of a droplet within a droplet (see figure 1b), the equations of
motion are

u1

u∞
= v1

v∞
= 2r2

1µsµ1(−c2r2
2 −µ2r2

2 +µ1g2)

µ2
1g2

12 + (µsr2
1 + c1r2

1 −µ1g1)(−µ2r2
2 − c2r2

2 +µ1g2)
, (4.6a)

u2

u∞
= v2

v∞
= −2r2

1µsµdg12

µ2
1g2

12 + (µsr2
1 + c1r2

1 −µ1g1)(−µ2r2
2 − c2r2

2 +µ1g2)
, (4.6b)

where (u1, v1) represents the external droplet and (u2, v2) represents the inner droplet,

g1= 4a2
∞∑

n=1

ne−2nτ1 coth(n(τ1 − τ2)), g2= 4a2
∞∑

n=1

ne−2n|τ2| coth(n(τ1 − τ2)), (4.7a,b)

g12 = 4a2
∞∑

n=1

−ne−2n(τ1+|τ2|)

sinh(n(τ1 − τ2))
, (4.7c)

and

a=
√
(h2 − (r1 + r2)2)(h2 − (r1 − r2)2)

2h
. (4.7d)

We note that (4.5)–(4.7) are the droplet velocities for a coordinate system where X is
parallel to the line connecting the centres of the droplets. Thus, the coordinate system
rotates with the motion of the droplets and hence (u∞, v∞) needs to be recalculated
accordingly.

Figure 3 illustrates the forces acting on two closely spaced droplets given in
(4.3) (smooth lines, panels a–d), as well as the force acting on a droplet within a
droplet configuration given in (4.4) (smooth lines, panels e–f ), where the positions
and velocities of the droplets are prescribed. Both analytical solutions (4.3), (4.4)
are compared to the forces computed from the numerical solution of the Laplace
equation in the original (Cartesian) coordinates satisfying the boundary conditions
(2.2). Here we note that the numerical solution of the Laplace equation has been
performed in the commercially available software (COMSOL Multiphysics 4.5TM)
using a grid of 105 mesh points. Numerical computation of the force components
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FIGURE 3. Comparison between (4.3) and (4.4) (smooth line), the dipole approximation
(dashed line) and numerical calculations (dotted line). Panels (a,c,e) present force in the
X direction versus the distance between droplets. Panels (b,d, f ) present force in the Y
direction versus the distance between droplets. Panels (a–d) present the interaction forces
of two adjacent droplets (4.3). In panels (a,b) R1 = 1, R2 = 4, (U1, V1) = (1.92, −1.61),
(U2, V2) = (0, −1.5), (U∞, V∞) = (2.5, 0). In panels (c,d) R1 = 1, R2 = 3, (U1, V1) =
(0.52, 1.93), (U2, V2) = (1, 0) and (U∞, V∞) = (1, 0). Panels (e, f ) present the forces
of a droplet within a droplet (4.4) where R1 = 3, R2 = 1, (U1, V1) = (1.414, 1.414) and
(U2, V2)= (−0.707, 0.707).

(i.e. (FX,i, FY,i)) applied on the droplets (for both configurations) is performed by the
numerical integration of the pressure (calculated from the solution of the Laplace
equation) along the boundary of each droplet projected into the horizontal and vertical
directions. In the case of closely spaced droplets, the dipole approximation (dashed
lines) is compared to the exact analytical solution (4.3) also. The forces in the
x-direction (figure 3a,c,e) and the y-direction (figure 3b,d, f ) are presented versus the
distance between the droplets H–R1–R2 in figure 3(a–d) and versus H in figure 3(e, f ).
In all cases, the analytical solutions given in (4.3), (4.4) are in the perfect agreement
with the numerical solution of (3.6)–(3.8). In the case of H–R1–R2� 1, a significant
difference exists between the dipole model and the exact solution (4.3). However,
this difference vanishes for H–R1–R2 � 1 as H→∞ and the force approaches the
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FIGURE 4. Accuracy of the dipole approximation compared with the exact solution (4.3).
Panels (a,c) present error of the dipole approximation scaled by the total force, ET =
|Fexact − Fdipole|/|Fd∞|. Panels (b,d) present the error for the dipole approximation scaled
by the interaction force, ER = |Fexact − Fdipole|/|Finteraction|. In panels (a,b) the droplet pair
is parallel to the external flow. In panels (c,d) the droplet pair is perpendicular to the
external flow. R1/R2= 1 (smooth line), R1/R2= 2 (dashed dotted line), R1/R2= 4 (dashed
line), in all cases U∞ = 5.

