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Effects of elasticity number and time constant
ratio on breakup and droplet formation of
viscoelastic planar liquid sheet co-flowing with
gases of equal velocities
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A weakly nonlinear investigation of sinuous instabilities in a planar viscoelastic liquid
sheet having corotational Jeffrey’s rheological model is performed. Analysis predicts that
viscoelastic properties may exhibit a non-monotonic dual effect depending upon their
range and velocity ratios. At velocity ratios of 2 and 2.15, an increase in elasticity stabilizes
the sheet for elasticity number ranging from 0.1 to 4 and from 0.1 to 1, respectively.
Beyond this range, elasticity produces a destabilizing effect on the sheet. However, at
higher velocity ratios of 2.50 and 2.75, an increase in elasticity only destabilizes the liquid
sheet. The effect of time constant ratio at different velocity ratios is opposite to that of
elasticity number. An increase in time constant ratio destabilizes the sheet at velocity ratio
of 2, whereas it stabilizes the sheet for relatively higher velocity ratios of 2.50 and 2.75.
At intermediate velocity ratio of 2.15, two regimes of time constant ratio are identified
in the range 0.1 to 0.4 and 0.4 to 0.9, representing stabilizing and destabilizing effect
of time constant ratio, respectively. The nonlinear interaction between the viscoelastic
sheet and surrounding gases may enhance or dampen the second-order amplitude. The
contribution of second-order amplitude to sheet breakup is much higher than that of linear
growth rate and is responsible for the dual effect of viscoelastic properties. Finally, the
size distribution of droplets formed after primary breakup is investigated using maximum
entropy formulation. Results reveal that an increase in elasticity number and time constant
ratio produces finer and larger droplets, respectively.
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Effects of elasticity number and time constant ratio

1. Introduction

Viscoelastic fluids exhibit a time-dependent response to deformation. They behave like
elastic solids when exposed to deformations over short time scales but exhibit fluid-like
properties in steady shear over long time scales. Interest around viscoelastic fluids grew
as early as the 1940s and 1950s, influenced by industrial research and development in
chemical engineering (Denn 2004). Over the years, extensive efforts have been employed
to combine polymers of widely dissimilar material structures to yield unique multilayered
blends and properties. Currently, viscoelastic fluids find wide application in several
commercial polymer processing operations like spray coating, spray drying, fibre spinning,
food processing, etc. Introductory texts on this subject with the application of perturbation
technique can be found in the works of Langlois & Rivlin (1959, 1963) which investigated
the effect of viscoelasticity in normal stress-driven converging flows and rectilinear
flows, respectively. Liu & Durst (1998) and Brenn, Liu & Durst (2000) reported that
non-Newtonian sheets are more unstable than Newtonian sheets for both symmetric and
asymmetric disturbances. Overall effects of elasticity number and viscosity were found to
be weakly destabilizing and stabilizing, respectively. Brenn, Liu & Durst (2001) and
Liu & Liu (2006) considered three-dimensional disturbances in viscoelastic fluids and
observed that the growth rate of two-dimensional disturbances was higher than that of
three-dimensional disturbances. Yang et al. (2010) investigated breakup of gel propellant
under the combined influence of sinuous and varicose modes of disturbance. Results were
found to be consistent with previous literature which also reported that viscoelastic sheets
were more unstable than Newtonian sheets. However, breakup time for the varicose mode
of disturbance was found to be the same as that of Newtonian sheets. Ye et al. (2016) and
later Alsharif (2019) performed temporal instability analysis of a viscoelastic compound
jet using the Oldroyd B model. Both studies confirmed that viscoelastic sheets are more
unstable than Newtonian compound jets but less unstable than inviscid compound jets.
In addition to the linear studies discussed so far, the literature also contains detailed
nonlinear investigations of the temporal evolution of two-dimensional disturbances in
viscoelastic fluids. Nonlinear analysis of temporal instabilities in Poiseuille and Couette
flow reported by Atalık & Keunings (2002) gave very interesting findings in the form
of a dual effect of elasticity for the Oldroyd B model: increasing elasticity number had
a destabilizing effect initially, followed by a re-stabilization effect. Wang et al. (2015)
performed an in-depth nonlinear analysis of three rheological models, namely corotational
Jeffrey’s model, Oldroyd A model and Oldroyd B model, exposed to initial sinuous
disturbances. The study showed that though different rheological models have different
disturbance pressure, the interface displacement and disturbance velocities are the same.
Nonlinear analysis of the varicose mode of disturbance by Xie et al. (2018) showed that
the second-order displacement of the initial varicose mode was also varicose in nature,
which caused sheet breakup at full wavelength interval and produced ligaments with two
connected swells. However, the aforementioned nonlinear studies considered surrounding
air to be quiescent. Atomizers that utilize the kinetic energy of ambient gases, such as
twin-fluid atomizers, offer advantages in the form of good atomization quality at low
pressure (Sovani, Sojka & Sivathanu 2000). Moreover, low sensitivity to fluid rheology
also makes them a preferred choice in commercial operations such as spray coating,
spray drying and process industries, which utilize viscoelastic fluids (Mujumdar et al.
2010). The effect of non-zero unequal gas velocities on viscoelastic liquid sheets was
analysed by Yang, Xu & Fu (2012) for para sinuous and para varicose modes. Similar
to Newtonian sheets, a higher velocity difference across the interfaces increases the
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instability of non-Newtonian sheets. However, their study employed linear theory which
can only predict the sheet behaviour at the onset of instabilities (Asare, Takahashi &
Hoffman 1981; Mitra, Li & Renksizbulut 2001). Moreover, instabilities in Newtonian
viscous flows are generally a direct consequence of the presence of nonlinear convective
terms in the momentum equation. But in viscoelastic flows, the nonlinearity appears
through both momentum convection and stress convection in constitutive equations, which
further emphasize the need for nonlinear studies of viscoelastic fluids. The literature
shows that most of the nonlinear studies that consider non-zero gas velocities either are
performed within the inviscid approximation (Jazayeri & Li 2000; Nath et al. 2010; Nath,
Mukhopadhyay & Datta 2014; Dasgupta, Nath & Bhanja 2018) or involve Newtonian fluids
(Yang, Chen & Wang 2014; Dasgupta, Nath & Bhanja 2019). Excellent reviews on this
topic can also be found in the works of Denn (1990), Larson (1992) and James (2009).

Based on the above discussion, it can be concluded that previous literature lacks
detailed nonlinear analyses of breakup of viscoelastic fluids in the presence of moving
ambient gas medium. The present study considers corotating convected frames in the
constitutive relations and employs the second-order perturbation technique to perform
a weakly nonlinear study of temporal instabilities in a viscoelastic fluid surrounded by
non-zero gas velocities. The main objective is to investigate the effect of viscoelastic
properties on growth rate, breakup time and sheet behaviour at different gas velocities.
Ideally, the final outcome of any atomization analysis should be droplet characteristics such
as droplet size and velocity distribution. Early contributions in this area can be found in
the works of Rosin & Rammler (1933) and Nukiyama & Tanasawa (1939) who developed
empirical relations to define droplet characteristics with sufficient accuracy. Later, Rizk &
Lefebvre (1985) and Bhatia et al. (1988) employed the modified Rosin–Rammler method
and the log-hyperbolic method, respectively, to achieve better data fit for larger droplet
size and a wide range of experimental data. Villermaux, Marmottant & Duplat (2004)
observed that the atomization process for Newtonian liquids can be precisely described by
a fragmentation coalescence scenario of ligament and the final droplet size distribution can
be represented by gamma distributions. In the absence of any experimental data, analytical
methods such as maximum entropy formulation (MEF) and discrete probability function
can be useful tools to predict spray characteristics (Li, Tankin & Renksizbulut 1990; Li &
Tankin 1992; Nath et al. 2011; Negeed 2011). The present study employs the modified MEF
to elucidate the effect of viscoelasticity on droplet size distribution. The MEF involves
the method of Lagrange multipliers consisting of a numerical procedure for the solution
of a set of nonlinear equations. The Newton–Raphson method has been believed to be
a trustable numerical method. But unfortunately, due to the involvement of exponential
terms and not having sufficiently close initial guess value to the root of equations, the
MEF has a propensity to diverge rapidly. To eliminate this tendency to diverge, a modified
Newton–Raphson method with Taylor series expansion up to second order is considered
in the present study.

2. Mathematical formulation

The study considers a two-dimensional viscoelastic sheet of thickness 2h enclosed by
two inviscid gas streams, flowing with equal non-zero velocities (figure 1). The sheet
is subjected to an initial sinuous mode of disturbance. Liquid density, surface tension
and viscosity are represented as ρl, σl and μl, respectively. Initially, the unperturbed
liquid sheet has velocity only in the x direction, represented by ul. Surrounding gases
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Figure 1. Schematic of planar viscoelastic sheet of liquid enclosed within two gas streams of equal non-zero
velocities under the influence of sinuous disturbances.

are considered to be inviscid in nature and gas density is denoted by ρg. In the unperturbed
state, gas velocities at the two interfaces are parallel to the liquid flow. The gas velocities
are represented by ug. Both liquid and gas flows are considered to be incompressible
and the effect of gravity is neglected. Non-dimensionalization of constitutive relation,
governing equation and boundary conditions is performed using the following scale:
[length, time, density, velocity, stress] = [h, h/ul, ρl, ul, ρlu2

l ]. Reynolds number is
represented as Re = ρlulh/μl.

