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SUMMARY
The aim of this paper is to determine the optimal trajectory
and maximum payload of flexible link manipulators in
point-to-point motion. The method starts with deriving the
dynamic equations of flexible manipulators using combined
Euler–Lagrange formulation and assumed modes method.
Then the trajectory planning problem is defined as a
general form of optimal control problem. The computational
methods to solve this problem are classified as indirect and
direct techniques. This work is based on the indirect solution
of open-loop optimal control problem. Because of the
offline nature of the method, many difficulties like system
nonlinearities and all types of constraints can be catered
for and implemented easily. By using the Pontryagin’s
minimum principle, the obtained optimality conditions lead
to a standard form of a two-point boundary value problem
solved by the available command in MATLAB

R©
. In order to

determine the optimal trajectory a computational algorithm
is presented for a known payload and the other one is
then developed to find the maximum payload trajectory.
The optimal trajectory and corresponding input control
obtained from this method can be used as a reference signal
and feedforward command in control structure of flexible
manipulators. In order to clarify the method, derivation of
the equations for a planar two-link manipulator is presented
in detail. A number of simulation tests are performed and
optimal paths with minimum effort, minimum effort-speed,
maximum payload, and minimum vibration are obtained.
The obtained results illustrate the power and efficiency of
the method to solve the different path planning problems
and overcome the high nonlinearity nature of the problems.

KEYWORDS: Manipulator; Flexible link; Maximum
payload; Optimal trajectory; Optimal control; Indirect
solution; Boundary value problem.

1. Introduction
The manipulators are typically used to repeat a prescribed
task a large number of times, so even small improvements
in their performance may result in large monetary saving.
This improvement can be achieved by obtaining the optimal
path of the robot performing the specific task. Since many
different ways are possible to perform the same task, this
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freedom of choice can be exploited judiciously to optimize
a given performance criterion. During the past decades, a
great deal of attention has been given to the problem of
motion planning and control. Because of the complexity of
the problem, researchers divide the robot control structure
into two levels:1,2 the upper level, called the path or trajectory
planning, and the lower level, called the path tracking or path
control. Motion planning involves generating the path and its
time law, providing the controller’s reference signal. Motion
tracking, on the other hand, is concerned with improving the
tracking of the reference signal.

Most techniques found in the scientific literature on the
trajectory planning problem are based on the optimization
of some parameter or some objective function. The
most significant optimality criteria are minimum execution
time; minimum energy or actuator effort; and minimum
jerk. Besides the aforementioned approaches, some hybrid
optimality criteria have also been proposed. Load carrying
capacity is another objective function considered in order to
achieve optimal usage of robot manipulator. The maximum
allowable dynamic load (MADL) of a manipulator is defined
as the maximum value of load which a robot manipulator is
able to carry on a desired trajectory.3 On the other hand, in
point-to-point motions (e.g., pick-and-place operations); the
end effector is free to move between two extremal positions.
In this case, the planner tries to define the maximum value of
payload, optimal trajectory, and the corresponding controls.4

With the aim of increasing the MADL, the path planning
problem has been solved for rigid manipulators3–6 and
flexible joint ones7,8 by many researchers. Dynamic load
carrying capacity of flexible link manipulators has also
been studied in refs. [9–11]. In refs. [9, 10] a formulation
based on Iterative Linear Programming (ILP) is presented
to determine the MADL of flexible manipulators. Indeed,
because of very lengthy, highly nonlinear, and coupled set of
dynamic equations, the ILP method is not efficient to solve
such problem, so in these papers flexibility is neglected in
simulations.

Lately, research on flexible manipulators has received
increased attention due to their several advantages over the
rigid ones.12 The main advantages of a flexible manipulator
are their capability to assure faster motions and a higher
ratio of payload to arm weight. However, due to the flexible
nature of the system, their dynamic equations are highly
nonlinear and complex. Therefore, the path planning of
such systems is a much more complicated task than for the
rigid manipulators or mobile robots. However, the problem
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of motion planning becomes quite complex and requires
specific schemes for its treatment. Two main families for
solving this problem can be distinguished: direct and indirect
methods.2,13

