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The benefits of integrated INS/GPS systems are well known. However, the knowledge
required to jam GPS is becoming public and the hardware to achieve this is basic. When
GPS data are unavailable and a low grade INS is used, navigation accuracy quickly degrades
to an unacceptable level. The addition of one or more terrain referenced navigation (TRN)

systems to an integrated INS/GPS navigation system enables the INS to be calibrated during
GPS outages, increasing the robustness of the overall navigation solution. TRN techniques
are compared and integration architectures are reviewed. For the initial studies of INS/GPS/

TRN integration, radar altimeter based terrain contour navigation (TCN) with a batch
processing algorithm is used in conjunction with a centralised integration filter. Four different
approaches for using these TCN fixes to calibrate the INS are compared. These are a best

fix method, a weighted fix method using a probabilistic data association filter (PDAF) and
single and multi-hypothesis versions of the Iterative Gaussian Mixture Approximation of
the Posterior (IGMAP) method. Simulation results are presented showing that the single

hypothesis IGMAP technique offers the best balance between accuracy, robustness and
processing efficiency.
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1. INTRODUCTION. An inertial navigation system (INS) operates con-
tinuously (bar hardware faults) and provides a high bandwidth (>50 Hz) output
with low short term noise. It also provides effective attitude, angular rate and accel-
eration measurements as well as position and velocity. However, its navigation
accuracy degrades with time as the noise and biases on its inertial instrument out-
puts are mathematically integrated through the navigation equations that generate
the final output.

The Global Positioning System (GPS), and other satellite navigation systems,
provide a high accuracy (y5 m) position solution that does not degrade with time.
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The GPS navigation solution is noisier than that of an INS, has a lower bandwidth
(y1 Hz) and does not normally include attitude. GPS and INS are thus comple-
mentary. Consequently, many aircraft and guided weapons use an integrated
INS/GPS navigation system. The INS provides the core navigation solution, whilst
the GPS measurements are used to correct and calibrate the INS via an integration
algorithm.

However, satellite navigation signals are extremely vulnerable to interference.
Unintentional interference sources include broadcast television, mobile satellite
services, ultra-wide-band communications, over-the-horizon radar and cellular tele-
phones (Carroll et al., 2001). In military applications, deliberate jamming is highly
likely, and must be planned for. Interference can be mitigated using a controlled
reception pattern antenna (CRPA) system (e.g. Owen and Wells, 2001; Wells and
Owen, 2002; Boasman and Briggs, 2002), together with advanced INS/GPS
integration techniques such as adaptive tightly-coupled (ATC) (Groves and Long,
2003; 2005) and deep integration (e.g. Sennott and Senffner, 1997; Gustafson et al,
2000; Soloviev et al, 2004). These techniques enable satellite navigation signals to be
tracked under higher levels of interference. However, they do not eliminate the effects
of jamming and interference completely. The cost and complexity of jamming tech-
nology that can defeat them is significantly less than that of the CRPA systems
themselves and is being communicated across the internet !

As soon as GPS measurements are lost, the INS begins to drift out of calibration.
Aircraft grade INS can maintain a horizontal position accuracy within 100 m
through GPS outages of more than 10 minutes. However, the lower cost INS
common in guided weapons, unmanned air vehicles and general aviation (private)
aircraft can only maintain this accuracy for 2 to 3 minutes. To attain robust navi-
gation in a GPS jamming environment, reversionary navigation systems are required.
Terrain referenced navigation (TRN) techniques offer a solution.

The most established TRN technique, terrain contour navigation (TCN), uses
measurements from a radio altimeter (radalt) and requires undulating terrain.
Performance may be enhanced by using a laser range-finder as the sensor. A second,
and complementary, technique is scene/line feature matching, which uses a dedicated
imaging sensor. The current state-of-the-art in line feature matching systems is
represented by the Continuous Visual Navigation (CVN) system (Handley et al.
2001). TRN techniques are reviewed in Section 2.

The focus of this paper is the integration of TRN with INS and GPS. As with INS/
GPS integration, TRN is usually integrated with INS and GPS using techniques
based on the Kalman filter. Selecting the integration architecture to make the best use
of information from the different sensors is discussed in Section 3. How best to handle
potential false or ambiguous fixes from a TRN system within the integration filter
is covered in the succeeding sections.

For the initial studies of INS/GPS/TRN integration, radalt based TCN was
selected because a relatively simple simulation can be used and the research is readily
applicable to current systems. A batch processing TCN algorithm is used, whereby
a series of radalt measurements is compared with a terrain height database to
produce one or more position fix hypotheses, each with an associated covariance and
probability. To determine how best to use these TCN fixes to calibrate the INS whilst
obtaining the optimum balance of accuracy, robustness and processing efficiency,
four different approaches are compared. Section 4 describes a best fix method and a
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weighted fix method using a probabilistic data association filter (PDAF). The single
and multi-hypothesis versions of the Iterative Gaussian Mixture Approximation of
the Posterior (IGMAP) method are described in Section 5.