The tensor form for the convected Jeffrey’s corotational model in its dimensionless form
is expressed as

τ + λ1[τ̃ − W · τ + τ · W ] = 1
Re

[γ + λ2[γ̃ − W · γ + W · γ ]]. (2.1)

Here, λ1 and λ2 represent stress relaxation time and deformation retardation time,
respectively.

Parameter τ is the extra stress tensor and its material derivative is expressed as

τ̃ = ∂τ

∂t
+ (V · ∇)τ . (2.2)

Here, V represents liquid velocity vector (u, v, 0).
Parameter γ is the strain tensor such that

γ = ∇V + (∇V )T and its material derivative is γ̃ = ∂γ

∂t
+ (V · ∇)γ . (2.3)

Parameter W represents the vorticity tensor such that

W = 1
2 [∇V − (∇V )T]; Wxx = Wyy = 0; Wxy = Wyx = uy − vx. (2.4)

Two characteristic numbers, elasticity number (El) and time constant ratio (λ), are
introduced to define the rheological property of the viscoelastic fluid. Elasticity number
represents the relative magnitude of the elastic stresses as compared to inertial stresses,
whereas time constant ratio signifies the magnitude of stress relaxation time as compared
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to deformation retardation time. Corresponding expressions are gives as

El = λ1

Re
; λ = λ2

λ1
. (2.5a,b)

The upper gas–liquid interface is represented by j = 1 and the lower gas–liquid interface
is represented by j = 2. Gas velocities are represented by velocity potential φgj. In the
absence of any perturbation, gas velocity potential is given as φgj|t=0 = Ux, where U
is the non-dimensional gas velocity (ugj/ul). Liquid pressure and gas pressure in their
non-dimensional form are represented as Pl and Pg, respectively.

Location of non-dimensional interfaces after initial perturbation is given as

y(x, t) = (−1)j+1 + ηj(x, t), (2.6)

where ηj(x, t) is non-dimensional surface deformation. In the following sections, partial
derivatives with respect to the x direction, y direction and time t are represented by the
subscripts x, y and t, respectively.

Liquid mass and momentum conservation equations are presented in (2.7) and (2.8),
respectively:

∇ · V = 0 for − 1 + η2 ≤ y ≤ 1 + η1, (2.7)

V t + (V · ∇)V = −∇Pl + ∇ · τ for − 1 + η2 ≤ y ≤ 1 + η1. (2.8)

The kinematic boundary condition for liquid is given as

v − ηj,t − (1 + ul)ηj,x = 0 for − 1 + η2 ≤ y ≤ 1 + η1, (2.9)

where ‘1’ in (1 + ul) represents the non-dimensional initial liquid flow.
The inviscid nature of the gas results in zero shear force at the gas–liquid interface (Li

& Tankin 1991):

(τ · nj) × nj = 0 at y = (−1)j+1 + ηj, where nj is the unit vector normal to the surface.
(2.10)

Mass conservation equation for the gas phase is given as

ϕgj,xx + ϕgj,yy = 0 for 1 + η1 ≤ y ≤ ∞, −∞ ≤ y ≤ −1 + η2. (2.11)

Kinematic boundary condition for the gas phase is expressed as

ϕgj,y − ηj,t − ϕgj,xηj,x = 0 at y = (−1)j+1 + ηj. (2.12)

To make the gas phase bounded and finite, gas velocity is considered to be zero at y = ±∞.
Thus,

ϕgj,y = 0 at y = ±∞. (2.13)

The unsteady Bernoulli equation is employed to obtain gas pressure and is expressed as

pgj = 1
2 U2 − ρ[(ϕgj,x)

2 + (ϕgj,y)
2] − ρϕgj,t for 1 + η1 ≤ y ≤ ∞, −∞ ≤ y ≤ −1 + η2.

(2.14)
The dynamic boundary condition is expressed as a balance between the normal stress
difference across the gas–liquid interface and the surface tension force:

− Pl + (nj · τ )nj + (−1)j+1 1
We

(∇ · nj) + Pgj = 0. (2.15)

Here, We represents the liquid Weber number and is expressed as We = ρlu2
l h/σ .
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Effects of elasticity number and time constant ratio

All the parameters used in governing equations and boundary conditions are presented
using power series of η0 such that

(ηj, u, v, Pl, τ , γ , ϕgj, Pg) =
∞∑

n=1

ηn
0[ηjn, un, vn, Pln, τ n, γ n, ϕgjn, Pgjn]. (2.16)

All the liquid and gas parameters are approximated around the unperturbed interface y =
(−1) j using Taylor’s series expansion. Finally, the following set of governing equations
and boundary conditions are obtained.

First-order equations (η1
o):

τ 1 + λ1(τ 1,t + τ 1,x) = 1
Re

[γ 1 + λ2(γ 1,t + γ 1,x)], (2.17)

u1,x + v1,y = 0 for − 1 ≤ y ≤ 1, (2.18)

u1,t + u1,x = −Pl1,x +
(

∂

∂x
τ1,xx + ∂

∂y
τ1,xy

)
for − 1 ≤ y ≤ 1, (2.19)

v1,t + v1,x = −Pl1,y +
(

∂

∂x
τ1,yx + ∂

∂y
τ1,yy

)
for − 1 ≤ y ≤ 1, (2.20)

v1 = ηj1,t + ηj1,x at y = (−1)j+1 at y = (−1)j+1, (2.21)

τyx1 = 0 at y = (−1)j+1, (2.22)

ϕgj1,xx + ϕgj1,yy = 0 for 1 ≤ y < ∞, −∞ ≤ y < −1, (2.23)

ϕgj1,y − ηj1,t − Uηj1,x = 0 at y = (−1)j+1, (2.24)

ϕgj1,y = 0 at y = ±∞, (2.25)

−Pl1 + τyy1 + (−1) j 1
We

ηj1,xx − ρϕgj1,t − ρUϕgj1,x = 0. (2.26)

Second-order equations (η2
o):

τ 2 + λ1

(
∂

∂t
τ 2 + ∂

∂x
τ2 + u1

∂

∂x
τ 1 + v1

∂

∂y
τ 1 − W 1 · τ 1 + τ 1 · W 1

)

= 1
Re

[
γ 2 + λ2

(
∂

∂t
γ 2 + ∂

∂x
γ 2 + u1

∂

∂x
γ 1 + v1

∂

∂y
γ 1 − W 1 · γ 1 + γ 1 · W 1

)]
,

(2.27)

u2,x + v2,y = 0 for − 1 ≤ y ≤ 1, (2.28)

u2,t + u2,x + u1u1,x + v1u1,y = −Pl2,x +
(

∂

∂x
τ2,xx + ∂

∂y
τ2,xy

)
for − 1 ≤ y ≤ 1,

(2.29)

v2,t + v2,x + u1v1,x + v1v1,y = −Pl2,y +
(

∂

∂x
τ2,yx + ∂

∂y
τ2,yy

)
for − 1 ≤ y ≤ 1,

(2.30)

v2 = ηj2,t + ηj2,x + u1ηj1,x − ηj1v1,y at y = (−1)j+1, (2.31)

τ2,yx + ηj1

(
∂

∂y
τ1,yx

)
+ (τ1,yy − τ1,xx)ηj1,x = 0 at y = (−1)j+1, (2.32)
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ϕgj2,xx + ϕgj2,yy = 0 for 1 ≤ y < ∞, −∞ < y ≤ −1, (2.33)

ϕgj2,y − ηj2,t − Uηj2,x = ηj1,xϕgj1,x − ηj1ϕgj1,yy at y = (−1)j+1, (2.34)

ϕgj2,y = 0 at y = ±∞, (2.35)

−Pl2 − ηj1Pl1,y − [ηj1,x(τ1,xy + τ1,yx)] +
[
τ2,yy + ηj1

∂

∂y
τ1,yy

]
+(−1) j 1

We
(ηj2,xx) − ρ(ϕgj2,t + Uϕgj2,x) − 1

2
ρ(ϕ2

gj1,x + ϕ2
gj1,y)

−ρηj1(Ujϕgj1,yx + ϕgj1,yt) = 0 at y = (−1)j+1.

(2.36)

Focusing on temporal sinuous instabilities, the initial condition for both first and second
order is given as

ηj=1|t=0
ηj=2|t=0

}
= η0 cos(k1x) = 1

2η0exp(ik1x) + c.c., (2.37)

where k1 is the dimensionless wavenumber (Ibrahim & Jog 2008).