Direct methods are based on a discretisation of
dynamic variables (states, controls) leading to a parameter
optimization problem. Then, nonlinear optimization,
evolutionary or classical stochastic techniques are applied
to obtain optimal values of the parameters. In refs. [14–
16], the motion profiles of the joints are defined as a Spline
or polynomial functions. Then, the functions parameters
are obtained in order to reduce the residual vibration of
flexible manipulators at the end of the motion. Wang et al.
have solved the optimal control problem with direct method
using the B-Spline functions in order to determine the
maximum payload of a rigid manipulator.6 In ref. [17] path
planning of a flexible manipulator is formulated as a discrete-
time open-loop optimal control problem, the solution of
which is done via discrete dynamic programming. Another
direct technique which is used for flexible manipulators
is ILP. Just as mentioned above, applying this method to
flexible manipulators is a hard task. In the ILP method,
the linearizing procedure and its convergence to the proper
answer is a challenging issue, especially when nonlinear
terms are large and fluctuating, e.g., in problems with
consideration of flexibility in joints or links. Also, the
dynamic programming is not efficient for optimal control
problems with high-dimensional state-space because of
the curse of dimensionality and menace of the expanding
grid.18 Consequently, direct methods are exhaustively time
consuming and quite inefficient due to the large number of
parameters involved,19 especially when flexibility is added to
the system.

On the other hand, indirect method is based on Pontryagin
Maximum Principle (PMP)20 which was first used to define
the optimal control. It was first used to solve minimum
time motion problems along specified paths. Then, it was
extended to handle free motions as well.21,22 The PMP
is used also to treat directly the optimal dynamic motion
planning problem. The optimality conditions for transfer
modalities are expressed as a set of differential equations
in the form of the boundary value problems. Indirect method
is widely used as a powerful and efficient tool in analyzing
the nonlinear system and path planning of different types
of systems.21–27 This technique is especially suitable in the
cases where the system has a large number of degree of
freedom or optimization of the various objectives is targeted.
Recently, this method has been successfully employed in the
path planning of flexible joint manipulators in ref. [8], for the
actuated kinematic chains in ref. [25], for a large multibody
system in ref. [26], and for low-thrust trajectory optimization
in ref. [27]. The main challenge of this method is in solving
the obtained two-point boundary value problem (TPBVP),
for which nowadays powerful and efficient commands are
available to solve it in different software such as MATLAB,
C++, and FORTRAN. A number of methods exist for
solving these problems including shooting, collocation, and
finite difference methods. In this study, BVP4C command in
MATLAB

R©
which is based on the collocation method is used

to solve the obtained problem. The details of the numerical

technique used in MATLAB to solve the TPBVP are given
in ref. [28].

In this paper indirect solution of the optimal control
problem is exploited for path planning of flexible link
manipulators. Using this method for determining the
maximum payload optimal path of flexible link manipulators,
which has not been done yet, will be practicable. In
comparison with other methods, the open-loop optimal
control method does not require linearizing the equations (in
ILP method), differentiating with respect to joint parameters
(in Spline method), and using of a fixed-order polynomial
as the solution form. The dynamic equation is derived using
the generalized Euler–Lagrange formulation and assumed
modes method. Hamiltonian function for a proper objective
function is formed, then using the PMP optimality necessary
conditions are obtained. The obtained equations establish
a TPBVP solved by numerical techniques. The general
formulation to find the optimal path and the maximum
payload at point-to-point motion is derived. After that the
developed algorithm to obtain the optimal path for a given
payload is discussed. Another algorithm for calculating the
MADL and the corresponding optimal path is presented later.
In order to validate the method, simulation test is carried
out for a two-link flexible manipulator and the obtained
results are compared with those reported in ref. [17]. The
other simulations are performed to illustrate the efficiency
of the proposed method to solve the different path planning
problems.

