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Direct numerical simulations of temporally developing compressible mixing layers have
been performed to investigate the effects of large-scale structures (LSSs) on turbulent
kinetic energy (TKE) budgets at convective Mach numbers ranging from Mc = 0.2 to
1.8 and at Taylor Reynolds numbers up to 290. In the core region of mixing layers, the
volume fraction of low-speed LSSs decreases linearly with respect to the vertical distance
at a Mach-number-independent rate. The contributions of low-speed LSSs to TKE, and its
budget, including production, dissipation, pressure-strain and spatial diffusion terms, are
primarily concentrated in the upper region of mixing layer. The streamwise and vertical
mass flux coupling terms mainly transport TKE downwards in low-speed LSSs, and their
magnitudes are comparable to the other dominant terms. Near the edges of LSSs, the
sources and losses of all three components of TKE are completely different to each other,
and dominated by turbulent diffusion, pressure diffusion, pressure-strain and dissipation
terms. The TKE, their total variation and dissipation are significantly amplified at edges
of low-speed LSSs, especially at the upper edge. This observation supports the existence
of amplitude modulation exerted by the LSSs onto the near-edge small-scale structures
in mixing layers. The level of amplitude modulation is strongest for the vertical velocity,
followed by the streamwise velocity, and weakest for the spanwise velocity. Additionally,
the amplitude modulation effect decreases significantly with increasing convective Mach
number. The results on the amplitude modulation effect is helpful for developing predictive
models of budget terms of TKE in mixing layers.
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1. Introduction

Streaky large-scale structures (LSSs) are prevalent in different configurations of shear
turbulence, including boundary layers (Hutchins & Marusic 2007; Monty et al. 2009;
Smits, McKeon & Marusic 2011; Lee, Ahn & Sung 2015; Wang & Zheng 2016; Bross,
Scharnowski & Kähler 2021), wakes (Nekkanti et al. 2023), jets (Nogueira et al. 2019;
Samie, Lavoie & Pollard 2021; Samie et al. 2022) and mixing (Watanabe et al. 2019;
Watanabe & Nagata 2021; Wang, Wang & Chen 2022; Wang et al. 2024). The high-
and low-speed streaky LSSs have been extensively studied in the wall-bounded turbulent
flow (Ganapathisubramani et al. 2005; Marusic, Mathis & Hutchins 2010; Smits et al.
2011; Jiménez 2018), and they have been shown to carry a significant fraction of turbulent
kinetic energy and Reynolds shear stress. In wall-bounded turbulent flows, it is now well
established that the LSSs interact with the small-scale structures near the wall by means
of superposition and amplitude modulation effects (Townsend 1976; Hutchins & Marusic
2007; Mathis, Hutchins & Marusic 2009; Mathis et al. 2011b; Inoue et al. 2012; Liu, Wang
& Zheng 2019). Based on the study of amplitude modulation in the smooth-wall boundary
layer, Mathis, Hutchins & Marusic (2011a) developed a predictive model for the near-wall
fluctuations using only a large-scale boundary-layer signal. Yu & Xu (2022) extended
this approach to predict near-wall velocity and temperature fluctuations in compressible
wall-bounded turbulence. In the turbulent mixing layers, the existence of streamwise
elongated high- and low-speed LSSs were confirmed in compressible turbulent mixing
layers by Messersmith & Dutton (1996), Pirozzoli et al. (2015) and Wang et al. (2022), due
to the strong stabilizing effects of compressibility. These LSSs highly resemble large-scale
turbulent structures identified in wall turbulence.

The transfer of turbulent kinetic energy is crucial to the understanding and modelling
of turbulent flows. In a mixing layer, the production and dissipation of turbulent kinetic
energy are maximum near the centre and decrease towards the free streams, and the
turbulent diffusion transfers turbulent kinetic energy from the middle to the edge of the
mixing layer (Rogers & Moser 1994; Pantano & Sarkar 2002). The compressibility effects
on the reduced growth rate of mixing layer have been studied through the turbulent energy
budgets. With respect to incompressible turbulence, the turbulent kinetic energy transport
process in compressible turbulence involves additional terms, including compressible
dissipation and pressure-dilatation, which act as sinks exchanging kinetic energy to
internal energy. Sarkar (1995) and Vreman, Sandham & Luo (1996) reported that the
dilatational contribution to dissipation is negligible even in the present of eddy shocklets,
and the compressibility effect of reduced turbulent energy growth rate is primarily due
to the reduced level of production and pressure-strain redistribution terms. The direct
numerical simulation (DNS) of compressible turbulent mixing layers by Pantano & Sarkar
(2002) concluded that production, pressure-strain and transport terms are significantly
reduced at high convective Mach number, while the dissipation changes relatively little.
Recent numerical studies on compressible mixing layers have shown that the dissipation
term decreases with the increasing level of compressibility (Vaghefi 2014; Li et al. 2021;
Wang et al. 2022). Based on an analysis of wave equation for pressure, Pantano & Sarkar
(2002) physically explicated that the finite speed of sound in compressible flow introduces
a finite time delay in the transmission of pressure signals from one point to an adjacent
point, and the resultant increase in decorrelation leads to a reduction in the pressure-strain
correlation. The connection between vortex orientation and kinetic energy production has
also been investigated. A recent numerical study of mixing layers by Arun et al. (2019)
showed that the vortical structures at high Mach number tend to align in the streamwise
direction, but the tendency is weaker compared with that at low Mach number, which
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Effect of large-scale structures on TKE budget

results in reduced levels of the Reynolds shear stress and suppression of turbulent energy
production. They also observed that the orientations of the vortex vectors are less sensitive
to compressibility effects with the increase of time. Li et al. (2021) examined the energy
exchange mechanisms in compressible turbulent mixing layer by analysing the budget
terms in transport equations of mean kinetic energy, internal energy and turbulent kinetic
energy.

However, the average energy transfer does not reflect what actually happens locally
in physical space, between scales and among components. As early as sixty years ago,
Lumley (1964) proposed the analysis of spectral budget equations in wall-bounded
turbulence to investigate the nonlinear transfer of energy between scales, characterized by
the exchange of energy among Fourier modes. This method has been widely used in the
study of wall-bounded turbulence (Domaradzki et al. 1994; Bolotnov et al. 2010; Mizuno
2016; Lee & Moser 2019; Kawata & Tsukahara 2022; Fan & Li 2023), demonstrating
the Kolmogorov picture of energy transfer where the kinetic energy is generated at large
scales, transferred to hierarchical smaller scales and dissipated finally by viscosity at
Kolmogorov length scales. Moreover, the existence of local inverse energy transfers from
small to large scales has also been confirmed. Recently, Watanabe & Nagata (2021)
performed a spectral analysis of the budget equations using large eddy simulation data
of stably stratified mixing layer to investigate large-scale characteristics. They observed
similar behaviours of the production, pressure-strain correlation and interscale energy
transfer terms to those in channel flows, indicating similar dynamics of the elongated LSSs
in the stratified shear layer and wall-bounded shear flows. They confirmed that the LSSs
have a negligible contribution to the dissipation of turbulent kinetic energy.

To the best of the authors’ knowledge, there is rare analysis of the influence of LSSs
on turbulent kinetic energy budgets in physical space, particularly for compressible
turbulence. The inhomogeneity of mean shear leads to the spatial inhomogeneity
of turbulent kinetic energy budgets (Pope 2000). The generation and distribution of
small-scale structures are highly non-uniform. In wall turbulence, a large proportion of
small-scale structures reside in the near-wall region or in the near vicinity of edges
of uniform momentum zones, while they are sparse within the uniform momentum
zones (Adrian, Meinhart & Tonkins 2000; Eisma et al. 2015; De Silva et al. 2017).
The amplitude modulation effect can well demonstrate the spatial inhomogeneity of
small-scale structures, showing that the amplitude of the small-scale fluctuations increases
beneath the high-speed LSS and decreases above the high-speed LSS (Marusic et al. 2010;
Mathis et al. 2011a; Agostini & Leschziner 2014). In compressible turbulent mixing layers,
the small-scale vortical structures have an apparent preference for clustering near the
top of the large-scale low-speed regions, which is directly associated with high-shearing
motions near the upper portion of the low-speed structures (Wang et al. 2022, 2024).
The modulation scenario in compressible mixing layers bears some similarity to that
observed in the outer region of wall-bounded turbulence (Bandyopadhyay & Hussain
1984; Fiscaletti, Ganapathisubramani & Elsinga 2015; Wang et al. 2022). Lee et al.
(2015) observed that the amplitude modulation effect causes high-speed LSSs to have
greater intensities than low-speed LSSs near the wall, and vice versa in the outer region.
Since structures of different scales have varying effects on the turbulent kinetic energy
budget, the non-uniform distribution of turbulent structures will result in a non-uniform
distribution of the budget terms. The inhomogeneous distribution of small-scale structures
inevitably results in the inhomogeneous distribution of viscous dissipation. In other words,
LSSs indirectly influence the spatial distribution of dissipation. However, the detailed
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mechanism for the impact of the amplitude modulation effect on the turbulent kinetic
energy budget remains unknown.

The goal of this paper is to investigate the impact of LSSs on the turbulent kinetic energy
budgets in physical space for a compressible turbulent mixing layer, and to further clarify
the growth suppression mechanism associated with compressibility effects. The paper is
organized as follows. The governing equations and computational method are provided in
§§ 2 and 3. In § 4, the main results of the investigation on turbulent kinetic energy budget
are presented. Finally, conclusions are drawn in § 5.