solution of a single isolated droplet, πR2
1(2U∞−U1). In figure 3(c,d) we illustrate the

case of one droplet moving with the same velocity as the external flow. In this case
H–R1–R2 does not affect the interaction force computed by the dipole model, since
the dipole is of zero strength. In comparison, the exact solution yields a significant
increase in the interaction forces and thus the dipole model is this case fails both
quantitatively and qualitatively. Figure 3(e, f ) examines the forces acting on a droplet
within a droplet, yielding approximately constant forces for H < 1. Additionally, the
interaction force increases with H as the small droplet approaches the boundary of
the bigger droplet.

Figure 4 illustrates the difference between (4.3) and the dipole approximation for
the limit of H–R1–R2→ 0. In all cases U∞= 5, and R1/R2= 1, 2, 4, corresponding to
smooth, dashed and dashed-dotted lines, respectively. The line connecting the centres
of the droplets is parallel (panels a,b) or perpendicular (panels c,d) to the uniform
flow. Since (4.3) is an exact solution (under the assumptions of the Hele-Shaw model),
we define the error of the dipole approximation by ET = |Fexact−Fdipole|/|Fd∞| (panels
a,c), where Fexact is the solution of (4.3), Fdipole is the force computed by the dipole
approximation and Fd∞ is the force on an isolated droplet. For parallel configuration
(panel a) clear minima are evident for U1/U2≈ 1 where the error decreases to ≈5 %.
For the perpendicular configuration no minima are evident and the errors vary from
25 % to 40 %. In fact, various theoretical and experimental models concerned with
the dynamics of microfluidic droplets (e.g. excitation of the phonon modes in a
droplet lattice Beatus et al. 2006) require a knowledge of the interdroplet interaction
forces. These interaction forces are represented by the difference between the total
force and the force acting on an isolated droplet. In the present study we define the
error of the interaction force as ER = |Fexact − Fdipole|/|Finteraction| presented in (panels
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FIGURE 5. Scaled speed of droplet pairs of the identical particles U/Ud versus the
distance between the droplets H–R1–R2. Ud is the speed of a single isolated droplet.
The line connecting the centres of the droplets is: (I) parallel to external flow (squares,
dotted line and dotted–dashed line) or (II) perpendicular to the external flow (circles,
smooth line and dashed line). The experimental data were taken from Shen et al. (2014)
and are marked by squares and circles. Exact solution (4.3) is marked by smooth and
dashed-dotted lines. Dipole approximation is marked by dashed and dotted lines.

b,d), where Finteraction = Fexact − Fd∞. The errors associated with the interaction forces
are ≈100 % for the parallel configuration (panel b) and ≈60 % for the perpendicular
configuration (panel d). As can be inferred from the results of figure 4, the dipole
approximation of the total force is more accurate for the parallel configuration (panel
a) in comparison to the perpendicular one (panel c). However, in the case of the
interaction forces the opposite is true, namely the dipole approximation yields the
more accurate approximation for the perpendicular configuration (panel d) compared
to the parallel one (panel b). Thus, the minima in the error of the dipole model for
the parallel configuration is due to a reduction of magnitude of the interaction forces
for U1/U2 ≈ 1.

