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JOZSEF BALOGH1† , GRAEME KEMKES2,

CHOONGBUM LEE3‡ , and STEPHEN J. YOUNG4

1Department of Mathematical Sciences, University of Illinois, Urbana, IL 61801, USA

(e-mail: jobal@math.uiuc.edu)
2Department of Mathematics, Ryerson University, Toronto, ON, M5B 2K3, Canada

(e-mail: gdkemkes@alumni.uwaterloo.ca)
3Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

(e-mail: choongbum.lee@gmail.com)
4Department of Mathematics, University of Louisville, Louisville, KY, 40292, UCS

(e-mail: stephen.young@louisville.edu)

Received 21 August 2011; revised 25 June 2012; first published online 28 February 2013

For a positive integer r � 2, a Kr-factor of a graph is a collection vertex-disjoint copies of

Kr which covers all the vertices of the given graph. The celebrated theorem of Hajnal and

Szemerédi asserts that every graph on n vertices with minimum degree at least (1 − 1
r )n

contains a Kr-factor. In this note, we propose investigating the relation between minimum

degree and existence of perfect Kr-packing for edge-weighted graphs. The main question

we study is the following. Suppose that a positive integer r � 2 and a real t ∈ [0, 1] is given.

What is the minimum weighted degree of Kn that guarantees the existence of a Kr-factor

such that every factor has total edge weight at least t
(
r
2

)
? We provide some lower and

upper bounds and make a conjecture on the asymptotics of the threshold as n goes to

infinity.
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Secondary 05C70, 05C72, 05D40

1. Introduction

Many results in graph theory study the relation between the minimum degree of a given

graph and its spanning subgraphs. For example, Dirac’s theorem [4] asserts that a graph

on n vertices with minimum degree at least � n
2
� contains a Hamilton cycle. Hajnal and
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Szemerédi [5] proved that every graph on n ∈ rZ vertices with minimum degree at least

(1 − 1
r
)n contains a spanning subgraph consisting of n

r
vertex-disjoint copies of Kr (we

call such a subgraph a Kr-factor).

In this note we propose investigating this relation in edge-weighted graphs. As a concrete

problem, we study the particular case when the spanning subgraph is the graph formed by

vertex-disjoint copies of Kr (in other words, we would like to extend the Hajnal–Szemerédi

theorem to edge-weighted graphs). Suppose we equip the complete graph Kn with edge

weights w : E(Kn) → [0, 1]. For a given weighted graph and vertex v we let degw(v) denote

the weighted degree of the vertex v. Let δw(Kn) be the minimum weighted degree. The

main question can be formulated as follows: How large must δw(Kn) be to guarantee that

there exists a Kr-factor such that every Kr in the factor has total edge weight at least t
(
r
2

)
for some given t ∈ [0, 1]?

More formally, for n ∈ rZ let W(r, t, n) be the collection of edge weightings on Kn such

that every Kr-factor has a clique with weight strictly smaller than t
(
r
2

)
. We then define

δ(r, t, n) = sup
w∈W(r,t,n)

δw(Kn) and δ(r, t) = lim sup
n→∞

δ(r, t, n)

n
.

The main open question that we raise is the following.

Question 1.1. Determine the value of δ(r, t) for all r and t.

Let W∗(r, t, n) be the collection of edge weightings of Kn such that every Kr-factor has

a clique with weight at most t
(
r
2

)
(instead of strictly smaller than t

(
r
2

)
), and define the

functions δ∗(r, t, n) and δ∗(r, t) accordingly. The compactness of the space W∗(r, t, n) gives

the following result (whose proof we provide in the arXiv version of our paper [1]).

Proposition 1.2. For all r, t, and n, δ(r, t, n) = δ∗(r, t, n). Therefore, δ(r, t) = δ∗(r, t).

The proposition above shows that if an edge-weighting of Kn has minimum degree

greater than δ(r, t, n), then there exists a Kr-factor such that every copy of Kr has weight

greater than t
(
r
2

)
. Therefore, the Hajnal–Szemerédi theorem is in fact a special case of

our problem when t =
((

r
2

)
− 1

)
/
(
r
2

)
where we only consider the integer weights {0, 1}.

Thus we believe that the following special case is an important and interesting instance

of the problem corresponding to the Hajnal–Szemerédi theorem for r = 3 (which was first

proved by Corrádi and Hajnal [2]).

Question 1.3. What is the value of δ(3, 2
3
)?

2. Lower bound

It is not too difficult to deduce the bound δ(r, t) � (1 − 1/r)t from the graph showing the

sharpness of the Hajnal–Szemerédi theorem. Our first proposition provides a better lower

bound to this function.

https://doi.org/10.1017/S0963548313000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000059


348 J. Balogh, G. Kemkes, C. Lee and S. J. Young

Proposition 2.1. The following holds for every integer r � 2 and real t ∈ (0, 1]:

δ(r, t) � 1

r
+

(
1 − 1

r

)
t.