The simulation environment used for comparing the different INS/TCN inte-
gration architectures is described in Section 6, with emphasis on the radar altimeter
simulation. Simulation results comparing the performance of the best fix, PDAF and
two IGMAP methods are presented in Section 7. Section 8 discusses the effect of
radalt and terrain height database errors on performance. Where strong GPS
signals are available, GPS will always be more accurate than TRN. However, under
moderate jamming or where the number of GPS signals available is limited, there
can be benefits in using TRN alongside GPS. Section 9 presents the results of simu-
lations to determine the benefit of combining TCN with adaptive tightly-coupled
anti-jam INS/GPS integration.

2. REVIEW OF TRN TECHNIQUES. Development of terrain contour
navigation (TCN) started in the 1970s and a number of systems have been
commercially available since before GPS was fully operational. Conventionally,
such systems estimate the height of the terrain below the air vehicle by subtracting
radio altimeter height from [Barometric/]INS altitude. Measurements are typically
taken around once a second. These are then compared with a terrain height data-
base, such as Digital Terrain Elevation Data (DTED) (Defense Mapping Agency,
1983). A range of different processing techniques have been developed to obtain
position fixes from the comparisons of measured and database terrain heights
(Metzger et al, 2002). These may be divided into two broad categories : sequential
and batch.

In sequential processing, each measurement is processed separately. The difference
between the radalt generated and database indicated terrain height is input as a
measurement to a Kalman filter, noting that the database height is obtained at the
current best estimate of position. The terrain gradient is then used to attribute this
to a linear combination of the latitude, longitude and height components of the aided
INS position error. To obtain independent estimates of the three components of
the position error, at least three radalt measurements are required, usually more in
practice. Sequential processing is well established in commercial TCN systems such
as BAE Systems’ TERPROM (Robins, 1998) and the American SITAN (Hollowell,
1990). The principal advantage of the sequential approach is relative simplicity and
comparatively low processor load. However, it relies on accurate knowledge of the
terrain gradient below the aircraft, which is a demanding requirement on existing
low resolution, low accuracy databases like DTED. To a certain extent, the limita-
tions of terrain height databases may be overcome by using sophisticated linearis-
ation algorithms (Yu et al, 1991). However, a fundamental problem remains in
that the gradient is calculated below the navigation system indicated aircraft position,
not its true position. Thus, if the horizontal position error exceeds about 250 m,
main-stream sequential processing does not work and a ‘recovery’ mode must be
instigated, for example batch processing or a parallel solutions approach such as
Multiple Model Adaptive Estimation (Hollowell, 1990). An alternative approach is
to process the radalt measurements with a non-linear filter, such as a particle filter
(Metzger and Trommer, 2003).
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In batch processing, a series of typically 5–16 terrain height measurements, known
as a transect, are processed together (Runnalls, 1985). The transect is fitted to the
terrain height database at different offsets in latitude and longitude from the current
estimated position. The residuals of each fit are used to calculate a likelihood at
each point in the grid, producing a likelihood surface as the output of the matching
process. The simplest way of obtaining a position fix from the likelihood surface is to
take the highest point. However, the likelihood surface tends to be noisy, so this does
not provide a good position estimate (Metzger et al, 2002). Another straightforward
approach is to fit a bivariate Gaussian distribution to the likelihood surface.
However, the likelihood surface is often multi-modal, i.e. it has more than one peak.
Another method is to multiply successive likelihood surfaces until a single dominant
peak is attained (Carlbom and Johansson, 2002). An optimal approach is to use
Monte-Carlo Markov Chain methods with a Bayesian network based data fusion
algorithm (Runnalls and Handley, 1998); however this imposes an extreme proces-
sing load. A suitable compromise is to fit multiple Gaussian distributions (typically
up to five) to the likelihood surface, providing a multiple hypothesis position fix
for processing by the data fusion algorithm. This approach forms the basis of the
TCN algorithm used for the studies presented here.

Conventional, radalt based, TCN systems are significantly less accurate than civil
GPS. Although there is scope for improving TCN performance through using more
sophisticated processing, accuracy can be enhanced by using a more precise height
sensor. Commercially available Laser Line Scanners (LLS), such as those from
Optech, provide many range measurements from the air vehicle to the terrain, to an
accuracy of centimetres, in a fraction of a second. Unlike a radalt, the LLS is able
to acquire a sequence of terrain elevation profiles by rapidly scanning the terrain
surface. By combining these profiles with the forward motion of the air vehicle, as
indicated by the INS, the LLS can construct elevation measurements over a two-
dimensional surface, where a radalt can only provide a one-dimensional elevation
strip. This increased coverage, coupled with the greater inherent accuracy of the LLS,
holds the promise of improved accuracy and greater operational flexibility. LLS are
already in use for obstacle avoidance and target detection. Consequently they will
be increasingly common on future airborne platforms.