2. Modeling of a Manipulator With Multiple
Flexible Links
The generalized Euler–Lagrange formulation and assumed
modes method is used to derive the dynamic equation of
flexible manipulators. All the flexible links are assumed to
be Euler–Bernoulli beams, where the shear-force-shortening
effect and rotary inertia are neglected.12,29 For a general n-
link flexible robot, the vibration vi(xi, t) of each link which
describes the deflection of the ith link with respect to its
undeflected configuration can be represented by a series form
as

vi(xi, t) =
ni∑

j=1

φij (xi)qij (t), i = 1, . . . , n (1)

where vi(xi, t) is the bending deflection of the ith link at
a spatial point xi(0 ≤ xi ≤ Li) and Li is the length of the
ith link. ni is the number of modes used to describe the
deflection of link i; φij (xi) and qij (t) are the jth mode
shape function and jth modal displacement for the ith link,
respectively. Position and velocity of each point on link i
can be obtained with respect to inertial coordinate frame
using the transformation matrices between the rigid and
flexible coordinate systems. After that, by considering the
generalized coordinates of the manipulator which consists
of two parts, the generalized coordinates of the rigid body
motion of links qr = (q1, q2, . . . , qn)T and generalized
coordinates defining the deflection of the manipulator
qf = (q11, q12, . . . , q1n1, q21, . . . , q2n2, . . . , qn1, . . . , qnnn

)T ,
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the dynamic equation of flexible link manipulator is
developed by using the Lagrangian assumed modes
method29 as follows:[

mrr mrf

mf r mff

][
q̈r

q̈f

]
+

[
Hr (qr, qf , q̇r , q̇f )
Hf (qr, qf , q̇r , q̇f )

]

+
[

Gr (qr, qf )
Gf (qr, qf )

]
=

[
τ

0

]
. (2)

By defining the generalized forces as U ={Ui} ={τ1,
τ2, . . . , τn, 0, . . . , 0}T and, the generalized coordinate sys-
tem as Q ={Qi} = {q1, q2, . . . , qn, q11, q12, . . . , q1n1, . . . ,

qn1, qn2, . . . , qnnn
}T , where i = 1, . . . , nt = n + n1+

n2 + . . . + nn, Eq. (2) can be written in compact form as

MQ̈ + H (Q, Q̇) + G(Q) = U, (3)

where M is the mass matrix, H is the vector of Coriolis and
centrifugal forces, and G describes the gravity effects. By
defining the following vectors as

X1 = {x2i−1} = Q, X2 = {x2i} = Q̇, F1 = {f2i−1} ,

F2 = {f2i} ; i = 1, . . . , nt (4)

X = {xi} , F = {fi} ; i = 1, . . . , 2nt ,

Eq. (3) can be expressed in terms of the following state
equation

Ẋ1 = F1 = X2; Ẋ2 = F2 = D(X1)U + N(X1, X2), (5)

where D =M−1 and N = −M−1(H (X1, X2) + G(X1)).
Then optimal control problem is to determine the generalized
coordinate X(t), and the joint torque U(t) which optimize a
well-defined performance measure when the model is given
in Eq. (5). The mathematical formulation of the problem is
given in the next section.

3. Formulation of the Optimal Control Problem

3.1. Statement of optimal control problem
Let � be the set of the admissible control torques. The
optimization problem in the Bolza-form is to find the input
U ∗(t) ∈ � so that the manipulator in Eq. (5) minimizes a
below objective function

J0(U ) = 1

2
‖ep(tf )‖2

Wp
+ 1

2
‖ev(tf )‖2

Wv
+

tf∫
t0

L(X, U ) dt,

(6)
ep(tf ) = X1(tf ) − X1f , ev(tf ) = X2(tf ) − X2f ;

L = 0.5
(‖X1‖2

W1
+ ‖X2‖2

W2
+ ‖U‖2

R

)
. (7)

In these equations, t0 and tf are known as the initial and
final times, ‖X‖2

K = XT KX is the generalized squared norm,
Wp and We are the symmetric, positive semi-definite nt ×

nt weighting matrices, W1, W2, and R are the symmetric,
positive definite n × n matrices. X1f and X2f are desired
values of generalized coordinate and their rates at the final
time tf . The designer can decide on the relative importance
among the position, velocity, motion errors, and control effort
by the numerical choice of W1, W2, Wp, Wv , and R which
can also be used to convert the dimensions of the terms
to consistent units. So, if Ū be a set of admissible control
torque over the time interval t ∈ [t0tf ], the optimal control
problem is to obtain the U ∗(t) ∈ Ū , in order to minimize the
objective criterion given by Eqs. (6) and (7), subject to the
motion Eq. (5), while steering the states from initial boundary
conditions to the final situations.