2. Direct numerical simulation of compressible mixing layers

We study compressible temporally evolving mixing layer of an ideal gas governed by the
following dimensionless Navier–Stokes equations in the conservative form (Wang et al.
2012, 2022):

∂ρ

∂t
+ ∂(ρuk)

∂xk
= 0, (2.1)

∂(ρui)

∂t
+ ∂(ρukui)

∂xk
= − ∂p

∂xi
+ 1

Re
∂σik

∂xk
, (2.2)

∂E
∂t

+ ∂[(E + p)uj]
∂xj

= 1
α

∂

∂xk

(
κ

∂T
∂xk

)
+ 1

Re
∂(ujσjk)

∂xk
, (2.3)

p = ρT/(γ M2), (2.4)

where ui, ρ, p and T are the instantaneous velocity component, density, pressure and
temperature, respectively. Here, the viscous stress σik is defined as

σik = 2μSik − 2μΘ

3
δik, (2.5)

in which Sik = (∂ui/∂xk + ∂uk/∂xi)/2 is the strain rate tensor and Θ = ∂uk/∂xk is the
velocity divergence or dilatation. The total energy per unit volume E is given by

E = p
γ − 1

+ 1
2
ρuiui. (2.6)

Moreover, the temperature-dependent viscosity coefficient μ and thermal conductivity
coefficient κ are specified by Sutherland’s law (Sutherland 1893).

The variables in the governing equations of compressible turbulence have already been
normalized by a set of reference scales, including the reference length Lr, velocity Ur,
density ρr, pressure pr = ρrU2

r , temperature Tr, energy per unit volume ρrU2
r , viscosity

μr and thermal conductivity κr (Samtaney, Pullin & Kosović 2001; Wang et al. 2012).
There are three reference governing parameters: the reference Reynolds number Re =
ρrUrLr/μr, the reference Mach number M = Ur/cr and the reference Prandtl number
Pr = μrCp/κr, which is assumed to be equal to 0.7. In addition, the reference speed of
sound is defined by cr = √

γ RTr, where R is the specific gas constant. Here, γ = Cp/Cv

is the ratio of specific heat at constant pressure Cp to that at constant volume Cv , which is
assumed to be equal to 1.4. The parameter α is defined as α = PrRe(γ − 1)M2.

A hybrid compact-weighted essentially non-oscillatory (WENO) scheme (Wang
et al. 2010) is applied for numerical simulations of compressible temporally evolving
mixing layer. The hybrid scheme combines an eighth-order compact finite difference
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scheme (Lele 1992) in smooth regions and a seventh-order WENO scheme (Balsara &
Shu 2000) in shock regions. The numerical simulations essentially resolve flow fields
above the Kolmogorov length scale, while the discontinuities around shock waves are
captured by the WENO scheme. The computational domain with lengths Lx × Ly × Lz =
314δ0

θ × 314δ0
θ × 157δ0

θ in the streamwise, vertical and spanwise directions is discretized
uniformly with the number of grid points equal to Nx × Ny × Nz = 1024 × 1024 × 512,
where δ0

θ is the initial momentum thickness. The momentum thickness δθ is computed by
(Vreman et al. 1996)

δθ = 1
ρ∞�U2

∫ +∞

−∞
ρ̄ (�U/2 − ũ) (�U/2 + ũ) dy, (2.7)

where ũ and ρ̄ are the Favre average of streamwise velocity and the Reynolds average of
density, respectively. Here, �U is the free stream velocity difference across the shear layer.
The Reynolds average of a variable φ is denoted by φ̄, while the Reynolds fluctuation is
denoted as φ′ = φ − φ̄. The Favre average of a variable φ is denoted by φ̃ = ¯ρφ/ρ̄, and
its Favre fluctuation is denoted as φ′′ = φ − φ̃.

Boundary conditions are periodic in the homogeneous streamwise and spanwise
directions. To allow periodic configuration in the vertical direction, the mean streamwise
velocity is initialized by a hyperbolic tangent profile with two shear layers (one is located
at the middle and the other at the boundary of transverse direction),

ũ = 1
2
�U

[
tanh

(
y

2Cδδ
0
θ

)
− tanh

(
y + Ly/2

2Cδδ
0
θ

)
− tanh

(
y − Ly/2

2Cδδ
0
θ

)]
, (2.8)

where Cδ is an adjustment constant that is determined by the initial momentum thickness
δ0
θ (Vaghefi 2014; Vaghefi & Madnia 2015; Wang et al. 2022). A numerical diffusion

zone is applied near the vertical boundary, which can reduce the intensity of possible
disturbances at the vertical boundary such that there is a negligible effect on the mixing
layer (Reckinger, Livescu & Vasilyev 2016). The mean vertical and spanwise velocities are
set to zero. The initial temperature T is obtained from the Busemann–Crocco relationship
(Ragab & Wu 1989; Arun et al. 2019) for compressible shear layers,

T = 1 + 1
2 (γ − 1)M2

c (1 − ũ2). (2.9)

In this equation, the convective Mach number Mc is defined as Mc = �U/(2c∞), where
c∞ is the speed of sound in the free stream. The pressure field is uniform and the density
field is acquired from the ideal gas equation of state. To accelerate the transition to
turbulence, a spatially correlated perturbation velocity field obtained by the digital filter
method (Klein, Sadiki & Janicka 2003) is superposed on mean velocities. The filtering
length is chosen as the initial vorticity thickness, computed by δω = �U/(dũ/dy)max, in
each direction.

Several key non-dimensional flow parameters corresponding to the self-similar period
at the centreline are presented in table 1. The statistics are obtained by averaging along
the homogeneous x and z directions, and in time at normalized time intervals of 25 in
the self-similar period. To enhance statistical stability, ensemble averaging was performed
over five independent runs with different initial random perturbation for each convective
Mach number.
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Case Mc τ Mt Reθ Reλ Reω δθ /δω Θrms ωrms η/�x lx/Lx lz/Lz

M02 0.2 τ0 = 625 0.10 3768 266 19960 0.189 0.014 11.575 0.42 0.061 0.029
τf = 875 0.09 4798 292 25166 0.191 0.013 12.414 0.46 0.070 0.035

M08 0.8 τ0 = 750 0.34 2990 202 17230 0.176 0.158 9.771 0.49 0.079 0.021
τf = 1250 0.31 4546 236 26028 0.175 0.150 10.858 0.56 0.123 0.025

M18 1.8 τ0 = 1250 0.65 3036 200 21158 0.142 1.027 7.867 0.86 0.090 0.036
τf = 2250 0.57 5232 234 38094 0.136 0.906 9.292 1.05 0.151 0.043

Table 1. Simulation parameters at the beginning (τ = τ0) and end (τ = τf ) of the self-similar period. The
values of Mt, Reλ, K, ω, Θrms, η, lx and lz are obtained at y = 0.

The numerical simulations have been performed for three different convective Mach
numbers, Mc = 0.2, 0.8, 1.8. The Reynolds numbers based on the momentum thickness
Reθ , the vorticity thickness Reω and the Taylor microscale Reλ are defined as

Reθ = ρ∞�Uδθ

μ∞
, Reω = ρ∞�Uδω

μ∞
, Reλ = 2K

√
5ρ

με
, (2.10a–c)

respectively, where ε is the turbulent kinetic energy dissipation rate per unit mass and μ is
the viscosity coefficient. The initial momentum thickness Reynolds number is Reθ = 320.
The self-similar period is carefully determined by analysing the time evolution of the mean
velocity, Reynolds stresses and integrated transfer terms of turbulent kinetic energy. The
resulting time duration of the self-similar period is from τ0 to τf . The turbulent Mach
number Mt = √

2K/c ranges from 0.1 to 0.6, where K is the turbulent kinetic energy and
c is the average speed of sound. The lowest turbulent Mach number case corresponds to
a nearly incompressible condition, while the highest turbulent Mach number case almost
approaches the strongest compressibility effects reported in the literature of numerical
simulations (Pantano & Sarkar 2002; Arun et al. 2019; Wang et al. 2022), to the best of
our knowledge.

The integral length scales in the streamwise direction (lx) and spanwise direction (lz)
are defined as

lx =
∫ Lx/2

0
Rxu(rx) drx, lz =

∫ Lz/2

0
Rzu(rz) drz, (2.11a,b)

respectively. Here, Rxf and Rzf are the two-point correlation of a variable f in streamwise
and spanwise directions, respectively. They are defined as

Rxf (rx) = 〈 f ′(x, 0, z)f ′(x + rx, 0, z)〉
f 2
rms

, Rzf (rz) = 〈 f ′(x, 0, z)f ′(x, 0, z + rz)〉
f 2
rms

,

(2.12a,b)

where 〈〉 stands for ensemble average. The integral length scales in the streamwise and
spanwise directions are sufficiently small compared with the length of the computational
domain, ensuring that the self-similar growth of LSSs is not confined. Additional
discussions on the confinement effects of the computational domain are provided in
the Appendix. In terms of the local Kolmogorov length scale η = (μ3/(ρ3ε))1/4, the
resolution parameter η/�x is in the range 0.42 ≤ η/�x ≤ 1.05 at the centreline, where �x
is the grid length in each direction, indicating that the resolution of the present simulations
is fine enough to resolve the smallest scales in the flow, as given in table 1. A detailed
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Effect of large-scale structures on TKE budget

description and a comprehensive validation of the DNS can be found in recent works by
the authors (Wang et al. 2022, 2024).

