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In this paper we present a micro-electrical mechanical system (MEMS) based pedestrian
navigation system (PNS) for seamless positioning. The sub-algorithms for the PNS are

developed and the positioning performance is enhanced using the modified receding horizon
Kalman finite impulse response filter (MRHKF). The PNS consists of a biaxial acceler-
ometer and a biaxial magnetic compass mounted on a shoe. The PNS detects a step using a
novel technique during the stance phase and simultaneously calculates walking information.

Step length is estimated using a neural network whose inputs are the walking information.
The azimuth is calculated using the magnetic compass, the walking information and the tilt
compensation algorithm. Using the proposed sub-algorithms, seamless positioning can be

accomplished. However, the magnetic compass based azimuth may have an error that varies
according to the surrounding magnetic field. In this paper, the varying error is compensated
using the MRHKF filter. Finally, the performance enhanced seamless positioning is

achieved, and the performance is verified by experiment.
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1. INTRODUCTION. Recently, the navigational techniques for providing
the position information of vehicles have been adopted for computing that of a
man. The portable navigation system has been developing based on the E911
(Enhanced 911) implementation requirements that were reported by the Federal
Communication Commission (FCC) in 1996. This set out explicitly defined require-
ments that position information for emergency calls made from mobile phones
must be transferred to the 911 public safety answering point (PSAP) with an
accuracy of 67% CEP 50 m and 95% CEP 150 m. The portable navigation system
has been implemented using GPS, CDMAs pilot signals, AGPS/TDOA, etc.
However, these techniques have several limits such as restrictions on the use of GPS
signals, many error sources in the CDMA signals, etc.

Another research area for the navigation system is MEMS based pedestrian
navigation system (MPNS). In recent years, MEMS technology has allowed pro-
duction of inexpensive lightweight and small-size inertial sensors with low power
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consumption. These are all desirable properties for components of a portable navi-
gation system. The quality of the MEMS inertial sensors is, however, conspicuously
low. Therefore, a new algorithm is necessary to enhance the performance of the
portable navigation system implemented using the MEMS inertial sensors. The
technical limit and necessity led the development of algorithms for MPNS. A
pedestrian can move only by walking behaviour. Therefore, MPNS is based on the
step information and this information can be obtained using inertial sensors. The
main idea is that the walking distance is calculated by the estimated step length.
Position can be computed by multiplying the walking distance and the azimuth
information obtained by using gyros or a magnetic compass. MPNS can be utilized in
both indoor and outdoor environments because it is autonomous and not susceptible
to external jamming.

Recently, the sub-algorithms for MPNS have been investigated. First, step detec-
tion methods using accelerometers have been presented. There are three types of
method: peak detection [Jirawimut 2001; Levi 1996; Ladetto 2000; Lee 2001], zero
crossing detection [Kappi 2001; Leppakoski 2002] and flat zone detection [Cho 2002;
2003 ION]. In peak and zero crossing detection algorithms, detection miss or over
detection can occur because of accelerometer error signal and sensor misalignment.
The flat zone detection method is the better method. However, over detection may
occasionally occur depending on walking patterns. In this paper, the modified flat
zone detection method is presented. The proposed step detection method is robust to
the walking velocity, ground inclination, walking pattern, walking environments, etc.
Step length estimation methods have been proposed in the MPNS related papers and
patents. First, step length is modelled as a linear combination. The linear combi-
nation consists of the parameters that have influence on the step length such as
walking frequency, variance of the accelerometer signals, etc. [Jirawimut 2001; Levi
1996; Ladetto 2000; Lee 2001; Kappi 2001]. Secondly, walking speed is modelled
[Gabaglio 2001; Animian 1995], and third, step length can be calculated by double
integration of the accelerometers detecting motion of the foot [Fyfe 1999; Sagawa
2001; Cho 2002]. The first and the second methods have an advantage that the step
length can be modelled briefly. However, the nonlinear characteristics cannot be
considered. The third method compensates for errors by using the fact that the foot
velocity is zero during the stance phase. This method, however, can be affected by the
bias of the low-grade accelerometers and the acceleration of gravity. In this paper, a
neural network is presented for step length estimation. This method can consider
the nonlinear characteristics and is not affected by the accelerometer bias and the
acceleration of gravity.

