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Sphere oscillating in a rarefied gas
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Flow generated by an oscillating sphere in a quiescent fluid is a classical problem in
fluid mechanics whose solution is used ubiquitously. Miniaturisation of mechanical
devices to small scales and their operation at high frequencies in fluid, which is
common in modern nanomechanical systems, can preclude the use of the unsteady
Stokes equation for continuum flow. Here, we explore the combined effects of gas
rarefaction and unsteady motion of a sphere, within the framework of the unsteady
linearised Boltzmann–BGK (Bhatnagar–Gross–Krook) equation. This equation is
solved using the method of characteristics, and the resulting solution is valid for
any oscillation frequency and arbitrary degrees of gas rarefaction. The resulting force
provides the non-continuum counterpart to the (continuum) unsteady Stokes drag on a
sphere. In contrast to the Stokes solution, where the flow is isothermal, non-continuum
effects lead to a temperature jump at the sphere surface and non-isothermal flow.
Unsteady effects and heat transport are found to mix strongly, leading to marked
differences relative to the steady case. The solution to this canonical flow problem is
expected to be of significant practical value in many applications, including the optical
trapping of nanoparticles and the design and application of nanoelectromechanical
systems. It also provides a benchmark for computational and approximate methods
of solution for the Boltzmann equation.

Key words: kinetic theory, micro-/nano-fluid dynamics, non-continuum effects

1. Introduction
Modern nanoelectromechanical devices have dimensions ranging from tens to

hundreds of nanometres (Tzou, Beraun & Chen 2002; Ekinci & Roukes 2005; Jensen,
Kim & Zettl 2008; Pelton et al. 2009; O’Connell et al. 2010). These devices often
generate gas flows whose characteristic length scale, such as the device size, is
comparable to the mean free path of the gas. A continuum treatment of such gas
flows does not properly account for their underlying physics – a more advanced
theoretical framework is required. Importantly, continuum theory is strictly valid only
in the limit of vanishing Knudsen number,

Kn≡ λ
Lc
, (1.1)

where λ is the gas mean free path and Lc is a characteristic length scale of
the flow; this can be related to the gas viscosity (Sharipov & Seleznev 1998).
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:jsader@unimelb.edu.au
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2016.143&domain=pdf
https://doi.org/10.1017/jfm.2016.143


110 Y. W. Yap and J. E. Sader

For steady flows, the Knudsen number can be used to distinguish different flow
regimes. Near-continuum flows result when Kn� 1, and these can be analysed using
the Navier–Stokes equations with no-slip or slip boundary conditions (Cercignani
2000) – interparticle collisions in the gas dominate particle/wall collisions, and
thus the gas is in a state of near equilibrium. Flows that exhibit a large Knudsen
number (Kn� 1) have minimal interparticle collisions and can be studied using the
collisionless Boltzmann equation – the gas distribution function deviates strongly
from the (equilibrium) Maxwell–Boltzmann distribution. In this free-molecular case,
gas–surface interactions dominate the flow which is strongly non-local (Cercignani
2000). The stress at any position in space depends implicitly on all other spatial
positions, and the (continuum) concept of a stress tensor that is dependent only on
the local velocity gradient does not apply. In contrast, flows with Kn ∼ O(1) are
often said to be in a transition regime, because interparticle collisions and particle
collisions with a solid boundary occur with similar frequency, and are thus equally
important processes.

Unsteady gas flows are also characterised by the Knudsen number and, in addition,
depend on the frequency ratio,

Θ ≡ ωc

ν
, (1.2)

where ωc is a characteristic angular oscillation frequency of the flow and ν is an
interparticle collision frequency of the gas, which can be expressed in terms of its
viscosity (Sharipov & Kalempa 2007). For Θ� 1, many interparticle collisions occur
within one oscillation period of the flow, whereas very few collisions occur when
Θ� 1 (Sharipov & Kalempa 2007, 2008). The Knudsen number, Kn, and frequency
ratio, Θ , are thus two distinct parameters that non-dimensionalise all unsteady flows.

Nanomechanical devices such as doubly clamped carbon nanotube beams (Jensen
et al. 2008), nanocantilever sensors (Li, Tang & Roukes 2007) and metal nanoparticles
(Pelton et al. 2009) are often driven at their natural resonant frequencies. When
operated under ambient conditions, i.e. in air, they inherently generate unsteady
(time-dependent) rarefied gas flows. These nanoscale systems can easily be operated
at frequencies in the gigahertz range (Pelton et al. 2013), which is comparable to the
interparticle collision frequency of air molecules at standard temperature and pressure.
This exacerbates deviations from an equilibrium (Maxwell–Boltzmann) distribution
which already exist due to operation at finite Knudsen number – thus further violating
a key assumption of continuum theory. Gas flows induced by such nanoscale systems
therefore cannot be studied using classical continuum theory, i.e. the Navier–Stokes
equations.

Continuum theory can only be formally applied when Kn � 1 and Θ � 1. A
statistical mechanical treatment of the gas is typically used for flows outside this
range. This yields the Boltzmann equation for a dilute gas, which is valid for all
Knudsen numbers and frequency ratios. Particle interactions in the gas are described
by the collision term of the Boltzmann equation, which complicates analysis due
to its multidimensional integral form (for a real gas). To alleviate this mathematical
issue, the collision term is often replaced by a relaxation operator that mimics the
behaviour of a real gas. This model was proposed independently by Bhatnagar, Gross
& Krook (1954) and Welander (1954), and is commonly referred to as the BGK
kinetic model. It involves the approximation of interparticle collisions by a relaxation
process with a time constant, 1/ν. The resulting Boltzmann–BGK equation has been
used extensively to study a variety of rarefied gas flows (Cercignani 2000; Sone
2002). Despite its well-known shortcomings, e.g. the Prandtl number differs from
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that of a real monatomic gas, the BGK kinetic model has provided significant insight
into rarefied gas flows and produces good quantitative agreement with more realistic
collision integrals, such as that for a hard-sphere gas (Sharipov & Seleznev 1998).

In recent years, there has been considerable progress in understanding the effects
of unsteadiness on rarefied gas flows. This body of work has been motivated by
the abovementioned technological advances in the design, fabrication and application
of nanomechanical devices. These include unidirectional flows such as pulsating
Poiseuille flow (Hansen & Ottesen 2006; Taheri et al. 2009), oscillatory Couette flow
(Sharipov & Kalempa 2008; Taheri et al. 2009; Yap & Sader 2012), Stokes’ second
problem for the in-plane oscillation of a flat plate in contact with an unbounded
gas (Sharipov & Kalempa 2007; Gu & Emerson 2011) and unsteady thermal flows
(Manela & Hadjiconstantinou 2008, 2010; Nassios & Sader 2012, 2013).

Despite this activity, the unsteady flow generated by an oscillating sphere in an
unbounded rarefied gas is yet to be explored. This provides the primary motivation
and focus of the present article. The only study to report a solution to this problem
is a computational study by Ladiges & Sader (2015), for the singular case of
Kn = 1 and Θ = 1. This previous study was performed using both time-domain and
frequency-domain Monte Carlo methods, and was limited to a single case due to
the computational expense involved in simulating a three-dimensional flow. Here, we
provide a complete analysis of this canonical problem over a wide range of Kn and
Θ , and explore the underlying physics of this flow. This not only provides important
benchmark data for future numerical and analytical studies, but also enables a range
of applications that involve oscillations of spheres in rarefied gases to be properly
understood and characterised, e.g. the electromagnetic trapping of a nanoparticle in a
gas (Neukirch et al. 2013).

The effects of unsteadiness in the low-Knudsen-number regime have been
recently explored using asymptotic analyses of the Boltzmann equation, in both the
low-frequency (Nassios & Sader 2012; Takata & Hattori 2012) and high-frequency
(Nassios & Sader 2013) limits. These studies show that unsteadiness can dramatically
affect the transport equations and boundary conditions for the flow. At low frequency,
for example, gas rarefaction modifies the momentum transport equation at first order
in the Knudsen number, resulting in an additional unsteady body force that depends
on the imposed temperature gradient. That is, the governing equation for the bulk
flow away from any boundary is not the (continuum) unsteady Stokes equation,
for a thermally driven flow. Furthermore, unsteadiness and heat transport couple
strongly at both first and second orders in the Knudsen number. This is of particular
relevance to the oscillation of a sphere in a rarefied gas, since the flow is inherently
non-isothermal; see below.

The drag on a sphere moving with steady uniform velocity in an unbounded
viscous (continuum) fluid was solved by Stokes in the 19th century (Stokes 1880).
The impact of this classical result on scientific and technological advancement has
been widespread, with countless applications making use of the formula for Stokes
drag, including the Stokes–Einstein equation for diffusion of a sphere in a viscous
fluid (Einstein 1905; Sutherland 1905).

Shortly after its publication, it was observed that Stokes drag does not accurately
predict the drag on a sphere in a slightly rarefied gas flow, e.g. that of a particle
of radius 0.005 mm (Millikan 1923). Early theoretical attempts to resolve this
discrepancy derived approximate asymptotic solutions, for both small and large
Knudsen numbers (Cunningham 1910; Epstein 1923; Baker & Charwat 1958; Phillips
1975). These analyses were facilitated by the original experimental measurements,
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which were performed over a wide range of Knudsen numbers (Millikan 1923).
Later theoretical studies employed the BGK kinetic model (Liu, Pang & Jew 1965;
Willis 1966), and made use of the method of Knudsen iteration, to obtain asymptotic
solutions in the near free-molecular regime. Asymptotic solutions for small Knudsen
number were also obtained using a matched asymptotic expansion (Sone & Aoki
1976) and the R13 moment method (Torrilhon 2010). Other approaches valid for
all Knudsen numbers were explored, including the variational method (Cercignani
& Pagani 1968; Cercignani, Pagani & Bassanini 1968), direct finite differencing of
the Boltzmann equation (Lea & Loyalka 1982; Law & Loyalka 1986) and the direct
simulation Monte Carlo (DSMC) method (Chun & Koch 2005; Nourazar & Ganjaei
2010). Collision terms in the Boltzmann equation, such as the BGK model, that for
a hard-sphere gas and variable hard spheres, have all been studied.

A comprehensive numerical data set is available for the steady flow past a sphere,
according to the hard-sphere linearised Boltzmann equation – radial and angular
components of the bulk velocity, the density, temperature and drag are reported up
to four decimal places (Takata, Sone & Aoki 1993). Tabular data for the linearised
Boltzmann–BGK equation are also available. Under the assumption that the flow is
isothermal, Lea & Loyalka (1982) provided radial and angular components of the
bulk velocity, the density and the drag up to four decimal places. Results for the
non-isothermal case were also published later by Law & Loyalka (1986), again to
four decimal places. The studies by Lea & Loyalka (1982) and Law & Loyalka
(1986) report slightly different density profiles for isothermal flow. In addition,
separate drag results for the Boltzmann–BGK equation obtained by finite differencing
and the variational method are also available (again to four decimal places), both
with the isothermal assumption (Cercignani et al. 1968) and without the isothermal
assumption (Takata et al. 1993). Importantly, while previous works made a distinction
between isothermal and non-isothermal flows around a sphere, only the latter formally
applies because the impact of gas particles at a solid wall at normal incidence always
generates a temperature jump (away from the continuum limit) (Sone 2002). This
induces a non-isothermal flow throughout the gas, even for low Mach number, i.e.
where the linearised Boltzmann equation is valid.

The unsteady problem, i.e. flow driven by an oscillating sphere in an unbounded
fluid, has been studied extensively in the continuum limit. The solution to the
linear problem was also derived by Stokes (1880), while Riley (1966) studied a
slightly unsteady flow for a continuum fluid using a matched asymptotic expansion.
Flow in the continuum regime at finite Reynolds number, i.e. finite oscillation
amplitude, has also been studied by Mei & Adrian (1992) and Mei (1994), who
compared finite-difference numerical solutions of the Navier–Stokes equations with
an asymptotic analytical solution. While the unsteady flow generated by an oscillating
sphere in the continuum limit has been explored extensively, the effect of gas
rarefaction on this flow has not been studied. This article explores this outstanding
problem in detail, and in so doing also provides comprehensive numerical solutions for
the density, temperature, velocity profile and force on the sphere. These solutions are
used to elucidate the physical mechanisms driving the flow and study the combined
effects of unsteadiness and gas rarefaction.