A Laser Line scan Navigation (LLN) system has been developed by Hi-Q Systems
and QinetiQ (Handley et al, 2003; McNeil et al, 2002). The LLN algorithm takes a
series of range measurements from the LLS and performs co-ordinate transforma-
tions to obtain a terrain surface measurement. This is then compared with the region
of the DTED terrain height database corresponding to the estimated position using
an optimised surface correlation algorithm. This process outputs the difference
between the estimated and measured terrain surfaces which may then be used to
update the navigation filter. Using recorded LLS data, navigation accuracies in the
30 to 45 m range, depending on the grade of the associated INS, have been demon-
strated using LLN. A similar laser navigation system has been developed by Ohio
University (Campbell et al, 2003; 2004).

Terrain contour matching techniques rely on the flight profile overflying undula-
ting terrain in order to provide useful navigation data. In order to accommodate this
requirement, mission planners need to work hard to find acceptable routes, with a
significant probability of not succeeding. By contrast, scene and linear feature
matching systems work optimally over flat terrain.
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Linear feature matching techniques usually work by linking observed linear
features with their representation within a linear feature database, and can provide
comparable accuracy to civil GPS over favourable terrain. Linear feature matching
is complementary to TCN because linear features:

’ commonly appear wherever there is development by man (which predominantly
occurs, for practical reasons, on flat terrain where TCN is ineffective and
ground-based GPS jammers are most effective at jamming low flying aircraft !) ;

’ are usable even when flying very low;
’ can be detected by simple and well established image processing techniques

(although complex techniques can produce better results) ;
’ are easily extracted from satellite and photographic imagery (and consequently

database production is fairly quick and inexpensive and can incorporate
valuable target information).

Continuous Visual Navigation (CVN) (Handley et al, 1998; 2001) was jointly
conceived by QinetiQ and Hi-Q Systems. The goal was a linear feature matching
technique that is not reliant upon linear feature intersections, requires minimal
mission planning, imposes a relatively low computational load, is cheap to
implement and can cope with ambiguous linear features. The CVN system comprises
a video or infra-red camera, pointing downwards, to provide images of the terrain
below the host vehicle, a database of linear features covering the area overflown
and a processor implementing the CVN algorithm. It also uses the host vehicle’s
radalt to determine the height above ground for scaling the image and the INS to
determine the spatial separation of successive images and the area of the database
to search.

CVN grabs a digitised image from the imaging sensor whenever line features
are predicted using the database and current navigation solution, typically around
once a second. Standard imaging processing techniques are then used to extract linear
features from the image. These features are then compared with both the predicted
line features from the database and features over a wider search area to produce
measurements to update the navigation filter. In the event of ambiguous matches,
parallel Kalman filters are maintained, each with a likelihood score, until the
ambiguity is resolved from subsequent images.

Over favourably-featured terrain, CVN exhibits a navigation accuracy of around
10 m with an aircraft grade (SNU84) INS and around 20 m with a lower quality
tactical grade INS, such as an LN200. CVN has been successfully demonstrated in
real-time flight trials (Handley et al, 2001). Employing separate sensors for CVN and
LLN imposes a significant burden on the host vehicle, in terms of the financial cost of
acquiring separate sensors and their increased mass, power consumption, supporting
electronics requirements and impact on the design of the host airframe. However,
with some modifications to the processing algorithm, the LLS can be used to capture
images for CVN. Furthermore, use of a common sensor enables the CVN and LLN
algorithms to be integrated, reducing the occurrence of false and ambiguous matches
(Handley et al, 2003).

3. INS/GPS/TRN INTEGRATION ARCHITECTURE. As with INS/
GPS integration, TRN is usually integrated with INS and GPS using Kalman filter
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based techniques. Selection of the integration architecture is a trade-off between a
number of sometimes conflicting requirements:

’ maximisation of the navigation accuracy for most of the time, which is met by
cross-calibration between the navigation sensors ;

’ preventing cross-contamination of errors between subsystems;
’ maximising the availability of information for integrity monitoring;
’ minimising algorithm complexity and processor load.

The three main architectures for integrating multiple sensor navigation systems
are federated, cascaded and centralised. In a federated filters architecture, the INS is
integrated with each of the other navigation systems using a separate Kalman filter,
known as a local filter, each of which produces a navigation solution (Carlson, 1990).
The integrated navigation solution is obtained simply by fusing the solutions from
the Kalman filters, weighted according to their uncertainties. The advantages of
this architecture are ease of combining equipment from different manufacturers
and integrity. The integrity benefits arise because the contamination of one local
filter by false data does not affect the others and, with three or more filters, they can
be used to monitor each other. The main disadvantages are that there is no cross-
calibration between GPS and TRN and, because the correlations between the
Kalman filters are ignored, the uncertainty of the fused navigation solution tends
to be over-optimistic.