3. Budget equations for turbulent kinetic energy

The non-dimensional form of the fluctuating velocity field equation for a compressible
temporally evolving mixing layer can be written as (Arun et al. 2021)

∂ρu′′
i

∂t
+ ∂ρu′′

i uj

∂xj
+ ρu′′

j
∂ ũi

∂xj
= ρ

ρ̄

∂ρu′′
i u′′

j

∂xj
− ∂p′δij

∂xj
+ 1

Re

∂σ ′
ij

∂xj

+
(

1 − ρ

ρ̄

)(
−∂ p̄δij

∂xj
+ 1

Re
∂σ̄ij

∂xj

)
. (3.1)

By multiplying (3.1) with u′′
i , the budget equation for instantaneous turbulent kinetic

energy, K = (ρu′′
i u′′

i )/2, is obtained as follows:

∂K
∂t

+ ∂Kũk

∂xk
= T + P + Φ − ε + Σ. (3.2)

Here, the left-hand side two terms represent the temporal variation term and the convective
term, respectively. Their sum represents the total variation of turbulent kinetic energy
as moving with a fluid element, which will be denoted as V in the following. Here, T
is the spacial diffusion of turbulent kinetic energy, P is the production term, Φ is the
pressure-dilatation term, ε is the viscous dissipation term and Σ is the mass flux coupling
term. These terms are defined as

T = Tt + Tp + Tv, (3.3a)

Tt = −1
2

∂ρu′′
i u′′

i u′′
k

∂xk
, Tp = −∂p′u′′

i δik

∂xk
, Tv = 1

Re
∂σ ′

iku′′
i

∂xk
, (3.3b)

P = −ρu′′
i u′′

k
∂ ũi

∂xk
, (3.3c)

Φ = p′ ∂u′′
i

∂xi
, (3.3d)

ε = 1
Re

σ ′
ik

∂u′′
i

∂xk
, (3.3e)

Σ = ρu′′
i

ρ̄

∂ρu′′
i u′′

k
∂xk

+ u′′
i

(
1 − ρ

ρ̄

)(
1

Re
∂σ̄ik

∂xk
− ∂ p̄

∂xi

)
, (3.3f )

where the total diffusion T includes turbulent diffusion Tt, pressure diffusion Tp
(pressure–velocity interaction) and viscous diffusion Tv . Among the above terms, the
diffusion, production and dissipation terms are dominant in the transport of turbulent
kinetic energy K. The mass flux coupling term is negligibly small after ensemble averaging
(Pantano & Sarkar 2002), but it becomes comparable to the other dominant terms when
conditional averaging is applied, as will be shown in the subsequent analysis of this paper.
The transport equation for the turbulent kinetic energy components Ki can be simply
obtained by avoiding summation convention over repeated indices i in (3.2) and (3.3),
and the corresponding transport terms are Vi, Ti, Pi, Φi, εi and Σi (Pantano & Sarkar
2002; Arun et al. 2019). The pressure-strain term, Φi, becomes dominant for redistributing
energy between three components of turbulent kinetic energy.
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Figure 1. An example of high-speed LSSs (red contours of u′′ > 0) and low-speed LSSs (blue contours of
u′′ < 0) in fluctuating streamwise velocity field is shown in the y–z plane. The black solid lines present the
TNTI. The green dashed line show a specific horizontal plane.

4. Results and discussions on turbulent kinetic energy budget

The high- and low-speed LSSs can be detected by the premultiplied energy spectra (Kim
& Adrian 1999; Monty et al. 2009; Watanabe & Nagata 2021), the two-point correlation
of fluctuating streamwise velocity (Ganapathisubramani et al. 2005; Monty et al. 2007;
Wang et al. 2022) or the proper orthogonal decomposition (Baltzer, Adrian & Wu 2013;
Pirozzoli et al. 2015). In the instantaneous flow field, individual high- and low-speed LSSs
are usually extracted by the isosurfaces of the fluctuating streamwise velocity that exceed
a threshold value (Dennis & Nickels 2011; Lee et al. 2014; Deng et al. 2018). In this
paper, we set the threshold value to zero, meaning that the turbulent region consists
only of low-speed LSSs with u′′ < 0 and high-speed LSSs with u′′ > 0. Unlike Lee
et al. (2015), we did not apply filtering to the flow field, which means the LSSs in the
instantaneous field include both large-scale turbulent structures and embedded small-scale
turbulent structures. This approach allows us to analyse the influence of LSSs on the
spatial distribution of turbulent kinetic energy transport terms, as well as the multiscale
characteristics of turbulence. The turbulent/non-turbulent interface (TNTI) is used as the
outer edge of LSSs instead of the outer parts of the contour lines of u′′/�U = 0, similar to
the outer edge of the uniform momentum zones (De Silva et al. 2017; Fan et al. 2019).
In figure 1, the high- and low-speed LSSs in fluctuating streamwise velocity field is
shown in the y–z plane for example. An isoline of the root-mean-square (r.m.s.) vorticity
magnitude ωrms = 0.01�U/δ0

θ is selected as the nominal threshold to identify the TNTI
(Jahanbakhshi & Madnia 2016; Watanabe, Zhang & Nagata 2018; Wang et al. 2022).

At each horizontal plane, the instantaneous field of mixing layers is classified into three
groups: low-speed regions with u′′ < 0, high-speed regions with u′′ > 0 and engulfed
regions, as shown in figure 1. The engulfed region refers to the non-turbulent area induced
by the rollup of LSSs. According to this classification, the Reynolds average of physical
quantity φ can be decomposed into three parts as

φ̄ = φ̄n + φ̄p + φ̄e, (4.1)
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Figure 2. Volume fraction of (a) low-speed LSS and (b) high-speed LSS at Mc = 0.2, 0.8 and 1.8.

where the three terms on the right-hand side represent contributions of the low-speed
LSSs, high-speed LSSs and engulfed regions to φ̄ (denoted by subscripts n, p and e,
respectively). The contribution of the engulfed regions or non-turbulent flow is negligibly
small and will not be discussed in the following.

To study the influence of LSSs on the spatial distribution of a physical quantity, we
apply conditional average method based on the magnitude of u′′ in the turbulent region.
The conditionally averaged physical quantity φ(x, y, z, t) based on the low-speed LSSs can
subsequently be defined as

φ̂n( y) = 〈φ(x, y, z, t)|u′′(x, y, z, t) < 0, TR〉, (4.2)

where TR indicates that the conditioning point is located in turbulent regions, and the
subscript n donates in regions with negative u′′. The two-dimensional conditionally
averaged physical quantity φ(x, y, z, t) based on the condition of u′′ < −0.15�U is defined
as

φ̆n(rx, ry) = 〈φ(x + rx, y + ry, z, t)|u′′(x, y, z, t) < −0.15�U, TR〉, (4.3)

where rx and ry represent the streamwise and vertical distances from the conditioning
point, respectively. Only strong-u′′ regions within low-speed LSSs are chosen.

Figure 2(a) presents the volume fraction of low-speed LSSs (VFn) as a function of the
vertical distance y/δω at convective Mach numbers Mc = 0.2, 0.8 and 1.8. In the core
region of the mixing layer, VFn decreases linearly with respect to the vertical distance at a
coefficient of 0.165 (VFn = 0.5 − 0.165y/δω). As the convective Mach number increases,
the linear region of VFn extends over a broader range, but the coefficient remains nearly
constant. Beyond this linear decrease region, VFn rapidly decreases towards the mixing
layer edges and approaches almost zero when y/δω < −1.0 or y/δω > 0.9. This occurs
because of the increased intermittency effects at the edge of the mixing layer, which means
that the proportion of non-turbulent flow rapidly increases (Watanabe et al. 2019). Note
that the volume fraction of the high-speed LSSs VFp exhibits a very good symmetry with
respect to VFn in the mixing layer. Due to the symmetry of high- and low-speed LSSs in
temporally developing mixing layers, the statistics related to high-speed LSSs are omitted
for brevity in the following analysis. The non-uniform distribution of volume fraction of
low-speed LSSs can significantly influence the contribution of LSSs to turbulent kinetic
energy and its transport processes.
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Figure 3. (a–c) Contributions of the low-speed LSSs to turbulent kinetic energy K̄i,n/(ρ∞�U2) and (d–f )
conditionally averaged turbulent kinetic energy K̂i,n/(ρ∞�U2) at Mc = 0.2, 0.8 and 1.8. (a,d) Streamwise,
(b,e) vertical and (c, f ) spanwise components.

4.1. Turbulent kinetic energy
Figures 3(a)–3(c) present the contributions of the low-speed LSSs to the turbulent
kinetic energy K̄i,n/(ρ∞�U2) at convective Mach numbers Mc = 0.2, 0.8, 1.8. The
components of the turbulent kinetic energy are normalized by ρ∞�U2. Previous studies
have demonstrated the symmetry of K̄i about the centre plane of the mixing layers (Rogers
& Moser 1994; Pantano & Sarkar 2002; Wang et al. 2022). However, figures 3(a)–3(c)
show distinct upward shifts in the peak positions of K̄i,n/(ρ∞�U2), suggesting that the
contributions of the low-speed LSSs are dominant in the upper half of the mixing layer.
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This observation is qualitatively similar to the results of Lee et al. (2015) in wall-bounded
turbulence, but the distribution in the vertical direction in wall turbulence is more complex.
Lee et al. (2015) observed that low-speed LSSs contribute more to turbulent kinetic energy
in the outer region, while high-speed LSSs contribute more in the near-wall region. In
mixing layers, the low-speed LSSs contribute more to turbulent kinetic energy in the upper
half-region, while high-speed LSSs contribute more in the lower half-region.