The article is organised as follows. We commence in § 2 by presenting the
theoretical formulation, which includes the problem statement and derivation of a
set of coupled integral equations from the Boltzmann–BGK equation. An expression
for the force on the sphere is also derived in terms of the bulk velocity, density
and temperature of the gas. This is followed in § 3 by derivation and discussion of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.143


Sphere oscillating in a rarefied gas 113

analytical solutions in various asymptotic limits. Details of the numerical methods for
arbitrary degrees of gas rarefaction are discussed separately in § 4, for both steady
and unsteady flows – data from the former are used for verification with available
literature results, whereas the latter provide new results. In § 5, numerical results
for both steady and unsteady flows are presented, together with a discussion of the
underlying physical mechanisms in each flow. For unsteady flow, we provide full
numerical profiles for the bulk gas velocity in the radial and angular directions,
density and temperature. Tabular data for the force on the sphere for both steady
and unsteady flows are also provided, which are expected to be of value in practical
applications.

2. Theoretical formulation

The motion of a sphere of radius a in a gas is considered, where the sphere velocity
is either (i) constant (steady) or (ii) oscillatory (unsteady). The gas flow induced by
the sphere motion obeys the Boltzmann–BGK equation, a particle conservation
equation valid for all Knudsen numbers and oscillation frequencies:

∂F
∂t
+ c ·

∂F
∂x
+ a ·

∂F
∂c
= ν(ρf M − F), (2.1)

where

f M(x, c, t)=
(

m
2πkT(x, t)

)3/2

exp
(
−m|c−U(x, t)|2

2kT(x, t)

)
. (2.2)

In (2.1) and (2.2), F is the mass distribution function of the gas, x is the spatial
coordinate, c is the gas particle velocity, t is time, k is Boltzmann’s constant, m is
the molecular mass of the gas, a is an external force per unit mass, ρ(x, t) is the
gas density, ν is an interparticle collision frequency and f M is the local Maxwell–
Boltzmann distribution function with temperature T and bulk velocity U. The surface
of the sphere provides a diffuse boundary condition for the gas particles, and the
temperature of the sphere is identical to that of the free-stream gas.

The velocity of the sphere is much smaller than the most probable speed of gas
particles. This permits linearisation of the Boltzmann–BGK equation, where the mass
distribution function F is expanded as

F(x, c, t)= ρ0

(
m

2πkT0

)3/2

exp
(
− m

2kT0
|c|2
)(

1+ U0

cm
h(x, c, t)

)
, (2.3)

giving corresponding expressions for the density and temperature

ρ(x, t) = ρ0

(
1+ U0

cm
w(x, t)

)
, (2.4a)

T(x, t) = T0

(
1+ U0

cm
τ(x, t)

)
, (2.4b)

where h is the perturbation distribution function, ρ0 is the equilibrium density, T0

is the equilibrium temperature, w is the density perturbation, τ is the temperature
perturbation, cm=√2kT0/m is the most probable speed of gas particles and U0 is the
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a

x

y

z

FIGURE 1. Schematic of a sphere of radius a, showing the Cartesian coordinate system;
the origin is at the centre of the sphere. The sphere velocity is in the z direction, and
oscillates with amplitude U0 and angular frequency ω. It should be noted that Re refers
to the real component, and all listed variables here are dimensional.

velocity amplitude of the sphere; see figure 1. The interparticle collision frequency
ν is constant in this linear limit. Substituting (2.3) and (2.4) into (2.1), and scaling
appropriately, yields the required dimensionless linearised equation for the gas flow,

Θ

Kn
∂h
∂t
+ c ·

∂h
∂x
= 1

Kn

(
w+ 2c ·U+

[
|c|2 − 3

2

]
τ − h

)
, (2.5)

where the following set of scales has been used: (i) distance is scaled by the sphere
radius, a, (ii) gas particle velocities are scaled by the most probable speed, cm, (iii)
bulk gas velocity is scaled by the velocity amplitude of the sphere, U0, (iv) time
is scaled by the reciprocal of the oscillation frequency of the sphere, ω−1, and (v)
gas temperature and density perturbations are scaled by U0/cm. All variables are
henceforth dimensionless.

The Knudsen number Kn≡ λ/a and frequency ratio Θ ≡ω/ν arise naturally, where
ω is the angular oscillation frequency of the sphere, ν is the gas collision frequency
and λ is the gas mean free path. Equation (2.5) is formally valid in the asymptotic
low-speed limit, U0� cm, i.e. infinitesimal Mach number.

Without loss of generality, we study the unsteady (oscillatory) problem first, where
the scaled sphere velocity is Usp = Re{exp(−it)}ẑ = Re{[cos θ r̂ − sin θ θ̂ ] exp(−it)}
and (r, θ, φ) are the usual spherical coordinates; see figure 1. As discussed, the
resulting gas flow is controlled by the Knudsen number and the frequency ratio.
Another dimensionless parameter that is commonly used to capture unsteady effects
is the inverse Stokes number, β ≡ (a/δ)2, where δ = √2µ/(ρ0ω) is the viscous
penetration depth and µ is the shear viscosity of the gas. However, there are only
two independent parameters in the flow, since Θ = Kn2β (Yap & Sader 2012). Flow
generated by a sphere moving with constant velocity, U0, i.e. the steady problem,
is obtained by setting ω = 0, or, equivalently, Θ = 0. This steady problem has been
studied widely, e.g. see Cercignani et al. (1968), Lea & Loyalka (1982), Law &
Loyalka (1986), Takata et al. (1993), Chun & Koch (2005), Nourazar & Ganjaei
(2010) and Torrilhon (2010).

All time-varying functions are expressed in terms of the time dependence:

Z =Re{Z̃ exp(−it)}, (2.6)
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where Z ∈ {h,w,U, τ ,Usp}, the operator ‘Re’ refers to the real component and the ‘˜’
notation represents the spatial component of the function. Equation (2.5) then becomes

1− iΘ
Kn

h̃+ c ·
∂ h̃
∂x
= 1

Kn

(
w̃+ 2c · Ũ+

[
|c|2 − 3

2

]
τ̃

)
. (2.7)

We use the approach of Cercignani & Pagani (1966) and Lea & Loyalka (1982)
to formulate integral equations from (2.7). These integral equations are obtained by
integrating along the characteristics of (2.7), which are a family of straight lines in
the direction of the particle velocity, c, namely

x(q)= c
V

q+C, (2.8)

where V = |c| is the magnitude of the particle velocity vector and C∈R3 is a constant
vector.

Figure 2 shows a schematic of a characteristic passing through an arbitrary position,
x, and a point on the sphere surface, x0, along the line spanned by the direction, c.
The spherical coordinate of position x is (r, θ, φ) and the spherical coordinate of
position x′, a point on the characteristic, is (r′, θ ′, φ′), as indicated in figure 2. For a
given position in the gas, x, the family of characteristics comprises all possible straight
lines between x and the sphere surface that do not pass through the interior of the
sphere, i.e. they intersect the sphere surface on the side facing the point x.

The molecular velocity c= cr r̂+ cθ θ̂ + cφφ̂ in (2.7) and (2.8) can be written in terms
of its spherical coordinates, (V, χ, ψ), i.e.

cr = V cos χ, (2.9a)
cθ = V sin χ sinψ, (2.9b)
cφ = V sin χ cosψ, (2.9c)

where V = |c| is the magnitude of the particle velocity, χ is the angle between the
radial unit vector r̂ and the particle velocity vector c, and ψ is the angle between the
azimuthal unit vector φ̂ and the projection of c on the θ–φ plane; see figure 2. From
(2.8), it follows that

c ·
∂ h̃
∂x
= V

∂ h̃
∂q
. (2.10)

Substituting (2.10) into (2.7), and using an integrating factor, we obtain

h̃ exp
(

1− iΘ
Kn

q
V

)
=
∫ q

0

1
VKn

(
w̃+ 2c · Ũ+

[
|c|2 − 3

2

]
τ̃

)
exp

(
1− iΘ

Kn
q′

V

)
dq′ +D.

(2.11)
The constant D is determined by applying the scaled and linearised boundary

conditions,

lim
|x−x0|→∞

h̃(x, c)= 0, (2.12a)

h̃(x0, c)= 2c · Ũsp +
√

πŨsp · r̂− 2
π

∫
c·r̂<0

exp(−|c|2)(c · r̂)h̃(x0, c) dc, c · r̂> 0,

(2.12b)

where x0 is a position vector on the sphere surface and Ũsp is the scaled velocity
of the sphere. Equation (2.12a) is the free-stream condition far from the surface of
the sphere, whereas (2.12b) is the linearised diffuse boundary condition at the sphere
surface.
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r

s

FIGURE 2. (Colour online) Schematic of a characteristic along the line spanning the
particle velocity c that passes through the position x and a point x0 on the sphere surface.
Here, r̂, θ̂ and φ̂ are unit vectors in the radial, polar angle and azimuthal directions
respectively at the position x (upper right point). The black dots (top to bottom) indicate
the following positions: (1) x, an arbitrary position in the gas; (2) x′, an arbitrary position
lying on the characteristic; (3) x0, the position on the surface of the sphere; and (4) the
origin, O, which coincides with the centre of the sphere. Characteristics lying outside the
dashed lines do not intersect the sphere. The distance s is from x to x′. The particle
velocity, c, is expressed in its spherical coordinates (V, χ, ψ), where V = |c| and the
angles χ and ψ are illustrated; see (2.9).

Application of the boundary conditions in (2.12) to (2.11) gives the required
expression for h̃(x, c), which is discontinuous in particle velocity space:

h̃(x, c)=



∫ |x−x0|

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′|

+ h̃0(x0, c) exp
(
−1− iΘ

VKn
|x− x0|

)
, c ∈ R1,∫ ∞

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′|, c ∈ R2,

(2.13)
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(a) (b)

R1

R2

A1

A1

A2

A0

a

FIGURE 3. (Colour online) (a) Particle velocity space. Red arrows are velocity directions
contained within region R1, whose surface is a cone with apex at x; all velocities in this
region point away from the sphere. Green arrows are all velocity directions not contained
in R1 – this corresponds to R2; see (2.14). (b) Integration regions given an arbitrary
position x. Here, A0 is the region containing points that do not have direct line of sight
to x, i.e. a line joining a point in this region to x must pass through the sphere; A1 is
the region containing all lines emanating from the hemispherical surface of the sphere
facing x that pass through x; the boundaries of this region are tangent to the sphere (as
indicated); A2 is the region containing all other points.

where all symbols are defined in figure 2, and ci, Ui are components of the molecular
velocity c and bulk velocity U in the i direction in spherical coordinates respectively.
The domains R1 and R2 are

R1: V ∈ [0,∞), χ ∈ [0, arcsin(1/r)], ψ ∈ [0, 2π],
R2: V ∈ [0,∞), χ ∈ [arcsin(1/r),π], ψ ∈ [0, 2π],

}
(2.14)

and

h̃0(x0, c)= 2c · Ũsp +
√

πŨsp · r̂− 2
π

∫
cr<0

exp(−|c|2)crh̃(x0, c) dc, c ∈ R1. (2.15)

The regions of particle velocity space, R1 and R2, in (2.14) are shown schematically
in figure 3(a); red line arrows correspond to the region R1 and green line arrows are
in the region R2.

Integral equations for the macroscopic (bulk) transport variables are obtained using
the following expressions for the density, components of the bulk velocity and the
temperature:

w̃(x)= 1
π3/2

∫
h̃ exp(−|c|2) dc, (2.16a)

Ũr(x)= 1
π3/2

∫
crh̃ exp(−|c|2) dc, (2.16b)
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Ũθ(x)= 1
π3/2

∫
cθ h̃ exp(−|c|2) dc, (2.16c)

τ̃ (x)= 2
3π3/2

∫ (
|c|2 − 3

2

)
h̃ exp(−|c|2) dc, (2.16d)

where Ũr and Ũθ are radial and polar angle components of the bulk velocity Ũ,
and the azimuthal angle component of U is zero due to axisymmetry. Temperature
variations exist in the gas for this linear flow due to the non-zero normal velocity of
the surface of the sphere; see § 5.1 for a discussion.