3.2. Necessary condition for optimality
Indirect method has been applied here to solve the optimal
control problem. In this method by introducing the costate
vector ψ ∈ R2nt , the Hamiltonian function of the system can
be defined as follows:

H (X, U, ψ, mp, t) = L(X, U, mp) + ψT (t)F (X, U, mp).
(8)

For the optimal trajectory X∗(t) and U ∗(t), the PMP states
that there exists a nonzero costate vector ψ∗(t)which the
following condition along the optimal solution must satisfy20

Ẋ∗(t) = ∂H

∂ψ
, ψ̇∗(t) = −∂H

∂X
, 0 = ∂H

∂U
,(9)

H (X∗, ψ∗, U ∗, t) ≤ H (X∗, ψ∗, Ū , t) for all

t ∈ [t0 tf ] and U ∈ Ū , (10)

where the symbol (∗) refers to the extremals of X(t), U (t),
and ψ(t); and Ū denotes the admissible control value.
By defining the costate vector as ψ1 ={ϕ2i−1}, ψ2 ={ϕ2i},
i = 1, . . . , nt and substituting Eq. (5) into Eq. (8); Eq. (9)
can be rewritten as follows:[

Ẋ1

Ẋ2

]
=

[
X2

N(X1, X2)

]
+

[
0

D(X1)

]
U (11)

[
ψ̇1

ψ̇2

]
= −

⎡
⎢⎢⎣

∂L

∂X1
+ ∂

∂X1
[D(X1)U + N(X1, X2)]T ψ2

∂L

∂X2
+ ψ1 + ∂

∂X2
[N(X1, X2)]T ψ2

⎤
⎥⎥⎦

(12)

∂L

∂U
+ DT (X1)ψ2 = 0. (13)

Equations (11) and (12) represent necessary conditions for
a local minimum of the objective function. Their solution
provides a candidate for the optimal solution. Since the
control values are limited with upper and lower bounds, using
(13) and (10), the controls can be expressed as follows:

U =

⎧⎪⎪⎨
⎪⎪⎩

U+ −R−1DT ψ2 > U+

−R−1DT ψ2 U− < −R−1DT ψ2 < U+

U− −R−1DT ψ2 < U−
. (14)
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The torque speed characteristic of D.C. motors may be
represented by the following linear equation:4

U+ = K1 − K2θ̇ ; U− = −K1 − K2θ̇ , (15)

where K1 = [τs1, τs2, . . . , τsn]T , K2 = dig[τs1/ωm1, . . . ,

τsn/ωmn], θ̇ = [θ̇1, θ̇2, . . . , θ̇n]T , τs is the stall torque and ωm

is the maximum no-load speed of the motor. The final and
initial states and the traveling time are fixed, therefore the
boundary condition can be expressed as follows:

X1(0) = X10, X2(0) = X20; X1(tf ) = X1f , X2(tf ) = X2f .

(16)

Substituting for U from Eqs. (14) and (15) in Eqs. (11) and
(12), a set of 2nt ordinary differential equations is formed.
While Eq. (16) expresses 2nt boundary value conditions
which nt of them are defined at t = t0, and nt other one
at t = tf . The algorithm iterates on the initial values of
the costate ψ(0), until the given boundary conditions in
Eq. (16) are satisfied with the desired accuracy ε. To put
it another way, the following relation must be fulfilled in
TPBVP solving:

1

2
‖X1(tf ) − X1f ‖2

Wp
+ 1

2
‖X2(tf ) − X2f ‖2

Wv
≤ ε, (17)

where Xf is desired boundary condition at t = tf and X(tf )
is the obtained values of states at t = tf as per the obtained
initial values of costates (ψ(0)) in TPBVP solution.