Figures 3(d)–3( f ) show the conditionally averaged turbulent kinetic energy conditioned
on the low-speed LSSs K̂i,n/(ρ∞�U2) at convective Mach numbers Mc = 0.2, 0.8,
1.8. Compared with the profiles of K̄i,n/(ρ∞�U2), the profiles of K̂i,n/(ρ∞�U2) are
similar in the central region of the mixing layer, but are significantly amplified at the edges,
especially for the streamwise and vertical components of turbulent kinetic energy. At
Mc = 0.2, K̂2,n/(ρ∞�U2) exhibits two plateaus, located at −0.8 < y/δω < −0.6 and
0.6 < y/δω < 0.8, respectively. Surprisingly, when y/δω > 0.7, the vertical turbulent
kinetic energy exceeds the streamwise turbulent kinetic energy. As the convective Mach
number increases from Mc = 0.2 to 1.8, the magnitudes of K̂i,n/(ρ∞�U2) become smaller
in both the central region and edges of the mixing layer, demonstrating the significant
suppression of compressibility on the turbulent kinetic energy. Interestingly, their peak
positions remain insensitive to the convective Mach number.

From the perspective of turbulent structures, the turbulent kinetic energy at the central
region of the mixing layer primarily originates from LSSs, while near the edges of the
mixing layer, it mainly comes from small-scale structures. The amplification of turbulent
kinetic energy near the edges of the mixing layer is consistent with the amplitude
modulation effect exerted by the LSSs onto the near-edge small-scale structures. This
effect has been extensively studied in wall turbulence (Marusic et al. 2010; Mathis
et al. 2011a; Agostini & Leschziner 2014) and has also been confirmed in free shear
layers (Bandyopadhyay & Hussain 1984; Fiscaletti et al. 2015; Wang et al. 2022, 2024),
including turbulent wakes, mixing layers and jets. Talluru et al. (2014) reported that in
wall turbulence, all three components of velocity are modulated in a very similar manner
and the amplitude modulation is relatively uniform across all three velocity components.
However, according to figures 3(d)–3(f ), the amplitude modulation in the mixing layers is
not uniform across all three velocity components. The vertical velocity exhibits stronger
amplitude modulation compared with the streamwise and spanwise components, with the
spanwise velocity showing the least significant amplitude modulation. Meanwhile, we
infer that the degree of amplitude modulation decreases with increasing convective Mach
number in compressible mixing layers.

4.2. Production
Figure 4(a) shows the contribution of low-speed LSSs to the production of turbulent
kinetic energy P̄n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8. The budget terms
are normalized by the average dissipation at the centreline ε̄c. The production contribution
of low-speed LSSs P̄n/ε̄c is unimodal with the peak located in the upper half of the
mixing layer (y > 0). Before reaching the edge of the mixing layer, when y/δω > 0.7
or y/δω < −0.6, P̄n/ε̄c is nearly zero. This observation highlights that the dominant
contribution of the low-speed LSSs to the production comes from the upper half of
the mixing layer. Here, P̄n/ε̄c for different Mach numbers do not completely overlap,
displaying a separation of approximately 10 % to 20 %. For y/δω > −0.25, the production
contribution of low-speed LSSs is highest at Mc = 0.2, moderate at Mc = 1.8 and lowest at
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Figure 4. (a) Contributions of the low-speed LSSs to production P̄n/ε̄c and (b) conditionally averaged
production P̂n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.

Mc = 0.8, indicating a non-monotonic variation with Mc. Conversely, for y/δω < −0.25,
P̄n/ε̄c increases with increasing Mc.

Figure 4(b) shows the conditionally averaged production term conditioned on the
low-speed LSSs P̂n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8. The shapes of
P̄n/ε̄c and P̂n/ε̄c are similar to each other. Unlike K̂i,n/(ρ∞�U2), P̂n/ε̄c is not amplified
at the edges of the mixing layer, indicating that the small-scale structures hardly generate
turbulent kinetic energy. Overall, the production term is highest at Mc = 0.2, moderate at
Mc = 1.8 and lowest at Mc = 0.8, indicating a non-monotonic relationship with Mc, except
for 0.3 < y/δω < 0.6. When normalized by ρ∞�U3/δω, the production of the TKE P̄n
clearly shows a monotonic decrease with increasing Mc, consistent with previous studies
(Pantano & Sarkar 2002; Vaghefi 2014), although this result is not presented in this paper.

Figures 5(a) and 5(b) show two-dimensional conditionally averaged velocity and
production based on the condition of u′′ < −0.15�U at convective Mach numbers
Mc = 0.2 and 1.8. The velocity is normalized by �U. The conditionally averaged
streamwise velocity ŭn/�U (solid lines) demonstrates elongated forward-leaning LSSs,
extending a distance of 2δω in the streamwise direction. These structures exhibit a strong
negative correlation with the conditionally averaged vertical velocity v̆n/�U (dashed
lines), indicating that low-speed LSSs are predominantly moving upwards. The spatial
distribution of the production is inherently similar to the shape of the LSSs, confirming
that LSSs contribute favourably to the turbulence production. The production mainly
occurs at the centre of the LSSs, and decreases as the convective Mach number increases
from Mc = 0.2 to 1.8.

We decompose the kinetic energy production P into a positive component P+ and a
negative component P−: P = P+ + P−. Here, P+ = 0.5(P + |P|) and P− = 0.5(P − |P|).
The positive production is contributed by negative Reynolds shear stress corresponding to
Q2 and Q4 events (or ejection and sweep events) in quadrant analysis, while the negative
production is contributed by positive Reynolds shear stress corresponding to Q1 and Q3
events (or positive quadrant events) (Pope 2000; Wallace 2016). On average, the low-speed
LSSs move upwards, and the high-speed LSSs move downwards; namely, they contribute
most of the positive kinetic energy production. In figures 5(c) and 5(d), we present the
conditionally averaged negative component of production P̆−

n /ε̄c, which is significantly
smaller than the total production P̆n/ε̄c. At Mc = 0.2, negative production events are
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Figure 5. Two-dimensional conditionally averaged production P̆n/ε̄c (contours), streamwise velocity ŭn/�U
(solid lines) and vertical velocity v̆n/�U (dashed lines), and based on low-speed events with u′′ < −0.15�U at
(a) Mc = 0.2, (b) Mc = 1.8. Conditionally averaged negative component of production P̆−

n /ε̄c at (c) Mc = 0.2,
(d) Mc = 1.8.

mainly concentrated within the upper-right region of the low-speed LSSs. Conversely, at
Mc = 1.8, these negative production events primarily emerge within the lower-left region
of the low-speed LSSs.

4.3. Dissipation
Figure 6(a) shows the contribution of low-speed LSSs to the dissipation of turbulent
kinetic energy ε̄n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8. The dissipation
contribution of low-speed LSS ε̄n/ε̄c is unimodal peaking around y/δω ≈ 0.1. This
observation indicates that the dissipation induced by low-speed LSSs tends towards the
upper portion of the mixing layer. Unlike the contribution of low-speed LSSs to the
production term, ε̄n/ε̄c remains non-zero near the edge of the mixing layer, extending until
y/δω > 0.8 or y/δω < −0.8. In the profile of conditionally averaged dissipation ε̂n/ε̄c,
the dissipation near the edge of the mixing layer is significantly amplified, as shown
in figure 6(b). It is evident that in regions −1.0 < y/δω < −0.5 and 0.5 < y/δω < 1.0,
there are noticeable bumps in ε̂n/ε̄c, with the bump being more prominent in the upper
region. This observation confirms that the amplification of turbulent kinetic energy near
the edges of the mixing layer is due to small-scale structures, as shown in figures 3(d)–3(f ).
As the convective Mach number increases, these bumps of ε̂n/ε̄c rapidly decrease but still
persist.

When normalized by ρ∞�U3/δω, the dissipation decreases rapidly with increasing
convective Mach number, as shown in figure 6(c). This trend is in good agreement with
previous results reported by Vaghefi (2014). However, Pantano & Sarkar (2002) reported
that the dissipation changes relatively little with varying convective Mach numbers. The
error bar in figure 6(a) represents the discrepancy between the streamwise and vertical
dissipation components, with each representing the maximum and minimum dissipation
component, respectively. It is clear to see that the dissipation becomes more anisotropic in
component as the convective Mach number increases from Mc = 0.2 to 1.8, indicating the
anisotropic suppression effect of compressibility on the mixing process.
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Figure 6. (a) Contributions of the low-speed LSSs to dissipation ε̄n/ε̄c and (b) conditionally averaged
dissipation ε̂n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8. (c) ε̄n is normalized
by ρ∞�U3/δω with the error bar representing discrepancy among the maximum and minimum dissipation
components.