Proof. The following construction implies the bound. Let n ∈ rZ with n > r and let

k = n
r
. Let A be an arbitrary set of k − 1 vertices and let B be the remaining k(r − 1) + 1

vertices. Consider the weight function w that assigns weight t to edges whose endpoints

are both in B, and weight 1 to all other edges.

Proposition 2.1 illustrates the fundamental difference between the minimum degree

threshold for containing a Kr-factor in graphs and edge-weighted graphs. For example,

when r = 3 we see that δ(3, 2/3) � 7/9, while the corresponding function for graphs has

value 2/3 by Hajnal–Szemerédi theorem.

3. Upper bound

Next, we provide some upper bounds on δ(r, t). For some of the bounds, in order to avoid

distraction arising from technical issues, we omit the proofs and refer the reader to the

arXiv version of our note [1] for details.

The following observation establishes the correct value of the function δ(2, t).

Observation 3.1. For every t ∈ (0, 1] we have δ(2, t) = 1+t
2

.

Proof. The lower bound on δ(2, t) follows from Proposition 2.1, and thus it suffices to

establish the upper bound. Let w be a weight function such that δw(Kn) � 1+t
2
n. Let G be

the subgraph of Kn consisting of the edges of weight at least t. In this graph, the degree d

of any vertex v satisfies degw(v) < (n − 1 − d)t + d · 1. Then the minimum weighted degree

condition implies that d � n
2
, and so by Dirac’s theorem there is a K2-factor in G. The

corresponding K2-factor in the weighted graph establishes the bound δ(2, t) � 1+t
2

.

For general r, by using a similar argument to that of Observation 3.1, one can consider

hypergraphs and try to use Daykin and Häggkvist’s theorem [3] (or a stronger conjecture

given in [6]) which relates the minimum degree of a hypergraph with the existence of a

perfect matching. To a weighted graph we assign an r-uniform hypergraph: the r-edges

of the hypergraph formed by the sufficiently heavy Kr of the weighted graph. However,

the bound obtained in this way turns out to be weaker than the following two bounds:

see [1] for details.

The first bound below determines the correct value of the function δ(r, t) for small

values of t.

Theorem 3.2. For every r � 3, there exists a positive real tr such that for every t ∈ (0, tr)

we have δ(r, t) = 1
r
+

(
1 − 1

r

)
t.
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Our proof gives an explicit bound on tr . As an instance, it shows that t3 � 1
12

. The

second bound is based on a simple reduction scheme.

Theorem 3.3. For every r � 3 and t ∈ (0, 1], δ(r, t) � 1
2

+ t
2
.

Proof. Let δ′ = max{δ(r − 1, t), 1
2

+ t
2
}. We prove that δ(r, t) � δ′. Let ε be an arbitrary

fixed positive real, and assume that n0 is large enough so that δ(r − 1, t, n) � (δ(r − 1, t) +
ε
2
)n for all n � n0. Assume that we are given a weight function for the complete graph on

n � 2n0 vertices such that the minimum weighted degree is at least (δ′ + ε)n. We partition

randomly the vertices into a set A of size r−1
r
n and a set B of size 1

r
n = k. By the Chernoff–

Hoeffding inequalities, for large enough n, there is such a partition which additionally

satisfies that for every vertex the weighted degree into A is at least (δ′ + ε
2
) r−1

r
n and into

B is at least δ′ 1
r
n. By the assumption on δ′ and n0, we can find a Kr−1-factor KA on A

with minimum average weight t.

Using KA we construct a complete weighted bipartite graph H , where the vertices on

one side are associated with cliques in KA and the vertices on the other side are associated

with vertices in B. For a clique K ∈ KA and a vertex v ∈ B, we assign as weight of the

edge (K, v) the average of the weights of the edges between v and the vertices in K .

Notice that the minimum weighted degree of H is at least δ′k � ( 1
2

+ t
2
)k. Let H(t) be

the unweighted subgraph of H consisting of edges with weight at least t. A computation

similar to that in Observation 3.1 shows that the minimum degree in H(t) is at least k
2
.

Thus, by Hall’s theorem, there is a perfect matching M in H(t).

Now notice that KA and M lift to a Kr-factor of Kn with minimum weight t
(
r−1
2

)
+

t(r − 1) = t
(
r
2

)
. Consequently, δ(r, t, n) � (δ′ + ε)n. Since ε can be arbitrarily small, we have

δ(r, t) � δ′ = max{δ(r − 1, t), 1
2

+ t
2
}. Thus our conclusion follows from Observation 3.1,

which asserts that δ(2, t) = 1
2

+ t
2
.

For the special case related to triangle factors discussed earlier, we have 7
9

� δ(3, 2
3
) � 5

6
.

In this article we have proposed the study of the function δ(r, t). As seen in Section 2,

this function shows different behaviour from that of its non-weighted counterpart (which is

related to the Hajnal–Szemerédi theorem). Based on the evidence given by Proposition 2.1

and Theorem 3.2, we make the following conjecture.

Conjecture 3.4. For every r � 2 and t ∈ (0, 1],

δ(r, t) =
1

r
+

(
1 − 1

r

)
t.

We refer the reader to the arXiv version of our paper [1] for further discussion.
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