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Abstract

The possibilities of electron acceleration by ponderomotive force of a circularly polarized laser pulse in magnetized
quantum plasma have been explored. The basic mechanism involves acceleration of electron by the axial gradient in
the ponderomotive potential of the laser. The quantum effects have been taken into account for a high-density plasma.
The ponderomotive force of the laser is resonantly enhanced when Doppler up-shifted laser frequency equals the
cyclotron frequency.
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1. INTRODUCTION

Electron acceleration by interaction of high-intensity laser
pulse with plasma is of great interest because of its tremen-
dous applicability in fundamental research and industrial
use. There are several mechanisms for laser-driven electron
acceleration, such as direct laser acceleration and acceleration
by ponderomotive force of laser-induced in various forms
(Tajima & Dawson, 1979; Khachatryan, 2002). The ponder-
omotive force accelerates the electron or excites a large am-
plitude plasma wave that can accelerate electrons indirectly.
Many schemes of particle acceleration have been proposed
since long-time back and recent developments are also
there in the acceleration process. Optical mixing of laser
light in a plasma and electron acceleration by relativistic elec-
tron plasma waves has been studied by Ebrahim in (1994).
Pukhov (2004) investigated the particle acceleration process
in relativistic laser channels; multi-GeV energy gain in a
plasma wakefield accelerator and low-energy spread electron
bunches (100 MeV–1 GeV) from laser wakefield accelera-
tion has been studied by Hogan et al. (2005), Robinson
(2006), etc. over the last decade. Kinetic modeling of intense
short laser pulses propagating in plasmas as well as the pon-
deromotive effects on electron acceleration by plasma wave
by short pulse lasers has been studied by Mora and Antonsen
(1997) and Liu and Tripathi (2005). Ponderomotive

acceleration of electron by a self-focused laser pulse has
been studied by Singh et al. (2010). The interaction of arbi-
trarily polarized laser pulse with a tenuous plasma in the ac-
celeration process has been studied by Sazergari et al. (2006).
Numerical study has been carried out from much earlier
times. Hartemann et al. (1995) studied the nonlinear ponder-
omotive scattering of relativistic electrons by intense laser
field at focus in vacuum by employing one-dimensional
(1D) plane wave pulse and 2D Gaussian pulses. Later,
Pukhov and Vehn (1999) in their three-dimensional
particle-in-cell (3D-PIC) simulation of intense short laser
pulse interaction with plasma have observed the strong
flow of relativistic electrons axially, moving with the laser
pulse and generating 100 MG azimuthal magnetic field.
The electron energies are far in excess of ponderomotive po-
tential energy and the acceleration is a consequence of direct
exchange of energy between electron and laser via betatron
resonance phenomenon. Later in the same year Gahn
(1999) experimentally observed generation of multi-MeV
electron beam by direct laser acceleration in high-density
plasma channels. Tsakiris et al. (2000) developed an analyt-
ical theory and a fully relativistic 3D single-particle code for
direct laser acceleration of electron in radial electrical and az-
imuthal magnetic fields. Effect on an axial magnetic field
and ion space charge on laser beat wave acceleration and a
surfatron acceleration of electron has been studied by
Prasad et al. (2009). Tanimoto (2003) studied the effect of
self-induced azimuthal magnetic field on the direct electron
acceleration by laser with stochastic phase disturbance.

252

Address correspondence and reprint requests to: A.K. Singh, Department
of Physics, G L Bajaj Group of Institution Mathura, Mathura-281406, India.
E-mail: abhisheklu99@gmail.com

Laser and Particle Beams (2017), 35, 252–258.
©Cambridge University Press, 2017 0263-0346/17
doi:10.1017/S026303461700012X

https://doi.org/10.1017/S026303461700012X Published online by Cambridge University Press

mailto:abhisheklu99@gmail.com
https://doi.org/10.1017/S026303461700012X


They found that apart from beam collimation electrons are
accelerated to ultrahigh energies that are greater than the pon-
deromotive energy and that the acceleration is enhanced by
increasing the strength of magnetic field. Liu et al. (2004)
showed that the electron acceleration depends on laser inten-
sity and the ratio of cyclotron frequency to laser frequency.
Yu et al. (2002) examined similar configuration using linear-
ly polarized laser. They have obtained electron acceleration
to relativistic energies using weak magnetic field. The depen-
dence of high-energy electron generation on the pulse dura-
tion of a high-intensity LFEX laser was experimentally
investigated by Kojima (2016).
For plasma where the density is quite high and the

de-Broglie thermal wavelength associated with the charge
particle, that is, λB = h− /2πmkBT approaches the electron
Fermi wavelength λFe and exceeds the electron Debye radius
λDe(viz.,λB ∼ λFe > λDe), the quantum effects become im-
portant. Furthermore, the quantum effects associated with
the strong density correlation start playing a significant role
when λB becomes of the same order or larger than the aver-
age inter-particle distance (∼ n−1/3