In figure 5 we compare the experimental results (squares, circles) presented in
Shen et al. (2014) with the two analytical models, namely the classical dipole model
(dotted line, dashed line) and the exact model (4.3) (smooth line, dash-dotted line)
developed herein. In this figure the speed of the droplet pairs are plotted versus the
distance between the droplets for the two distinct orientations: (I) the line connecting
the centres of the droplets is parallel to external flow (squares, dotted line and
dotted–dashed line) and (II) perpendicular to the external flow (circles, smooth line
and dashed line). In case (I) the configuration is close to the region of minimal
difference between the dipole model and the exact solution (4.3) (see figure 4). In
this case the difference between the models is negligible compared to the experimental
resolution. However, in case (II) (4.3) accurately captures the change in slope of the
experimental data as H–R1–R2 → 0, and thus significantly outperforms the original
dipole model.

Figure 6 presents the trajectories of the centres of two droplets subject to the
uniform, rotating velocity field (U∞, V∞) = |U∞|(cos(ωT), sin(ωT)). Smooth lines
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FIGURE 6. Trajectories of the centres of two droplets due to an external rotating uniform
velocity (U∞, V∞)= |U∞|(cos(ωT), sin(ωT)). Smooth lines are exact solution (4.6)–(4.7)
and dashed lines mark dipole approximation. Panels (a–c), |U∞| = 0.4, ω = 0.025. Panel
(a) R1=R2= 1, µ1/µ2= 1. Panel (b) R1= 10, R2= 1 and µ1/µ2= 1. Panel (c) R1=R2= 1,
µ1/µ2= 1000. Panel (d) presents a droplet within a droplet where |U∞| = 0.5, ω= 1.256,
R1 = 3, R2 = 1 and µ1/µ2 = 0.5. Panels (e, f ) present zoomed regions of the trajectories
illustrated in panel (d).

denote calculations using the exact model (4.6), (4.7) and dashed lines correspond
to the original dipole model. Figure 6(a) illustrates the motion of two identical
droplets (R1/R2 = 1, µ1/µ2 = 1, |U∞| = 0.4, ω = 0.025). By careful observation of
the trajectories of both droplets shown in figure 6(a) one can clearly see that, due
to the equal interdroplet interaction forces, the relative displacement between their
centres remains permanently constant. However, the orbits of each droplet centre are
perfectly periodic and circulate around the fixed points in the plane. It is worthwhile
emphasising that the presence of the interaction forces brings about the modification
of a single droplet trajectory. Figure 6(b) presents the trajectories of two droplets with
different radii (R1= 1 and R2= 0.1, µ1/µ2= 1, |U∞| = 0.4, ω= 0.025). In contrast to
the previously considered case (i.e. identical droplets), the mismatch in the radii of the
two droplets introduces the asymmetry in the interaction forces applied to the droplets.
In this case, the relative distance between the centres of the droplets is time varying
and two distinct (slow and fast) rotational components can be clearly identified.
The fast ω component is manifested by the local, high-frequency rotations drifting
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around the slowly evolving (slow component) outer orbit. In fact, the fast rotational
component is induced by the external flow, whereas a slower-frequency component
can be attributed to the relative displacement between the centres of the droplets.
Importantly, the original dipole model yields a significant error in the approximation
of the lower oscillatory mode. Trajectories shown in figure 6(c) correspond to the
case where the asymmetry is induced by the mismatch in viscosities µ1/µ2 = 1000
(R1/R2 = 1, keeping all other parameters identical). Similarly to the case shown in
figure 6(b), the two distinct (slow and fast) rotational components are evident in
figure 6(c). Interestingly, the dipole approximation yields a slow drift component
in the opposite direction to that of the exact solution. Finally, in figure 6(d–f ) we
considered a different droplet within a droplet configuration where a mismatch is
introduced in both viscosities and radii R1 = 3 and R2 = 1; again, two distinct
frequencies are evident. To clearly illustrate the low-amplitude fast scale rotations of
both the trajectories figure 6(d) we zoom in locally in 6(e) and figure 6( f ). Zoomed
regions are denoted with dashed rectangular frames in the inset of figure 6(d).