In order to calculate the position, the azimuth information is synchronized with
the step information. In the pedestrian environment, the magnetic compass can be
utilized usefully. A magnetic compass offers absolute azimuth information by
measuring the earth’s magnetic field. Therefore, the magnetic compass based azimuth
information does not have error increasing with time, unlike gyro based azimuth
information. However, it can be influenced by the surrounding magnetic field such as
a bridge, buildings, cars, etc. as well as earth’s magnetic field. Therefore, the magnetic
compass based azimuth information has an error dependent upon the location
(Caruso 1997; Cho 2003 IEE).

In order to compensate for varying as well as position error, a particular filter is
necessary in the MPNS/GPS integrated system. In general, the Kalman filter is widely
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utilized in the integrated navigation systems (Parkinson 1996; Brown 1997; Farrel
1999; Grewal 2001). When MPNS is used in urban areas, the magnetic compass
error varies largely. Unfortunately, the conventional Kalman filter (CKF) cannot
estimate the varying error exactly because it has an Infinite Impulse Response (IIR)
structure. In this paper a Receding Horizon Kalman Finite Impulse Response
(RHKF) filter is adopted to overcome this problem. RHKF filter estimates the state
using the measurements only on the current horizon. This filter has a fast estimation
property due to the FIR construction (Danyand 1994; Kwon 1999; Ling 1999; Kim
2002). However, MPNS error has nonlinear dynamics and research on the RHKF
filter for nonlinear systems is currently insufficient. In this paper, the Modified
RHKF (MRHKF) filter is introduced to apply the RHKF filter to nonlinear sys-
tems. First, the inverse covariance form of a linearized KF (LKF) is derived because
the RHKF filter has a feed-forward structure in the receding horizon. Then it is
combined with an Extended KF (EKF) to enhance the convergence characteristics.
This filter extends the receding interval to N, the size of the receding horizon of
RHKF filter, to reduce the computational burden [Cho 2004]. In order to verify the
performance of the MPNS and the MRHKF filter, a pure MPNS and a MPNS/
GPS integrated system are implemented and field tests accomplished.

This paper is organized into five Sections. In Section 2, MPNS sub-algorithms for
seamless positioning are presented. In Section 3 we present a performance enhance-
ment of MPNS using MRHKF filter. The performance of the proposed methods
is verified by experiments in Section 4. Concluding remarks are drawn in the last
Section.

2. MEMS BASED PEDESTRIAN NAVIGATION SYSTEM. Inertial
Navigation Systems (INS) for vehicles are a satisfactory technology. A similar
approach is, however, difficult to adopt for MPNS. The first problem is the align-
ment of an IMU. Second, the inherent systematic errors that present in small
low-cost inertial sensors quickly accumulate to non-permissible position errors.
Such characteristics do not allow one to compute position by double integration of
the acceleration. An alternative is to use accelerometer signal pattern rather than its
value to count the steps.

Figure 1 shows a main algorithm for pure MPNS. Estimation of the step length is
used to compute the distance travelled from the last known or estimated position.
When the information on the distance travelled is combined with the azimuth
information, the current position can be calculated. As can be seen in Figure 1,
operation of the MPNS algorithm can be divided into three parts : step detection,
step length estimation, and azimuth calculation. Using physiological models and

Azimuth Calculation

Navigation
Information

Accelerometer Step Detection

Gyros, Fluxgates
Velocity &

Position Calculation

Step Length Estimation

Figure 1. Block diagram of MPNS algorithm.
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advanced algorithms, it would be possible to implement PNS using available MEMS
sensor technology.

Development of MPNS has been made possible by the various compact, inexpen-
sive sensors. In this paper, the MPNS is implemented by a biaxial accelerometer and
a biaxial magnetic compass. This sensor module is then mounted on a shoe. The
advanced sub-algorithms used for this sensor module are presented in this Section.