0 ), that is, n0λ3B ≥ 1 hold
in degenerate plasma. However, the other condition for de-
generacy is that the Fermi temperture TF, which is related
to the equilibrium density n0 of the charged particles must
be greater than the thermal temperture T of the system. The
high-density, low-temperature quantum Fermi plasma is sig-
nificantly different from the low-density, high-temperature
‘classical plasma’ obeying Maxwell–Boltzmann distribution.
Over the last decade, there has been a growing interest in in-
vestigating new aspects of dense quantum plasmas by devel-
oping the quantum hydrodynamic (QHD) equations
(Gardner & Ringhofer, 1996). The QHD equations are
useful for studying numerous collective effects (Shukla & El-
iasson, 2006) involving different quantum forces. Haas et al.
(2000) presented a quantum multistream model by using a
nonlinear system and derived the dispersion relations for
one and two-stream plasma instability. Later, Anderson
(2002) examined the statistical behavior of quantum
plasma. Propagation of short-wavelength electromagnetic
waves through magnetized quantum plasmas have been stud-
ied (Shokari et al., 2003; Shukla, 2006; Ali, 2006). The insta-
bilities arising in quantum plasmas have also been studied
(Ludin, 2007; Bret, 2008). Possibilities of magnetic field
generation by ponderomotive force of electromagnetic
waves in dense plasma has been explored (Shukla et al.,
2010; Kumar & Tewari, 2012). Recently, it has been
shown that the quantum effects can be important even in
the classical regime (Opher et al., 2001; Brodin et al., 2008).
In the present work, we focus on the recently developed

QHD model (Shukla & Eliasson, 2006; Haas et al. 2000).
The QHD model consists of a set of equations describing
the transport of charge density, momentum (including the
Bohm potential) and energy in a charged particle system in-
teracting through a self-consistent electrostatic potential.
QHD is a macroscopic model and application is limited to
those systems that are large compared with Fermi length of

the species in the system. The advantages of the QHD
model over kinetic descriptions are its numerical efficiency,
the direct use of the macroscopic variables of interest such as
momentum and energy and the easy way the boundary con-
ditions are implemented.

In this paper, we have examined the possibilities of elec-
tron acceleration by a circularly polarized laser pulse in mag-
netized quantum plasma. The basic mechanism involves
acceleration of electron by the axial gradient in the pondero-
motive potential of the laser. The ponderomotive force of the
laser is resonantly enhanced when Doppler-shifted laser fre-
quency equals the cyclotron frequency. Such a study has not
been reported in literatures so far.

2. THEORETICAL FORMULATION

Consider the propagation of a right circularly polarized laser
pulse in quantum plasma in the direction of the static axial
magnetic field b0ẑ. The laser fields being (Sharma & Tripa-
thi, 2009)

Ex = A t − z

ηgc

( )
exp −iω t − ηz

c

( )[ ]
, Ey = iEx;

By = ηA+ i
(1− ηηg)

ηgω

∂A
∂t

[ ]
exp −iω t − ηz

c

( )[ ]
, Bx = iBy;

where A for a Gaussian pulse is given by

A2 = A2
0 exp

−(t − z/ηgc− t0)2
τ2

[ ]
,

ηgc = ηc/[1+ ω2
pωb/2ω(ω− ωb)2] is the group velocity

of laser pulse; τ is the laser pulse duration, η = [1− ω2
p/

ω(ω− ωb)]1/2 is the refractive index of plasma; ωp is the
electron plasma frequency; ωb= eb0/mc is the cyclotron fre-
quency; −e is the electronic charge; m is the rest mass of
electron; and c is the speed of light. The refractive index is
crucially dependent on the static magnetic field, through
the term (ω− ωb). This is due to the fact that the static mag-
netic field tends to rotate the electron. The laser field also ro-
tates the electron, and hence at resonance (ω= ωb), the two
rotation frequencies resonate resulting in considerable en-
hancement in electron response and hence the refractive
index.