The flow is axisymmetric, and hence the density, bulk velocity and temperature
depend on the radius r and polar angle θ only. The spherical geometry allows these
dependences to be separated:

w̃(r, θ)= q1(r) cos θ, (2.17a)
Ũr(r, θ)= q2(r) cos θ, (2.17b)
Ũθ(r, θ)= q3(r) sin θ, (2.17c)
τ̃ (r, θ)= q4(r) cos θ, (2.17d)

where q1, q2, q3, q4 are functions to be determined which depend only on the radius r.
Combining (2.13), (2.16) and (2.17) gives the following equations:

q1(r) cos θ = 1
π3/2

∫
A1+A2

∫ ∞
0

{
q1(r′) cos θ ′ + 2cr′q2(r′) cos θ ′ + 2cθ ′q3(r′) sin θ ′

+
(

V2 − 3
2

)
q4(r′) cos θ ′

}
V
Kn

exp
(
−V2 − 1− iΘ

VKn
s
)

r′

rs
dV ds dr′ dψ

+ 1
π3/2

∫
R1

h̃0(x0, c) exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc, (2.18a)

q2(r) cos θ = 1
π3/2

∫
A1+A2

∫ ∞
0

{
q1(r′) cos θ ′ + 2cr′q2(r′) cos θ ′ + 2cθ ′q3(r′) sin θ ′

+
(

V2 − 3
2

)
q4(r′) cos θ ′

}
cr

V
Kn

exp
(
−V2 − 1− iΘ

VKn
s
)

r′

rs
dV ds dr′ dψ

+ 1
π3/2

∫
R1

crh̃0(x0, c) exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc, (2.18b)

q3(r) sin θ = 1
π3/2

∫
A1+A2

∫ ∞
0

{
q1(r′) cos θ ′ + 2cr′q2(r′) cos θ ′ + 2cθ ′q3(r′) sin θ ′

+
(

V2 − 3
2

)
q4(r′) cos θ ′

}
cθ

V
Kn

exp
(
−V2 − 1− iΘ

VKn
s
)

r′

rs
dV ds dr′ dψ

+ 1
π3/2

∫
R1

cθ h̃0(x0, c) exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc, (2.18c)
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q4(r) cos θ = 2
3π3/2

∫
A1+A2

∫ ∞
0

{
q1(r′) cos θ ′ + 2cr′q2(r′) cos θ ′ + 2cθ ′q3(r′) sin θ ′

+
(

V2 − 3
2

)
q4(r′) cos θ ′

}
V
Kn

(
V2 − 3

2

)
exp

(
−V2 − 1− iΘ

VKn
s
)

r′

rs

× dV ds dr′ dψ + 2
3π3/2

∫
R1

(
V2 − 3

2

)
h̃0(x0, c)

× exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc, (2.18d)

where h̃0 is given in (2.15), and we have applied the transformation (Lea & Loyalka
1982)

ds dc= V2r′

sr
dV ds dr′ dψ. (2.19)

Here, s = |x − x′|, r′ is the radial coordinate of position x′ and ψ is the azimuthal
angle of the spherical coordinate of velocity c. The integration region A1 + A2 is
illustrated in figure 3(b), and contains all points x′ such that the straight line from
x′ to x intersects the sphere and resides solely in the gas, i.e.

A1+ A2: r′ ∈ [1,∞], s ∈
[
|r− r′|,

√
r2 − 1+

√
r′2 − 1

]
, ψ ∈ [0, 2π]. (2.20)

We remind the reader that x has spherical coordinates (r, θ, φ) and x′ has spherical
coordinates (r′, θ ′, φ′). The coupled set of integral equations (2.18) can be written as

qk(r)=
∫ ∞

1

4∑
m=1

Kkm(r, r′)qm(r′) dr′ + Tk(r), (2.21)

where k ∈ {1, 2, 3, 4}, and the kernel functions, Kij, and inhomogeneous terms, Ti, are
defined in appendix B.

2.1. Force on the sphere

The scaled force, F̃, exerted on the sphere by the gas in the direction of motion, ẑ, is

F̃=
∫ 2π

0

∫ π

0

(
T̃rr cos θ − T̃rθ sin θ

)
sin θ dθ dφ|r=1, (2.22)

where the force scale, 2a2U0P/cm, is used and P is the ambient gas pressure.
Importantly, (2.22) is valid for all Knudsen numbers, Kn, and frequency ratios,
Θ . The functions T̃rr and T̃rθ are spatial components of the normal and shear stresses
at the surface of the sphere, scaled by 2U0P/cm, and defined

T̃rr = 1
π3/2

∫ ∞
−∞

c2
r exp(−|c|2)h̃(r= 1, c) dc, (2.23a)

T̃rθ = 1
π3/2

∫ ∞
−∞

crcθ exp(−|c|2)h̃(r= 1, c) dc, (2.23b)
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where the distribution function at the surface of the sphere is given by the solution
to

h̃(r= 1, c)=



2c · Ũsp +
√

πŨsp · r̂− 2
π

∫
cr<0

exp(−|c|2)crh̃(r= 1, c) dc, cr > 0,∫ ∞
0

1
VKn

(
w̃+ 2cr′Ũr′ + 2cθ ′Ũθ ′ +

[
V2 − 3

2

]
τ̃

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′|, cr < 0.

(2.24)
Equations (2.22)–(2.24) can be easily manipulated to yield a simplified expression for
the scaled force on the sphere,

F̃ = 2
√

π

3

∫ ∞
1

1
Kn
√

πr′2
[

W1(r′)q1(r′)− 2W2(r′)q2(r′)

− 4W3(r′)q3(r′)+ 3
2

W4(r′)
]

dr′ + π

3

(
g+ 8√

π

)
, (2.25)

where the functions Wi for i= {1, 2, 3, 4} are given in appendix B and the constant
g is given in (A 15).

3. Asymptotic limits
3.1. Unsteady flow

Analytical solutions are now presented in the continuum, slip and free-molecular
asymptotic limits for unsteady flow. These are used in § 5 to provide benchmark
results for the numerical solution outlined in § 4.

3.1.1. Continuum flow (Kn→ 0 and Θ→ 0)
In the continuum limit, the linearised Navier–Stokes equations, together with the no-

slip boundary conditions, yield the radial and angular components of the bulk velocity
(Landau & Lifshitz 1987):

Ũr(r, θ)=
{

2Â
r3
+ 2B̂ exp(i

√
2iβr)

(
1
r2
− 1

i
√

2iβr3

)}
cos θ, (3.1a)

Ũθ(r, θ)=
{

Â
r3
− B̂ exp(i

√
2iβr)

(
1

i
√

2iβr3
+ i
√

2iβ
r
− 1

r2

)}
sin θ, (3.1b)

where

Â= 1
2

(
1− 3

i
√

2iβ
− 3

2iβ

)
, (3.2a)

B̂= 3 exp(−i
√

2iβ)
2i
√

2iβ
(3.2b)

and Θ =Kn2β. The corresponding (continuum) force on the sphere is

F̃con =πKn
(

3− 3i
√

2iβ − 2iβ
3

)
, (3.3)

which has been scaled by 2a2P/cm. An identical force scale is used in all calculations.
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3.1.2. Slip flow (Kn� 1 and Θ� 1)
It has been shown (Cercignani 2000; Sone 2002; Ivchenko, Loyalka & Tompson

2007) that the leading-order effect of gas rarefaction is formally obtained by solving
the linearised Navier–Stokes equation subject to a slip boundary condition. This yields
the required results for the bulk velocity:

Ũr(r, θ)=
{

2Â
r3
+ 2B̂ exp

(
i
√

2iβr
)( 1

r2
− 1

i
√

2iβr3

)}
cos θ, (3.4a)

Ũθ(r, θ)=
{

Â
r3
− B̂ exp

(
i
√

2iβr
)( 1

i
√

2iβr3
+ i
√

2iβ
r
− 1

r2

)}
sin θ, (3.4b)

where

Â= 1
2

1−
(3+ 6σKn)

(
1− 1

i
√

2iβ

)
i
√

2iβ + σKn
(
3i
√

2iβ + 2iβ
)
 , (3.5a)

B̂= 3
2

{
1+ 2σKn

i
√

2iβ + σKn
(
3i
√

2iβ + 2iβ
)} exp

(
−i
√

2iβ
)

(3.5b)

and σ = 1.016191 . . . . The corresponding scaled force is

F̃slip = −1
3
πKn

×
(

4iβ2Kn σ−9
√

2iβ(1+ 2σKn)+ 2iβ(9i+√2iβ + 3[6i+√2iβ]Knσ)√
2iβ + (3√2iβ + 2β)Kn σ

)
.

(3.6)

There is no temperature jump present at O(Kn) and hence no temperature variation
in the gas for slip flow (Takata et al. 1993). For β� 1, the flow is highly unsteady
and vorticity is confined to a thin layer near the sphere surface; the thickness of this
layer is O(δ), where δ � a and δ = √2µ/(ρ0ω). In the opposite limit, β � 1, we
recover the steady solution, which is discussed in § 3.2.

3.1.3. Free-molecular flow (Kn� 1 and/or Θ� 1)
If either Kn� 1 or Θ� 1 is satisfied (or both are), then the flow is free-molecular.

In the free-molecular limit, the linearised Boltzmann equation in (2.7) becomes

1− iΘ
Kn

h̃+ c ·
∂ h̃
∂x
= 0. (3.7)

Equation (3.7) is solved by integrating along its characteristics (discussed above) and
using the boundary conditions in (2.12). This gives

h̃(x, c)=
h̃0 exp

(
i
1− iΘ

Kn
|x− x0|

)
, c ∈ R1,

0, c ∈ R2,
(3.8)
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where
h̃0(x0, c)= 2c · Ũsp +

√
πŨsp · r̂, (3.9)

and the regions R1 and R2 are defined in (2.14). As before, (V, χ,ψ) are the spherical
coordinates of the particle velocity c; see (2.9) and (2.14). The density, bulk velocity
and temperature are obtained by substituting (3.8) into (2.16), giving

w̃(r, θ)= [W̄1(r)+
√

πR̄1(r)
]

cos θ, (3.10a)

Ũr(r, θ)=
[
W̄2(r)+

√
πR̄2(r)

]
cos θ, (3.10b)

Ũθ(r, θ)=
[
W̄3(r)+

√
πR̄3(r)

]
sin θ, (3.10c)

τ̃ (r, θ)= [W̄4(r)+
√

πR̄4(r)
]

cos θ, (3.10d)

where the functions W̄i(r), R̄i(r) for i ∈ {1, 2, 3, 4} are defined in appendix C. The
scaled force is obtained from (2.22) and (2.23):

F̃fm =
√

π

3
(π+ 8) . (3.11)

For Θ � Kn, the flow is confined to a thin boundary layer of thickness O(cm/ω),
i.e. the average distance a gas particle travels in one oscillation cycle. When Kn�Θ ,
the unsteady term in (3.7) vanishes and steady flow is recovered; see § 3.2.

3.2. Steady flow (Θ = 0)
The corresponding results are now summarised for steady flow. These are obtained
from the results in the preceding section by taking the limit Θ→ 0, and are used to
validate the numerical solution specified in § 4. The steady flow asymptotic solutions
have been reported previously and are provided here for completeness.

3.2.1. Continuum flow (Kn→ 0)
The bulk velocity in the gas is

Ur(r, θ)=
(

3
2r
− 1

2r3

)
cos θ, Uθ(r, θ)=−

(
3
4r
+ 1

4r3

)
sin θ, (3.12a,b)

and the corresponding scaled force is

Fcon = 3πKn. (3.13)

3.2.2. Slip flow (Kn� 1)
The slip solution for steady flow is obtained by taking the same limit, Θ→ 0, in

(3.4) while keeping Kn finite. This gives the following result for the bulk velocity
(Takata et al. 1993):

Ur(r, θ)=
{

3
2

(
1+ 2σKn
1+ 3σKn

)
1
r
− 1

2

(
1

1+ 3σKn

)
1
r3

}
cos θ, (3.14a)

Uθ(r, θ)=−
{

3
4

(
1+ 2σKn
1+ 3σKn

)
1
r
+ 1

4

(
1

1+ 3σKn

)
1
r3

}
sin θ, (3.14b)

where the corresponding scaled force is

Fslip = 3πKn
(

1+ 2σKn
1+ 3σKn

)
. (3.15)

Equation (3.15) coincides with the result of Ivchenko et al. (2007).
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3.2.3. Free-molecular flow (Kn� 1)
The density, bulk velocity and temperature are (Takata et al. 1993)

w=
√

π

6

{(
1+ 6

π

)
1
r2
− (r2 − 1)1/2

(
2+ 1

r2

)
+ 2r

}
cos θ, (3.16a)

Ur =
{
−1

2
− 1

2

(
1− 1

r2

)3/2

+ 1
4r3
+ 1

8

[
1+ 1

r2
+ (r

2 − 1)2

2r3
log
(

r− 1
r+ 1

)]}
cos θ,

(3.16b)

Uθ =
{

1
2
+ 1

8r3
+ 1

4

(
1− 1

r2

)1/2 (
2+ 1

r2

)

− 1
32

[
6− 2

r2
+ 3r4 − 2r2 − 1

r3
log
(

r− 1
r+ 1

)]}
sin θ, (3.16c)

τ =− cos θ
3
√

πr2
. (3.16d)

At any instant in time in an unsteady flow, the distribution function for outgoing
particle velocities is a Maxwellian with a mean velocity Umean ẑ, where Umean ∈
[−U0, U0]. Since particles do not collide in the free-molecular limit, the distribution
function of outgoing particle velocities is identical to that generated by a sphere
moving with constant velocity Umean ẑ. The steady and unsteady free-molecular forces
are therefore identical, and given by (3.11).