3. Solution procedure

3.1. First-order solutions
The first-order solutions are expressed as

(u1, v1, Pl1, τ 1, γ 1, ϕgj1, ηj1) = [û1, v̂1, P̂l1, τ̂ 1, γ̂ 1, ϕ̂gj1, η̂j1]exp[i(k1x − ω1t)] + c.c.
(3.1)

Here, ω1 is the linear complex frequency whose real (α) and imaginary (β) parts
signify angular frequency and growth rate, respectively. The symbol ‘∧’ represents the
components that are functions of y only and c.c. is complex conjugate.

Substituting (3.1) in the linear constitutive relation (2.17) yields

τ 1 = 1
Re1

γ 1 where Re1 = 1 + λ1i(k1 − ω1)
1 + λ2i(k1 − ω1)

Re. (3.2)

Here, Re1 represents first-order effective Reynolds number.
Substitution of (3.1) and (3.2) in the first-order governing equations (2.17) to (2.20) and

(2.23) yields the solution of the disturbance field with a set of integration constants. The
expressions for these constants are derived using the boundary conditions described in
(2.21) and (2.22), and (2.24) to (2.26). The final solutions for liquid and gas phase are
given as

û1 = iA1 sinh(k1y) + il1
k1

B1 sinh(l1y), (3.3)

v̂1 = A1 cosh(k1y) + B1 cosh(l1y), (3.4)

p̂1 = (w1 − k1)

k1
iA1 sinh(k1y), (3.5)

where A1 = (k2
1 + l21)η̂j/Re1 cosh(k1), B1 = −2k2

1η̂j/Re1 cosh(l1) and

l21 = k2
1 + iRe1(k1 − ω1), (3.6)

ϕ̂gj1 = (−1)j+1
[

iω1

k1
− iU

]
η̂jexp[k1 + (−1) jk1y]. (3.7)
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The first-order dispersion equation is obtained by substituting (3.3) to (3.7) in the
dynamic boundary condition (equation (2.26)) and is expressed as

− ρ[(ω1 − Uk1)
2] + k3

1
We

+ (l21 + k2
1)

2

Re12 tanh(k1) −
(

2
Re1

)2

l1k3
1 tanh(l1) = 0. (3.8)

The disturbance growth rate requires the solution for temporal frequency (ω1), which is
obtained by solving (3.8).

3.2. Second-order solutions
Clark & Dombrowski (1972), Jazayeri & Li (2000) and Yang et al. (2013) have
reported that purely time-dependent functions are not present in second-order deformation.
Liquid sheet disintegration under the influence of sinuous disturbances takes place due
to the combined effect of first-order growth rate, first harmonic, i.e. energy transfer
from fundamental first-order to second-order disturbances, and the weak influence
of inherent second-order instabilities. The first harmonic and fundamental first-order
disturbances share the same frequency (ω1) and correspond to wavenumber k1, while
the second-order frequency (ω2) corresponds to the homogeneous second-order equations
having wavenumber 2k1. Hence, second-order solutions are given as

(u2, v2, Pl2, τ 21, γ 21, ϕgj2, ηj2)

= [û21, v̂21, P̂l21, τ̂ 21, γ̂ 21, ϕ̂gj21, η̂j21]exp[2i(k1x − ω1t)] + c.c.
+[û22, v̂22, P̂l22, τ̂ 22, γ̂ 22, ϕ̂gj22, η̂j22]exp[i(2k1x − ω2t)] + c.c.

(3.9)

The terms with subscript ‘21’ have the same coefficient of exponent as the
non-homogeneous terms obtained as a result of products of two first-order solutions.
They indicate the transfer of energy from fundamental first order to second order. The
homogeneous inherent disturbances having second-order complex frequency (ω2) are
represented with subscript ‘22’. In this regard, it needs to be noted that the first-order
solutions are present in the second-order equations in the form of products each of two
terms, expressed with subscript ‘21’. The second-order solutions can be obtained based
upon the non-homogeneous form of first-order solutions.

The non-homogeneous terms with subscript ‘21’in the constitutive equation (2.27) are
represented as

u1γ1,x + v1γ1,y − W 1 · γ 1 + γ 1 · W 1 = D21c, (3.10)

where D21c is a tensor matrix consisting of four elements. Previously obtained first-order
solutions are substituted in (3.10) and the terms with coefficient exp2 i(k1x − ω1t) are
collected to obtain the expressions for these four components as

D̂21cxx = −2k2
1û2

1 + 2ik1v̂1û1,y − û2
1,y − k2

1v̂
2
1, (3.11)

D̂21cxy = D̂21cyx = 2ik1û1û1,y + v̂1û1,yy + 2ik1v̂1v̂1,y − û1,yv̂1,y, (3.12)

D̂21c,yy = 2ikû1v̂1,y + 2v̂1v̂1,yy + û2
1,y + k2

1v̂
2
1 . (3.13)

Now, the first-order constitutive relation (3.2) and the non-homogeneous terms
expressed in (3.10) are substituted in the second-order constitutive relation (2.27) and the
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terms with coefficient exp2 i(k1x − ω1t) are collected to obtain

τ̂ 21 = 1
Re21

γ̂ 21 + 1
Re

(λ2 − λ1)D̂21c

[1 + λ1(ik − iω1)][1 + 2λ1(ik − iω1)]
,

where Re21 = 1 + 2λ1(ik1 − iω1)

1 + 2λ2(ik1 − iω1)
Re.

(3.14)

Substituting equation (3.9) in continuity equation (2.28) yields

û21 = i
2k1

v̂21. (3.15)

Similarly, the solutions for non-homogeneous terms in the expression for liquid pressure
and velocities are given as

P̂l21 = c1exp(2k1y) + c2exp(−2k1y) + Ŝ21p, (3.16)

û21 = c3exp(l21y)+c4exp(−l21y)+Re21
ik

4k2
1 − l221

[2c1exp(2k1y)+2c2exp(−2k1y)] + Ŝ21u,

(3.17)

v̂21 = c5exp(l21y)+c6exp(−l21y)+Re21
k

4k2
1 − l221

[2c1exp(2k1y) − 2c2exp(−2k1y)]+Ŝ21v,

(3.18)

where l221 = 4k2
1 + Re21i(2k1 − 2ω1) and c1, c2, c3, c4, c5 and c6 are constants of

integration. The detailed solution procedure and corresponding expressions of Ŝ21p, Ŝ21u

and Ŝ21v are given in Appendix A. The expression for second-order gas velocity is obtained
using a procedure similar to that for first-order analysis and is given as

ϕ̂gj21 =
[
(−1)j+1 η̂j21

k1
i(ω1 − Uk1) + η̂2

j1i(ω1 − Uk1)
]

exp[(−1) j2k1y]. (3.19)

Finally, the non-homogeneous terms in the boundary conditions given in (2.31), (2.32)
and (2.36) having coefficient exp2i(k1x − ω1t) are represented as Ê21η, Ê21τ and Ê21d.
Corresponding expressions are given in Appendix A. Thus, the second-order boundary
conditions given in (2.31), (2.32) and (2.36) can be represented in terms of the expression
for non-homogeneous terms as

v̂21 − i(2k1 − ω1)η̂j21 = Ê21η, (3.20)

τ̂yx21 = −Ê21τ , (3.21)

−p̂l21 + τ̂yy21 + 2iρ(ω1ϕ̂gj21,t − Uk1ϕ̂gj21,xy) + 1
We

(−1)j+14k2
1η̂j21 = −Ê21d. (3.22)

With this, one arrives at the solution for liquid and gas pressure and velocity field,
as well as the boundary conditions based upon the first-order solutions. The interface
displacement due to energy transfer from first to second order requires the solution for
the first harmonic (η̂j21). To obtain the same, the expressions for constitutive relation, x
and y components of liquid velocity, liquid pressure and gas velocity as given in (3.14),
(3.15), (3.16), (3.18) and (3.19) are substituted in (3.20) to (3.22). This yields six equations
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Effects of elasticity number and time constant ratio

that can be solved algebraically to obtain the expression for the interface displacement
due to the first harmonic η̂j21. However, the solution procedure can be further simplified
following Yang et al. (2013). Here, Ê21η, Ê21τ , D̂21xy, D̂21yx and Ŝ21v are odd as they are
hyperbolic functions of sine, whereas D̂c21xx, D̂c21yy, Ê21d, Ŝ21u and Ŝ21p are even as they
are hyperbolic functions of cosine. A parity analysis between the different terms shows
that

c1 = c2, c5 = −c6 and ηj21|j=1 = − ηj21|j=2. (3.23)

Equation (3.23) is substituted in (3.20)–(3.22) and the set of algebraic equations are solved.
Finally, the expression for η̂j21 is obtained as

η̂j21 = −(−1)j+1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l221 + 4k2
1) coth(2k1)

2Re21(4k2
1 − l221)

⎡
⎢⎢⎣

(l221 + 4k2
1)Ê21η − 2ik1Re21Ê21τ + Re21Ŝ21p,y

+ W1

(
−4ik1D̂21cxy − ∂D̂21cyy

∂y

)
⎤
⎥⎥⎦

+ (4ik1l21) coth(l21)

Re21(4k2
1 − l221)

⎡
⎢⎢⎢⎢⎣

i
2k1

(Re21Ŝ21p,y) − W1

(
−2D̂21cxy + i

2k1

∂D̂21cyy

∂y

)

+ Re21Ê21τ + 4ik1Ê21η − i(4k2
1 − l221)

2k1
Ŝ21v

⎤
⎥⎥⎥⎥⎦

+ Ŝ21p − 2
Re21

Ŝ21v,y + 2(ω1 − U)2ρη2
j1 − Ê21d − W2D̂21cyy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=1

2k
D21var

,

(3.24)

where

W1 = λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ2(ik1 − iω1)]
and

W2 = λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ1(ik1 − iω1)]
. (3.25a,b)

The term D21var represents the first harmonic dispersion equation and is observed to be
varicose in nature. Its expression is given as

D21var = −ρ[(2ω1 − 2Uk1)
2] + 8k3

1
We

+ (l221 + 4k2
1)

2

Re2
21

coth(k1) −
(

2
Re2

21

)2

8l21k3
1 coth(l21).