4. Determining the Optimal Path

4.1. Optimal path for a given payload
In more practical cases, the payload mass which is carried
from the starting point to the end point is known. If the
given task iterates in installments, by finding the optimal
path between this two points, a large economic saving
can be obtained. The optimal control approach provides a
powerful tool for designers to create various optimal paths
via defining the proper performance measure. For the cases
where only one parameter (e.g., time, energy, or effort)
is wanted to minimize, choosing the performance measure
is straightforward. But when objective function consists of
different terms (e.g., time and energy or torque and speed),
choosing the weighting factors are not so easy. In this
case, after initially adjusting the weighting factors in such
a manner that the dimensions of different terms convert
to consistent units, the problem is solved and the designer
analyzes the results. So that for each nonsatisfied objective,
the corresponding weighting factor must be increased or
decreased with the purpose of reaching the desirable goal.
The values of penalty matrices have a direct effect on the
corresponding terms. For example, if decreasing the angular
velocity in the second motor is wanted, the value of w22 in
W2 must be increased, and if the torque deduction of the first
motor is required, the value of r11 in R must be greater than
before.

An algorithm to find the optimal path has been presented
in Fig. 1. In the first step, accuracy matrices and solution

Y

N

The optimal path is found

Are the
conditions II

satisfied?

Are the 
conditions I 
satisfied?

Y

Selecting two points in WS
and calculating the Y0, Yf 

Calculating X1, X2 and U

N

Solving TPBV Problem

Start 

Selecting W1, W2, R

Selecting the Wp, Wv and ε

Fig. 1. Optimal path algorithm.

accuracy are selected. Then the initial and final condition
of each link, θi0, θif , can be calculated by the inverse
kinematic equation. The remaining generalized coordinate,
θ̇i0, θ̇if and qij0, qijf , can be considered equal to zero because
of the rest-to-rest motion. Condition (I) in this algorithm
is investigating the singularity conditions. If two selected
points are not in the workspace or the Jacobian values at
initial or final configuration is equal to zero, the algorithm
jumps back to the second step and two new points should
be selected. After selecting the penalty matrices values
(W1, W2, and R), the two-point boundary value problem
is solved and state X, Control U, and the other necessary
terms such as power or energy are calculated. Condition
(II) is as follows: if the desired objectives and purposes are
satisfied with W1, W2, R, and violated (or became worse)
with W1 ± δW1, W2 ± δW2, R ± δR, the obtained path is
the optimal and the running be stopped, otherwise, the
algorithm jumps back to step four and the weighting factors
are improved.

4.2. Optimal path for maximum payload
The proposed method to find the MADL of flexible
manipulators provides the ability to determine the maximum
payload for each considered performance measure. In other
words, in addition to maximize the payload, other objectives
can be achieved by defining the proper objective functions.
The proposed algorithm shown in Fig. 2 can be used
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1
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k = k + 1

(k–1, i–1)
p

(k, 1)
p

=

=

i

Y

N

N

Y

Are the
conditions I 
satisfied?

Start

Select two points in WP

Select W1, W2, R, e, ε, z and mpmin

set i = 1, k = 1, mp
(1.1) = m pmin

Solve TPBVP for mp
(k,i)

e × z/kmm

i = i + 1
(k, i – 1)

p
(k, i)
p +=

k <– z

<–

(k,1)
ppMaxm m=

ε+ )eep(5.0
2

Wv
v

2

Wp

Selecting the Wp, Wv and ε

Y

Fig. 2. Maximum payload algorithm.

to calculate the maximum payload and its corresponding
optimal trajectory at point-to-point motion for a flexible-link
manipulator. First to third steps of this algorithm are similar
to the optimal path algorithm (Fig. 1). e is the accuracy at
the payload calculation and z is the iteration number. The
solution method is based on increasing the payload from its
minimum value (mpmin), until the maximum payload value
can be found. For the sake of achieving the proper accuracy
in payload calculation as well as getting the high approaching
rate to final answer, the presented solution algorithm has two
loops. One of them (i) increases the payload at each iteration
and the other one (k) adjusts the jump interval. For the
payload less than the maximum payload value (mp ≤ mpmax)
attaining the desired accuracy ε in the TPBVP solution is
possible, so the payload increases in each step in loop (i).
But whenever the payload exceeds the maximum payload
(mp > mpmax), the final error value obtained from Eq. (17),
increases suddenly and loop (k) is acted. For mpmax, the
final error will be less than ε and the motors work on their
maximum capacity. At this condition carrying the payload
more than mpmax is required to applying torque more than
their limits, but it is impossible because the torque constraints
are satisfied from Eqs. (14) and (15) at each iteration in
the TPBVP solution. Consequently, the error value becomes
large significantly. By the use of this fact, a criterion for the

1θ

0Y

2r

2x2x̂

2y

2ŷ

1x̂

1x

1ŷ
1y

1v

2v

pm

0X

1r

mpr

Fig. 3. Two-link manipulator with flexible links.