The QHD equations (Jung, 2013; Li et al., 2014; Seadway,
2014; Wallin et al., 2014) governing the motion of electron in
the presence of laser field and the static magnetic field are
given by

�F = d�p

dt
= −e�E − e

γmc
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3n20
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and the continuity equation

∂n
∂t

+∇.
n�p

γm

( )
= 0, (2)

where n= (n0+ n(1)) is the electron density, m is the elec-
tron’s rest mass, h− is the Planck’s constant divided by 2π,
and vF = [h− /m)(3π2n)1/3] is the Fermi velocity. The third
term on the right-hand side of Eq. (1) denotes the Fermi elec-
tron pressure (P = mv2Fn

3/3n30). The fourth term is the quan-
tum Bohm force and is due to the quantum corrections in the
density fluctuation. The classical equation may be recovered
in the limit of h− = 0. The ponderomotive force of the high-
frequency laser pulse drives longitudinal waves with a fre-
quency much smaller than ω, but fast enough for the dynam-
ics to take place on the electron time scale. The ions form a
neutralizing background in the dense plasma. Perturbatively
expanding Eqs. (1) and (2) for first order of the electromag-
netic field, we get

d�p (1)

dt
= −e�E(1) − e

γ0mc
�B(0) × �p (1)[ ]− v2F
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,

(3a)

∂n(1)

∂t
+ n0

γ0m
(∇.�p (1)) = 0, (3b)

where, p(1) is the quiver momentum. The fourth term of Eq.
(3a) has been obtained by using perturbative expansion (Cao
& Ren, 2008)
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Thus, the electron motion in the presence of laser and guiding
magnetic fields is described by

dp(1)x

dt
= −eE(1)

x − eb0
γ0mc

p(1)y − e

γ(1)mc
p(1)z B(1)

y

− v2F
n0

∇n(1) + h− 2

4m2

1
n0

∇(∇2n(1))
[ ]

,

(4a)

dp(1)y

dt
= −eE(1)

y + eb0
γ0mc

p(1)x − e

γ(1)mc
p(1)z B(1)

x

− v2F
n0

∇n(1) + h− 2

4m2

1
n0

∇(∇2n(1))
[ ]

,

(4b)

dp(1)z

dt
= − e( p(1)x B(1)

y − p(1)y B(1)
x )

γ(1)mc

− v2F
n0

∇n(1) + h− 2

4m2

1
n0

∇(∇2n(1))
[ ]

,

(4c)

where γ(1) = (1+ ( p(1)2x /m2c2) + ( p(1)2y /m2c2) + ( p(1)2z /

m2c2))1/2. Assuming the perturbed density to vary as n(1)=
n1 (t− (z/ηgc))exp [− iω (t− (ηz/c))] and simultane-
ously solving Eqs. (4a) and (4b), we get the transverse mo-
mentum as

p(1)x = (β+ n1βq) t − z

ηgc
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c

( )[ ]
, (5a)
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and

Pz =
p(1)z

mc
.

The perturbed electron density is obtained with the help of
Eq. (3b) on substituting the relevant quantities

n(1) = −

(n0(β+ iβ)/γ0m)
(iωηηg(t − (z/ηgc)) − 1)(t − (z/ηgc))

γ0ηgmc 1− iω(t − (z/ηgc)) + (n0(βq + iβq)
{

(iωηηg(t − (z/ηgc)) − 1)/γ0ηgmc)
}

exp −iω t − ηz

c

( )[ ]
.

(6)
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The energy exchange is governed by the relation,

dγ(2)

dt
= e

m2c2γ0
{(β+ n1βq) + i(β+ n1βq)}

A0 t − z

ηgc

( )2

exp −iω t − ηz

c

( )[ ]{ }2
.

(7)

From the above equation, it is clear that the energy exchange
is critically dependent on the static magnetic field. The mag-
netic field tends to rotate the electrons about the line of force
in the right-handed sense at the cyclotron frequency. The
right circularly polarized wave also rotates the electrons in
the clockwise direction at the frequency ω. Hence, resonance
occurs at ω= ωb resulting in energy gain enhancement.
In our analysis, we consider the parameter values as in

(Misra et al., 2009), that is, the particle density to be of the
order of 1034 m−3. Such a density regime is relevant for
dense plasma environments (including outer layers of astro-
physical plasmas, such as neutron stars and white dwarfs)
(Ali et al., 2007). In this regime, the particle Fermi velocity
becomes less than the speed of light c in vacuum and the
Fermi screening length is greater than the average particle
distance, a condition for the collective quantum effects in
plasmas to be important. It has been reported that for intense
laser–solid density plasma interaction experiments and for
the next generation of laser-based plasma compression exper-
iments, the electron number density n0 can vary between
1030 and 1034 m−3 (Harding & Lai, 2006; Shukla & Elias-
sion, 2007; Sharma & Tripathi, 2009; Zhu & Ji, 2012) and
vF/c is in the range 0.005→ 0.25 (Wang et al., 2013).
Figure 1, shows the variation of normalized group velocity

of the laser pulse ηgwith normalized plasma frequency
(ωp/ω) for ω= 0.5ωb. It is observed that the group velocity
decreases with increase in plasma frequency. It is seen that

ηg initially drops sharply with (ωp/ω) , but afterwards this de-
crease is at a slower pace. In Fig. 2, the variation of normal-
ized group velocity with (ω/ωb) for ωp/ω= 0.3 has been
studied. It is observed that the group velocity ηg≈ c,
except on and near resonance (ω= ωb).