(3.26)
Obtaining the expression for interface deformation is enough to get the position of

perturbed surfaces at different instances of time. As a result, the expressions for c1, c2, c3
and c4 are not noted. Next, the inherent second-order constitutive relation is obtained by
substituting (3.9) in (2.26) and collecting terms with coefficient exp[i(2k1x − ω2t)], as
shown in (3.27):

τ̂ 22 = 1
Re22

γ̂ 22, (3.27)

where Re22 is the second-order effective Reynolds number expressed as

Re22 = 1 + λ1(2 ik1 − ω2)

1 + λ2(2 ik1 − ω2)
Re. (3.28)
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The solution for inherent second-order disturbances η̂j22 can similarly be obtained
by substituting the terms with coefficient exp[i(2k1x − ω2t)], as given in (3.9), in the
governing equations and boundary conditions (2.27)–(2.36). However, the need for the
same can be eliminated by substituting equations (2.16), (3.1) and (3.9) in equation (2.37),
which yields

η̂j1 = 1
2 ; η̂j21 = −η̂j22. (3.29)

From (3.23) and (3.29), it can be deduced that

η̂j22|j=1 = −η̂j22|j=2. (3.30)

Equation (3.30) suggests that the second-order disturbance is varicose in nature. Also,
the absence of non-homogeneous terms in inherent second-order solutions allows them
to be expressed in a form similar to the first-order solution. As a result, the non-trivial
solution of the second-order dispersion equation is given as

− ρ[(ω2 − 2Uk1)
2] + 8k3

1
We

+ (l21 + 4k2
1)

2

Re2
23

coth(2k1) −
(

2
Re23

)2

8l1k3
1 coth(l1) = 0.

(3.31)
The expression for final interface displacement is obtained from (2.16) and (3.9):

ηj = 1
2
η0exp[i(k1x − ω1t)] + η2

0

{
η̂j21exp[2i(k1x − ω1t)]

−η̂j21exp[i(2k1x − ω2t)]

}∣∣∣∣∣
η̂j1=1/2

+ c.c. (3.32)

4. Maximum entropy formulation for droplet size and velocity distribution using
modified Newton–Raphson method

The nonlinear instability model provides breakup length and the ligament geometry
following breakup. The cross-sectional area of the ligament generated after the breakup
of the liquid sheet is calculated from the shape of the deformed interface and the area
of an equivalent cylindrical liquid column is evaluated. The mass mean diameter of the
droplets (D30) is calculated from the generated ligament as per the Rayleigh instability of
the cylindrical liquid column (Rayleigh 1878). In the second part of the comprehensive
model, an MEF-based model has been developed to get the most probable droplet size
distribution by maximizing the Shannon entropy, subject to the respective constraint
conditions which in turn are obtained using the mean droplet diameter and the breakup
length. The constraint equations are formulated based on the conservation of physical
quantities, like mass, momentum and energy, and by considering the physics of the
breakup process. Accordingly, the momentum and energy exchange during breakup have
been accounted for. The present study closely follows the non-empirical model developed
by Nath et al. (2011) in this regard.
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Effects of elasticity number and time constant ratio

Four constraint conditions, normalized, mass balance, momentum balance and energy
balance conditions, have been considered, which are given as

normalization :
m∑
i

n∑
j

Pi,j = S1, (4.1)

mass balance:
m∑
i

n∑
j

Pi,jD3
i = S2, (4.2)

momentum balance:
m∑
i

n∑
j

Pi,jD3
i Vj = S3, (4.3)

energy balance:
m∑
i

n∑
j

Pi,jD3
i V2

j + B
m∑
i

n∑
j

Pi,jD2
i = S4. (4.4)

In (4.1) to (4.4), S1, S2, S3 and S4 are source terms such that S1 = 1; S2 = 1;
S3 = 1 + 1

2ρ(U − 1)2LCf ; S4 = 1 + ρ(U − 1)3LCf ; L = non-dimensional length (1/h);
ρ = gas to liquid density ratio (ρg/ρl); U = non-dimensional gas velocity (ug/ul);
Di = non-dimensional droplet diameter (di/dm); Vj = non-dimensional droplet velocity
(vj/ul); Pi,j = joint probability function (ni,j/N); B = 12σ/ρlu2

l dm; σ = surface tension
coefficient for liquid; and N represents the total number of droplets produced per unit
time.

There are possibilities of an infinite probability distribution function (Pi,j) which may
satisfy the available constraint conditions. However, the objective is to find the distribution
function that maximizes the Shannon entropy. The expression for the Shannon entropy is
given as

S = −κ

m∑
i

n∑
j

Pi,j ln Pi,j, (4.5)

where κ is the Boltzmann constant. Expression for the probability distribution function
after maximizing the Shannon entropy is obtained as

Pi,j = exp[−(1 + λ1 + λ2D3
i + λ3D3

i Vj + λ4(D3
i V2

j + BD2
i ))]. (4.6)

Substituting the expression for Pi,j in (4.1) to (4.4), the following set of nonlinear
algebraic equations are obtained, which are solved numerically to obtain the values of
Lagrange multipliers:

f =
m∑

i=1

k∑
j=1

exp[−(1 + λ1 + λ2D3
i + λ3D3

i Vj + λ4(D3
i V2

j + BD2
i ))] − S1 = 0, (4.7)
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g =
m∑

i=1

k∑
j=1

exp[−(1 + λ1 + λ2D3
i + λ3D3

i Vj + λ4(D3
i V2

j + BD2
i ))]D

3
i − S2 = 0, (4.8)

h =
m∑

i=1

k∑
j=1

exp[−(1 + λ1 + λ2D3
i + λ3D3

i Vj + λ4(D3
i V2

j + BD2
i ))]D

3
i Vj − S3 = 0,

(4.9)

m =
m∑

i=1

k∑
j=1

exp[−(1+λ1+λ2D3
i +λ3D3

i Vj+λ4(D3
i V2

j +BD2
i ))](D

3
i V2+BD2

i ) − S4 = 0.

(4.10)

A more detailed discussion on how the constraint conditions are derived can be found
in the work of Nath et al. (2011). The Newton–Raphson method is employed to solve
the above set of nonlinear equations. However, the solution has a propensity to diverge
if the initial guess is not close to the roots. Moreover, the presence of exponential terms in
the equations makes it highly sensitive to the initial guesses (Li & Tankin 1988; Chin et al.
1991; Mondal, Datta & Sarkar 2003). To tackle the problem of divergence of solutions, the
present paper considers a Taylor series expansion up to second order. It has been observed
that inclusion of higher-order terms reduces the strict requirement of a close initial guess
(Li & Li 2006).