4. Numerical methods
Numerical methods to solve (2.21) are detailed in this section. Distinct methods for

steady and unsteady flows are discussed in §§ 4.1 and 4.2 respectively, because the
asymptotic behaviour of these flows far from the sphere is different.

4.1. Steady flow
To solve (2.21) for steady flow, the region of integration is first truncated at a radius
r= RN� 1, giving

qk(r)=
∫ RN

1

4∑
m=1

Kkm(r, r′)qm(r′) dr′ + Tk(r), (4.1)

where k∈ {1, 2, 3, 4} is implied throughout. Asymptotic solutions for small Kn in § 3.2
show that the bulk velocity asymptotically decays ∼r−1 far from the sphere; RN must
therefore be very large for a negligible truncation error (Takata et al. 1993). To reduce
the computational domain, and hence computational time, the approach proposed by
Takata et al. (1993) is used. Because the flow must be near-continuum far from the
sphere, asymptotic solutions for small Kn are used in this region in place of the
unknown functions qk in (4.1). We therefore choose some radius RM ∈ (1,RN), beyond
which the small-Kn asymptotic solution applies. Thus, (4.1) becomes

qk(r)=
∫ RM

1

4∑
m=1

Kkm(r, r′)qm(r′) dr′ +
∫ RN

RM

4∑
m=1

Kkm(r, r′)Qm(r′) dr′ + Tk(r), (4.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.143


124 Y. W. Yap and J. E. Sader

where the near-continuum solutions Qm(r) have the general form (Takata et al. 1993)

Q1(r) = C1Kn−C3

r2
, (4.3a)

Q2(r) = C1

r
+ C2

r3
, (4.3b)

Q3(r) = −C1

2r
+ C2

2r3
, (4.3c)

Q4(r) = C3

r2
. (4.3d)

Here, C1,C2 and C3 are coefficients to be evaluated by matching Qm(r) to numerical
solutions at r= RM; see below.

Next, we apply the singularity subtraction technique (Loyalka & Tompson 2009) to
the first integral on the right-hand side of (4.2). This removes the singularity at r= r′
in the kernel Kkm(r, r′) and improves convergence. Equation (4.2) yields

4∑
m=1

Akm(r)qk(r) =
∫ RM

1

4∑
m=1

Kkm(r, r′)
(
qm(r′)− qm(r)

)
dr′

+
∫ RN

RM

4∑
m=1

Kkm(r, r′)Qm(r′) dr′ + Tk(r), (4.4)

where

Akm(r)= δkm −
∫ RM

1
Kkm(r, r′) dr′ (4.5)

and δkm is the Kronecker delta function.
The coefficients C1, C2, C3 in (4.3) are calculated by matching (4.3) to numerical

solutions of the integral equations, (4.4), at r= RM, i.e.

q1(RM) = C1Kn−C3

R2
M

, (4.6a)

q2(RM) = C1

RM
+ C2

R3
M
, (4.6b)

q3(RM) = − C1

2RM
+ C2

2R3
M
, (4.6c)

where q1(RM), q2(RM), q3(RM) are found by solving (4.4). Equations (4.4) and (4.6)
thus form a closed set of equations.

Equation (4.4) is solved by first dividing the domain r ∈ [1, RM] into two
subdomains, [1, RL] and [RL, RM], where RL = Kn + 1. The subdomain [1, RL]
is further divided into L1 intervals, and the resulting integral in each interval is
evaluated using Gauss–Legendre (GL) quadrature of order N1. The second subdomain
[RL, RM] is divided into L2 intervals where the integral in each interval is evaluated
with GL quadrature of order N2. This allows a dense mesh to be used close to the
sphere where large velocity gradients are expected. Additionally, the integral with
limits [RM, RN] is evaluated using GL quadrature of order Nc. A schematic of the
integration domain is shown in figure 4.
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N1 subintervals N2 subintervals

L2 intervalsL1 intervals

BGK equation solved
Asymptotic solution

applied

Nc intervals

RL RM RN

FIGURE 4. (Colour online) Schematic illustrating division of the integration domain into
three subdomains. The subdomain [1, RL] is divided into L1 intervals, each of which is
subdivided into N1 subintervals. The subdomain [RL,RM] is divided into L2 intervals, each
of which is subdivided into N2 subintervals. The subdomain [RM, RN] is divided into Nc
intervals.

This produces the following system of linear equations:

4∑
m=1

Akm(ri)qk(ri) =
NL∑
j=1

wj

{
4∑

m=1

Kkm(ri, rj)(qm(rj)− qm(ri))

}

+
Nc∑

p=1

wp
RN − RM

2

4∑
m=1

Kkm(ri, rp)Qm(rp)+ Tk(ri) (4.7)

and

4∑
m=1

Akm(RM)qk(RM) =
NL∑
j=1

wj

{
4∑

m=1

Kkm(RM, rj)
(
qm(rj)− qm(RM)

)}

+
Nc∑

p=1

wp
RN − RM

2

4∑
m=1

Kkm(RM, rp)Qm(rp)+ Tk(RM), (4.8)

where
NL =N1L1 +N2L2 (4.9)

is the total number of meshpoints. The jth discretised node to the right of r = 1 in
figure 4 is

rj =



RL − 1
2L1

y1+( j−1)mod N1 +
(

2
⌊

j− 1
N1

⌋
+ 1
)

RL − 1
2L1

+ 1, j= 1, . . . ,N1L1,

RM − RL

2L2
z1+( j−N1L1−1)mod N2

+
(

2
⌊

j−N1L1 − 1
N2

⌋
+ 1
)

RM − RL

2L2
+ RL, j=N1L1 + 1, . . . ,NL,

(4.10)
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where ri, rj ∈ (1, RM) and the corresponding weights are

wj =


u1+( j−1)mod N1

RL − 1
2L1

, j= 1, . . . ,N1L1,

v1+( j−N1L1−1)mod N2

RM − RL

2L2
, j=N1L1 + 1, . . . ,NL.

(4.11)

Here, yα and uα are the usual GL abscissas and weights with yα ∈ (−1, 1) for α =
1, 2, . . . , N1. Similarly, zβ and vβ are GL abscissas and weights of order N2 for
β = 1, 2, . . . ,N2 (note that β here refers to an index, not the inverse Stokes number).
The pth discretised node to the right of RM in figure 4 is

rp = RN − RM

2
bp + RM + RN

2
, p= 1, . . . ,Nc, (4.12)

where rp ∈ (RM,RN) and bp are the usual GL abscissas with corresponding weights wp.
Equations (4.6)–(4.8) specify a fully determined linear system of equations that can

be solved numerically. This system is implemented and solved in Mathematica,
the results of which are given in § 5.2; see § 4.3 for details of the numerical
implementation.

4.2. Unsteady flow
The asymptotic solution for unsteady flow in the continuum limit (i.e. for infinitesimal
Kn) shows that the bulk velocity decays far from the sphere as ∼r−2, which is faster
than the rate for the steady case; cf. (3.1) and (3.12a,b). This negates the utility of
the asymptotic solution far from the sphere; we therefore choose the truncation radius
RN =RM; see figure 4. Proceeding with the singularity subtraction method (Loyalka &
Tompson 2009), (2.21) then becomes

4∑
m=1

Akm(r)qk(r)=
∫ RM

1

4∑
m=1

Kkm(r, r′)
(
qm(r′)− qm(r)

)
dr′ + Tk(r), (4.13)

where all variables are as defined in the preceding section.
Similarly to the steady case, (4.13) is solved by first dividing the domain r∈ [1,RM]

into two subdomains, [1, RL] and [RL, RM], where RL = 1 + min(Kn, Kn/Θ). This
choice of RL ensures that all steep gradients in the transport variables near the surface
can be captured accurately. The subdomains [1, RL] and [RL, RM] are discretised as
before, leading to the following system:

4∑
m=1

Akm(ri)qk(ri)=
NL∑
j=1

wj

{
4∑

m=1

Kkm(ri, rj)
(
qm(rj)− qm(ri)

)}+ Tk(ri), (4.14)

where the abscissas ri, rj and corresponding weights wj are given in (4.9)–(4.11). The
integration domain for the unsteady problem is therefore a subset of that for the steady
case.

Details of the numerical implementation of the above equations for the steady and
unsteady problems are discussed in the next section.

4.3. Numerical implementation
The kernel and inhomogeneous terms of the integral equations defined in appendix B
are written in terms of Meijer-G functions, which are evaluated in Mathematica.
Integration of the kernel functions is required after applying the singularity subtraction
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method, and this is performed numerically using Mathematica’s NIntegrate function
with a working precision of at least 45 significant figures. Greater working precision
is required as RM is increased. Additionally, the precision of all other calculations is
set to 100 significant figures in Mathematica because this setting ensures the Meijer-G
functions are evaluated to at least 45 significant figures.

Numerical results are calculated for Kn ∈ [0.1, 10] and for unsteady flow
Θ ∈ [0.1, 10]. For each Knudsen number and frequency ratio, different values for
the computational parameters RL, RM, RN , L1 and L2 are used. These computational
parameters are increased systematically to a point where they do not change the
calculated force on the sphere. This numerical convergence procedure, used to obtain
accurate solutions, is presented in appendix D.

5. Results and discussion
In the continuum limit, the linear gas flow driven by a solid sphere that is moving

with constant velocity is isothermal (Stokes 1880). However, a temperature jump
always exists at the surface of a sphere in a real flow due to the finite mean free
path of the gas – this occurs at O(Kn2) (Takata et al. 1993). It is well established that
this temperature jump is directly proportional to the gradient of the normal stress in
the gas (Sone 2002) and exists at all degrees of gas rarefaction, even for a linearised
flow (small Mach number). As such, the linear flow driven by a sphere cannot be
treated as isothermal.

This finding appears unintuitive but can be easily understood by considering the
distribution function for a free-molecular gas flow generated by a sphere moving
with constant velocity. For simplicity, we consider the complementary case where the
sphere is held stationary with an impinging uniform and steady free-molecular flow
(Takata et al. 1993). We give an overview of this analysis in § 5.1 as it provides a
foundation for the numerical results at arbitrary Knudsen number.

5.1. Temperature jump in the free-molecular limit
Consider a stationary solid sphere in a uniform and steady gas flow in the
free-molecular limit, i.e. Kn�1. Far from the sphere, the gas velocity is unidirectional
in the Cartesian z direction with constant magnitude U0, and the gas temperature T∞
is constant. Gas particles interact with the surface of the sphere via the diffuse
boundary condition. The temperatures of the sphere and the free-stream gas are
identical, as specified in § 2.

The mass distribution function of particles incoming to the sphere surface (cr< 0) is
a Maxwellian centred at a bulk velocity U∞ =U0ẑ with temperature T∞. In contrast,
due to the diffuse boundary condition, the distribution function for particles leaving
the sphere surface (cr > 0) is a Maxwellian centred at a bulk velocity of zero, with
the same temperature T∞; these are the conditions at the surface of the sphere. The
complete mass distribution function for molecular velocities in the radial direction, cr,
at the sphere surface, i.e. the one-dimensional distribution, is therefore

F1D =
√

m
2πkT∞


exp

(
− m

2kT∞
c2

r

)
, cr > 0,

exp
(
− m

2kT∞

[
cr −U∞ · r̂

]2
)
, cr < 0,

(5.1)

where U∞ =U0ẑ=U0(cos θ r̂− sin θ θ̂); see (2.2).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.143


128 Y. W. Yap and J. E. Sader

0

Incoming
Outgoing

cr
–U0

F1D

FIGURE 5. (Colour online) The one-dimensional mass distribution function, F1D, at a
position (r = a, θ = π) on the surface of the stationary sphere in a uniform and steady
free-molecular gas flow, U∞ = U0ẑ. The distribution function is shown for incoming
particles (cr < 0, red) and outgoing particles (cr > 0, blue). This distribution function has
a larger variance than that of a Maxwellian at the equilibrium temperature, i.e. the gas
temperature represented by this distribution is higher than equilibrium.

Consider the position (r = a, θ = π) on the sphere surface; the gas impinges at
normal incidence to the sphere at this position. The outward normal, r̂, to the surface
is therefore in the direction opposite to the uniform velocity U∞. In this case, the
one-dimensional distribution function in (5.1) becomes

F1D =
√

m
2πkT∞


exp

(
− m

2kT∞
c2

r

)
, cr > 0,

exp
(
− m

2kT∞
[cr +U0]2

)
, cr < 0,

(5.2)

which is illustrated in figure 5. It should be noted that this distribution function has
a ‘width’ (or variance) that is larger than the original Maxwellian distribution of the
gas far from the sphere. Because the gas temperature is directly proportional to the
variance of the distribution of molecular velocities, this immediately establishes that
the gas temperature at the surface of the sphere is higher than that of the free stream
and solid surface. That is, the gas is hotter than the solid sphere at the position (r=
a, θ =π).