A cascaded architecture is similar to a federated architecture, except that a master
Kalman filter is used to combine the outputs of the local filters. This enables some
cross-calibration between the local filters. However, in any cascaded architecture,
low gains must be used in the master Kalman filter to prevent destabilisation due
to correlated noise on the local filter outputs. Such an architecture can be hazardous
where information about the local filters is not available due to commercial
confidentiality.

In a centralised architecture, shown in Figure 1, measurements from all sub-
systems are processed by a single Kalman filter. For example the GPS integration is
tightly-coupled, inputting pseudo-range and pseudo-range rate to the integration
filter. With all sensor errors modelled centrally, full cross calibration between the
GPS and TRN systems can be obtained. There are also no potential stability prob-
lems arising from un-modelled cross-coupling or cascading Kalman filters. Thus, a
centralised Kalman filter should provide the most accurate integrated navigation
solution. However, the effectiveness of this architecture is contingent upon rep-
resentative models of the sensor errors, making co-operation with the sensor manu-
facturers essential. Integrity monitoring can be implemented using parallel filter
techniques (Moore et al, 2001). A centralised integration architecture has been
selected for the work presented here.

Because TRN systems operate by comparing a series of measurements or an image
of the terrain below the host vehicle with a database, they are liable to produce
occasional false position fixes, either as a result of errors in the database, or because
the measurements match the database in more than one location. A lot of TRN
systems, such as CVN and many batch-processed TCN systems, will also output
multiple hypothesis position fixes where there is not a unique match between
measurements and database. Each candidate is accompanied by an associated
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covariance and an estimated probability. There are three main ways in which such
ambiguous fixes may be handled by a navigation filter : best fix, weighted fix and
parallel filters. The following sections describe and compare a best fix method, PDAF
and IGMAP weighted fix methods and the parallel filters IGMAP method for INS/
TCN integration.

4. BEST FIX AND PDAF INS/TCN INTEGRATION. The best fix and
PDAF INS/TCN integration strategies have both been tested in conjunction with a
Gaussian clumping TCN algorithm. This is a batch processing TCN technique, as
described above in Section 2. To obtain position fixes from the likelihood surface,
the likelihoods are first converted to probabilities by dividing them by the total like-
lihood summed across the surface. Grid points above a noise floor are then grouped
into contiguous clumps. The probabilities of the points in each clump are summed
and the lowest probability clumps are merged with their nearest neighbours where
necessary. From each clump, a mean position fix is obtained by calculating the
weighted average of the points within the clump. Each point in the likelihood sur-
face has a height error associated with it, so the fix is 3-dimensional. To indicate the
uncertainty of the position fixes, a 3r3 covariance matrix is computed for each
clump from the distribution of points within the clump and the estimated DTED
error standard deviations.

The best fix method is the simplest method of handling uncertain TCN measure-
ments in a Kalman filter. The integration algorithm processes the fix with the
highest probability score and rejects the others. To minimise contamination of the
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and tracking

TRN 1 sensor
and database
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Integrated
Navigation
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Figure 1. Centralised integrated navigation architecture.
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integration filter by false fixes, measurements should only be accepted where there
is reasonable confidence in the best fix. This is done by setting two thresholds: a
minimum probability score for the best fix and a maximum probability score for the
second best fix. Low thresholds enable more TCN information to be processed in
the integration filter, whereas high thresholds provide more protection against false
fixes. The choice of threshold depends on the accuracy and robustness requirements,
INS grade, integrity monitoring system and the probability of false TCN fixes being
produced with high scores.

The probabilistic data association filter inputs all the candidate measurements
to a single integration filter, weighted according to their probabilities. An extra term
is applied in the covariance update to account for the spread of fix hypotheses. The
system update phase of the PDAF is the same as for a standard Kalman filter.
An advantage of the PDAF approach is that all true fixes are input to the inte-
gration filter. The main disadvantage is that all of the false fixes are also input,
degrading the integrated navigation solution. However, provided the probability
scores determined by the TRN system are reasonably representative, the false fixes
will not destabilise the filter as the covariance of the PDAF estimates will remain
representative.

For both the best fix and PDAF integration algorithms, closed loop correction of
the INS errors was implemented to minimise linearisation errors in the integration
filter, which was based on the ATC INS/GPS integration algorithm set (Groves
and Long, 2003; 2005). Accelerometer and gyro biases were estimated in addition
to position, velocity and attitude. In addition, measurement pre-filtering was imple-
mented to reject those TCN fix hypotheses that were widely inconsistent with the
integration filter’s state estimates.

5. IGMAP INS/TCN INTEGRATION. The IGMAP (Iterative Gaussian
Mixture Approximation of the Posterior) method, developed by Data Fusion
Research, combines the fitting of a set of Gaussian distributions to the likelihood
surface and the TCN measurement input to the integration filter into a single iterat-
ive process. Measurement inputs to the integration filter need not be a linearised
function of the state estimates nor possess a Gaussian error distribution.