Each of the nonlinear equations is expanded in the Taylor series around the solution up
to the second-order terms. For instance, the expanded normalization condition is given as

f (λ0
1 + α, λ0

2 + β, λ0
3 + γ, λ0

4 + ϕ) = 0, (4.11)

f0 + α
∂f

∂λ1

∣∣∣∣
0
+ α

∂2f

∂λ2
1

∣∣∣∣∣
0

+ β
∂f

∂λ2

∣∣∣∣
0
+ β

∂2f

∂λ2
2

∣∣∣∣∣
0

+ γ
∂f

∂λ3

∣∣∣∣
0

+γ
∂2f

∂λ2
3

∣∣∣∣∣
0

+ ϕ
∂f

∂λ4

∣∣∣∣
0
+ ϕ

∂2f

∂λ2
4

∣∣∣∣∣
0

= 0. (4.12)

The expanded normalization constraint condition (4.12) is represented in matrix form as

[
∂f

∂λ1

∂f

∂λ2

∂f

∂λ3

∂f

∂λ4

]⎡⎢⎣
α

β

γ

ϕ

⎤
⎥⎦+ 1

2

[
α β γ ϕ

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f

∂λ2
1

∂2f

∂λ1∂λ2

∂2f

∂λ1∂λ3

∂2f

∂λ1∂λ4

∂2f

∂λ2∂λ1

∂2f

∂λ2
2

∂2f

∂λ2∂λ3

∂2f

∂λ2∂λ4

∂2f

∂λ3∂λ1

∂2f

∂λ3∂λ2

∂2f

∂λ3
3

∂2f

∂λ3∂λ4

∂2f

∂λ4∂λ1

∂2f

∂λ4∂λ2

∂2f

∂λ4∂λ3

∂2f

∂λ4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

α

β

γ

ϕ

⎤
⎥⎦ = −f0. (4.13)
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Effects of elasticity number and time constant ratio

Mass, momentum and energy constraint equations are also similarly expanded and
represented in matrix form. However, they are not shown here for brevity. Since the
above expression is nonlinear in nature, solution of the Lagrange multipliers requires the
linearization of expressions; the simplest way is to replace the unknown values of α, β, γ

and φ associated with the second-order term with the known values from previous iteration
using Picard’s method.

The vector consisting of first-order derivative terms and the matrix having the
second-order derivative terms on the left-hand side of (4.13) are represented as F1 and F2,
respectively. Similarly, for the mass, momentum and energy conservation constraints, first-
and second-order terms are given as G1 and G2, H1 and H2, and M1 and M2, respectively.
The solution matrix for all the nonlinear equations is obtained as⎡

⎢⎣
F1 + F2
G1 + G2
H1 + H2
M1 + M2

⎤
⎥⎦
⎡
⎢⎣

α

β

γ

ϕ

⎤
⎥⎦ =

⎡
⎢⎣

−fo
−go
−ho
−mo

⎤
⎥⎦ . (4.14)

Considering the complexity of the nonlinear equations and to maintain the stability of the
system, normalization constraint has been checked using expressions shown in (4.15) at
the end of each iteration as suggested by Sellens & Brzustowski (1985):

λ1 = ln

⎡
⎣ m∑

i=1

k∑
j=1

−(1 + λ2D3
i + λ3D3

i Vj + λ4(D3
i V2

j + BD2
i ))

⎤
⎦ . (4.15)

The converged solutions of λ1, λ2, λ3 and λ4 are used in (4.6) to obtain the probability
distribution function Pi,j at different droplet diameters (Di) and velocities (Vj).

Finally, the volumetric probability density for droplet size is expressed as

∂Qi/∂di = (Qi − Qi−1)/(di − di−1), (4.16)

where Qi = ∑i
c=1

∑k
j=1 Pc,jD3

c represents fraction of liquid having diameter less than di.

5. Results and discussion

Stability of a viscoelastic planar liquid sheet has been studied in the past, and stabilizing
and destabilizing effects of time constant ratio and elasticity number, respectively, have
been established. However, a Kelvin–Helmholtz type of instability, as considered in the
current study, is primarily driven by a velocity jump across the liquid–gas interfaces. So,
the natural question to ask is whether the effects of viscoelasticity on the liquid sheet vary
with the surrounding gas velocities. To address the same, this section features linear and
nonlinear investigations of the effects of elasticity number (El) and time constant ratio
(λ) at different gas to liquid velocity ratios (U). Following the experimental investigation
of viscoelastic jets by Carroll & Joo (2006), polymer density is kept at 850 kg m−3. Gas
density is considered to be 1.2 kg m−3 and, subsequently, gas to liquid density ratio (ρ)
becomes 0.0014. Literature reports that when liquid Weber number (We) is varied between
200 and 500, linear analysis shows good agreement with experimental results due to
the relatively weak effect of nonlinearity at medium Weber number. Yang et al. (2013)
also recommended that weakly nonlinear instability analysis should be applied to cases
where ρWe < 1, such that disturbance amplitudes of orders higher than 2 are relatively
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Elasticity number
(El)

Non-dimensional
breakup length
(present study)

Non-dimensional
breakup length

(Wang et al. 2015)

0 386 384
1 304 303
4 278 277
100 254 254

Table 1. Comparison of breakup time obtained in the present study with that of Wang et al. (2015) for
different elasticity number (El) keeping We = 600, Re = 63.54, ρ = 0.0012, λ= 0 and k = 0.46.
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Figure 2. Variation of (a) maximum growth rate and (b) dominant wavenumber with El at different U
keeping λ = 0, We = 300 and ρ = 0.0014.

very small. As a result, liquid Weber number is chosen to be 300 for the present study.
Keeping consistency with Wang et al. (2015), liquid Reynolds number is kept at 63.54.
Validation of the present model is done with the temporal instability study of viscoelastic
fluid by Wang et al. (2015) and is presented in table 1.

Table 1 shows the effect of elasticity number on breakup time predicted by the present
study and it shows excellent agreement with the results of Wang et al. (2015). For the
purpose of validation, the wavenumber is kept fixed for all values of El. However, in the
subsequent discussion of results, the dominant wavenumber for calculating breakup time
is obtained from maximum linear growth rate, and hence may change with fluid properties.

5.1. First-order results
Solution of the first-order dispersion relation, as given in (3.8), provides the first-order
complex root (ω1). The imaginary part (β) of the complex root represents disturbance
growth rate. Variation of β with wavenumber (k1) provides the maximum growth rate
(βmax). The wavenumber corresponding to βmax is considered as the most dominating
wavenumber (kdominant) since it registers the highest growth rate (Rayleigh 1878).

Figures 2(a) and 2(b) show variation of maximum growth rate (βmax) and corresponding
kdominant with elasticity number (El), respectively, for different gas to liquid velocity ratios
(U) keeping We = 300 and ρ = 0.0014.
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Effects of elasticity number and time constant ratio

An increase in elasticity number increases the stress relaxation time λ1 and consequently
produces a larger effective Reynolds number. An effective Reynolds number is nothing but
a similarity parameter to link the behaviour exhibited by a non-Newtonian fluid to that of
a Newtonian fluid. An increase in effective Reynolds number enhances the linear growth
rate. As a result, βmax increases with El at all gas to liquid velocity ratios (U). However,
the overall effect of elasticity on growth rate is small. In general, the viscous component of
viscoelastic fluid tends to weaken the instability by decreasing the disturbance growth rate,
whereas the liquid elasticity counterpart promotes enhancement of instability. Theoretical
investigation of viscoelastic fluid has shown that under the combined action of liquid
viscosity and elasticity effects, the growth rate curve of non-Newtonian liquid sheets
lies between those of inviscid and Newtonian sheets (Liu & Durst 1998; Brenn et al.
2000). The area between the growth rate curves of the inviscid and non-Newtonian liquid
sheets induced by the interaction of the liquid viscosity and elasticity effects is known
as the viscoelasticity-induced region, whereas the area between the growth rate curves of
Newtonian and non-Newtonian liquid sheets is generally termed the elasticity-enhanced
region. The potential increase in growth rate with increase in El is restricted by the
difference in area between the elasticity-enhanced region and viscoelasticity-induced
region, which itself is small. This is the reason why even a significant increase in elasticity
number does not lead to a correspondingly strong effect on growth rate. However, the
effect of El on βmax is very minor at low gas to liquid velocity ratios (U = 2, 2.15)
and increases slightly with increase in U (U = 2.50, 2.75). It should also be noted that
the effect of elasticity is stronger at low to intermediate El, as βmax almost becomes
insensitive to El at high values. Figure 2(b) shows that similar to βmax, variation of the
most unstable wavenumber (kdominant) with El at low U (U = 2, 2.15) is almost negligible.
But as U increases (U = 2.50, 2.75), an increase in El shifts kdominant towards higher
values. It is well established that an increase in gas velocity broadens the range of unstable
wavenumber. This allows an increase in elasticity number to displace the dominating
wavenumber towards higher frequency, thereby producing more distinct amplified growth
rate, as observed in figure 2(a).

The most dominant wavenumber from linear analysis is chosen as the characteristic
wavenumber for the second-order analysis (Jazayeri & Li 2000; Nath et al. 2010). The
interface position at different instants of time is obtained by substituting equation (3.32)
in equation (2.6). The total time from the moment the sheet leaves the nozzle until the
distance between the two interfaces becomes negligible is considered as the breakup time.
Figure 3 shows variation of breakup time with El at different U keeping We = 300 and
ρ = 0.0014. At larger velocity ratios (U = 2.50, 2.75), an initial increase in El reduces
breakup time, thereby indicating a destabilizing effect of elasticity at low to intermediate
El. This effect lasts for El < 20, beyond which breakup time almost becomes saturated and
shows negligible variation with change in El. However, at low velocity ratios (U = 2 and
2.15), an initial increase in El stabilizes the sheet and delays breakup time until breakup
time reaches a maximum value.