Figure 7 shows two-dimensional conditionally averaged dissipation ε̆i,n/ε̄c and
streamwise velocity ŭn/�U based on the condition of u′′ < −0.15�U at convective Mach
numbers Mc = 0.2 and 1.8. The dissipation concentrates in the upper regions of the
low-speed LSSs due to the modulation effect exerted by the LSSs on the small-scale
structures, wherein the small-scale vortical structures are activated at the top of low-speed
LSSs. This modulation effect was initially identified and extensively studied in wall
turbulence (Marusic et al. 2010; Pirozzoli & Bernardini 2011; Chan & Chin 2022) and was
observed in compressible mixing layers (Wang et al. 2022). At Mc = 0.2, the dissipation
is concentrated in the upper part of the LSSs, exhibiting downstream skewness along
the flow, with similar distributions and strengths across its components. At Mc = 1.8,
dissipation within the LSSs exhibits noticeable component anisotropy. The dissipation in
the flow direction predominates significantly over the other two components, while the
spanwise component remains intermediate, and the vertical component is the smallest.

4.4. Conversion between kinetic and internal energies
Figure 8(a) shows the contribution of low-speed LSSs to the pressure-dilatation term
Φ̄n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8. The pressure-dilatation term
represents the energy exchange between turbulent kinetic energy and internal energy, and
is significantly smaller than the dissipation term. At convective Mach number Mc = 0.2,
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Figure 7. Two-dimensional conditionally averaged components of dissipation ε̆i,n/ε̄c (contours) and
streamwise velocity ŭn/�U (solid lines) based on low-speed events with u′′ < −0.15�U at (a–c) Mc = 0.2
and (d–f ) 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.
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Figure 8. (a) Contributions of the low-speed LSSs to pressure-dilatation Φ̄n/ε̄c and (b) conditionally
averaged pressure-dilatation Φ̂n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.

the pressure-dilatation term Φ̄n/ε̄c is negative almost everywhere with its minimum
at y/δω = −0.2, indicating that the mean pressure-dilatation converts turbulent kinetic
energy into internal energy within the LSSs. As the convective Mach number increases
from Mc = 0.2 to 1.8, the magnitude of the minimum value of Φ̄n/ε̄c increases, and the
location of this minimum shifts slightly downwards. At higher convective Mach numbers
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Mc = 0.8 and 1.8, Φ̄n/ε̄c becomes positive for y/δω > 0.2, peaking at y/δω = 0.5. This
observation implies that pressure-dilatation converts internal energy into the turbulent
kinetic energy at the upper region of low-speed LSSs where the small-scale structures
are concentrated. The contribution of low-speed LSSs to mean pressure-dilatation Φ̄n/ε̄c
increases with enhanced compressibility, but it still remains almost two orders of
magnitude smaller than the production and dissipation terms, and has usually been
neglected in previous literature (Pantano & Sarkar 2002; Arun et al. 2019).

However, the local pressure-dilatation can reach the same order of magnitude as the
dissipation term near the edges of the mixing layer, as shown in figure 8(b), where
the conditionally averaged pressure-dilatation term conditioned on the low-speed LSSs
Φ̂n/ε̄c obtains a minimum of −0.15 at y/δω = 0.9 at the highest convective Mach number
Mc = 1.8, even exceeding the magnitude of dissipation at the corresponding locations. It is
clearly observed that at Mc = 1.8, the pressure-dilatation fluctuates significantly near the
upper edge of the mixing layer. Additionally, beyond the upper edge of the mixing layer,
at y/δω > 1.0, there is still noticeable negative pressure-dilatation, whereas near the lower
boundary of the mixing layer, the magnitude of pressure-dilatation is much smaller. This
is likely related to the formation of shock waves. Rossmann, Mungal & Hanson (2002) and
Zhou, He & Shen (2012) discovered that the shock formation mechanism closely resembles
the scenario of high-speed flow around a bluff body. In other words, the upward-moving
low-speed LSSs act like bulges of turbulent fluid protruding into the high-speed free
stream, leading to the formation of shock waves propagating outwards from the surfaces
of these LSSs. The formation of shock waves results in a dramatic conversion of turbulent
kinetic energy into internal energy.

4.5. Inter-component energy transfer
The pressure-strain components are responsible for redistributing turbulent kinetic energy
from the streamwise direction to the vertical and spanwise directions on average in
turbulent mixing layers (Pantano & Sarkar 2002; Arun et al. 2019). Figures 9(a), 9(c) and
9(e) show the contribution of low-speed LSSs to the pressure-strain components Φ̄i,n/ε̄c
at convective Mach numbers Mc = 0.2, 0.8, 1.8. The three pressure-strain components
Φ̄i,n/ε̄c are of the same order of magnitude as the dominant budget terms including
production and dissipation. The profiles of all pressure-strain components Φ̄i,n/ε̄c exhibit
a unimodal shape with their peaks located in the upper half of the mixing layer,
demonstrating that the contribution of the low-speed LSSs to the component redistribution
of turbulent kinetic energy concentrates in the upper half of the mixing layer. The
redistribution predominantly occurs within the region −0.5 < y/δω < 0.7, where the
streamwise component Φ̄1,n/ε̄c is negative, while both Φ̄2,n/ε̄c and Φ̄3,n/ε̄c components
are positive, with their magnitudes being nearly identical to each other. This result
indicates that the energy loss from the streamwise component is equally redistributed to
the vertical and spanwise components.

Near the edge of the mixing layer, Φ̄i,n/ε̄c is obviously non-zero for y/δω < −0.5
and y/δω > 0.7. Similar to the dissipation, the volume fraction corresponding to the
pressure redistribution process near the mixing layer edge is small, but the magnitude
of the pressure-strain components is not negligible. This is evident in the conditionally
averaged pressure-strain components Φ̂i,n/ε̄c shown in figures 9(d)–9(f ). Within region
−1.0 < y/δω < −0.5, both Φ̂1,n/ε̄c and Φ̂3,n/ε̄c exhibit a negative peak, while Φ̂2,n/ε̄c
shows a positive peak, even reaching twice the magnitude of its peak observed in the
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Figure 9. (a–c) Contributions of the low-speed LSSs to pressure-strain Φ̄i,n/ε̄c and (d–f ) conditionally
averaged pressure-strain Φ̂i,n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.
(a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

central region of the mixing layer at low convective Mach number Mc = 0.2. These peaks
are all located around y/δω ≈ −0.85. The observation indicates that both streamwise and
spanwise turbulent kinetic energy are simultaneously converted to the vertical direction
near the edge of the mixing layer. This can be attributed to the dynamics of the TNTI.
A key characteristic of the TNTI is the well-known vorticity jump (or strong velocity
gradient) across the interface, which resembles a shear layer that can become unstable
under certain conditions. This unstable shear layer can cause the formation of secondary
Kelvin–Helmholtz instabilities, which are linked to the nibbling process at the TNTI
(Philip et al. 2014; Reuther & Kähler 2020). The secondary Kelvin–Helmholtz instabilities
redistribute turbulent kinetic energy by converting the horizontal components into the
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Figure 10. Two-dimensional conditionally averaged components of pressure-strain Φ̆i,n/ε̄c (contours) and
streamwise velocity ŭn/�U (solid lines) based on low-speed events with u′′ < −0.15�U at (a–c) Mc = 0.2
and (d–f ) 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

vertical component. Similarly, at the upper edge of the mixing layer, within the region
0.5 < y/δω < 1.0, the exchange of streamwise and spanwise turbulent kinetic energy to
the normal direction also occurs, albeit with relatively weaker intensity. It is interesting
to note that the peaks of the conditionally averaged pressure-strain Φ̂i,n/ε̄c near the
edges of the mixing layer rapidly decrease with the increase in convective Mach number,
whereas the peaks in the central region of the mixing layer remain insensitive to the
convective Mach number. This observation may be due to the fact that the pressure
redistribution process occurs at both large and small scales. The large scales contribute
more significantly to the overall redistribution, while the small scales exhibit more intense
activity (Lee & Moser 2019; Wang et al. 2021). The increase in compressibility noticeably
suppresses the pressure redistribution process associated with the small-scale structures.
When normalized by ρ∞�U3/δω, the pressure-strain terms exhibit a significant decrease
with increasing Mach number, and are omitted here for the sake of brevity. In agreement
with previous investigations, the decreasing of the pressure-strain term with increasing Mc
leads to inhibited energy redistributing from the streamwise to cross-stream fluctuations,
to the reduced turbulence production and, finally, to reduced turbulence levels as well as
reduced growth rate of the shear layer (Vreman et al. 1996; Pantano & Sarkar 2002; Mahle
2007).