In multi-hypothesis IGMAP, the system state estimate is represented as a set of n
components, each comprising a weight, an estimate of the system state vector, and
a corresponding covariance matrix, with the weights summing to unity. (These
components can be thought of as representing n hypotheses about the value of the
state vector.) In single-hypothesis IGMAP, there is just one component, with unit
weight. For the present work, a 15-element state vector has been used, comprising
position, velocity and attitude errors and the accelerometer and gyro biases. Each
TCN transect is processed as follows:

’ Each of the n components of the system state estimate is processed as follows:

(a) The component is projected into the three-dimensional space of the likeli-
hood function by discarding elements of the state vector estimate and
covariance matrix other than those representing components of position
error. The component, thus projected, defines a Gaussian probability dis-
tribution over these three dimensions.
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(b) This Gaussian distribution is multiplied by the likelihood function arising
from the data in the transect, to produce the (un-normalised) Bayesian
posterior distribution corresponding to this component of the state estimate.

(c) The resulting posterior distribution is approximated by a mixture of m
Gaussian distributions. This is done iteratively using an expectation-
maximisation algorithm.

(d) Each of these m Gaussian distributions is back-projected into the original
state space to yield 15-element state estimate components.

’ The result of Stage 1 is an updated state estimate comprising nm weighted
Gaussian components. To prevent the number of components growing expo-
nentially over time, a fusing algorithm is now applied to reduce the number of
components back down to n. Fusing is done by merging one pair of components
at a time, with Kullback-Leibler divergence used to select which pair to fuse at
each step: this tends to select components with low weights and similar means
and covariance matrices.

’ Finally, each of the n components of the state estimate is propagated forward to
the time of the next TCN transect using the Kalman filter time update equa-
tions.

A more detailed description of the IGMAP process can be found in (Runnalls
et al, 2005). Comparing single hypothesis IGMAP with the PDAF method, IGMAP
will generally produce a much closer fit to the probability distribution than the
clumping algorithm, but at a higher cost in terms of processor load and develop-
mental complexity. However, IGMAP can run in real-time on a 1 GHz processor
with multiple state vector hypotheses. A multi-hypothesis integration filter conveys
the advantage over its single hypothesis counterpart that less information is dis-
carded between update cycles, particularly where a TCN measurement produces an
ambiguous state vector update. Thus, more information is retained from which the
current navigation solution may be estimated. The downside of a multi-hypothesis
approach is increased processor load.

6. SIMULATION ENVIRONMENT. Simulations using the PDAF and
best fix methods were conducted on the QinetiQ INS/GPS/TCN Integration
Simulation (QIGTIS). This uses the same INS and GPS models as navigation simu-
lations described in previous papers (Groves and Long, 2003; Gouldsworthy et al,
2002; Groves et al, 2002). The parameters for the INS error model were loosely
based on a low grade (10x/hr specified drift) INS, the Boeing Digital Quartz Inertial
Measurement Unit (DQI) (Boeing, 1997). Table 1 lists the rms values of the inertial
instrument errors. However, for most runs, it was assumed that a transfer align-
ment (Groves, 2003) had been performed prior to the start of each simulation, re-
ducing the accelerometer static biases to around 150 mg and the gyro static biases to
around 1x/hr.

Simulation of radar altimeter measurements comprises a terrain simulation and
a radalt model. A ‘truth’ terrain is generated from a level 1 DTED terrain height
database based on user-defined error statistics. This ensures that the DTED data used
by the TCN algorithm differs from the ‘truth’ terrain used to generate the radalt
measurements by a representative amount. For most of the simulations in this
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study, a random height error of 5 m standard deviation was simulated with a 15 m
standard deviation per axis horizontal displacement, correlated over 10 km. This
reflects the relatively high accuracy of DTED over the UK. Four different radalt
models can be simulated, each representing a different design: averaging, first return,
peak return and high integrity. The averaging radalt model returns the average dis-
tance from the host vehicle to the terrain across the radalt footprint. The first return
model returns the nearest distance across the radalt footprint above a certain
threshold. The peak return model returns the distance corresponding to the peak in
the spectrum of signal return against range. These models account for the distribution
of the radalt footprint over a wide area of terrain, rather than the measurement
errors of the sensor itself, being the main source of error in a height above terrain
measurement.

For most of the simulations in this study, the high integrity radalt model was used.
This is based on the design aims of advanced radalts, such as the BAE Systems Covert
Radar Altimeter. These measure the whole spectrum of radar signal return against
range and then process the data to derive a measurement of height above terrain.
The high integrity radalt model outputs either the truth, plus or minus a height
dependent random error or gives no measurement. For a measurement to be given,
the maximum height above terrain was set at 5000 m, the maximum aircraft attitude
(combined pitch and roll) at 30x and the maximum terrain gradient at 45x. The
random error standard deviation was set at 5 m, height independent, corresponding
to the typical performance of the other three radalt models 500 to 1000 m above the
terrain.