2.1. Step Detection. The output of the accelerometer utilized to detect the steps
consists of the foot acceleration and the acceleration of gravity. The gravity effect
varies due to the ground inclination and the misalignment of the accelerometer even
during the stance phase. Unless this effect is eliminated, errors in the step detection
may be caused. This effect, however, cannot be removed when the attitude in-
formation of the foot is unknown. In this paper, an acceleration differential technique
is used to eliminate the effect of the acceleration of gravity and to detect the stance
phase because various information can be obtained in the stance phase such as zero-
velocity of the foot, ground inclination, etc. Equation (1) denotes the output of the
forward-axis accelerometer attached on a shoe at time t.

ao(t)=af (t)+ag(t) (1)

where ao is the accelerometer output, af denotes the foot acceleration, and ag is the
acceleration of gravity.

The foot acceleration is zero during stance phase. Moreover the acceleration
of gravity does not vary over this duration. Therefore, the gravity effect can be
eliminated through the acceleration differential as follows:

Dao(t)=ao(t)xao(tx1) ffi 0 (2)

Therefore, the stance phase can be detected using the condition that the value of
the acceleration differential is less than the threshold established by experiments.
However, this condition may occur during the swing phase because foot acceleration
is about zero at the intersection of acceleration and deceleration of the foot.
Therefore, steps may be detected twice in one step. In order to remove this
phenomena, the following sling window summing technique is used.

SWS(t)=
Xt

k=txN+1

Dao(k) (3)

where SWS denotes the sliding window summing, and N is the window size that is
established to be less than the size of the duration in stance phase.

The SWS still exists in the neighbourhood of zero during the stance phase.
However, the sections that correspond to equation (2) during the swing phase
have disappeared. Therefore, the probability of over-detection decreases through the
following process :

i) Num=0

ii) If jSWSj<dStP then Num=Num+1

iii) If Num>numStP then this time is the stance phase:

(4)

where dStP is the threshold for detection of stance phase and numStP is the number
selected during the experimental process.
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Figure 2 shows the flowchart of the proposed step detection algorithm. dSwP is the
threshold for swing phase detection. If the value of the acceleration differential
exceeds dSwP, the step detection algorithm is started. Then the step detection horizon
is created. In this horizon, just one step must be detected. If the detected number is 2,
one step was detected during swing phase. In this case, just one step is selected using
the fact that the Num in stance phase is generally more than that in swing phase.
Therefore, the correct one can be selected. If the detected number is zero, the step
detection horizon is extended and the step detection threshold is increased to detect
the missed step. Then a step is searched over the horizon. However, these phenomena,
where the detected number is not one, rarely occur after applying the acceleration
differential and sliding window summing techniques. In conclusion, just one step can
be detected in one step using the proposed algorithm.

In order to verify the performance of the proposed step detection algorithm, the
accelerometer signal is analyzed as in Figure 3. Figure 3(a) denotes the original
accelerometer signals and Figure 3(b) shows the differential value of the acceler-
ometer signals. The bars placed on the figures denote the detected stance phases.
It can be seen that the accelerometer signal may not be zero during a stance phases
due to the gravity effect. It can be confirmed in Figure 3(b) that the differential values
during stance phases are almost zero. The arrow highlights a similar phenomenon
occurring during the swing phase. Because of this fact steps can be detected twice
within one step. In order to remove this problem, the differential values are summed
over the sliding window established previously. The result is that the flat areas close
to zero appear only on the stance phases as Figure 3(c).

2.2. Step Length Estimation. The step length used to calculate the walking
distance in MPNS is the distance a foot moves during a swing phase. If step lengths
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Figure 2. Flowchart of a step detection algorithm.
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are constant, the walking distance can be calculated with accuracy. However,
step lengths vary continuously according to the walking speed, ground inclination,
etc. Unless varied step lengths are considered, the results of MPNS may have large
errors.