Identical arguments establish that the gas is cooler than T∞ at (r= a, θ = 0) and its
temperature is equal to that of the sphere at (r= a, θ =π/2). This shows that the gas
temperature around the sphere surface varies and is different from that of the sphere.
Consequently, there is a temperature jump in the gas at the surface which results in a
non-zero temperature variation around the sphere, i.e. the flow is non-isothermal. This
phenomenon is frequently referred to as thermal polarisation, and always occurs if a
section of the solid surface is oriented normal to the flow direction. It exists at all
Knudsen numbers to varying degrees, vanishing in the continuum limit. Interestingly,
the sign of the thermal polarisation for small Knudsen number is opposite to that
of the free-molecular flow (Aoki & Sone 1987), i.e. the temperature of the gas is
lower than that of the solid sphere at the position (r= a, θ =π) and higher at (r= a,
θ =π/2).
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FIGURE 6. (Colour online) Steady flow: numerical results for the radial dependence of
the density q1(r), velocities q2(r), q3(r) and temperature q4(r) as a function of the radius
r, using the present method. Results are given for Kn = 0.1 (red solid), Kn = 1 (green
dashed) and Kn= 10 (black dotted). The solutions for Kn= 10 are shown as solid circles,
with the dotted line being the interpolated curve; the observed spacing of these points is
due to the use of low-order quadrature. The dependences of the macroscopic variables on
the polar angle θ are given in (2.17).

5.2. Validation for steady flow
We now return to the original problem of a sphere moving in a quiescent gas at finite
Knudsen number. Before presenting the new results for unsteady flow, we validate
the numerical method by comparing our calculations for steady flow with published
literature results. This also provides benchmark data to investigate the effects of
unsteadiness on the flow field and drag force. Due to axisymmetry, results are
presented only for the radial dependences of the density, velocity and temperature
field; the polar angle dependences are given in (2.17).

Figure 6 shows these radially dependent terms, i.e. q1, q2, q3, q4, for the
near-continuum (Kn = 0.1), transition (Kn = 1) and near-collisionless (Kn = 10) flow
regimes. As expected, the tangential component of the slip velocity, qslip = q3(1)+ 1,
increases with increasing Kn; note that q3(1)=−1 coincides with the no-slip condition.
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FIGURE 7. (Colour online) Steady flow: comparison of current numerical results with
asymptotic solutions for (a) Kn = 0.1 and (b) Kn = 10. Solid lines: current numerical
results. Dashed lines: asymptotic slip and free-molecular (FM) solutions, (3.14) and (3.16)
respectively. The black (upper) and red (lower) lines are the radial dependences of the
radial velocity, q2(r), and angular velocity, q3(r), respectively. The numerical solutions
for (b) are solid circles with interpolated (solid line) curves. The dependence of the bulk
velocity on the polar angle θ is given in (2.17).

The density and temperature fields are similar to their equilibrium solutions (i.e. no
density or temperature variations) for near-continuum flow; see figures 6(a,d). Finite
and increasing Knudsen number enhances the density and temperature variations,
in line with the discussion of the previous section. Most importantly, flow at finite
Knudsen number is non-isothermal and compressible.

Figure 7 presents a comparison of the numerical results (for finite Knudsen number,
Kn) with the asymptotic solutions of § 3 for the bulk velocity; results are given in
the appropriate near-continuum and near-collisionless regimes, with Kn= 0.1 and 10.
Strikingly, the numerical results for both Kn= 0.1 and 10 are in excellent agreement
with the slip solution of (3.14) and the free-molecular solution of (3.16) respectively.
While slight differences are clearly observable, this is expected because the analytical
solutions in (3.14) and (3.16) are strictly valid in the asymptotic limits Kn→ 0 and
Kn→∞ respectively. This provides a second validation of the numerical method.

Figure 8 compares the density, bulk velocity and temperature profiles obtained using
the current numerical method with the results of Law & Loyalka (1986) (for non-
isothermal flows). Again, excellent agreement is found for the distinct cases Kn = 1
and 10. It should be noted that the data in Law & Loyalka (1986) appear to contain
some typographical errors, which have been excluded from all comparisons in this
article.

Next, we compare our results with both the non-isothermal and isothermal results
of Law & Loyalka (1986), which were reported for Kn= 0.1. Law & Loyalka (1986)
obtained isothermal results by ignoring the temperature equation; that is, by setting
q4= 0 in the above formulation. As discussed above, the steady flow around a sphere
is strictly non-isothermal, and this comparison is presented only to highlight the effect
of imposing an (artificial) isothermal assumption. Figure 9 gives a comparison of these
literature data with the results of the present numerical method.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.143


Sphere oscillating in a rarefied gas 131

r r

M
ac

ro
sc

op
ic

 v
ar

ia
bl

es
(b)(a)

1 2 5 10 20 50 100

–1.0

–0.5

0.5

1.0

0

–1.0

–0.5

0.5

1.0

1.0 1.5 2.0 3.0 5.0 7.0 10.0

0

q2(r)

q4(r)

q3(r)

q1(r)

q2(r)

q4(r)

q3(r)

q1(r)

FIGURE 8. (Colour online) Steady flow: comparison of current numerical results and the
non-isothermal data of Law & Loyalka (1986) for (a) Kn = 1 and (b) Kn = 10. Solid
lines: current numerical results. Points: Law & Loyalka (1986). Radial dependences of
the density q1(r), radial velocity q2(r), angular velocity q3(r) and temperature q4(r) are
given. The current numerical results are obtained by interpolating the numerical solutions
at GL abscissas. See (2.17) for the dependences of the macroscopic variables on the polar
angle θ .
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FIGURE 9. (Colour online) Steady flow for Kn = 0.1: comparison of current numerical
results for the radial dependences of the macroscopic variables and the data of Law &
Loyalka (1986). (a) Solid lines: current numerical results for the radial velocity q2(r) and
angular velocity q3(r). Points: Law & Loyalka (1986) non-isothermal radial and angular
velocity. (b) Solid lines: current numerical results for the density q1(r) and temperature
q4(r). Points: Law & Loyalka (1986) non-isothermal density (squares) and temperature
(diamonds). Dotted line: Law & Loyalka (1986) isothermal density.

Excellent agreement between the non-isothermal results of Law & Loyalka (1986)
and the present method is observed for the bulk velocity; see figure 9(a). However,
figure 9(b) shows that the density and temperature numerical results of the current
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Normalised force on sphere F̃/F̃fm

Kn Current results Law & Loyalka (1986) Takata et al. (1993)

0.1 (Slip) 0.1286 — —
0.1 0.1296 0.1388 —
0.3 0.3225 — —
1 0.6394 0.6513 0.6403
2 0.7904 — 0.7907
3 0.8537 — —
10 0.95395 0.9546 0.9540
Kn→∞ (FM limit) 1.0000 — —

TABLE 1. The normalised force F̃/F̃fm (see (2.25) and (3.11)) obtained in the current study,
and by Law & Loyalka (1986) and Takata et al. (1993), for a range of Knudsen numbers.
The current results are accurate to four decimal places. Asymptotic results are included
for the near-continuum (slip) (3.15) and free-molecular (FM) (3.11) regimes.

study are significantly different from the non-isothermal data of Law & Loyalka
(1986). The non-isothermal density and temperature solutions from Law & Loyalka
(1986) appear to increase with radius from the sphere – this is unexpected because
the temperature field must approach the equilibrium result far from the sphere,
i.e. q4(r) → 0 as r → ∞. Interestingly, we find good agreement between our
non-isothermal density numerical solutions and the isothermal density results of
Law & Loyalka (1986); see figure 9(b). Compared with larger Knudsen numbers
(where excellent agreement is observed, see figure 8), the numerical simulations of
flows at small Knudsen numbers converge slower and require more computational
time to obtain solutions of similar accuracy; this may explain these deviations.

In table 1, we present tabulated numerical data for the normalised force, F̃/F̃fm,
where F̃fm is the free-molecular force (3.11), obtained using the present method over a
comprehensive range of Knudsen numbers. Available data from the literature are also
presented in table 1. We find reasonable agreement with the data of Law & Loyalka
(1986) and excellent agreement with the data of Takata et al. (1993), both of which
utilise a finite-differencing scheme under non-isothermal conditions. Our results also
approach the correct asymptotic limits for both near-continuum and free-molecular
flow.

The new high-accuracy data set for steady flow generated by a sphere, listed
under ‘current results’ in table 1, is accurate to four decimal places. The linearised
Boltzmann equation for hard spheres has been solved over a wide range of Knudsen
numbers for this steady flow problem (Takata et al. 1993). Table 1 presents an
equivalent range for the Boltzmann–BGK equation, which is larger than reported
previously for this collision model. This data set is expected to be of value for the
benchmarking and validation of computational and analytical studies.

5.3. Unsteady flow
Next, we present results for unsteady flow over a broad range of Knudsen numbers,
Kn, and frequency ratios, Θ , encompassing the near-continuum to near-collisionless
regimes. We first validate the numerical method for unsteady flow by comparing its
solutions with the analytical asymptotic solutions presented in § 3.1.
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FIGURE 10. (Colour online) Unsteady flow for Kn= 30, Θ = 100: comparison of current
numerical solutions (solid line) and asymptotic free-molecular (FM) solutions in (3.10)
(dotted line). The magnitude, |qi(r)|, and phase, ζi(r), are given for (a,b) density, q1, and
temperature, q4, and (c,d) radial, q2, and angular, q3, components of the bulk velocity.
Here, qi(r)= |qi(r)| exp(iζ (r)), see (2.17).

5.3.1. Near-continuum and near-collisionless limits
In figures 10 and 11, the radial dependences of the density, bulk velocity and

temperature fields are presented, together with asymptotic solutions for small and
large Knudsen numbers. Figure 10 shows numerical solutions for Kn= 30, Θ = 100
and the free-molecular asymptotic solution given by (3.11). The numerical data
coincide with the asymptotic solutions in this limiting case, as required; the slight
differences are due to finite Knudsen number and frequency ratio.

In figure 11, we compare numerical solutions for Kn= 0.3, Θ = 0.1 with the slip
asymptotic solution given in (3.4). We find reasonable agreement for the velocity
amplitudes, see figure 11(a), with larger differences in the velocity phases. Better
agreement between the numerical solutions and the slip asymptotic solutions is
expected for smaller Knudsen numbers and frequency ratios – the value of Kn= 0.3
used here is not very small and the flow is thus not strictly in the slip regime.
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FIGURE 11. (Colour online) Unsteady flow for Kn= 0.3, Θ = 0.1: comparison of current
numerical solutions (solid line) and asymptotic slip solutions of (3.4) (dotted line). The
amplitude and phase are given for the bulk velocity, where qi(r) = |qi(r)| exp(iζ (r)),
see (2.17).
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FIGURE 12. (Colour online) Unsteady flow for Kn= 1, Θ = 1: real and imaginary parts
of the (a) radial and (b) polar angular components of the velocity field. The flow is in
the transition regime. Previous frequency-domain Monte Carlo data for the radial velocity
are shown by solid dots (Ladiges & Sader 2015).

The computational expense of the numerical solutions increases with decreasing
Knudsen number, Kn, which limits the range of Kn that can be investigated.

5.3.2. Transition flows
In figures 12–14, we present velocity profiles for three representative cases: (i)

Kn= 1, Θ = 1; (ii) Kn= 3, Θ = 0.1; (iii) Kn= 0.1, Θ = 1. These flows are selected
because they specify strongly non-equilibrium flows that are far from the limits
considered in the previous section, i.e. they are in the transition regime where
analytical solution is difficult. Here, the gas mean free path is comparable to the
sphere radius, and/or the oscillation frequency is similar to the interparticle collision
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FIGURE 13. (Colour online) Unsteady flow for Kn= 3, Θ = 0.1: real and imaginary parts

of the (a) radial and (b) polar angular velocity fields. The flow is quasi-steady.

frequency. The first case was recently reported by Ladiges & Sader (2015) using a
frequency-domain Monte Carlo method, for which we provide a direct comparison,
whereas the other two cases are yet to be investigated; they all represent important
benchmark solutions for unsteady non-continuum three-dimensional gas flows.