A separate simulation software suite was used for the IGMAP runs. However, this
implements the same INS model as QIGTIS and made use of QIGTIS simulated
radalt measurements and the same flight profiles. Therefore direct comparisons can
be made between INS/TRN results generated by the two simulations. Four trajec-
tories were selected, overflying terrain of different levels of roughness as listed in
Table 2, where the roughness is computed from the terrain gradient. Each trajectory

Table 1. 10x/hr INS inertial instrument errors (root mean square values are averaged over each component

and expressed to 2 significant figures).

INS error rms value

Accelerometer static biases 1500 mg
Accelerometer dynamic biases 150 mg

Correlation time of accel. dynamic biases 60 s

Accelerometer scale factor errors 200 ppm

Accelerometer cross-coupling errors 270 ppm

Accelerometer random walk 60 mg/dHz

Accelerometer incremental quantisation 0.001 m/s

Gyro. static biases 10x/hr

Gyro. dynamic biases 1x/hr

Correlation time of gyro. dynamic biases 60 s

Gyro. scale factor errors 350 ppm

Gyro. cross-coupling errors 350 ppm

Gyro. g-dependent errors 1.0x/hr/g

Gyro. random walk 1.8x/hr/dHz

Gyro. incremental quantisation 0.001x
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comprised 100 km of straight and level flight at 300 msx1 with a 5x 0.25 g turn to port
starting at 100 s and a corresponding turn to starboard starting at 138 s. The flight
duration was 333 s. Radalt measurements were taken at a rate of 2 Hz, noting
that this gave significantly better TCN performance than a 1 Hz radalt measurement
rate at this speed.

7. TCN INTEGRATION PERFORMANCE COMPARISON. To
compare the performance of the different INS/TCN integration techniques, simu-
lation runs were conducted without GPS. For most of the runs, a 100 m initial
position uncertainty was assumed, representing marginal GPS performance prior
to loss. However, the velocity, attitude and accelerometer and gyro biases were
assumed to be well calibrated. The first runs with the best fix and PDAF INS/TCN
algorithms were conducted to tune the TCN and integration algorithms. The navi-
gation performance was found to be more sensitive to tuning over the low rough-
ness terrain than over the other trajectories. This is because, with less terrain height
variation, a lower roughness terrain provides less information for the TCN algor-
ithm to work with.

Optimisation of the transect length was found to be a trade-off. For low roughness
terrain, longer transects give better performance as they increase the chance of a good
match between the measurements and the DTED database. For higher roughness
terrain, there is generally sufficient data in a shorter transect for a good match, so
shorter transects can give better performance as there is then a greater frequency
of position fixes. A transect length of 8 s was found to be a good compromise. Where
low roughness terrain was overflown and the search area was wide, weighting the
likelihood surface according to the distance from the filter indicated position divided
by the filter position uncertainty was found to improve performance. Otherwise,
it had little effect. Varying the weighting coefficients had little effect on performance.
However, positive feedback problems were found during QIGTIS testing when the
filter weighting coefficients were too high, so the lowest value assessed, 0.05, was
selected for the main performance comparison runs.

Using the maximum database search area when the integrated navigation solution
was relatively accurate was found to degrade performance. This is because widening
the search area increases the chance of matching the measurements with the wrong
features in the database. Thus, it was confirmed that it is better to scale the search
area with the navigation filter position uncertainty.

For the best fix integration algorithm, the optimum minimum probability of
the best fix was found to be 0.5 and the maximum probability for the second best
fix 0.25. The remaining algorithm tuning parameters were the same for both best

Table 2. Locations and roughness of simulation trajectories.

Trajectory: roughness level Location Mean roughness

Low Chilterns, UK 3.1%

Medium South Pennines, UK 10.1%

High Scottish Highlands, UK 21.7%

Very high Swiss & Italian Alps 48.2%
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fix and PDAF. The measurement covariances output by the TCN algorithm were
found to be optimal, not needing re-weighting by the integration algorithm.
However, it was found to be necessary to estimate the correlated DTED database
errors as Kalman filter states in order to attain a reasonable match between errors
and uncertainties. The optimum threshold for the spike filter, which rejects TCN
measurements inconsistent with the filter estimates, was found to be 3 standard
deviations.

The best fix and PDAF integration methods were compared over all four trajec-
tories under a range of conditions. The initial position uncertainty was varied
between 10 m, 100 m and 1 km per axis ; the INS grade varied between 1, 10 and 100x/
hr gyro drift, and some runs were conducted with a non transfer aligned INS.
Performance over the medium, high and very high roughness trajectories was similar.
However, performance over the low roughness terrain was notably poorer. Figures 2
and 3 illustrate this with the PDAF method, 10x/hr transfer aligned INS and 100 m
initial uncertainty. Each figure shows the north, east and vertical components of
position error for a single run.