Figure 10 shows two-dimensional conditionally averaged pressure-strain Φ̆i,n/ε̄c and
velocity ŭn/�U based on the condition of u′′ < −0.15�U at convective Mach numbers
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Mc = 0.2 and 1.8. Although, on average, energy is evenly redistributed from streamwise
to vertical and spanwise directions, the shapes of Φ̆2,n/ε̄c and Φ̆3,n/ε̄c in low-speed LSSs
are completely different. This observation indicates a highly non-uniform redistribution
of turbulent kinetic energy from the streamwise to the vertical and spanwise directions
at the same location within LSSs. Far away from the centre of low-speed LSSs and
biased towards the upstream direction, Φ̆1,n/ε̄c and Φ̆3,n/ε̄c display a large-scale region
with strikingly similar shapes and large magnitude. In this region, Φ̆1,n/ε̄c takes on a
negative value, while Φ̆3,n/ε̄c is positive. Thus, the streamwise turbulent kinetic energy
K1 is predominantly redistributed to the spanwise direction K3. Near the centre of the
LSSs and in a smaller region located above, there is a significant transfer of energy
from K1 to K2, as shown in figures 10(b) and 10(e). Below the centre of the LSSs, at
(rx/δω, ry/δω) ≈ (0.0, −0.2), Φ̆3,n/ε̄c is negative, while Φ̆1,n/ε̄c and Φ̆2,n/ε̄c are positive,
with relatively small magnitudes. Therefore, a small portion of turbulent kinetic energy
is redistributed from K3 to K1 and K2, primarily to K2. The non-uniform redistribution
shown in figures 9 and 10 is related to the pressure response caused by different scales.
In the central region of the mixing layer, energy redistribution primarily occurs at larger
scales, where the streamwise turbulent kinetic energy is transferred into the spanwise and
vertical directions. Near the edges of the mixing layer, energy redistribution takes place
at smaller scales, where turbulent kinetic energy shifts from the streamwise and spanwise
components to the vertical component.

To further investigate the turbulent kinetic energy exchange among different
components, we decompose the pressure-strain terms into positive and negative
components: Φi = Φ+

i + Φ−
i , where the positive component Φ+

i = 0.5(Φi + |Φi|) and
the negative component Φ−

i = 0.5(Φi − |Φi|). The two-dimensional conditionally average
of the positive and negative pressure-strain components are shown in figures 11 and 12 for
Mc = 0.2 and 1.8, respectively. At low Mach number Mc = 0.2, the contours of Φ̆+

i,n/ε̄c

and Φ̆−
i,n/ε̄c exhibit strikingly similar shapes, featuring a maximum value skewed towards

the upper right side of the LSSs, with Φ̆+
1,n/ε̄c having smaller magnitude. This observation

indicates that each turbulent kinetic energy component not only receives energy from the
other two directions, but also contributes energy to them simultaneously. At high Mach
number Mc = 1.8, the magnitudes of Φ̆+

i,n/ε̄c and Φ̆−
i,n/ε̄c decrease and become more

anisotropic compared with that at Mc = 0.2. Here, Φ̆−
1,n/ε̄c, Φ̆+

2,n/ε̄c and Φ̆+
3,n/ε̄c display

two distinct peak regions in their contours, and are significantly larger than their respective
counterparts. The transfer of energy from K1 to K2 predominantly occurs in a smaller-scale
region at the upper right of the large-scale centre (at rx = 0, ry = 0), while the transfer
from K1 to K3 takes place in a larger-scale region to the upper left of the large-scale
centre. The exchange of turbulent kinetic energy between other components is notably
reduced at Mc = 1.8.

4.6. Spatial diffusion
Figures 13(a)–13(c) show the contribution of low-speed LSSs to the turbulent diffusion
of turbulent kinetic energy T̄t,i,n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8.
Turbulent diffusion exhibits a clear anisotropy. The streamwise component of turbulent
diffusion is the largest, followed by the vertical component and the spanwise component
is the smallest. The contribution of low-speed LSSs to the streamwise turbulent diffusion
term, T̄t,1,n/ε̄c, resembles a wave shape, with a phase shift upwards by approximately
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Figure 11. Two-dimensional conditionally averaged (a–c) positive part of pressure-strain Φ̆+
i,n/ε̄c,

(d–f ) negative part of pressure-strain Φ̆−
i,n/ε̄c (contours) and streamwise velocity ŭn/�U (solid lines) based

on low-speed events with u′′ < −0.15�U at Mc = 0.2. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise
components.

0.15/δω. The peak of this wave is located at y/δω = 0.4, while the trough is positioned
around y/δω = −0.15. This observation indicates that within low-speed LSSs, T̄t,1,n/ε̄c
transports streamwise turbulent kinetic energy K1 upwards, whereas within high-speed
LSSs, it transports K1 downwards (not shown). It is interesting to note that the growth
of T̄t,1,n/ε̄c from its trough to peak is nearly linear. Unlike the streamwise component,
the vertical component of turbulent diffusion T̄t,2,n/ε̄c transports vertical turbulent kinetic
energy K2 from the centre of the mixing layer to both the upper and lower edges of the
mixing layer simultaneously, although the downward transport is relatively minor. The
spanwise component of turbulent diffusion T̄t,3,n/ε̄c, however, behaves similarly to the
vertical component, as it transports spanwise turbulent kinetic energy K3 from the centre
of the mixing layer to both the upper and lower edges of the mixing layer.

The conditionally averaged turbulent diffusion term T̂t,i,n/ε̄c is presented in
figures 13(d)–13(f ), where the local turbulent diffusion process is highlighted at the edges
of the mixing layer. Here, T̂t,1,n/ε̄c peaks at y/δω = 0.7, with an additional small trough
appearing at y/δω = −0.7. Additionally, T̂t,1,n/ε̄c exhibits linear growth from its minimum
to maximum values. At Mc = 0.2 and 0.8, the range of this linear growth region expands
to almost y/δω = 0.7. Furthermore, the range of linear growth widens with decreasing
convective Mach number, in contrast to the behaviour of the linear stage of volume
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Figure 12. Two-dimensional conditionally averaged (a–c) positive part of pressure-strain Φ̆+
i,n/ε̄c, (d–f )

negative part of pressure-strain Φ̆−
i,n/ε̄c (contours) and streamwise velocity ŭn/�U (solid lines) based on

low-speed events with u′′ < −0.15�U at Mc = 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise
components.

fraction, as shown in figure 2(a). The two peaks of T̂t,2,n/ε̄c and T̂t,3,n/ε̄c have shifted
to y/δω = ±0.8. The vertical variation of T̂t,2,n/ε̄c is very large, especially at the edges of
the mixing layer, where its peak near the upper edge even exceeds the peak of T̂t,1,n/ε̄c.
The magnitude of T̂t,3,n/ε̄c is noticeably smaller than the other two components. As the
convective Mach number increases, the conditionally averaged turbulent diffusion term
T̂t,i,n/ε̄c decreases rapidly near the edges of the mixing layer, while it remains relatively
unchanged at the centre of the mixing layer.

More insight into the spatial distribution of the turbulent diffusion can be gained from
its two-dimensional conditional average shown in figure 14. The streamwise turbulent
diffusion features two large-scale regions of similar shapes, with positive values in the
upper left and negative values in the lower right. This suggests that the streamwise
turbulent diffusion T̆t,1,n/ε̄c transports streamwise turbulent kinetic energy from the lower
right region of the low-speed LSSs to its upper left region. In other words, the direction of
turbulent diffusion of K1 is not vertical but inclined, with a skew angle of approximately
18◦ at Mc = 0.2 and 15◦ at 1.8. This angle is measured between the line (black dashed
line figure 14a,d) connecting the extrema (maximum and minimum points) of the two
large-scale regions and the horizontal direction. The direction of turbulent diffusion K2
also tends to be from the lower right region of the LSSs towards its upper left region,
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Figure 13. (a–c) Contributions of the low-speed LSSs to turbulent diffusion T̄t,i,n/ε̄c and (d–f ) conditionally
averaged turbulent diffusion T̂t,i,n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.
(a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

but with a weaker intensity. However, the direction of turbulent diffusion K3 tends to be
from the upper left region of the LSSs towards its lower right region, opposite to the
direction of K1 and K2. The inclined distribution of the turbulent diffusion components
in the x–y plane causes positive and negative values to cancel each other out when
averaged in the horizontal plane. As a result, the maximum positive and negative values
of the turbulent diffusion components in the two-dimensional average shown in figure 14
are significantly larger than their counterparts in figures 13(d)–13(f ), especially for the
streamwise component of turbulent diffusion.
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Figure 14. Two-dimensional conditionally averaged components of turbulent diffusion T̆t,i,n/ε̄c (contours) and
streamwise velocity ŭn/�U (solid lines) based on low-speed events with u′′ < −0.15�U at (a–c) Mc = 0.2
and (d–f ) 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

Figures 15(a)–15(c) show the contribution of low-speed LSSs to the pressure diffusion
of turbulent kinetic energy T̄p,i,n/ε̄c at convective Mach numbers Mc = 0.2, 0.8, 1.8.
Compared with the turbulent diffusion, the value of pressure diffusion is much smaller.
The magnitudes of the three components of pressure diffusion T̄p,i,n/ε̄c are comparable.
The contribution of low-speed LSSs to the streamwise component of pressure diffusion
T̄p,1,n/ε̄c also exhibits a wave shape, with its peak at y/δω = −0.5 and its trough at
y/δω = 0.2. Thus, it transports streamwise turbulent kinetic energy K1 from the upper to
the lower part of the mixing layer, in contrast to the role of T̄t,1,n/ε̄c. The vertical pressure
diffusion term T̄p,2,n/ε̄c exhibits a positive peak located at y/δω ≈ 0, flanked by negative
peaks on either side, with the upper negative peak stronger than the lower one, indicating
that T̄p,2,n/ε̄c transports vertical turbulent kinetic energy K2 from the edges of the mixing
layer towards its centre, in contrast to the role of T̄t,2,n/ε̄c. The distribution of T̄p,3,n/ε̄c
along the y-direction is relatively complex, with its sign changing multiple times. In the
range of −0.7 < y/δω < 0.5, T̄p,3,n/ε̄c primarily transports K3 from the upper to lower
part of the mixing layer.