5. Concluding remarks

We applied a transformation to a bipolar coordinate system and obtained an exact
solution for the interaction forces between two closely spaced droplets, as well as
a droplet within a droplet, in a Hele-Shaw cell. The commonly used approximation
by dipoles is shown to give significant errors (10 %–30 %) of the total force in the
limit of small distance between the droplets. An exception is the case of two droplets
moving at similar speeds, where the line connecting the centres of the droplets is
parallel to the external uniform flow, yielding a small error of ≈5 % or less. When we
examine only the interaction forces, the errors are above ≈50 % and the dipole-based
model cannot be used to accurately capture the interaction forces.

The analysis is performed in the framework of the Hele-Shaw limit, assuming
negligible inertial effects and shallow configurations g/l→ 0. For cases in which the
viscosities of the droplets are negligible compared with the viscosity of the computed
region we expect errors of (g/l)2 due to the neglected viscous terms. For cases in
which the viscosities of the droplets are similar, or greater than the viscosity of the
fluid in the computed region, the errors will increase to g/l due to a mismatch of the
boundary conditions at the interface between the droplets and the surrounding fluid
(see Gat, Frankel & Weihs 2009).

Let us close the current discussion by identifying several interesting future
extensions of the current work. Due to the dominant effect of surface tension in
microscale flows, small changes in the geometry of the droplet may induce significant
capillary forces, while keeping the droplet geometry in the X–Y plane approximately
circular. Thus, the classic problem of multiple solutions for the motion of droplets
and fingers in a Hele-Shaw cell (Kopf-Sill & Homsy 1988) is still relevant to cases
with dominant surface tension. Current experimental works resolve this by empirically
estimating the speed of an isolated droplet. In addition, we believe that the results
presented in this work provide a rather important platform for the future extensions
of the analytical modelling of complex, long-range interactions emerging in dense
one-dimensional and two-dimensional droplet media. Moreover, the newly proposed
unit cell model of droplet within a droplet paves the way for the future theoretical and
experimental investigations of the special acoustic properties of higher-dimensional
droplet structures affected by the response of the inner droplets.
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Appendix A. Calculation of interaction forces
In order to find the force acting on droplet i in the Cartesian coordinates (X, Y) we

calculate (4.2).

(FX,i, FY,i)=−
∫ π

−π

P̃(σ , τi)

(
∂Y
∂σ
,
∂X
∂σ

)
dσ +πR2

i (U∞, V∞). (A 1)

Substituting (3.9)–(3.11) into (A 1) yields,

(FX,i, FY,i) = πR2
i (U∞, V∞)−

∞∑
n=1

∫ π

−π

(γn cosh nτi + δn sinh nτi)(αn cos nσ + βn sin nσ)

×
(
∂Y
∂σ
,
∂X
∂σ

)
dσ , (A 2)

where

∂Y
∂σ
= a(cos(σ ) cosh(τi)− 1)

(cosh(τi)− cos(σ ))2
,

∂X
∂σ
= a(sin(σ ) sinh(τi))

(cosh(τi)− cos(σ ))2
. (A 3a,b)

The structure of (A 2) is simplified further by computing the following integrals,∫ π

−π

sin(nσ)
(cos(σ ) cosh(τi)− 1)
(cosh(τi)− cos(σ ))2

dσ = 0, (A 4)∫ π

−π

cos(nσ)
(cos(σ ) cosh(τi)− 1)
(cosh(τi)− cos(σ ))2

dσ = 2πne(−n|τi|), (A 5)∫ π

−π

cos(nσ)
(sinh(τi) sin(σ ))

(cosh(τi)− cos(σ ))2
dσ = 0, (A 6)∫ π

−π

sin(nσ)
(sinh(τi) sin(σ ))

(cosh(τi)− cos(σ ))2
dσ =

{
ne−nτi if τi > 0
−nenτi if τi < 0.

(A 7)

Substituting (A 4)–(A 7) into (A 3) and performing some rather simple algebraic
manipulations yields the required expression (4.3).
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