An increase in El above the critical point reduces breakup time, which indicates the
presence of an elasticity-induced destabilizing regime. It must be noted that the value of
El corresponding to the critical point that marks the dual effect of elasticity is not constant
and depends upon the gas to liquid velocity ratio(El = 4 for U = 2; El = 1 for U = 2.15).

To provide an explanation for this non-monotonic effect of elasticity number on sheet
breakup, previous theoretical studies of viscoelastic fluids are considered. It is revealed
that the complex dual effect of elasticity as observed in the present work has also been
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Figure 3. Variation of breakup time with El at different U keeping λ = 0, We = 300 and ρ = 0.0014.

reported in the past. Atalık & Keunings (2002) studied temporal instabilities in viscoelastic
plane channel flows. The study employed a spectral method to investigate two-dimensional
temporally evolving disturbances in Poiseuille and Couette flows of viscoelastic fluids. In
the case of Poiseuille flow of Oldroyd B fluid, wave amplitude initially increased with
increase in El until it reached a critical value, thereby exhibiting a destabilizing effect.
A further increase in El reduced the disturbance amplitude, which was referred to as a
re-stabilizing zone. Nonlinear investigation of a viscoelastic liquid sheet in quiescent gas
medium by Wang et al. (2015) reported only a destabilizing effect of elasticity. However,
they considered a high Weber number (We = 600) for their study. Considering surface
tension to be constant, a high Weber number represents a more significant effect of inertia
forces, which is similar to the effect created by high gas to liquid velocity ratio. Hence,
the observation made at U = 2.50 and 2.75 agrees with the study of Wang et al. (2015).
Among past literature, Clark & Dombrowski (1972) and Jazayeri & Li (2000) revealed that
ηj1 alone cannot cause breakup of a liquid sheet subjected to initial sinuous disturbances
as the distance between the two interfaces in the y direction remains unchanged. As a
result, the interfaces are displaced in the same direction by exactly the same amount. For
an initially sinuous surface disturbance, the thinning and subsequent breakup of the liquid
sheet take place only due to nonlinear effects with the generation of higher harmonics.
The second-order surface disturbances in the works of Clark & Dombrowski (1972) and
Jazayeri & Li (2000) are presented as

ηj2 = exp(2ik1x)[η̂j21exp(−2iω1t) + η̂j22exp(−2iω̄1t) + η̂j23exp(iω1t − iω̄1t)]
+η̂j24exp[−i(ω2t)] + η̂j25exp[−i(ω̄2t)],

(5.1)
where η̂j21, η̂j22 and η̂j23 represent the energy transfer from first to second order, and η̂j24
and η̂j25 are the inherent second-order disturbances. A comparison with the present study
shows that η̂j21 and η̂j24 correspond to η̂j21 and η̂j22 of the current study. In the present
paper, only the positive roots of the dispersion equations are considered. Hence, ηj2 in
the present study does not contain terms such as η̂j22, η̂j23 and η̂j25. Also, the growth
rates ω̄1, (ω1 − ω̄1) and ω̄2 corresponding to the disturbance components η̂j22, η̂j23 and
η̂j25, respectively, are either negative or too small. Hence, their contribution to sheet
instability is negligible. Lastly, ω2 is obtained by solving the second-order dispersion
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Figure 4. Variation of second-order amplitude with El at different U keeping λ = 0, We = 300 and
ρ = 0.0014.

equation which is varicose in nature, and hence it is inherently small. Also, ω2 corresponds
to 2k1, which is close to or more than the cut-off wavenumber. As a result, the disturbance
component η̂j24 that contains ω2 also does not contribute to sheet instability.

In view of the above discussion, it can be concluded that η̂j21 is the only component
of second-order disturbance that contributes to sheet thinning and subsequent breakup.
The effect of any fluid property on η̂j21 can provide a possible explanation as to how it
affects the overall sheet instability. As a result, the present study attempts to explain the
dual effect of rheological properties of the fluid by studying their corresponding effects on
η̂j21. Since η̂j21 is in proportion to the square of ηj1, η̂j2 expressed as η̂2 = real(η̂j21/η̂

2
j1)

is used to represent the influence of the first harmonic. The expression for η̂j21 is given
by (3.24). Similar approach was also adopted by Yang et al. (2013, 2014) and Wang et al.
(2015) for temporal investigation of sinuous disturbances in viscous and viscoelastic fluids,
respectively.

Figure 4 shows the effect of El on second-order amplitude (η̂2) at different gas to
liquid velocity ratios (U) keeping λ = 0, We = 300 and ρ = 0.0014. A comparison between
figures 2 and 4 shows that the effect of elasticity on η̂2 is much stronger than its effect on
linear growth rate. Hence the effect of second-order amplitude associated with nonlinearity
dominates the breakup process.

It can be observed that η̂2 shows an upward trend with increasing El for all values of
U. However, for low gas to liquid velocity ratios (U = 2 and 2.15), η̂2 is initially negative
for 0.1 < El < 4 at U = 2 and 0.1 < El < 1 at U = 2.15. In this range of El, an increase
in elasticity increases η̂2 but causes a reduction in its absolute value (|η̂2|). Since η̂j21 is
directly proportional to η̂j2, a decrease in η̂j2 implies a reduction in η̂j21 as well. Hence
at this initial range of El, an increase in El dampens the very component of disturbance
that primarily drives sheet breakup, thereby leading to an increase in breakup time. The
stabilizing effect of El persists until η̂2 finally achieves a positive value. The singularities
in figure 3 represent those particular values of El at which η̂2 becomes positive (El = 4
for U = 2 and El = 1 for U = 2.15). In the range of positive values of η̂2, an increase
in El only causes an increase in η̂2, which represents an increase in η̂j21 as well. As a
result, beyond El = 4 and El = 1 for U = 2 and 2.15, respectively, an increase in elasticity
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produces a destabilizing effect on the liquid sheet and reduces breakup time. In the case
of higher gas to liquid velocity ratio (U = 2.50 and 2.75), η̂2 is positive in the entire range
of El. An increase in El only enhances η̂2, before it becomes saturated at its high values.
Thus, elasticity promotes nonlinearity and destabilizes the sheet, ultimately resulting in a
reduction in breakup time for U = 2.50 and 2.75. A comparison of different gas velocity
ratios also shows that η̂2 increases with an increase in U and the effect of elasticity on η̂2
is more amplified and distinct in the case of higher velocity ratios (U = 2.50 and 2.75).

In view of the above discussion involving linear and nonlinear findings, it can be
concluded that an increase in elasticity number monotonically increases the first-order
effective Reynolds number and hence enhances the linear growth rate at all gas to liquid
velocity ratios. However, sheet breakup under the influence of initial sinuous waves
essentially takes place only when the first harmonic is added to the fundamental. The
effect of first harmonic is expressed using second-order amplitude. Elasticity produces
a much stronger effect on second-order amplitude as compared with linear growth rate.
It has been observed that the relation between elasticity and second-order amplitude is
non-monotonic and depends upon the range of elasticity number and gas to liquid velocity
ratio. This highly coupled non-monotonic interaction between elasticity number and gas
to liquid velocity ratio produces a complex effect on the second-order amplitude, and is
responsible for the dual effect of elasticity on sheet breakup.

The effect of elasticity on sheet behaviour at the instant of breakup is analysed next.
Figure 5 shows the effect of El on final sheet profile for different gas to liquid velocity
ratios keeping λ = 0, We = 300 and ρ = 0.0014. In the case of low velocity ratios (U = 2
and U = 2.15), η̂2 is negative at El = 0.1 (see figure 4). Hence, sheet breakup for El = 0.1
occurs at 1/4 and 3/4 of the fundamental wave, as shown in figures 5(a) and 5(b). However,
as El increases (El = 10 and 100), the breakup point tends to shift towards half and full
wavelength, owing to the corresponding positive value of η̂2. It has already been observed
that the effect of second-order amplitude is less for low velocity ratios. As a result, the
sheet experiences sufficient deformation and high wave amplitude at the time of breakup
for U = 2 and 2.15. In the case of high velocity ratios (U = 2.5 and 2.75), η̂2 is positive
for the entire range of El (see figure 4), resulting in breakup near half and full wavelength.
Moreover, wave amplitude is less due to the stronger effect of nonlinearity. The final sheet
appears to be more distorted and takes a saw tooth shape.

Subsequent discussion examines the effect of time constant ratio λ = λ2/λ1. It
represents the effect of deformation retardation time for constant value of El. Figures 6(a)
and 6(b) show the variation of maximum growth rate (βmax) and dominant wavenumber
with λ, respectively, for different gas to liquid velocity ratios keeping El = 10, We = 300
and ρ = 0.0014. An increase in λ increases the deformation retardation time and causes
a reduction in first-order effective Reynolds number (Re1). A smaller effective Reynolds
number leads to dampening of linear growth rate, and hence βmax reduces with increasing
λ. However, the effect of λ on βmax is very weak at U = 2 and 2.15 and increases
slightly with an increase in U (U = 2.50 and 2.75). Figure 6(b) shows that the dominant
wavenumber almost remains invariant to change in λ at U = 2 and 2.15. However, at high
U (U = 2.50 and 2.75), an increase in λ reduces the dominant wavenumber, suggesting
formation of longer waves. The overall effect of time constant ratio on linear growth rate
and dominant wavenumber appears to be opposite to that of elasticity number.