According to the results of our investigation, step length is influenced by the
walking frequency, variance of the accelerometer signals during one step period,
ground inclination, etc. That step length is proportional to the walking frequency and
the variance of the accelerometer signals is presented in the references [Levi 1996;
Ladetto 2000; Lee 2001; Kappi 2001; Cho 2002, 2003 ION]. However, it is confirmed
that step length has complex tendency according to the ground inclination as can be
seen in Figure 4. The solid lines in Figure 4 are the result of the 1st order curve fitting.
It can be seen that step length is proportional to the walking frequency. However, as
can be seen in Figures 4(a), (b), and (c), the approximated equation on flat road
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Figure 3. Accelerometer signal analysis.
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is different from that on downhill road and that on uphill road. Step length is
proportional to the variance of the accelerometer signals on flat road as can be seen in
Figures 4(d), (e), and (f). However, the variance of the accelerometer signals on uphill
road cannot be expressed exactly with 1st order approximation. If a pedestrian walks
only on a flat road, step length can be modelled as a linear combination as in the
previous works [Levi 1996; Ladetto 2000; Kappi 2001]. However, step length cannot
be modelled as a linear combination in the case of a sloping environment. The
nonlinear problem about the ground inclination can be solved through the heuristic
approach such as fuzzy or neural network.

In this paper, the step length is estimated using a neural network shown in Figure 5.
The inputs for the neural network consist of the walking frequency, variance of the
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Figure 4. Step length according to walking frequency and acceleration variance on several roads.
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accelerometer signals, and the ground inclination. The ground inclination can be
calculated using the shoe-mounted accelerometer during stance phase. These
parameters have influence on the step length and can be obtained as:

f (tk)=1=(tkxtkx1) (5a)

Var(tk)=
Xtk

t=tkx1

(a(t)x�aa(tk))
2

n
(5b)

h(tk)= sinx1 (âa(tk)=g) (5c)

where
f(tk) walking frequency at tk ; Var(tk) variance of the accelerometer signals during

one step; h(tk) ground inclination; tk time stamp of detection of the k-th step; a(t)
accelerometer signal ; �aa(tk) average of the accelerometer signals during one step;
n number of the accelerometer outputs during one step; â(tk) average of the acceler-
ometer signals during stance phase.

In Figure 5, the activation function of the hidden layer is the log-sigmoid function
and that of the output layer is selected as follows:

lw=
0; nw<�lllb

nw; �lllbfnwf�llub
�llub; nw>�llub

8><
>:

(6)

where, �lllb is the lower bound for walking and is used to ignore unnecessary motion.
In the design of the neural network, the tuning parameters are the number of the

neurons of the hidden layer, the learning rate, the momentum coefficient, and the
iteration number. These parameters are tuned by trial and error. The results of
training of the neural network are as follows:

n=3, a=0�02, c=0�0, r=0�993, and numite=150 (7)

where n is the number of the neurons, a is the constant of proportionality called
learning rate, c is the momentum coefficient, r is a parameter to reduce the learning
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Figure 5. Multilayer neural network for step length estimation.
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rate as the learning progresses, and numite denotes the iteration number. And the
weight learning of the layers is as follows:

w3
1, k(t+1)=w3

1, k(t)+cDw3
1, k(t)+(1xc)2aea2k (8)

w2
i, j(t+1)=w2

i, j(t)+cDw2
i, j(t)+(1xc)2(ra)ew3

1, ie
xna2i inj (9)

where e=lreferencexlw. The output layer is learned using (8) and the hidden layer is
learned using (9).

Figure 6 shows the result of training the neural network according to walking
velocity. The blue line is the reference step length and the red line denotes the
estimated step length after learning. As can be seen in this figure, the neural network
estimates well the step length variations due to walking velocity.

2.3. Azimuth Calculation. The walking direction in MPNS is needed to calculate
the walking path. It is assumed that the azimuth is calculated using a biaxial magnetic
compass. The magnetic compass measures the earth magnetic field and then calcu-
lates the azimuth. Therefore, it has bounded error unlike a gyro. However, the error
may include a bias error caused by the surrounding magnetic field and the tilt error
generated by the inclination. Generally, the 3-axis magnetic compass and inclino-
meters are used in order to compensate for the tile error. In this paper, however, a
biaxial magnetic compass, a biaxial accelerometer, and the tilt compensation
algorithm for 2-axis magnetic compass are used [Cho 2003 IEE] because the 3-axis
magnetic compass is too bulky.