Comparing the results obtained with the best fix and PDAF integration methods,
performance was similar in most cases. However, in most of the runs with the 1 km
initial position uncertainty, the navigation solution initially locked onto a false TCN
fix. The PDAF algorithm recovered the correct navigation solution in all cases, but
the best fix algorithm failed to recover in the high roughness run. Thus, the PDAF
approach is more robust. Figures 4 and 5 show the position errors using the two TCN
integration methods over the low roughness terrain with a 1 km initial uncertainty.
Over the first 40 s, the maximum north position error was y1500 m and the maxi-
mum east error y200 m with both methods. In general, the two methods performed
similarly, but with the PDAF north position converging more quickly during the
50–150 s period. In general the parameters of the IGMAP algorithm were set either
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Figure 2. INS/TCN position error – transfer aligned 10x/hr INS; 100 m per axis initial position

uncertainty; PDAF method; low terrain roughness trajectory.
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to correspond to the values obtained by tuning the best fix and PDAF algorithms, or
on the basis of previous experience with IGMAP. The number of Gaussian compo-
nents used to approximate the posterior distribution, m, was set to four, and in
multiple hypothesis IGMAP the number of hypotheses, n, was also set to four.

IGMAP works well with short transects, and can indeed work in a sequential mode
(i.e. with a single radalt sample per transect) though performance is better with
somewhat longer transects. For the purposes of the comparisons in this paper,
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Figure 3. INS/TCN position error – transfer aligned 10x/hr INS; 100 m per axis initial position

uncertainty; PDAF method; medium terrain roughness trajectory.
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Figure 4. INS/TCN position error – transfer aligned 10x/hr INS; 1 km per axis initial position

uncertainty; best fix method; low terrain roughness trajectory.
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a transect of duration 3.5 s has been used, comprising seven terrain height measure-
ments. This is slightly less than half of the transect length used for the best fix
and PDAF algorithms. For the IGMAP simulations, four of the more demanding
scenarios were selected for simulation: the low and high roughness trajectories with
a 1 km initial uncertainty and 10x/hr transfer aligned INS; and the low roughness
trajectory with a 100 m initial uncertainty, 100x/hr aligned INS and 10x/hr non-
aligned INS. Each of these was run with both the single-hypothesis and multi-
hypothesis (4 filter) versions of the algorithm.

Over the low roughness terrain runs, IGMAP position performance was up to a
factor of two better than the best fix and PDAF algorithms’ performance, particu-
larly where the poorer INS were used. Figure 6 illustrates this for the 1 km initial
uncertainty run. The IGMAP algorithm was able to obtain a first fix earlier than
the PDAF and best fix algorithms due to differences in simulation implementation.
IGMAP also obtained a relatively poor initial fix, in error by y400 m north and
y250 m east, but this was much less than obtained with the PDAF method and was
consistent with the filter uncertainties. IGMAP performance over the high roughness
terrain was very close to that of the PDAF method, however. This confirms earlier
observations that TCN performance is much more sensitive to the algorithm design
and tuning over low roughness terrain where it is more difficult to obtain good
matches between the terrain height measurements and the database.

IGMAP offers two advances over the PDAF integration method with the Gaussian
clumping TCN algorithm. Firstly, a more sophisticated and more accurate process
is used to fit a set of Gaussian distributions to the TCN probability distribution
and, secondly, the fitting process and filter update are integrated. Further research is
needed to determine which of these advances bears greater responsibility for the
improved performance.

Comparing the performance of the single and multi-hypothesis versions of
IGMAP, very little difference in position error was observed. Figure 7 illustrates this
for the 1 km initial uncertainty run. This suggests that there is little benefit in moving
to a multi-hypothesis integration filter for TCN, though it should be noted that these
results were obtained with a simulated radalt and terrain.

8. RADALT AND DATABASE ERRORS. To determine the effect of
radalt and database errors on TCN performance, a series of simulations was
run using the PDAF INS/TCN algorithm with a 10x/hr transfer aligned INS, 100 m
initial position uncertainty and PDAF measurement model. With a 12x full width at
half maximum (FWHM) intensity radar beam simulated, performance with the four
different radalt models (see Section 6) over the low, medium and high roughness
terrain was similar, with the high integrity model giving the best results on average,
followed by the peak return, first return and averaging models. When the FWHM
was increased to 25x (not applicable to the high integrity model), the TCN perform-
ance with the averaging radalt model was significantly degraded, whilst that with the
peak return and first return models was affected only marginally. Thus, the latter
two designs are much more suited to TCN applications.