Figure 7 shows the effect of time constant ratio (λ) on breakup time at different gas
to liquid velocity ratios (U) keeping El = 10, We = 300 and ρ = 0.0014. It is observed
that the influence of λ on breakup time changes significantly with change in velocity
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Figure 5. Final sheet profile for different El for (a) U = 2, (b) U = 2.15, (c) U = 2.50 and (d) U = 2.75

keeping λ = 0, We = 300 and ρ = 0.0014.
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Figure 6. Variation of (a) maximum growth rate and (b) dominant wavenumber with λ at different U keeping
El = 10, We = 300 and ρ = 0.0014.

ratio. Breakup time decreases monotonically with an increase in λ at U = 2, whereas it
shows a monotonic increase with an increase in λ at U = 2.50 and 2.75. This signifies
a destabilizing and stabilizing effect of λ at low (U = 2) and relatively high (U = 2.50
and 2.75) velocity ratio, respectively. However, at U = 2.15, λ exhibits both stabilizing
and destabilizing effects depending upon the range of λ. A critical value of λ (λ =
0.4) is identified, below and above which λ increases and decreases the breakup time,
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Figure 7. Variation of breakup time with λ at different U keeping El = 10, We = 300 and ρ = 0.0014.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
–0.05

0

0.1

0.2

0.3

0

0.4
–0.01

η̂2

U = 2.50 U = 2.75

U = 2 U = 2.15

λ

Figure 8. Variation of second-order amplitude with λ at different U keeping El = 10, We = 300 and
ρ = 0.0014.

respectively. Thus, an increase in time constant ratio results in two regimes at U = 2.15:
the first regime indicates a stabilizing effect of λ for 0.1 < λ< 0.40 and the second regime
indicates a destabilizing effect of λ for 0.40 < λ< 1. Similar to elasticity number, the dual
behaviour of time constant ratio can be explained by studying its effect on second-order
amplitude (η̂2).

Variation of second-order amplitude (η̂2) with λ at different gas to liquid velocity ratios
is presented in figure 8. A comparison between figures 6 and 8 shows that similar to
elasticity, the effect of time constant ratio on η̂2 is much greater than that on linear growth
rate for all velocity ratios.

At U = 2, η̂2 is negative in the entire range of λ. An increase in λ reduces η̂2 but causes
a weak enhancement of its absolute value (|η̂2|). Hence, time constant ratio enhances
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Figure 9. Final sheet profile for λ for (a) U = 2, (b) U = 2.15, (c) U = 2.50 and (d) U = 2.75 keeping El = 10,
We = 300 and ρ = 0.0014.

nonlinearity and exhibits a destabilizing effect on the liquid sheet at U = 2. The effect of
λ on η̂2 at higher velocity ratios U = 2.50 and 2.75 becomes opposite. It can be seen that
η̂2 is positive for the entire range of λ. An increase in λ decreases η̂2 and hence dampens
nonlinearity. Thus, breakup time increases with time constant ratio for U = 2.50 and 2.75.
At U = 2.15, η̂2 is initially positive. An increase in λ decreases η̂2 until it becomes negative
at λ = 0.4. Hence, in this regime, λ suppresses nonlinearity and makes the sheet more
stable, resulting in longer breakup time. However, beyond λ = 0.4, η̂2 is negative and an
increase in λ increases |η̂2|. This leads to a second regime, where λ enhances nonlinearity,
and thereby produces faster breakup. This provides an explanation for the dual effect of λ
at U = 2.15.

Figure 9 shows the effect of λ on final sheet profile at different gas to liquid velocity
ratios keeping El = 10, We = 300 and ρ = 0.0014. At U = 2, η̂2 is negative in the entire
range of λ. Hence, breakup always takes place at 1/4 and 3/4 of the fundamental wave.
Also, the effect of λ on sheet profile is less and the sheet remains sinuous in shape for all
values of λ. At U = 2.15, disturbance amplitude initially increases as λ increases from 0.1
to 0.4 but reduces with a further increase in λ from 0.4 to 0.9.

The reason can be attributed to initial increase and subsequent decrease in nonlinearity
between 0.1 < λ< 0.4 and 0.4 < λ< 0.9, respectively, as observed earlier. Also, the
breakup point is near half and full wavelength for λ= 0.1 due to corresponding positive
values of η2. But at λ = 0.4 and 0.9, the breakup point shifts to 1/4 and 3/4 of the
fundamental wave, due to corresponding negative values of η̂2. For U = 2.50 and 2.75,
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Figure 10. Effect of El on droplet size distribution for (a) U = 2, (b) U = 2.15, (c) U = 2.50 and (d) U = 2.75
keeping λ = 0, We = 300 and ρ = 0.0014.

η̂2 is positive for the entire range of λ. Hence, sheet breakup always takes place at half
and full wavelength. Also, the distortions appear to reduce and disturbance amplitude to
increase with an increase in λ.

Figure 10 shows the effect of El on droplet size distribution at different velocity ratios
(U) keeping λ = 0, We = 300 and ρ = 0.0014. It can be observed that an increase in El
shifts the droplet distribution curve towards finer droplets. This effect is more prominent
for 0.1 < El < 10 at higher velocity ratios U = 2.50, 2.75. The reason can be attributed to
an increase in effective Reynolds number with an increase in El.

At a constant Weber number, an increase in Reynolds number implies a reduction in
fluid viscosity (Yang et al. 2013). In most practical conditions, a decrease in fluid viscosity
promotes faster deformation of ligaments between two breakup points into droplets, so that
atomization takes place well upstream where the velocity of liquid is comparatively high.
This leads to formation of finer droplets.

However, experimental studies of dilute polymeric solutions reveal that an increase
in viscoelasticity inhibits fragmentation and results in larger mean droplet diameter
(Thompson & Rothstein 2007). In this regard, it must be emphasized that the actual
dynamics of viscoelastic fluid near the pinch-off region is very different from that of
Newtonian fluid. Theoretical investigation of the process of fragmentation reported by
Villermaux et al. (2004) indicated that the atomization of Newtonian spray is controlled
by the size and geometry of initial ligaments. The study provides a detailed analysis as to
why gamma distributions are better in fitting drop size distribution data, as compared with
log-normal or Poisson distribution. This approach was later followed by Kooij et al. (2018)
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for fitting drop size distribution data for a Newtonian fluid, under the influence of different
nozzle operating conditions and liquid properties. A good agreement between predicted
and experimentally measured distribution was obtained, confirming that final droplet
size distribution is governed by ligament sizes and distribution. Keshavarz et al. (2016)
performed an experimental investigation of ligament-driven fragmentation dynamics of
viscoelastic fluid. The study revealed that, as opposed to the case of Newtonian fluid where
rapid droplet pinch-off happens due to capillary thinning, atomization of viscoelastic
fluids is governed by markedly different series of events. Through a montage of images,
it was observed that, as the flow squeezed near the neck of ligaments, there was a
large variation in axial diameter of the localized blobs, resulting in very corrugated
ligaments. The resulting ligament profile gradually deviated from purely cylindrical shape
to wavelike modulation of arbitrary shape. The final distribution consisted of a greater
number of large and small droplets ultimately leading a larger average droplet size
and broader distribution range. The study identified enhanced extensional viscosity of
viscoelastic fluid as the primary reason for elongated ligaments near the neck region.
Several other experimental studies have also shown that for viscoelastic ligaments, there is
the occurrence of high strain rate in the ligament neck which resists pinch-off and leads to
formation of thin cylindrical threads of initially uniform and later non-uniform thickness,
known as beads-on-string structure (Mun, Byars & Boger 1998; Christanti & Walker 2001;
Cooper et al. 2002; Wagner et al. 2005). At later stages of thinning of the ligament, when
the threads come to their full extension and are of the order of several micrometres in
radius, tiny beads may begin to appear resulting in a structure known as blistering (Sattler,
Wagner & Eggers 2008). Experimental investigation of pearling instability in viscoelastic
thread by Deblais, Velikov & Bonn (2018) showed that the bead-on-string structure is
controlled by an interplay between capillary and elastic forces, whereas the blistering
instability is due to a dynamical phase separation that takes place in the elongational flow.
However, neither of these phenomena are accessible in the context of the present study,
which captures the sheet dynamics from the moment waves start growing on the surface
of the interfaces until the distance between the two interfaces becomes a minimum. It
considers finite time singularity at breakup, like that of Newtonian fluid, where rapid
thinning of the ligament neck takes place due to formation of capillary waves, which
ultimately leads to droplet pinch-off. Tracking the geometry of ligaments after inception
of pinch-off points is a visualization challenge and is beyond the scope of this analytical
study. However, the finding of this study is important from the standpoint of understanding
the effect of viscoelastic properties on the growth of instabilities as well as probable
droplet size distribution based on initial ligament area.