Table I. Simulation parameters.

Parameter Value

Length of links (m) L1 = L2 = 0.5
Mass (kg) m1 = 3, m2 = 3
Moment of area (link; m4) I1 = I2 = 2.5 × 10−9

Module of elasticity (link; kg·m2) E1 =E2 = × 10−10

Max. no of load speed (Rad/s) ωs1 =ωs2 = 3.5
Actuator stall torque (N·m) τs1 = τs2 = 8

maximum payload calculation is employed in the presented
algorithm.

5. Simulation for a Two-Link Manipulator

5.1. Deriving the equations
A two-link manipulator with flexible link at horizontal plane
with the associated coordinate system is shown in Fig. 3. A
concentrated payload of mass mp is connected to the second
link. All the required parameters of the robot manipulator are
given in Table I.31 Using the generalized modeling scheme
given in,12,29 equations of motion of a manipulator with two
flexible links are derived here.

Using the symbols defined in Fig. 3, the expressions for
position vector r1, r2, and rmp in the XY plane can be written
as below:

r1 =
[
x1c1 − v1s1

x1s1 + v1c1

]
,

r2 =
[
L1c1 − v1Ls1 + x2c12 − v2s12

L1s1 + v1Lc1 + x2s12 + v2c12

]
,

rmp
=

[
L1c1 − v1Ls1 + L2c12 − v2Ls12

L1s1 + v1Lc1 + L2s12 + v2Lc12

]
(18)

where c1, s1, c12, and s12 are shorthand expressions for
cos(θ1), sin(θ1), cos(θ1 + θ2), and sin(θ1 + θ2), respectively.
With a view to obtain a simplified model with reasonable
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accuracy, two modes per link are considered, so vi(xi, t) can
be given by

v1 = φ11(x1)q11(t) + φ12(x1)q12(t),

v2 = φ21(x2)q21(t) + φ22(x2)q22(t)

v1L = φ11(L1)q11(t) + φ12(L1)q12(t),

v2L = φ21(L2)q21(t) + φ22(L2)q22(t), (19)

where, while considering the simply support mode shape,30

φij can be computed as follows:

φij (xi) = sin(jπxi/Li), i = 1, 2 and j = 1, 2. (20)

The kinetic energy of a point ri(xi) on the links and payload
can be written as

K1 = 0.5ρ1

∫ L1

0
ṙT

1 (x1)ṙ1(x1) dx1,

K2 = 0.5ρ2

∫ L2

0
ṙT

2 (x2)ṙ2(x2) dx2, Kmp = 0.5mpṙT
mpṙmp

(21)

where ρi is the linear mass density for the ith link and ṙi(xi)
is the velocity vector. The velocity vector can be computed
by taking the time derivative of its position (18):

0ṙ1 =
[−x1θ̇1s1 − v1θ̇1c1 − v̇1s1

x1θ̇1c1 − v1θ̇1s1 + v̇1c1

]

0ṙ2 =

⎡
⎢⎢⎣

−L1θ̇1s1 − v1Lθ̇1c1 − v̇1Ls1 − x2(θ̇1 + θ̇2)s12

− v̇2s12 − v2(θ̇1 + θ̇2)c12

L1θ̇1c1 − v1Lθ̇1s1 + v̇1Lc1 + x2(θ̇1 + θ̇2)c12

+ v̇2c12 − v2(θ̇1 + θ̇2)s12

⎤
⎥⎥⎦

0ṙmp =

⎡
⎢⎢⎣

−L1θ̇1s1 − v1Lθ̇1c1 − v̇1Ls1 − L2(θ̇1 + θ̇2)s12

−v̇2Ls12 − v2L(θ̇1 + θ̇2)c12

L1θ̇1c1 − v1Lθ̇1s1 + v̇1Lc1 + L2(θ̇1 + θ̇2)c12

+ v̇2Lc12 − v2L(θ̇1 + θ̇2)s12

⎤
⎥⎥⎦

(22)