The conditionally averaged pressure diffusion term T̂p,i,n/ε̄c is presented in
figures 15(d)–15(f ), where the local pressure diffusion process is highlighted at the edges
of the mixing layer. Here, T̂p,1,n/ε̄c peaks at y/δω = −0.8. Additionally, T̂p,2,n/ε̄c is nearly
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Figure 15. (a–c) Contributions of the low-speed LSSs to pressure diffusion T̄p,i,n/ε̄c and (d–f ) conditionally
averaged pressure diffusion T̂p,i,n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.
(a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

symmetric about y/δω = 0, exhibiting two remarkable negative peaks at y/δω = ±0.8,
with their magnitudes nearly equivalent to the maximum peak of T̂t,2,n/ε̄c (shown in
figure 13e). At the edges of the mixing layer, T̂p,3,n/ε̄c exhibits two positive peaks, which
are slightly larger than the two peaks of T̂t,3,n/ε̄c (shown in figure 13f ) at the edges. As the
convective Mach number increases, the conditionally averaged pressure diffusion term
T̂p,i,n/ε̄c decreases rapidly near the edges of the mixing layer.

Figure 16 presents the two-dimensional conditional average of the pressure diffusion
T̆p,i,n/ε̄c at Mc = 0.2 and 1.8. On the left side of the centre of low-speed LSSs, there exists
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Figure 16. Two-dimensional conditionally averaged components of pressure diffusion T̆p,i,n/ε̄c (contours) and
streamwise velocity ŭn/�U (solid lines) based on low-speed events with u′′ < −0.15�U at (a–c) Mc = 0.2
and (d–f ) 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

a large-scale region where the streamwise component of pressure diffusion is negative,
while on the right side, there is a large-scale region with positive streamwise pressure
diffusion. The black dashed line connecting the extrema (maximum and minimum
points) of the two large-scale regions is almost horizontal, as shown in figures 16(a)
and 16(d). This suggests that within low-speed LSSs, the streamwise pressure diffusion
component T̆p,1,n/ε̄c primarily transports K1 from left to right, and its non-uniformity
nearly leads to the transport of K1 from top to bottom, as shown in figure 15(a). The
distribution of streamwise pressure diffusion components in the x–y plane leads to a
more pronounced effect of positive and negative values cancelling each other out when
averaged in the horizontal plane. The two-dimensional distributions of the vertical and
spanwise components of pressure diffusion are relatively complex, but the overall trend
is to transport the vertical and spanwise turbulent kinetic energy downwards. At higher
convective Mach number Mc = 1.8, the pressure diffusion occurs within a smaller region.

The three components of viscous diffusion T̄v,i,n are each an order of magnitude smaller
than turbulent diffusion and pressure diffusion across all three convective Mach numbers;
therefore, they are not further analysed here for brevity.

4.7. Mass flux coupling
According to the definition of the mass flux coupling term (3.3f ), its ensemble average
is very small because the Favre average of u′′ is zero (Pantano & Sarkar 2002).
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Figure 17. (a,b) Contributions of the low-speed LSSs to mass flux coupling Σ̄i,n/ε̄c and (c,d) conditionally
averaged mass flux coupling Σ̂i,n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2, 0.8 and 1.8.
(a,c) Streamwise and (b,d) vertical components.

The conditional averages of u′′ and v′′ are of the order of �U, as shown in figures 5(a) and
5(b), while the conditional average of w′′ remains negligible. Consequently, the conditional
average of the mass flux coupling term within LSSs is not zero. Figures 17(a) and (17b)
show the contribution of low-speed LSSs to the mass flux coupling term Σ̄i,n/ε̄c at
convective Mach numbers Mc = 0.2, 0.8, 1.8. The contribution of low-speed LSSs to the
streamwise mass flux coupling term Σ̄1,n/ε̄c exhibits a positive peak at y/δω = −0.25 and
it displays a negative trough at y/δω = 0.25, with the magnitudes of its peak and trough
being almost equal. Considering the symmetry of high- and low-speed LSSs, Σ̄1,p/ε̄c and
Σ̄1,n/ε̄c are symmetrical about the origin point, which means that they nearly cancel each
other out, resulting in Σ̄1 being nearly zero. The characteristics of Σ̄2,n/ε̄c are very similar
to those of Σ̄1,n/ε̄c, except the magnitudes of the peaks and troughs are somewhat smaller.
These results indicate that Σ̄1,n/ε̄c and Σ̄2,n/ε̄c transport streamwise and vertical turbulent
kinetic energy downwards, respectively.

The conditionally averaged mass flux coupling term Σ̂i,n/ε̄c is presented in figures 17(c)
and 17(d). The trough values of Σ̂i,n/ε̄c are slightly larger than the peak values. At the
edges of the mixing layer, the local values of the mass flux coupling term do not
exhibit significant amplification, unlike the other budget terms. Here, Σ̂2,n/ε̄c shows
a minor trough near the lower edge, indicating a small amount of vertical turbulent
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Figure 18. Two-dimensional conditionally averaged mass flux coupling Σ̆i,n/ε̄c (contours) and streamwise
velocity ŭn/�U (solid lines) based on low-speed events with u′′ < −0.15�U at (a,b) Mc = 0.2 and (c,d) 1.8.
(a,c) Streamwise and (b,d) vertical components.

kinetic energy is transported upwards into the turbulent region. The spanwise mass flux
coupling term is negligible and is omitted here for the sake of brevity. Figure 18 shows
two-dimensional conditionally averaged mass flux coupling Σ̆i,n/ε̄c based on the condition
of u′′ < −0.15�U at convective Mach numbers Mc = 0.2 and 1.8. Both the streamwise
and vertical components of mass flux coupling exhibit a relatively strong negative region
in the upper part of the LSSs and a weaker positive region in the lower part, qualitatively
consistent with figures 17(c) and 17(d).

4.8. Total variation of turbulent kinetic energy in LSSs
Figures 19(a)–19(c) show the contribution of low-speed LSSs to the total variation of
turbulent kinetic energy, V̄i,n/ε̄c, at convective Mach numbers Mc = 0.2, 0.8, 1.8. The
contribution of low-speed LSSs to the total variation of streamwise turbulent kinetic
energy V̄1,n/ε̄c exhibits two distinct positive peaks: a larger one in the upper half and a
smaller one in the lower half of the mixing layer. Additionally, V̄2,n/ε̄c exhibits a distinct
double-peak distribution, while V̄3,n/ε̄c shows a positive peak only in the upper half of
the mixing layer and is nearly zero in the lower half. Near the centre of the mixing
layer, V̄2,n/ε̄c and V̄3,n/ε̄c are almost zero, whereas V̄1,n/ε̄c shows a small negative value,
indicating a reduction in streamwise turbulent kinetic energy K1 at this position. This
suggests that even at the centre, the mixing layer has not achieved a completely self-similar
state. As the convective Mach number increases, V̄i,n/ε̄c decreases and the peak of V̄2,n/ε̄c
in the lower half almost disappears at Mc = 1.8.

The conditionally averaged total variation V̂i,n/ε̄c is presented in figures 15(d)–15(f ).
Near the upper edge of the mixing layer, the total variation of K1 is very prominent,
with a peak at y/δω ≈ 0.7. In contrast, near the lower edge, the total variation of K1 is
nearly zero and surprisingly negative at Mc = 0.2. The total variations of K2 and K3 both
exhibit significant positive peaks near both edges of the mixing layer, with the peak at
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Figure 19. (a–c) Contributions of the low-speed LSSs to the total variation of turbulent kinetic energy V̄i,n/ε̄c

and (d–f ) conditionally averaged total variation V̂i,n/ε̄c based on low-speed events with u′′ < 0 at Mc = 0.2,
0.8 and 1.8. (a,d) Streamwise, (b,e) vertical and (c, f ) spanwise components.

the upper edge being larger. The total variation of K2 near the upper edge, at y/δω ≈ 0.7,
is particularly notable, even exceeding the value of K1. As the convective Mach number
increases, the total variations of turbulent kinetic energy in all three directions decrease
significantly at the edges. These results further confirm the amplitude modulation effect of
LSSs on small-scale structures at the edges of the mixing layer, consistent with the findings
shown in figures 3(d)–3(f ). The level of amplitude modulation is strongest for the vertical
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velocity, followed by the streamwise velocity and weakest for the spanwise velocity.
Additionally, the amplitude modulation decreases significantly with increasing Mach
number. The entrainment process is usually associated with two mechanisms: nibbling,
which is considered to be carried out by small-scale structures and plays the main role, and
engulfment, which is mostly due to large-scale eddies (Westerweel et al. 2005; da Silva
et al. 2014; Jahanbakhshi & Madnia 2016). We infer that with increasing convective Mach
number, the level of amplitude modulation decreases significantly, resulting in weakened
small-scale structures near the edge of the mixing layer. This leads to an evident increase in
the normalized Kolmogorov length scale η/δω, indicating a reduction in scale separation,
as reported by Wang et al. (2024). Krug et al. (2015) proposed a relationship estimating
the surface area A of the TNTI, where A ∝ (η/δω)−1/3. Based on this relationship, we
can infer that the TNTI surface area decreases as the small-scale structures weaken. The
reduction in TNTI surface area, in turn, decreases the mass flow rate associated with
nibbling, as reported by Jahanbakhshi & Madnia (2016).