We have numerically solved Eq. (7) to investigate the elec-
tron dynamics for different values of plasma density, ratio of
laser frequency to electron cyclotron frequency (ω/ωb), nor-
malized laser amplitude and the static magnetic field. In Fig-
ures 3 and 4, the electron energy γ as a function of ξ(= t−
ηz/c) have been plotted for A0= 0.2 and 0.8, respectively.
The energy gain is increased due to increase in normalized
laser amplitude. Higher electron energy can be achieved by
increasing the laser field amplitude. As far as the effect of
plasma frequency on electron is concerned, both the refrac-
tive index and group velocity of the laser pulse are functions
of plasma frequency. Their values (η and ηg) increase with
decrease in ωp. The energy gain of electron will be optimum
near resonance. The variation of energy gain with normalized
frequency (ω/ωb) has been shown in Figure 5. The energy
gain increases with increase in ω/ωb. Near resonance, at
ω/ωb≃ 0.9, the group velocity is found to be ∼ 0.20c,
while at ω/ωb≃ 0.4, the group velocity has a larger value
(∼ 0.94c), even then the gain is larger near resonance. This is
due to the fact that the magnetic field of the laser, which is
responsible for the ponderomotive force is significantly re-
duced at lower values of group velocity [α(1− ηηg)]. Elec-
tron attains maximum acceleration near the normalized
Doppler-shifted cyclotron resonance ([ω(1− Pzη/γ(1))/
ωb − 1/γ0] ∼ 0). Also at, ω/ωb≃ 0.4, ([ω(1− Pzη/γ(1))/
ωb − 1/γ0] ∼ 0.42) remains aways from the resonance
values, that is, zero hence electron gain less energy. At reso-
nance the energy gain becomes infinity and the theory breaks
down. After resonance, for ω/ωb> 1, the term [ω(1− Pzη/
γ(1))/ωb− 1/γ0] increases and consequently the electron
can gain higher energy.

Figure 6 depicts the variation of electron energy with ξ for
A0= 0.6. The dashed line shows the variation as per the
QHD model, while the solid line denotes the trend for a

Fig. 1. Variation of ηg with ωp/ω for ω= 0.5ωb. Fig. 2. Variation of ηg with ω/ωb for ωp= 0.3ω.
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non-QHD setting (at h− = 0). It is found that the quantum ef-
fects damp the electron energy by about 14%. This damping
is due to the diffraction induced by quantum effects.

3. DISCUSSION

A detailed theory for particle acceleration by the non-
stationary ponderomotive force of a large-amplitude circular-
ly polarized electromagnetic wave in a very dense, magne-
tized quantum plasma has been presented. The effects

associated with the Fermi pressure and the Bohm potential
have been incorporated. The ponderomotive acceleration of
electrons by a Gaussian laser pulse is significantly affected
by the presence of a magnetic field. An electron gains
energy during the rising part of the laser pulse and loses
during the trailing part. The quantum diffraction effects
also play a crucial role by modifying the energy exchange
rate. The non-stationary radiation pressure creates a slowely
varying electric fields and current, which contributes to pon-
deromotive acceleration. The non-oscillatory quantum terms
are embedded in βq. When ω< ωb, the first-order velocity
due to the laser is very small as the resonance condition is
not satisfied and hence the ponderomotive force produced
is also insignificant. For ω> ωb, the pondermotive force
produced is significant and considerable acceleration of elec-
trons can be obtained in this regime. In practical applications,
the ponderomotively accelerated ultrahigh energy electrons
in the rising part of the pulse can be easily extracted by im-
pinging the pulse into a solid target or through an overdense
plasma seperator (Yu et al., 2000; Miyauchi et al., 2004). The
pulse will then be reflected and the high-energy electrons are
released into the target without suffering any deceleration.
The electron energy is reduced by nearly 8% due to the

Fig. 3. Variation of γ with ξ for A0= 0.2, n0= 1034 m−3, ωp= 0.3ω, ω=
0.5ωb.

Fig. 4. Variation of γ with ξ for A0= 0.8, n0= 1034 m−3, ωp= 0.3ω, ω=
0.5ωb.

Fig. 5. Variation of γ with ω/ωb for A0= 0.2, z=−6, n0= 1034 m−3.

Fig. 6. Variation of γ with ξ for A0= 0.6, n0= 1034 m−3, ωp= 0.3ω, ω=
0.5ωb.
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quantum diffraction effects. This can be compensated by fur-
ther increasing the strength of the applied magnetic field. The
present study has relevance to the environment of dense as-
trophysical plasmas, quantum free-electron lasers, as well
as to the next generation of intense laser–solid density
plasma interaction experiments.
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