When the inclination of the magnetic compass is calculated using the shoe-
mounted accelerometer, the acceleration data during the stance phase is utilized.
Therefore, the inclination and the azimuth are calculated at the point of time when
the step is detected. Figure 7 shows the outputs of the biaxial magnetic compass.
As can be seen in this figure, the output of the magnetic compass varies during
walking. However, the data during stance phase is stationary as can be seen in
Figure 8. Therefore, the stable azimuth information can be calculated using the
proposed skill [Cho 2003 ION].

3. PERFORMANCE ENHANCEMENT USING MRHKF
FILTER. The error of MPNS increases with time because of the DR construction.
But the rate of increase of error in MPNS is lower than that in INS. Figure 9 shows
the error propagations of INS and MPNS. It is assumed that the bias of low-cost
accelerometer is 10[mg], the walking frequency is 2[Hz], and the estimation error of
step length is 0.05[m] in case 1, 0.1[m] in case 2, and 0.2[m] in case 3. The assumed
values may occur in real applications. As can be seen in Figure 9, the position error
caused by the step length error in MPNS is less than that caused by the bias errors
of the inertial sensors in INS. However, the error of MPNS increases with time
because of the DR construction. In order to restrict the error increase, MPNS is
integrated with GPS using a proper filter.

The magnetic compass used in MPNS measures the surrounding magnetic field as
well as earth’s magnetic field. From this effect, the azimuth solution obtained from
the magnetic compass may have an error. This error can be estimated by a proper
filter, such as Kalman filter, in an MPNS/GPS integrated system. However, the error
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may suddenly change based on the surroundings. A conventional Kalman filter
cannot estimate this varying error quickly because of its IIR construction. In order to
overcome this problem, the receding horizon Kalman FIR filter is adopted in this
paper. An RHKF filter can estimate the varying error of the magnetic compass well
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144 SEONG YUN CHO AND CHAN GOOK PARK VOL. 59

https://doi.org/10.1017/S0373463305003486 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003486


using the current finite measurements because RHKF filter has a fast estimation
property [Kwon 1999; Kim 2002]. In an MPNS/GPS integrated system, the error
model of MPNS has nonlinear dynamics. To apply RHKF filter into MPNS/GPS,
the modified RHKF filter is utilized [Cho 2004]. MRHKF filter has a hybrid
filter construction as can be seen in Figure 10. The MRHKF filter has two advan-
tages. First, the computational burden is decreased because this filter utilizes the
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Figure 8. Stable magnetic compass signals during the stance phase.

NO. 1 MEMS BASED PEDESTRIAN NAVIGATION SYSTEM 145

https://doi.org/10.1017/S0373463305003486 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463305003486


measurements only twice, while RHKF filter uses the measurements N times, the size
of the horizon. Second, the convergence characteristic is enhanced. The summary of
the MRHKF filter is shown in Table 1 where a new variable ki=kxN+i is defined
for simplicity.

In order to analyze the performance of the MRHKF filter, simulation is carried
out. The condition for simulation is as follows: the total step number is 244; the
estimated step lengths and the azimuth information calculated using a magnetic
compass have errors. The step length bias is constant and the azimuth error varies
with time as follows:

errork=errorkx1x0�3�, 50fk<80
errork=errorkx1+0�3�, 110fk<140
errork=15�, 180fk<200
errork=5�, otherwise

8>><
>>:

(10)

The capability of estimating the azimuth error is analyzed in EKF, and
MRHKF filter. Figure 11 shows the result of the simulation. When the error varies
with time, EKF cannot estimate the error exactly in a short time due to the IIR
structure. Thus the estimation error is large as can be seen in Figure 11(b). This
error increases position error as seen in figure 11(a). The estimation error can
make the position error diverge when the GPS signal is not available. On the
other hand, the MRHKF filter can estimate the varying error comparatively
well because of the FIR structure and the fast estimation property. The compu-
tational burden is just twice as much as EKF. Therefore, it is confirmed that
MRHKF filter has good performance. The results of the simulation are summarized
in Table 2.