We first consider the case where both the mean free path and the interparticle
collision frequency are equal to the sphere radius and oscillation frequency respectively,
i.e. Kn = 1, Θ = 1. Figure 12 shows the real and imaginary parts of the radial and
polar angular components of the velocity field for this case. Here, the viscous
penetration depth is comparable to the sphere radius (and gas mean free path), and
thus the flow is highly unsteady. Spatial oscillations in the velocity field, as a function
of the radius r, are clearly visible over approximately 10 radii from the surface of
the sphere; see figure 12. A large slip velocity is also evident in figure 12(b); this
is expected because the flow is far from the continuum limit. The radial component
of the bulk gas velocity at the surface coincides with the sphere velocity, as required
by the no-penetration condition; see figure 12(a). The current numerical results also
display excellent agreement with the independent Monte Carlo simulation data of
Ladiges & Sader (2015), thus providing further validation of its robustness and
accuracy. Ladiges & Sader (2015) presented results only for the radial component
of the velocity as a function of r. Similar agreement is found for the density and
temperature fields (not shown). It should be noted that the current solution exhibits
far greater accuracy (results correct to four significant figures in the drag force, see
above) than that achieved by the Monte Carlo method, given finite computational
resources.

Next, we examine the case where the interparticle collision frequency greatly
exceeds the oscillation frequency, but the sphere radius is significantly smaller than
the gas mean free path, i.e. Kn= 3, Θ = 0.1. Figure 13 gives the real and imaginary
parts of the radial and polar angular components of the velocity field for this case.
In contrast to figure 12, this flow profile presents minimal spatial oscillations in
the radial direction, and the imaginary part of the velocity field is very close to
zero. This behaviour is expected because the inverse Stokes number is small, i.e.
β ≡Θ/Kn2≈ 0.01, indicating that the flow is quasi-steady. However, the slip velocity
is large because Kn= 3, giving a strongly non-continuum flow; see figure 13(b).
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FIGURE 14. (Colour online) Unsteady flow for Kn= 0.1, Θ = 1: real and imaginary parts
of the (a) density and (b) temperature fields. The flow is highly unsteady.

Finally, we examine the opposite limit where the gas mean free path is small
relative to the sphere radius, but the interparticle collision frequency and oscillation
frequency of the sphere are identical, i.e. Kn=0.1,Θ=1. The density and temperature
fields for this flow are given in figure 14. Here, the viscous penetration depth is a
small fraction of the sphere radius, i.e. δ/a = 0.1 � 1, or equivalently β � 1,
establishing that unsteadiness can significantly affect the flow. As such, the velocity
field exhibits strong spatial oscillations in the vicinity of the sphere; these decay to
zero at approximately 10 times the viscous penetration depth; see figure 14.

5.3.3. Effect of systematically increasing the oscillation frequency
We now explore the effect of increasing unsteadiness on the flow field and the

resulting drag force in the transition regime. Figure 15 shows magnitude and phase
numerical data using the present method for the density, radial velocity, angular
velocity and temperature, for Kn = 1 and Θ = 0, 0.3, 1, 3, 10, thus systematically
tuning the effects of unsteadiness. As the frequency Θ increases, the flow becomes
increasingly confined to the surface of the sphere. This is evident from figure 15(a–d),
where the listed amplitudes for all transport variables decrease more rapidly with
radius as Θ increases. Since Θ/Kn = aω/cm, the flow approaches the collisionless
limit for large Θ , where the dominant length scale is the average distance, cm/ω,
travelled by gas particles in one oscillation cycle. As such, the dominant length
scale decreases relative to the sphere radius with increasing frequency, resulting in a
thin boundary layer near the sphere surface. As expected, figure 15(e–h) shows that
the phase of all four hydrodynamic quantities is zero for steady flow (Θ = 0), and
increases with Θ due to the effects of inertia.

Figure 15(b,d) shows that the temperature jump and slip velocity (at r= 1) are non-
zero and increase with frequency. This is expected, because increasing the oscillation
frequency of the sphere drives the flow further from equilibrium, accentuating finite-
Knudsen-number effects; both the temperature jump and the velocity slip are strictly
rarefied gas dynamics phenomena. We find that at small Θ , the temperature profile
decays monotonically with increasing radius from the sphere, consistent with a steady
flow. On the other hand, as Θ is increased, the temperature profile becomes non-
monotonic and exhibits a maximum near the sphere surface before decaying with
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FIGURE 15. (Colour online) Unsteady flow for Kn = 1: amplitude (a–d) and phase
(e–h) of the density, temperature, radial velocity and angular velocity fields respectively,
for Θ = 0, dotted; Θ = 0.3, short dashed; Θ = 1, medium dased; Θ = 3, long dashed;
Θ = 10, solid.
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FIGURE 16. (Colour online) Magnitude of (a) the velocity slip and (b) the temperature
jump at the surface of the sphere for steady (Θ = 0) and unsteady (Θ = 0.1) flow as a
function of Kn. The dots are calculated results obtained by extrapolating GL points near
the surface and the lines are interpolation curves.

increasing r. This maximum in temperature is due to high gas density near the surface,
where a thin boundary layer forms. While the Knudsen number is not very large,
flow in this high-frequency regime (Θ� 1) is quasi-collisionless because gas particles
do not have time to collide within a single oscillation period. The non-monotonic
dependence of temperature on radius observed in figure 15(b) is thus a free-molecular
effect; indeed, it resembles the temperature profile in figure 10(a) obtained for very
large Knudsen number (and frequency), as expected.

The effect of unsteadiness on the slip velocity and temperature jump at the surface
of the sphere (r = 1) is shown in figure 16, where results as a function of both Kn
and Θ are given. For low frequency (Θ� 1), asymptotic analysis of the Boltzmann–
BGK equation shows that the temperature jump is an O(Kn2) effect, while the slip
velocity occurs at O(Kn) (Nassios & Sader 2012). The results in figure 16 highlight
this asymptotic behaviour: the slip velocity varies linearly with Kn near the continuum
limit (Kn≈ 0), whereas the temperature dependence on Kn vanishes in the vicinity of
Kn≈ 0. Unsteadiness (non-zero Θ) increases the magnitude of these effects, which are
driven by departures from gas equilibrium. This dominates the behaviour of the slip
velocity and temperature jump as Kn→ 0, with these parameters approaching finite
values, i.e. no-slip and isothermal conditions are not valid for finite Θ , regardless
of the value of Kn studied. This observed behaviour cannot be captured using the
asymptotic theory of Nassios & Sader (2012), which implicitly assumes Θ� 1. The
finite value of Θ=0.1 chosen thus produces a strong departure from equilibrium, even
for small Knudsen number.

5.3.4. Normalised force
Figure 17 presents a comparison of numerical data and analytical slip asymptotic

solutions for the magnitude of the normalised force on the sphere, |F̃/F̃fm|, as a
function of the Knudsen number. Since the asymptotic slip solutions are valid for
small Knudsen numbers and small frequency ratios only, i.e. weak departures from
equilibrium, we consider 0.1 6 Kn 6 1 and Θ = 0, 0.1 and 0.3; see (3.6) and (3.15).
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FIGURE 17. (Colour online) Magnitude of the drag force on the sphere. Comparison of
numerical (points) and asymptotic slip (dotted lines) solutions for steady and unsteady flow.
Blue: steady flow, Θ = 0. Red: unsteady flow, Θ = 0.1. Yellow: unsteady flow, Θ = 0.3.
Equation (3.15) is used for the steady slip solution, Θ = 0, and (3.6) is used for the
unsteady asymptotic solutions, Θ = 0.1 and 0.3.

For steady flow (Θ = 0), excellent agreement is observed between the slip and
numerical solutions for 0.1 6 Kn < 0.3, with the solutions diverging with increasing
Knudsen number, as expected. For an unsteady flow at moderately low frequency
(Θ = 0.1), the asymptotic slip solution agrees well with the numerical solution for
0.1 6 Kn 6 0.2, with the deviation occurring at lower Kn than the steady case. The
asymptotic solution still predicts qualitatively correct behaviour, exhibiting a drag
minimum with increasing Knudsen number, albeit at lower Kn than observed in
the accurate numerical solution. It is interesting to note that while the asymptotic
theory for small Θ does not correctly predict the behaviour of the slip velocity
for Kn = 0.1, Θ = 0.1 (see figure 16), the overall force on the sphere is captured
accurately. This is because the force is the integral of the stress at the surface, which
averages deviations from equilibrium. As such, non-equilibrium effects are manifested
less strongly in the force in comparison to local effects, such as the slip velocity.
For the largest frequency studied in figure 17, i.e. Θ = 0.3, representing the strongest
deviation from equilibrium, the slip solution for the force disagrees both quantitatively
and qualitatively with the numerical solution, and even predicts an (incorrect) force
minimum with increasing Knudsen number – the real force displays a force maximum.
This latter case generates a strongly non-equilibrium flow that cannot be properly
described by the (near-equilibrium) slip theory despite the small Knudsen number of
Kn= 0.1 studied.

Comprehensive tabulated numerical data for the normalised force, F̃/F̃fm, are given
in table 2 over a broad range of Kn and Θ . This data set can be used in a host of
applications, including those involving the unsteady motion of small spheres (such
as nanoparticles) in gas at ambient temperature and pressure, and general unsteady
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motion of spheres in a rarefied atmosphere (in conjunction with a Fourier analysis),
and for benchmarking future analytical and numerical work. The provided solutions
span the range Kn ∈ [0.1, 10] and Θ ∈ [0.1, 10], encompassing the near-continuum to
near-collisionless limits. Because the numerical method presented here exhibits slow
convergence at small Knudsen numbers and frequency ratios, i.e. near-equilibrium
flows where strong gradients in the transport variables occur near the sphere surface,
the accuracy in these cases is restricted. In all cases, the accuracies of individual
results are specified in table 2. This table provides the first complete data set of
the unsteady force generated by a sphere executing rectilinear oscillations in an
unbounded gas, as a function of Kn and Θ .

6. Summary
The flow generated by a solid sphere executing rectilinear oscillations in an

unbounded gas has been explored using the unsteady linearised Boltzmann–BGK
equation. While the steady flow driven by a sphere moving with uniform velocity in
a rarefied gas has been widely explored and is well understood, this study represents
the first detailed examination of the combined effects of gas rarefaction and oscillatory
motion of a sphere. The numerical approach utilised here employs Cercignani’s
method of characteristics (Cercignani & Pagani 1966) and the integral formulation
of the Boltzmann–BGK equation for spherical geometry of Lea & Loyalka (1982).
The singularity subtraction technique of Loyalka & Tompson (2009) was also used to
facilitate accurate numerical solutions. The numerical method was validated against
existing numerical solutions for the steady problem and very recent Monte Carlo data
(Ladiges & Sader 2015) for a sphere oscillating in the transition regime.

These results highlight the combined effect of finite Knudsen number and oscillation
frequency on the deviation from equilibrium, i.e. departures from Navier–Stokes
treatments. Specifically, finite oscillation frequency accentuates the temperature jump
and slip velocity at the sphere surface relative to the result for steady motion. For
completeness, the physical mechanisms underlying the temperature jump were also
explained in some detail, because this phenomenon is fundamental to linear flows
generated by bluff bodies – they are inherently non-isothermal (Takata et al. 1993).

Numerical results that encompass a wide range of Knudsen numbers and frequency
ratios were presented. Specifically, accurate tabular data for the force on the sphere
and graphical profiles of the density, velocity and temperature fields were presented
for both steady and unsteady flows. These data for both steady and unsteady flows
are expected to be of value for (i) the benchmarking of computational/approximate
methods based on the Boltzmann–BGK equation and (ii) in practical applications,
where the unsteady motion of small spheres in a gas is encountered frequently.
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Appendix A. Derivation of integral equations
A.1. Expression for h(x, c, t) in (2.13)

For a fixed arbitrary position x in the gas, the characteristics of the Boltzmann–BGK
equation fall into two categories: (I) straight lines emanating from the point x that
reside solely in the gas, which intersect or are tangent to the sphere surface, and (II)
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the remainder of the straight lines emanating from x that reside solely in the gas,
which do not intersect the sphere. In the latter case, these characteristics reach a finite
point, x∞, where we choose to apply the boundary condition at infinity, before taking
the distance limit |x− x∞| →∞. We now proceed to apply the boundary conditions
in each case.

Characteristics of type I
A characteristic passing through x from the surface of the sphere corresponds to the

equation

x(q)= x0 + c
V

q, (A 1)

where x0 is a point on the surface of the sphere, and the straight line from x to x0 is in
the gas only. The particle velocity, c, lies in the same direction as x− x0. Application
of the boundary conditions in (2.12) to (2.11) yields

h̃(x, c) =
∫ |x−x0|

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x′ − x0| + h̃0(x0, c) exp

(
−1− iΘ

VKn
|x− x0|

)
,

(A 2)

where h0 is defined in (2.15) and we have used q= |x− x0|, q′ − q=−|x− x′|, and
x′= x0+ cq′/V lies on the characteristic. Here, (r′, θ ′, φ′) is the spherical coordinate of
position x′, and the subscripts r′ and θ ′ indicate components in the r̂′ and θ̂ ′ directions.
The unit vectors {r̂′, θ̂ ′, φ̂′} and {r̂, θ̂ , φ̂} correspond to positions x′ and x respectively.
We apply a change of variables to (A 2), respectively. We apply a change of variables
to (A 2),

|x′ − x0| = |x− x0| − |x− x′|, (A 3)

which yields

h̃(x, c) =
∫ |x−x0|

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′| + h̃0(x0, c) exp

(
−1− iΘ

VKn
|x− x0|

)
.