5. Conclusion

DNS of compressible temporally developing mixing layers have been performed to
investigate the impact of LSSs on the turbulent kinetic energy budgets in physical space
and to further clarify the growth suppression mechanism associated with compressibility
effects. Three cases with convective Mach number, Mc, from 0.2 to 1.8 are analysed. In the
present study, high- and low-speed LSSs are identified as negative and positive regions of
fluctuating streamwise velocity u′′. In the core region of mixing layers, the volume fraction
of low-speed LSSs decreases linearly with a coefficient of 0.165 that is independent on the
convective Mach number. As the convective Mach number increases, the linear region of
the volume fraction extends over a broader range.

The contributions of LSSs to the turbulent kinetic energy and their budgets are evaluated
by decomposing them into three parts, representing the contributions from the low-speed
LSSs, high-speed LSSs and engulfed regions in the mixing layer. The contributions of
low-speed LSSs on turbulent kinetic energy, production, dissipation and pressure-strain
are primarily concentrated in the region slightly above the centre of the mixing layer, while
those of high-speed LSSs are concentrated slightly below the centre. The spatial diffusion
and mass flux coupling terms are responsible for the vertical transport of turbulent kinetic
energy. In low-speed LSSs, the streamwise component of turbulent diffusion transports K1
upwards from the lower half to the upper half of the mixing layer, while the vertical and
spanwise components of turbulent diffusion transport K2 and K3 from the middle to the
edges of the mixing layer, respectively. In the core region of low-speed LSSs, the growth
of streamwise turbulent diffusion is nearly linear. The pressure diffusion term acts with
less intensity. The streamwise pressure diffusion transports K1 downwards from the upper
half to the lower half of the mixing layer, while the vertical and spanwise components
of pressure diffusion transport K2 and K3 from the edges to the middle of the mixing
layer, respectively. The streamwise and vertical mass flux coupling terms are comparable
to the other dominant terms, and transport K1 and K2 downwards, respectively. The viscous
diffusion and spanwise mass flux coupling terms are negligible in low-speed LSSs.

The spatial distribution of energy budget terms in low-speed LSSs is investigated
through conditional averaging. The energy budgets near the edges of the mixing layer
are dominated by small-scale structures. At the edges of LSSs, the sources and losses of
all three components of turbulent kinetic energy are completely different to each other, and
dominated by turbulent diffusion, pressure diffusion, pressure-strain and dissipation terms.
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In low-speed LSSs, the streamwise turbulent kinetic energy near the upper edge originates
from turbulent diffusion, while near the lower edge, it comes from pressure diffusion.
Most of the streamwise turbulent kinetic energy is transferred to the vertical direction
through pressure-strain, and the remaining small portion is dissipated by viscous effects.
The vertical turbulent kinetic energy near both edges mainly originates from turbulent
diffusion, with an additional portion coming from the streamwise and spanwise directions
via pressure-strain. The loss of vertical turbulent kinetic energy is primarily due to pressure
diffusion, which transports it to the interior of the LSSs, with a small portion dissipated
by viscous effects. The spanwise turbulent kinetic energy comes from both turbulent
diffusion and pressure diffusion. Most of it is transferred to the vertical direction through
pressure-strain, while a small portion is dissipated by viscous effects.

The pressure-dilatation increases rapidly with the convective Mach number, but it is still
an order of magnitude smaller than other terms. In the lower part of the low-speed LSSs,
pressure-dilatation is negative, indicating that turbulent kinetic energy is converted to
internal energy. In the upper part, pressure-dilatation is positive, converting internal energy
to turbulent kinetic energy. At Mc = 1.8, strong negative pressure-dilatation appears at the
upper edge of the low-speed LSSs due to the formation of noticeable shock waves, which
rapidly converts turbulent kinetic energy to internal energy.

Finally, the analysis of the turbulent kinetic energy budget reveals the interaction
between large-scale and small-scale structures in compressible turbulent mixing layers.
The turbulent kinetic energy, their total variation and dissipation are significantly amplified
at two edges of the mixing layer, which supports the existence of amplitude modulation
exerted by the LSSs onto the near-edge small-scale structures. The level of amplitude
modulation is strongest for the vertical velocity, followed by the streamwise velocity
and weakest for the spanwise velocity. Additionally, the amplitude modulation decreases
significantly with increasing Mach number in compressible mixing layers. The above
results are meaningful for turbulence modelling, as they suggest the potential for
developing predictive models for various budget terms of turbulent kinetic energy based on
the amplitude modulation effect, similar to velocity prediction model proposed by Marusic
et al. (2010).
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Appendix. Confinement effect of the computational domain

In this section, the confinement effect of the computational domain is investigated to
validate the data. To minimize the effects of the finite domain size on the results, the
two-point correlation should be small for large r. Figures 20 and 21 show that this
condition is satisfied for the case with Mc = 0.2 and Mc = 1.8, respectively.

At Mc = 1.8, Rxu in the later part of the self-similar stage from τ = 2000 to τ = 2250
does not exhibit complete decay to zero decorrelation and Rzu does not return to zero
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Figure 20. (a–c) Streamwise and (d–f ) spanwise two-point correlations of (a,d) streamwise, (b,e) vertical and
(c, f ) spanwise velocities at the centreline at several time instants from τ = 125 to τ = 750 for the case with
Mc = 0.2.

after the negative correlation, as shown in figures 21(a) and 21(d), since the scale of
the high- and low-speed LSSs have become comparable to the size of the computational
domain. Similar behaviour has been observed in the results of Vaghefi (2014). However,
as supported by prior studies, when the magnitude of two-point correlation is sufficiently
small, the confinement effect of the computational domain is insignificant, especially for
one-point statistics (O’Neill et al. 2004; Lozano-Durán & Jiménez 2014; Lee & Moser
2015). Comparison of one-point statistics of turbulent kinetic energy, production and
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Figure 21. (a–c) Streamwise and (d–f ) spanwise two-point correlations of (a,d) streamwise, (b,e) vertical and
(c, f ) spanwise velocities at the centreline at several time instants from τ = 250 to τ = 2250 for the case with
Mc = 1.8.

dissipation terms with different τf at Mc = 1.8 are shown in figure 22. The good agreement
of the results with τf = 1750 and τf = 2250 suggests that the data beyond τf = 1750 still
accurately captures the physical processes involved. Even for the pressure-dilatation term,
which is relatively sensitive to the sample size, the results with τf = 1750 and τf = 2250
are very similar, except for noticeable differences near the edges of the mixing layer,
as shown in figure 22(f ). Additionally, we compared the two-dimensional conditionally
averaged streamwise velocity, production and dissipation terms at τf = 1750 and τf =
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Figure 22. Comparison of one-point statistics with different τf for Mc = 1.8. (a–c) Conditionally averaged
turbulent kinetic energy K̂i,n/(ρ∞�U2). (d–f ) Conditionally averaged production P̂n/ε̄c, dissipation ε̂n/ε̄c and
pressure-dilatation Φ̂n/ε̄c.

2250 in figure 23 for Mc = 1.8. The results show that the differences between the two
cases are minimal, occurring only in regions farther from the origin.

Table 2 contains the most relevant publications of DNS of temporally developing
compressible mixing layer, together with Mc, the range of the self-similar period, the
computational domain dimensions and the integral lengths. We can see that the largest
integral length scale of lx/Lx = 0.151 is obtained at the end of the self-similar region at
Mc = 1.8 in the present work, and it is comparable to the previous numerical results of
Vaghefi (2014) and Yu & Lu (2020).
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Figure 23. Comparison of two-dimensional conditionally averaged (a) streamwise velocity ŭn/�U,
(b) production P̆n/ε̄c and dissipation ε̆1,n/ε̄c with different τf for Mc = 1.8.

Work Mc τ Lx/δ
0
θ Ly/δ

0
θ Lz/δ

0
θ lx/Lx lz/Lz

Pantano & Sarkar (2002) 1.1 — 345 172 86 0.030 0.028
Vaghefi (2014) 1.8 τ0 = 1300 300 250 100 0.136 0.071

τf = 1900
Arun et al. (2019) 1.2 — 314 157 78 0.076 —

—
Yu & Lu (2020) 1.6 τ0 = 1002 345 172 172 0.121 0.072

τf = 1200
Vadrot, Giauque & Corre (2021) 1.1 τ0 = 1700 344 172 86 0.070 0.060

τf = 2250 0.120 0.080
Present work 1.8 τ0 = 1250 314 314 157 0.090 0.036

τf = 2250 0.151 0.043

Table 2. The beginning (τ = τ0) and end (τ = τf ) times of the self-similar period, domain lengths (Lx, Ly
and Lz) and integral lengths (lx and lz) in the most relevant publications of DNS of temporally developing
compressible mixing layer at higher convective Mach number. Only the integral lengths at the end time (τ = τf )
of the self-similar period are presented by Pantano & Sarkar (2002), Vaghefi (2014), Arun et al. (2019) and Yu
& Lu (2020).

We conclude from these results that the scale of the computational domain in this study
is appropriate, and setting the end time of the self-similar period at τf = 2250 for Mc =
1.8 is reasonable. The confinement effect of the computational domain is insignificant
even though the two-point correlations do not exhibit complete decay to zero decorrelation
within the computational domain.
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