Over the very high roughness terrain simulations, TCN performance was
poor with the averaging, peak return and first return radalt models. A major
reason for this was that the average host vehicle height above terrain was much
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greater for these runs, spreading the radalt footprint over a wider area of terrain.
To get reasonable navigation performance, it was necessary to reduce the radalt
beamwidth to 3x FWHM and re-tune the TCN algorithm. Thus, the design of a
TCN system is contingent on the range of host vehicle heights above terrain it is
intended to operate over. To gauge the effect of terrain height database errors on
TCN performance, a set of runs was conducted with the simulated database
errors doubled. This led to an approximate doubling of the maximum position
errors observed. Thus database accuracy is an important factor in determining TCN
performance.

Lastly, a set of runs was conducted with a perfect radalt and DTED database
simulated. The position performance in these runs was about a factor of two better
than that obtained with the standard models. This shows that there is considerable
scope to improve TCN performance by improving the sensor and the terrain height
database.

9. WEIGHTING OF TCN AND GPS. The simulations described so far con-
sidered TCN operation when GPS is unavailable. Where strong GPS signals are
available, GPS will always be more accurate than TCN. However, at the margins of
GPS operation, adding TCN measurements can potentially improve the integrated
navigation performance. To test this, a number of simulations were conducted
using QIGTIS with PDAF TCN integrated with ATC INS/GPS (Groves and Long,
2005) in a centralised filter. These scenarios were simulated with the 10x/hr transfer
aligned INS model over the medium terrain roughness trajectory.

Three scenarios were considered: jamming at the maximum tolerable level
for robust ATC integration; three strong GPS signals tracked and a good GPS
environment with 5 satellites tracked. In each case, the TCN/GPS measurement
weighting ratio was varied between 0 and 5. The weights are applied to the Kalman
gain matrices and the TCN and GPS weights sum to unity. This is done to prevent
over-correction of the INS due to two measurement sources being used to calibrate
the same errors.

Considering first the jamming scenario, GPS measurements become very noisy as
the maximum tolerable jamming level is approached. Figure 8 shows the position
error with INS and GPS only, whilst Figure 9 shows the INS/GPS/TRN position
error with both measurements weighted equally. The performance with all three
navigation systems was significantly better than that obtained with either INS and
GPS or INS and TCN (Figure 3). TCN/GPS weightings of 0.5 and 2 gave similar
performance, whilst a weighting of 5 in favour of TCN gave slightly poorer
performance than that shown in Figure 9.

With only three satellites tracked, the INS/GPS navigation solution drifted,
with position errors growing with time, whereas with TCN added, the position
errors were bounded within 11 m per axis for all of the TCN/GPS weighting
ratios considered. With five good GPS signals, adding TCN brought no improve-
ments to the navigation accuracy. However, with a weighting ratio of 0.5 or 1.0,
adding TCN had no detrimental effect on navigation accuracy either. These results
suggest that, in an integrated INS/GPS/TCN navigation system, optimum perform-
ance can be obtained by weighting GPS and TCN measurements equally in all GPS
environments.
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Figure 5. INS/TCN position error – transfer aligned 10x/hr INS; 1 km per axis initial position

uncertainty; PDAF method; low terrain roughness trajectory.

Time

0 100 200 300 400

P
os

iti
on

 e
rr

or
, m

150

100

50

0

–50

–100

–150

NorthNorth
EastEast
DownDown

Figure 6. INS/TCN position error – transfer aligned 10x/hr INS; 1 km per axis initial position

uncertainty; single hypothesis IGMAP method; low terrain roughness.
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Figure 7. INS/TCN position error – transfer aligned 10x/hr INS; 1 km per axis initial position

uncertainty; multiple hypothesis IGMAP method; low terrain roughness.
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10. CONCLUSIONS. A number of different techniques for integrating TCN
with INS and GPS have been developed and assessed by simulation. Navigation
performance is much more sensitive to the design and tuning of the TCN and INS/
TCN integration algorithms when the terrain overflown has relatively little height
variation, making it more difficult to obtain unique matches between the terrain
height measurements and the region of the database they are compared with. The
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Figure 8. INS/GPS position error – transfer aligned 10x/hr INS under jamming.
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Figure 9. INS/GPS/TCN position error – transfer aligned 10x/hr INS under jamming, GPS

& TCN weighted equal.
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design of a TCN system is also contingent on the range of host vehicle heights
above terrain it is intended to operate over.

Using a weighted fix integration technique, such as PDAF, makes the navigation
solution more robust against false TCN fixes than a simple best fix integration. Of the
weighted fix TCN integration techniques, IGMAP performs better than the PDAF
algorithm in association with Gaussian clumping TCN, justifying the greater com-
plexity and processor load. However, the simulations did not demonstrate any benefit
in implementing a multi-hypothesis integration filter over the corresponding single
hypothesis approach.

Where TCN is combined with INS and GPS, optimum performance is obtained
by weighting the TCN and GPS measurements equally in the integration filter.
Where only a limited number of GPS signals can be tracked or the GPS measure-
ments are noisy due to jamming, the TCN measurements improve the overall
navigation solution. The next step is to validate the work presented here with flight
trials results.
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