(A 4)

It should be noted that the particle velocity c and position x′ are explicitly related by
c= V(x− x′)/|x− x′|.

Characteristics of type II
Next, we consider characteristics from x to x∞ that reside solely in the gas, where

x∞ is a finite position far from the sphere. The far-field boundary condition is applied
at x = x∞, before we take the limit as the length of the characteristic approaches
infinity. These characteristics correspond to the equation

x(q)= x∞ + c
V

q, (A 5)
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where the particle velocity c lies in the direction of x − x∞. Application of the
boundary conditions in (2.12) to (2.11) yields

h̃(x, c) =
∫ |x−x∞|

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x′ − x∞|, (A 6)

where we have used q= |x− x∞|, q′− q=−|x− x′|, and x′= x∞+ cq′/V lies on the
characteristic. Next, we apply the change of variables |x′ − x∞| = |x− x∞| − |x− x′|
to (A 6) and take the limit |x− x∞|→∞. This gives

h̃(x, c) =
∫ ∞

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′|, (A 7)

where x′ lies on the characteristic and the integration variable |x−x′| is a length along
the characteristic.

Combining (A 4) and (A 7) then gives the required expression for h̃ in (2.13). The
separate velocity spaces in (2.13) are obtained by noting that (A 4) corresponds to
characteristics of type I and (A 7) corresponds to characteristics of type II; see figure 2.
These spaces are explicitly defined in (2.14).

A.2. Coupled system of integral equations in (2.18) and (2.21)
We proceed to derive (2.18a); (2.18b–d) are derived in a similar fashion. Substitution
of (2.13) into the density equation in (2.16a) gives

w̃(x) = 1
π3/2

∫
R1

exp(−|c|2)
∫ |x−x0|

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)

+
[

V2 − 3
2

]
τ̃ (x′)

)
exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′| dc

+ 1
π3/2

∫
R2

exp(−|c|2)
∫ ∞

0

1
VKn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)

+
[

V2 − 3
2

]
τ̃ (x′)

)
exp

(
−1− iΘ

VKn
|x− x′|

)
d|x− x′| dc

+ 1
π3/2

∫
R1

exp(−|c|2)h̃0(x0, c) exp
(
−1− iΘ

VKn
|x− x0|

)
dc. (A 8)

Next, we apply the transformations (Lea & Loyalka 1982)

d|x− x′| dc= V2 sin(χ) d|x− x′| dV dχ dψ, (A 9a)
dx′ = |x− x′|2 sin(χ) d|x− x′| dχ dψ (A 9b)

to (A 8), yielding
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w̃(x) = 1
π3/2

∫
A1+A2

∫ ∞
0

V
Kn

(
w̃(x′)+ 2cr′Ũr′(x′)+ 2cθ ′Ũθ ′(x′)+

[
V2 − 3

2

]
τ̃ (x′)

)
× exp

(
−V2 − 1− iΘ

VKn
|x− x′|

)
1

|x− x′|2 dV dx′

+ 1
π3/2

∫
R1

h̃0(x0, c) exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc, (A 10)

where the integration region A1+ A2 contains all points x′ such that the straight line
from x′ to x intersects the sphere and resides solely in the gas; see figure 3(a).

We then substitute (2.17) into (A 10) and apply the following transformation (Lea
& Loyalka 1982):

dV dx′ = sr′

r
dV ds dr′ dψ, (A 11)

where s= |x− x′|, giving (2.18a); (2.18b–d) are obtained similarly.
Next, we provide a sketch of the derivation of (2.21), for k=1. We note that (2.18a)

can be written as

q1(r)=
∫ ∞

0

4∑
j=1

H1j(r, r′)qj(r′) dr′ + S1(r), (A 12)

where

S1(r)= 1
π3/2

∫
R1

h̃0(x0, c) exp
(
−V2 − 1− iΘ

VKn
|x− x0|

)
dc (A 13)

and the functions H1j(r, r′) are found by comparing (2.18a) and (A 12). The
inhomogeneous term S1 in (A 12) is of the form

S1(r)=W1(r)+ gR1(r), (A 14)

where g is a constant,

g=√π+
∫ ∞

1
a1(r′)q1(r′)+ a2(r′)q2(r′)+ a3(r′)q3(r′)+ a4(r′)q4(r′) dr′. (A 15)

The functions ai(r′) are found by comparing (A 13) and (A 14). Combination of (A 12),
(A 14) and (A 15) then gives

q1(r)=
∫ ∞

0

4∑
j=1

[H1j(r, r′)+ R1(r)aj(r′)]qj(r′) dr′ +W1(r)−
√

πR1(r), (A 16)

which corresponds to (2.21) for k = 1, with K1j(r, r′) = H1j(r, r′) + R1(r)aj(r′) and
T1(r)=W1(r)−√πR1(r).

Appendix B. Kernels and inhomogeneous terms
To obtain simplified forms of all functions in this appendix, we use the following

geometric relations:

cos χ = r2 + s2 − r′2

2rs
, (B 1a)

cos θ ′ = 1
r′
(s sin χ sinψ sin θ + [r− s cos χ ] cos θ) , (B 1b)
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c′r = V
r2 − s2 − r′2

2r′s
, (B 1c)

cθ ′ sin θ ′ = V
4rr′2s

( [r4 + (r′2 − s2)2 − 2r2(r′2 + s2)] cos θ

+ 2rs(r2 + r′2 − s2) sin χ sin θ sinψ) . (B 1d)

These are derived using the cosine rule and spherical coordinate transformations; see
figure 2. Equations (B 1) and (2.9) are used to express {cr, cθ , cr′, cθ ′, cos θ ′, sin θ ′} in
(2.18) in terms of the integration variables {r′, s, ψ, V}.

The kernel functions, Kkm(r, r′), and inhomogeneous terms, Tk(r), in (2.21) can be
written as

Kkm(r, r′)=Hkm(r, r′)+ Rk(r)am(r′) (B 2)

and
Tk(r)=Wk(r)−

√
πRk(r) (B 3)

respectively, where the functions Hij(r, r′), Rk(r), am(r′), Wk(r), Rk(r) are defined
explicitly for steady and unsteady flow below.

For unsteady flow, the simplified kernel functions Hij(r, r′) for i, j ∈ {1, 2, 3, 4} in
(B 2) are

H11 = − 1√
π

∫
1

Kn
1

r2s
(s2 − r2 − r′2)I1

(
1− iΘ

Kn
s
)

ds, (B 4a)

H12 = 1√
π

∫
1

Kn
1

r2r′s2
(s4 − 2r2s2 + r4 − r′4)I2

(
1− iΘ

Kn
s
)

ds, (B 4b)

H13 = 1√
π

∫
1

Kn
1

r2r′s2
(s4 − 2s2(r2 + r′2)+ (r2 − r′2)2)I2

(
1− iΘ

Kn
s
)

ds, (B 4c)

H14 = − 1√
π

∫
1

Kn
1

r2s

[
I3

(
1− iΘ

Kn
s
)
− 3

2
I1

(
1− iΘ

Kn
s
)] (

s2 − r2 − r′2
)

ds, (B 4d)

H21 = − 1√
π

∫
1

Kn
1

2r3s2
(s4 − 2r′2s2 + r′4 − r4)I2

(
1− iΘ

Kn
s
)

ds, (B 4e)

H22 = 1√
π

∫
1

Kn
1

2r3r′s3
(s6 − s4(r′2 + r2)− s2(r2 − r′2)2 + (r′4 − r4)(r′2 − r2))

× I3

(
1− iΘ

Kn
s
)

ds, (B 4f )

H23 = 1√
π

∫
1

Kn
1

2r3r′s3
(s6 − s4(3r′2 + r2)+ s2(3r′2 + r2)(r′2 − r2)− (r′2 − r2)3)

× I3

(
1− iΘ

Kn
s
)

ds, (B 4g)

H24 = − 1√
π

∫
1

Kn
1

2r3s2

[
I4

(
1− iΘ

Kn
s
)
− 3

2
I2

(
1− iΘ

Kn
s
)]

× (s4 − 2s2r′2 + r′4 − r4
)

ds, (B 4h)
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H31 = − 1√
π

∫
1

Kn
I2

(
1− iΘ

Kn
s
)

1
4r3s2

(s4 − 2s2(r2 + r′2)+ (r′2 − r2)2) ds, (B 4i)

H32 = 1√
π

∫
1

Kn
1

4r3r′s3
(s6 − s4(3r2 + r′2)+ s2(3r2 + r′2)(r2 − r′2)− (r2 − r′2)3)

× I3

(
1− iΘ

Kn
s
)

ds, (B 4j)

H33 = 1√
π

∫
1

Kn
(s6 − s4(3r′2 + 3r2)+ s2(3r4 + 2r2r′2 + 3r′4)− (r2 − r′2)(r4 − r′4))

× 1
4r3r′s3

I3

(
1− iΘ

Kn
s
)

ds, (B 4k)

H34 = − 1√
π

∫
1

Kn
1

4r3s2

[
I4

(
1− iΘ

Kn
s
)
− 3

2
I2

(
1− iΘ

Kn
s
)]

× (s4 − 2s2(r2 + r′2)+ (r′2 − r2)2
)

ds, (B 4l)

H41 = 2
3 H14, (B 4m)

H42 = 2
3
√

π

∫
1

Kn
1

r2r′s2

[
I4

(
1− iΘ

Kn
s
)
− 3

2
I2

(
1− iΘ

Kn
s
)]

× (s4 − 2s2r2 + (r4 − r′4)
)

ds, (B 4n)

H43 = 2
3
√

π

∫
1

Kn

[
I4

(
1− iΘ

Kn
s
)
− 3

2
I2

(
1− iΘ

Kn
s
)]

× 1
r2r′s2

(s4 − 2s2(r2 + r′2)+ (r2 − r′2)2) ds, (B 4o)

H44 = − 2
3
√

π

∫
1

Kn
1

r2s

[
I5

(
1− iΘ

Kn
s
)
− 3I3

(
1− iΘ

Kn
s
)
+ 9

4
I1

(
1− iΘ

Kn
s
)]

× (s2 − r2 − r′2
)

ds, (B 4p)

where the integration domain in all of the above cases is s ∈ [|r − r′|, √r2 − 1 +√
r′2 − 1] and In(z) is the Abramowitz function:

In(x)=
∫ ∞

0
ζ n exp

(
−ζ 2 − x

ζ

)
dζ . (B 5)

For steady flow, Θ is set to zero in (B 4), which then coincides with the (steady)
results of Lea & Loyalka (1982) and Law & Loyalka (1986), apart from typographical
errors.