Figure 11 shows the effect of λ on droplet size distribution at different velocity ratios (U)
keeping El = 10, We = 300 and ρ = 0.0014. An increase in time constant ratio reduces the
effective Reynolds number. As discussed earlier, a decrease in Reynolds number delays
breakup and produces larger droplets. Hence, the size distribution curve tends to shift
towards larger diameter with an increase in λ. However, similar to El, the effect of λ on
droplet size is very minor at low velocity ratios (U = 2, 2.15) and increases with increasing
U (U = 2.50 and 2.75).

6. Conclusion

The study involves a weakly nonlinear temporal analysis of a planar viscoelastic liquid
sheet sandwiched between two inviscid gas streams of equal velocities. The rheological
model of the liquid sheet is considered as corotational Jeffrey’s model. The sheet is
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Figure 11. Effect of λ on droplet size distribution for (a) U = 2, (b) U = 2.15, (c) U = 2.50 and (d) U = 2.75
keeping El = 10, We = 300 and ρ = 0.0014.

subjected to initial sinuous mode of disturbance. Perturbation analysis is employed to
obtain the second-order interface displacement. Effects of viscoelastic properties such as
elasticity number (El) and time constant ratio (λ) are discussed for different gas to liquid
velocity ratios. Linear analysis predicts that elasticity number and time constant ratio
monotonically enhance and dampen the linear growth rate, respectively, at all velocity
ratios. However, the effect of these properties on sheet breakup is non-monotonic and
depends upon the range of the viscoelastic properties as well as the surrounding gas
velocities. At relatively low velocity ratios, elasticity produces a stabilizing effect for
0.1 < El < 4 at U = 2 and 0.1 < El < 1 at U = 2.15. A further increase in elasticity beyond
this initial range of El produces a destabilizing effect. However, at U = 2.50 and 2.75,
elasticity only produces a destabilizing effect on the liquid sheet. Time constant ratio
exhibits a destabilizing effect at U = 2, whereas it stabilizes the sheet at U = 2.50 and 2.75.
At intermediate gas liquid velocity ratio U = 2.15, two regimes are identified representing
stabilizing and destabilizing effects of time constant ratio for λ < 0.40 and λ > 0.40,
respectively. The reason for such dual behaviour of elasticity and time constant ratio is
obtained by studying their corresponding effect on second-order amplitude. Liquid sheet
breakup under the influence of initial sinuous waves essentially takes place only when
the first harmonic is added to the fundamental. The effect of first harmonic is represented
using second-order amplitude η̂2. It is observed that the effect of elasticity number and
time constant ratio on η̂2 is dominant over their corresponding effect on linear growth
rate. A highly coupled nonlinear interaction of elasticity number with gas velocities or
time constant ratio with gas velocity changes the property of η̂2 and is responsible for
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their dual effect on sheet breakup. Practical applications involving non-Newtonian fluids
usually employ an air assist atomizer which uses the kinetic energy of surrounding gases to
disintegrate the liquid sheet. Hence, the findings of this work are significant as they throw
light on the effect of viscoelastic properties on sheet behaviour in the presence of different
gas velocities.

Size distribution of droplets generated after primary breakup is also investigated using
an MEF-based non-empirical model, which employs a modified Newton–Raphson method
with Taylor series expansion up to second order to eliminate the chances of divergence of
solutions. It has been observed that an increase in elasticity number and time constant
ratio produces finer and larger droplets, respectively. Their corresponding influence on
effective Reynolds number has been identified as the primary reason for such an effect
on droplet size distribution. However, the present analytical study does not address the
effect of viscoelastic properties after the inception of pinch points. Moreover, breakup of
interconnected ligaments into secondary droplets is also not addressed by the present MEF
model. Hence, the present MEF model may not be suitable for studying the isolated effects
of viscoelastic properties near the pinch region. A more complete modelling of secondary
breakup in future or adoption of direct numerical simulations may provide better prediction
of droplet size.
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Appendix A

Terms having exp[2i(k1x − ω1t)] as coefficient in (2.29) to (2.32) and (2.36)
are given as Ê21u = u1u1,x + v1u1,y; Ê21v = u1v1,x + v1v1,y; E21η = u1ηj1,x − ηj1v1,y;
Ê21τ = ηj1(∂/∂y)τ1yx + (τyy1 − τxx1)ηj1,x; and Ê21d = −ηj1Pl1,y − [ηj1,x(τ1,xy + τ1,yx)] +
ηj1(∂/∂y)τ1,yy − ρηj1(Ujϕgj1,yx + ϕgj1,yt) − 1

2ρ(ϕ2
gj1,x + ϕ2

gj1,y).
Corresponding expressions are obtained as

Ê21u = i
2k1

[2(A2
1k2

1 + B2
1l21) + A1B1(l1 − k1)

2 cosh(l1y + k1y)

+ A1B1(l1 + k1)
2 cosh(l1y − k1y)], (A1)

Ê21v = 0, (A2)

Ê21η = −2η̂j1[A1k1 sinh(k1y) + B1l1 sinh(l1y)], (A3)

Ê21τ = η̂j1

[
6iA1k2

1 sinh(k1y) + l1
k1

(l21 + 5k2
1)iB1 sinh(l1y)

]
, (A4)

Ê21d =
[

(4l21 + 2k2
1)

Re
B1 cosh(l1y) + (l21 + 5k2

1)

Re
A1 cosh(k1y)

]
η̂j1

+ η2
j1ρ(ω1 − Uk1)

2exp[k1 + (−1) jk1y]. (A5)
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The details of the particular solutions for liquid pressure and liquid velocity as
mentioned in (3.16)–(3.18) are given below.

Term Ŝ21p is the particular solution of

(
∂2

∂y2 P̂l21 − 4k2
1P̂l21

)
= −2ik1Ê21u + 1

Re
λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ1(ik1 − iω1)][
∂2D̂21c,yy

∂y2 + 4ik1
∂D̂21c,yx

∂y
− 4k2

1D̂21c,xx

]
.

(A6)

The expression for Ŝ21pis obtained as

Ŝ21p = − 1
2k2

1
(A2

1k1 + B2
1l1) + A1B1

⎡
⎢⎢⎣

l1 + k1

(l1 − 3k1)
cosh(l1y − k1y)

+ l1 − k1

(l1 + 3k1)
cosh(l1y + k1y)

⎤
⎥⎥⎦

+ 1
Re

(λ2 − λ1)

[1 + λ1(ik1 − iω1)][1 + 2λ1(ik1 − iω1)]⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2l21B2
1 − 2k2

1A2
1 − 1

2
k2

1B2
1 − 1

2k2
1

l41B2
1 − (l21 − k2

1)
2

2k2
1

B2
1 cosh(2l1y)

−(l1 − k1)
2(2l1 + 4k1)

(l1 + 3k1)
A1B1 cosh(l1y − k1y)

−(l1 + k1)
2(2l1 − 4k1)

(l1 + 3k1)
A1B1 cosh(l1y − k1y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A7)

Terms Ŝ21u and Ŝ21v are the particular solutions of

û21,yy − l221û21 = Re21[[2ik1c1exp(2k1y) − 2k1c2exp(−2k1y)] + Ŝ21p]

−Re21

Re
λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ1(ik1 − iω1)]

(
2ik1D̂21c,xx + ∂

∂y
D̂21c,yy

)
,

(A8)

v̂21,yy − l221v̂21 = Re21[[2k1c1exp(2k1y) − 2k1c2exp(−2k1y)] + Ŝ21p,y]

−Re21

Re
λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ1(ik1 − iω1)]

(
2ik1D̂21c,xy + ∂

∂y
D̂21c,yy

)
.

(A9)

Corresponding expressions for Ŝ21u and Ŝ21vare given as

Ŝ21u = i
2k1

S21v,y, (A10)
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Ŝ21v = Re21A1B1(l21 − k2
1)

⎧⎪⎪⎨
⎪⎪⎩

sinh(l1y + k1y)

(l1 + 3k1)[(l1 + k1)
2 − l221]

+ sinh(l1y − k1y)

(l1 − 3k1)[(l1 + k1)
2 − l221]

⎫⎪⎪⎬
⎪⎪⎭

+ λ2 − λ1

[1 + λ1(ik1 − iω1)][1 + 2λ2(ik1 − iω1)]
A1B1

×

⎡
⎢⎢⎢⎣

− (l21 − k2
1)

(l1 + 3k1){(l1 + k1)
2 − l221}

sinh(l1y + k1y)

− (l21 − k2
1)

(l1 − 3k1){(l1 − k1)
2 − l221}

sinh(l1y − k1y)

⎤
⎥⎥⎥⎦ . (A11)
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