4. FIELD TEST. In this Section, a field test was conducted to verify the per-
formance of the proposed algorithm. First, a PNS sensor module was implemented

Table 1. Stepwise MRHKF filter.

t0ftkftN RHKF Filter, (let : ki=kxN+i)
’ Initialization x*0=x̂x0, VkxN=0, ĵjkxN=0
’ Time Propagation (1fifN)

– Initialization ykix1=FxT
kix1Vkix1F

x1
kix1

Ckix1=ykix1Gkix1(Q
x1
kix1+GT

kix1ykix1Gkix1)
x1

x*ki=f(x*kix1)

– Inverse Covariance Vx
ki
=(IxCkix1G

T
kix1)ykix1

– Pseudo State
ĵjxki =(IxCkix1G

T
kix1)F

xT
kix1ĵjkix1

+(IxCkix1G
T
kix1)F

xT
kix1Vkix1(F

x1
kix1 f(x

*
kix1)xx*kix1)’ Measurement Update

– Inverse Covariance Vki=Vx
ki
+HT

ki
Rx1

ki
Hki

– Pseudo State ĵjki=ĵjxki +HT
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using a low-cost MEMS-type accelerometer. Second, we walked on the appropriate
trajectory for pre-learning of the neural network. Then the field test was conducted
on the trajectory of length 3,730 m.

The implemented system consists of a sensor module and a navigation computer
module. The sensor module is attached on the user’s right or left shoe and the
navigation computer module is implemented as a handheld type. The sensors for
measuring the body dynamics are included in the sensor module and a GPS receiver is
mounted on the navigation computer module which is connected with a PDA or
notebook. The components of the sensor module are a biaxial accelerometer
(ADXL202E from Analog Devices), a biaxial magnetic compass (TMC3000NF from
Tokin), an 8-bit microcontroller (8 MHz AVR Atmega163 from Atmel), a RF
transmitter (BIM-418-F) and other electrical parts. The navigation computer module
includes a RF receiver, a GPS receiver (Swift-b2 from Axiom), an 8-bit micro-
controller (4 MHz AVR Atmega161 from Atmel), and a notebook or PDA. The
implemented sensor module is shown in Figure 12. The components of the system are
of small-size and low-cost. These factors are important for PNS implementation. The
sensor signal is converted to digital data and then transferred to the navigation
computer module periodically through the RF module that uses a frequency band-
width of 418 MHz and a baud rate of 19,200 bps.

The x-axes of the sensors (accelerometer and magnetic compass) are oriented along
the foot’s forward direction and the y-axes are perpendicular to the x-axis horizon-
tally. The accelerometer measures the foot dynamics for detecting steps and the
acceleration of gravity for calculating ground inclination. The inclination
information is utilized to compensate the tilt error of the magnetic compass and to
estimate the step length. Azimuth information is calculated using the compensated
magnetic compass data. The raw sensor data is logged in the memory of the
navigation computer in order to investigate it.

The circular road of the Seoul National University, Korea, was selected for the
route of the walking test because there was an accurate digital map of the road
available. The route consists of flat, uphill and downhill roads, urban and rural areas,
etc. The total walking distance was 3,730 m. A man walked a turn of the route with
2,299 steps. In this paper, two steps are assumed to be one step because the proposed
algorithm detects just right or left steps. The number of the detected steps using the
proposed step detection algorithm was 2,299 exactly. The step lengths were estimated
using the proposed neural network. Figure 13 shows the accumulated distance error
every 100 steps. When the step length was calculated using the neural network, the
mean error was 1.9573 m and the standard deviation was 2.9989 m. In the case of the
linear combination, the mean error was 4.4892 m and the standard deviation was
6.4783 m. From these results, it can be confirmed that the step length estimated using

Table 2. Estimation error.

Position [m] Azimuth Error [deg] Step Length Bias [m]

mean s. d. mean s. d. mean s. d.

EKF 2.3001 1.2699 1.3974 5.1488 0.0077 0.0458

MRHKF filter 1.2181 0.4783 0.3424 1.5218 0.0034 0.0521
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the proposed neural network has better accuracy than that estimated using the linear
combination. The reason is that the neural network estimated the step lengths
with having regard to the ground inclination as well as the walking frequency. The
distance walked was 3,730 m, and the calculated walking distance was 3,788 m using
the neural network. The calculation error is about 1.55% of the distance travelled.
Therefore, the performance of the proposed algorithm is better than that of the
previous works.