For unsteady flow, the functions ai, Wi and Ri for i ∈ {1, 2, 3, 4} are

a1(r′) =
∫ √r′2−1

r′−1

1
Kn

1
p2
(p4 − 2p2r′2 + (r′4 − 1))I2

(
1− iΘ

Kn
p
)

dp, (B 6a)

a2(r′) = −
∫ √r′2−1

r′−1

1
Kn

1
r′p3

(p6 − p4(r′2 + 1)− p2(r′2 − 1)2 + (r′4 − 1)(r′2 − 1))

× I3

(
1− iΘ

Kn
p
)

dp, (B 6b)
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a3(r′) = −
∫ √r′2−1

r′−1

1
Kn

1
r′p3

(p6 − p4(3r′2 + 1)+ p2(3r′2 + 1)(r′2 − 1)− (r′2 − 1)3)

× I3

(
1− iΘ

Kn
p
)

dp, (B 6c)

a4(r′) =
∫ √r′2−1

r′−1

1
Kn

1
p2

[
I4

(
1− iΘ

Kn
p
)
− 3

2
I2

(
1− iΘ

Kn
p
)]

× (p4 − 2p2r′2 + (r′4 − 1)
)

dp, (B 6d)

W1(r) = − 1√
π

∫ √r2−1

r−1

1
r2l3

(
l4 − (r2 − 1)2

)
I3

(
1− iΘ

Kn
l
)

dl, (B 6e)

W2(r) = − 1√
π

∫ √r2−1

r−1

1
2r3l4

(
l6 + l4(r2 − 1)− l2(r2 − 1)2 − (r2 − 1)3

)
× I4

(
1− iΘ

Kn
l
)

dl, (B 6f )

W3(r) = − 1√
π

∫ √r2−1

r−1

1
4r3l4

(l6 − l4(3r2 + 1)+ l2(3r2 + 1)(r2 − 1)− (r2 − 1)3)

× I4

(
1− iΘ

Kn
l
)

dl, (B 6g)

W4(r) = − 2
3
√

π

∫ √r2−1

r−1

1
r2l3

[
I5

(
1− iΘ

Kn
l
)
− 3

2
I3

(
1− iΘ

Kn
l
)]

(l4 − (1− r2)2) dl,

(B 6h)

R1(r) = 1√
π

∫ √r2−1

r−1

1
2r2l2

(l4 − 2l2r2 + r4 − 1)I2

(
1− iΘ

Kn
l
)

dl, (B 6i)

R2(r) = 1√
π

∫ √r2−1

r−1

1
4r3l3

(l6 − l4(r2 + 1)− l2(r2 − 1)2 + (r2 − 1)2(r2 + 1))

× I3

(
1− iΘ

Kn
l
)

dl, (B 6j)

R3(r) = 1√
π

∫ √r2−1

r−1

1
8r3l3

(l6 − l4(3r2 + 1)+ l2(3r2 + 1)(r2 − 1)− (r2 − 1)3)

× I3

(
1− iΘ

Kn
l
)

dl, (B 6k)

R4(r) = 2
3
√

π

∫ √r2−1

r−1

1
2r2l2

[
I4

(
1− iΘ

Kn
l
)
− 3

2
I2

(
1− iΘ

Kn
l
)]

× (l4 − 2l2r2 + (r4 − 1)) dl. (B 6l)

To obtain the corresponding terms for steady flow, Θ is again set to zero in (B 6);
these results then coincide with those of Lea & Loyalka (1982) and Law & Loyalka
(1986).
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Functions containing a subscript ‘4’ in (B 4) and (B 6) arise in the non-isothermal
problem and are reported in Law & Loyalka (1986); all other functions are identical
to those in Lea & Loyalka (1982).

Appendix C. Unsteady free-molecular flow

The functions W̄i and R̄i for i ∈ {1, 2, 3, 4} are used in the solution for unsteady
free-molecular flow, see (3.10), and are defined as

W̄1(r) = − 1√
π

∫ √r2−1

r−1

1
r2l3

(
l4 − (r2 − 1)2

)
I3

(
− iΘ

Kn
l
)

dl, (C 1a)

W̄2(r) = − 1√
π

∫ √r2−1

r−1

1
2r3l4

(
l6 + l4(r2 − 1)− l2(r2 − 1)2 − (r2 − 1)3

)
× I4

(
− iΘ

Kn
l
)

dl, (C 1b)

W̄3(r) = − 1√
π

∫ √r2−1

r−1

1
4r3l4

(l6 − l4(3r2 + 1)+ l2(3r2 + 1)(r2 − 1)− (r2 − 1)3)

× I4

(
− iΘ

Kn
l
)

dl, (C 1c)

W̄4(r) = − 2
3
√

π

∫ √r2−1

r−1

1
r2l3

[
I5

(
− iΘ

Kn
l
)
− 3

2
I3

(
− iΘ

Kn
l
)]

(l4 − (1− r2)2) dl,

(C 1d)

R̄1(r) = 1√
π

∫ √r2−1

r−1

1
2r2l2

(l4 − 2l2r2 + r4 − 1)I2

(
− iΘ

Kn
l
)

dl, (C 1e)

R̄2(r) = 1√
π

∫ √r2−1

r−1

1
4r3l3

(l6 − l4(r2 + 1)− l2(r2 − 1)2 + (r2 − 1)2(r2 + 1))

× I3

(
− iΘ

Kn
l
)

dl, (C 1f )

R̄3(r) = 1√
π

∫ √r2−1

r−1

1
8r3l3

(l6 − l4(3r2 + 1)+ l2(3r2 + 1)(r2 − 1)− (r2 − 1)3)

× I3

(
− iΘ

Kn
l
)

dl, (C 1g)

R̄4(r) = 2
3
√

π

∫ √r2−1

r−1

1
2r2l2

[
I4

(
− iΘ

Kn
l
)
− 3

2
I2

(
− iΘ

Kn
l
)]

× (l4 − 2l2r2 + (r4 − 1)) dl. (C 1h)

It should be noted that the functions in (C 1) and (B 6) differ only in the argument of
the Abramowitz function inside the integral.
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Appendix D. Numerical convergence procedure
D.1. Steady flow

For steady flow, the integration domain is divided into three subdomains, [1, RL],
[RL, RM] and [RM, RN]; see figure 4. A dense grid of size N1L1 is applied to the
subdomain [1, RL], while a coarse grid of size N2L2 is applied to the subdomain
[RL, RM]. In the subdomain furthest from the sphere, [RM, RN], we apply quadrature
of order Nc. Additionally, we choose RL= 1+Kn, N1= 10 and N2= 5. The following
steps are implemented to obtain convergence.

(i) First, we systematically increase RM while keeping L1, dr2 = (RM − RL)/(N2L2)
and RN/RM fixed. Values for dr3 = (RN − RM)/Nc in this case are chosen to be
approximately identical, although small-RM simulations require a slightly denser
discretisation. This allows convergence to be assessed as the domain is increased.
The value of RM is increased until convergence of the force on the sphere
is achieved. Convergence is obtained to at least four decimal places, where
possible. (Finite computational resources limit the precision of solutions, hence
the accuracy of solutions varies for different Knudsen numbers and frequency
ratios.)

(ii) Second, L1 is doubled and L2 is systematically increased (thereby decreasing the
average spacing dr2) while keeping RM, RN/RM and dr3 fixed. Convergence is
assessed as the quadrature order within the subdomain [1, RM] is increased. The
value of L2 is fixed when convergence of the force is obtained; convergence
properties similar to (i).

(iii) Third, the ratio RN/RM is increased while the average spacing dr3 is kept
fixed. All other computational parameters are also held constant. This allows
convergence to be assessed as the domain in which the asymptotic solution is
applied is expanded. The value of RN/RM is fixed when convergence of the force
is achieved. Convergence to more than four decimal places is typically obtained.

(iv) Finally, the quadrature order Nc is systematically increased (and therefore dr3 is
decreased) to assess the effect of the quadrature order in the (far-field) asymptotic
region. This effect is small because the flow is near-continuum in this region, and
therefore varies very smoothly with respect to the radius r. The value of Nc is
fixed when convergence of the force is achieved; convergence similar to (iii) is
obtained.

Different computational parameters RL, RM, RN , L1 and L2 are used for each
Knudsen number. As an example, results for these values, for Kn = 1, are given in
table 3.

Table 4 gives the normalised force on the sphere F̃/F̃fm (see (2.25) and (3.11)) for
different computational parameters and Kn= 1. Each progressive part (from (a) to (d))
in table 4 shows how the calculated force varies as a single computational parameter
is systematically adjusted while other computational parameters are held fixed. In each
part, the force converges to four significant figures. The radius r=RM and quadrature
order N2 (via dr2, see the definition in the caption of table 3) used in the domain
[RL, RM] have the most significant impact on accuracy. These results show that the
presented numerical results are insensitive to the computational parameters RN/RM
and Nc. The weak dependence of the accuracy on RN/RM and Nc may be due to the
original values being sufficient for accurate computation. It does not necessarily imply
that extending the computational domain via the use of asymptotic solutions does not
improve the accuracy. In fact, we find that choosing RM =RN yields slow convergence
of the solutions.
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Parameter increased Parameters held constant

RM: {RM = 20, 40, 60} RN/RM = 3/2, dr2 = 0.13, dr3 6 1.1
L2: {dr2 = 0.26, 0.13, 0.086, 0.064} RM = 60, RN/RM = 3/2, dr3 = 1.1

RN : {RN/RM = 3/2, 2} RM = 60, dr2 = 0.064, dr3 = 1.1
Nc: {Nc = 80, 160, 240} RM = 60, dr2 = 0.064, RN/RM = 2

TABLE 3. Steady flow: computational parameters used to verify convergence for Kn= 1,
where dr2 = (RM − RL)/(N2L2) and dr3 = (RN − RM)/Nc.

Steps Parameter Value F̃/F̃fm

(a) RM 20 −0.6402955
40 −0.6396167
60 −0.6396125

(b) dr2 0.26 −0.6399557
0.13 −0.6396125
0.086 −0.6394369
0.064 −0.6393966

(c) RN/RM 1.5 −0.6393966
2 −0.6393964

(d) Nc 80 −0.6393980
160 −0.6393964
240 −0.6393964

TABLE 4. Steady flow: convergence of the normalised force F̃/F̃fm for Kn = 1 as (a)
RM is increased, followed by (b) decrease in the average mesh spacing dr2, followed by
(c) increase of RN/RM , followed by (d) increase of the quadrature order Nc. The force
converges to four significant figures. At each step in this sequence, values for all other
parameters are listed in table 3. The largest relative difference between solutions generated
with different computational parameters is 0.001 %.

Similar convergence is obtained for Kn = 0.1, 0.3, 2, 3, 10, where the numerical
results converge to four significant figures. For Kn=0.1, the largest percentage relative
difference is 0.003 %, while for Kn = 10, the largest percentage relative difference
is 0.0001 %.

D.2. Unsteady flow
For unsteady flow, the integration domain is divided into two subdomains, [1,RL] and
[RL, RM]; see figure 4. A dense grid of size N1L1 is applied to the subdomain [1, RL]
while a coarse grid of size N2L2 is applied to [RL,RM]. For unsteady flow, RL is chosen
to be 1+Kn or 1+Kn/Θ depending on which is the smallest dominant length scale.
Additionally, N1 = 10 and N2 = 5.

The radius RM is varied with all other parameters held fixed. Then, similarly, L2 is
adjusted with all other parameters kept constant; see steps (a) and (b) for steady flow
in § D.1. Table 5 shows the computational parameters used for two cases, (Kn = 1,
Θ = 1) and (Kn= 0.1, Θ = 0.1).

We also present a sample of the convergence achieved following the procedure in
§ D.1 when applied to unsteady flow. Table 6 gives the normalised force with different
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Kn Θ Parameter increased Parameter held constant

1 1 RM: {RM = 8, 12, 16, 20, 24} dr2 = 0.1
1 1 L2: {dr2 = 0.1, 0.05, 0.025} RM = 24
0.1 0.1 RM: {RM = 4, 5, . . . , 11} dr2 = 0.013
0.1 0.1 L2: {dr2 = 0.026, 0.013} RM = 10

TABLE 5. Unsteady flow: computational parameters used to verify convergence as a
function of Kn and Θ , where dr2 = (RM − RL)/(N2L2).

Kn Θ Parameter Value Re {F̃/F̃fm} Im {F̃/F̃fm}
1 1 RM 8 0.94112 −0.10968
1 1 16 0.94065 −0.10986
1 1 24 0.94065 −0.10987
1 1 dr2 0.1 0.94065 −0.10987
1 1 0.05 0.94060 −0.10989
1 1 0.025 0.94060 −0.10989
0.1 0.1 RM 4 0.7215 −0.3716
0.1 0.1 6 0.6653 −0.3590
0.1 0.1 8 0.6906 −0.3368
0.1 0.1 10 0.6929 −0.3593
0.1 0.1 dr2 0.026 0.6941 −0.3583
0.1 0.1 0.013 0.6929 −0.3593

TABLE 6. Unsteady flow: convergence of the normalised force F̃/F̃fm as a function of Kn
and Θ as (a) RM is increased, followed by (b) decrease in the average mesh spacing dr2.
For Kn= 0.1 and Θ = 0.1, the truncation error is more dominant (relative to Kn= 1), and
the force oscillates with decreasing magnitude as the parameters are refined. The estimated
errors in this case are 2.7 % and 6.3 % for the real and imaginary parts respectively.
This is due to steep gradients near the surface of the sphere. See table 5 for the set of
computational parameters used.

computational parameters for the cases (Kn= 1, Θ = 1) and (Kn= 0.1, Θ = 0.1). This
shows how the result changes as one computational parameter is systematically varied
while other computational parameters are kept fixed. Table 6 shows that the force
results for (Kn = 1, Θ = 1) converge to five significant figures. On the other hand,
the force in the near-continuum region (Kn = 0.1, Θ = 0.1) converges much slower
and the solution oscillates, albeit with decreasing magnitude. The estimated relative
errors in this case (measured by the magnitude of the oscillation) are 2.7 % for the real
part of the force and 6.3 % for the imaginary part of the force. This is due to strong
gradients in the transport variables in the vicinity of the surface, characteristic of all
near-equilibrium flows and the slow far-field decay of quasi-steady (Stokes) flows.
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