On the other hand, the potential energy due to the
deformation of the first and second links can be written as

U1 = 1

2
E1I1

∫ L1

0

∂2v1

∂2x2
1

dx1,

U2 = 1

2
E2I2

∫ L1

0

∂2v2

∂2x2
2

dx2. (23)

where EiIi is the flexural rigidity of the ith link and
vi is substituted from (19) and (20). Next, to obtain
a closed-form dynamic model of the manipulator, the
energy expressions (21) and (23) are used to formulate
the Lagrangian L =K1 + K2 + Kmp − (U1 + U2). Here the
generalized coordinate vector consists of link positions
(θ1, θ2) and modal displacements (q11, q12, q21, q22). The
generalized force vector is U ={τ1, τ2, 0, 0, 0, 0}T , where

τ1 and τ2 are the torques applied by motor 1 and motor
2, respectively. Therefore, the following Euler–Lagrange’s
equations results, with i = 1, 2 and j = 1, 2:

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi

= τi,
d

dt

(
∂L

∂q̇1j

)
− ∂L

∂q1j

= 0,

d

dt

(
∂L

∂q̇2j

)
− ∂L

∂q2j

= 0. (24)

The final dynamic equations of motion of the manipulator
after algebraic simplifications can be put in a concise form
as ⎡

⎢⎢⎢⎢⎢⎣

Jr11 Jr12 Jrf 111 Jrf 112 Jrf 113 Jrf 114

Jr22 Jrf 211 Jrf 212 Jrf 213 Jrf 214

Jff 11 Jff 12 Jff 13 Jff 14

Jff 22 Jff 23 Jff 24

Sym. Jff 33 Jff 34

Jff 44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

θ̈1

θ̈2

q̈11

q̈12

q̈21

q̈22

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

hr1

hr2

hf 11

hf 12

hf 21

hf 22

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

τ1

τ1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ , (25)

where the values of inertia matrix are given in the appendix.
Because of the very long terms of the Coriolis and centrifugal
forces, they are neglected to bring in the paper text. Since the
motion is in horizontal plane, the gravity effects (Gr, Gf )
will be zero. By using Eqs. (3)–(5) and defining the state
vectors as

X1 = QT = [x1 x3 x5 x7 x9 x11 ]T
(26)

X2 = Q̇T = [x2 x4 x6 x8 x10 x12 ]T ,

the state-space form of Eq. (25) is written as

ẋ2i−1 = x2i , ẋ2i = F2(i); i = 1, . . . , 6, (27)

where F2(i) can be obtained from Eq. (5). Now, in
order to check the validity of the obtained model, the
simulation conditions done in ref. [31] are considered. Model
verification is supported by comparing the response of the
flexible arm model with that of the rigid one. Clearly, as the
flexural rigidity, EI, of the links increase, joint angle response
of the flexible model should converge to that of the rigid
model. In this simulation, the harmonic motion of the two-
link manipulator hanging freely under gravity is obtained at
the initial conditions corresponding to θ1(0) = −1.5 rad and
θ2(0) = −0.5 rad. The joint angles of the rigid manipulator
and flexible one are shown in Fig. 4. As it can be seen the
response of the flexible manipulator with EI = 100 is very
close to the rigid manipulator response. Also the results are
in good agreement with the similar case done in ref. [31].

After verifying the dynamic model, a point-to-point
motion is considered. The initial position of the end-effector
in XY plane at t = 0 is p0 = (0.5, 0), the final position at t = 1 s
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Fig. 4. The joint angle responses of two-link flexible model, pinned-pinned modes shapes.

is pf = (0.5, 0.5) and the initial and final velocity are zero,
therefore using inverse kinematic equations, the boundary
condition can be expressed as follows:

x10 = 60◦, x30 = −60◦; x1f = 90◦, x3f = −90◦

x2i0 = x2if = 0, i = 1, . . . , 6;

x(2i−1)0 = x(2i−1)f = 0, i = 3, . . . , 6. (28)

In order to derive the equations associated with optimality
conditions, penalty matrices are selected as

W1 = diag(w1, w3, w5, w7, w9, w11)

W2 = diag(w2, w4, w6, w8, w10, w12),

R = diag(r1, r2). (29)