In order to compensate MPNS errors, the MPNS was integrated with GPS using
two filters : EKF and MRHKF filter. The performance of the MRHKF filter was

Figure 12. Implemented sensor module.
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compared with that of EKF in the MPNS/GPS integrated system. MPNS can be used
in both indoor and outdoor environments. When GPS signals are available, the
MPNS error is compensated using the filter. After compensation mode, the per-
formance of pure MPNS may be enhanced when GPS signals are not available.
However, the performance of pure MPNS may not be improved if the filter estimates
the error wrongly in the compensation mode. Figure 14 shows the results of the
estimated position. As can be seen the estimated position in pure MPNS has the
accurate distance information as mentioned previously and the azimuth errors exist
partially. This phenomenon occurs because of the surrounding magnetic field that
varies according to location. However, it can be seen that the calculated position
deviates from the main trajectory slowly because the estimated step lengths are
comparatively exact.

Figure 15(a) and 15(b) show the results of MPNS/GPS integrated system using
EKF and MRHKF filter, respectively. It is assumed that the GPS signals are avail-
able only in the section A, B, C, and D. GPS signals in these sections are reliable and
the MPNS error can be estimated using the GPS data. As can be seen in Figure 15(a)
using the EKF, the position errors increase after section A and section C. The reason
is that the varying magnetic compass error cannot be estimated exactly in these.
On the other hand, the position error in the figure 15(b) where the MRHKF is used,
does not diverge after sections A and C. This phenomenon can be explained by
the MRHKF filter estimating the varying magnetic compass error exactly during
compensation mode – unlike EKF.

Figure 16 shows the estimated magnetic compass bias in section A, B, C, and D.
The magnetic compass errors estimated at the end of section A, B, and C by EKF
are x1.57, 3.06, and x2.05, respectively. The errors estimated by the MRHKF
filter are 15.46, 2.73, and x7.39, respectively. The error estimated at the end of the
section B by EKF is similar to that by the MRHKF filter. However, the errors
estimated at the end of the section A and C by EKF are different from that by
MRHKF filter. As seen in Figure 16(a), the estimated errors at the start of section
B and section D by EKF are similar that at the end of section A and section C by
MRHKF filter. Moreover, it can be seen in Figure 15(a) that the position error
after section A and C in EKF increases unlike that with the MRHKF filter
in 15(b). From these phenomena, it can be confirmed that there are errors in the
estimated errors at the end of the section A and C in EKF. As can be seen in
figure 16(b), the magnetic compass error varied at the midterm of section A and C.
The MRHKF filter can estimate the errors at section A and C exactly, while EKF
cannot.

5. CONCLUDING REMARKS. In this paper, sub-algorithms for MEMS
based pedestrian navigation system are presented. The proposed step detection
algorithm can be implemented using just one shoe-mounted accelerometer. The
result of the detection algorithm is robust in walking conditions such as walking
velocity, walking type, inclination, etc. Step length is estimated using a neural
network. This method considers the ground inclination that was not considered in
previous works. The proposed neural network can estimate the step lengths of a
pedestrian well irrespective of walking frequency, inclination, etc. with accuracy of
98% of distance travelled. The azimuth can be calculated exactly using a biaxial
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magnetic compass and a biaxial accelerometer even during walking. An error com-
pensation for MPNS was treated. The azimuth error of MPNS containing magnetic
compass varies according to the surrounding magnetic field. In order to compensate
this error, MPNS is integrated with GPS using a particular filter. The conventional
Kalman filter cannot estimate the varying error successfully due to the IIR con-
struction. In this paper, MRHKF filter, which is able to estimate the varying error
accurately due to the FIR structure and the fast estimation property, is applied to
MPNS/GPS integrated system. The performance of the proposed sub-algorithms
and the MRHKF filter was verified with field tests. The results show that the
seamless positioning can be accomplished using the MPNS and that performance
enhanced seamless positioning can be achieved using the MPNS with the MRHKF
filter.
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