Then, the objective function is obtained by substituting
Eq. (29) into Eq. (7) as

L = 1

2

(
r1τ

2
1 + r2τ

2
2 +

12∑
i=1

wix
2
i

)
. (30)

By considering the costate vector as ψT = [ϕi]T , i =
1, . . . , 12, and substituting for L from (30) and for ẋi , i =
1, . . . , 12 from (27) into Eq. (8), the Hamiltonian function
becomes

H = 1

2

(
r1τ

2
1 + r2τ

2
2 +

12∑
i=1

wix
2
i

)
+

12∑
i=1

ϕiẋi . (31)

Consequently, the costate equations can be obtained using
Eq. (9) by differentiating the Hamiltonian function with
respect to the states as follows:

ϕ̇i = −∂H

∂xi

, i = 1, . . . , 12. (32)

The control equations can be computed using Eq. (14) by
differentiating the Hamiltonian function with respect to the
controls (τ1, τ2). After that, from Eq. (15) the extremal bound
of control for each motor becomes

U+
1 = k11 − k12x2, U−

1 = −k11 − k12x2,

U+
2 = k21 − k22x4, U−

2 = −k21 − k22x4. (33)

By substituting the obtained control equations in (27) and
(32), these equations forms 24 nonlinear ordinary differential
equations which with 24 boundary conditions given in
(26), constructs a two-point boundary value problem. This
problem can be solved using the BVP4C command in
MATLAB

R©
.

5.2. Minimum effort-speed trajectory
The path with minimum effort is a path in which the minimum
torque is exerted by each motor. In this case, the magnitudes
of the motors velocity are not important, while they may
exceed the allowable maximum speeds. In order to solve this
problem, the performance measure can be defined as follows:

J0(U ) = 0.5

tf∫
t0

(
UT RU + XT

2 W2X2
)
dt (34)
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Fig. 5. End effector trajectory in XY plane.

in which the velocity of motors can be reduced via increasing
the penalty matrix corresponding to the angular velocity of
motors (W2). In order to show this aspect, the following
problem is planned. We find the optimal path between p0

(0.5, 0) and pf (0.5, 0.5) in such a way that the smallest
amount control value can be applied and the angular
velocity of motors be bounded in ±0.8 rad/s. The payload
is considered to be 1 kg.

In order to solve this problem, the accuracy matrices
are considered to be Wp =Wv = diag(1) and the solution
accuracy ε is 0.001. By considering the penalty matrices as
W1 =W2 = 0, R = diag(1/8), the optimal path with minimum
effort can be obtained, but the angular velocities are greater
than 0.8 rad/s. Therefore for decreasing the velocities, W2
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Fig. 6. Angular positions of joint 1 and 2.

Table II. The values of w2 used in the simulation.

case 1 2 3 4

w2 0 1 10 1400

must be increased. A range of values of W2 = (w2, w2, 0,
0, 0, 0) used in simulation are given in Table II. W1 and R
remain without changes.

The end-effector trajectories in XY plane for these cases are
shown in Fig. 5. Figure 6 shows the angular position of joints
with respect to time. This graph shows that by increasing the
W2, the angular position becomes approximately a straight
line. Figure 7 shows the angular velocities of the first and
second joints. It can be found that increasing the W2 leads
to reduce the exterimum values of angular velocities from
1.2 rad/s to 0.6 rad/s. By increasing the W2, the angular
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Fig. 7. Angular velocities of joint 1 and 2.
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Fig. 8. Torque curves of motor 1 and 2.

velocities reduce greatly for the first to third cases whereas
at the fourth case a little reduction has been occurred in spite
of the great increase in W2. At this condition, decrease in the
angular velocities less than 0.6 rad/s is not possible. Because
by considering the W2 larger than 1400, the TPBVP solution
cannot converge to desired accuracy ε. Consequently, the
desired condition for angular velocities, −0.8 ≤ θ̇1, θ̇2 ≤ 0.8,
is accomplished for the third case (w2 = 10). The computed
torque is plotted in Fig. 8. As it can be seen, increasing the
W2 causes to raise the torques, so that for the last case the
torque curves reach to their bounds at the beginning and end
of the path. This result is predictable, because increasing the
W2 decreases the proportion of weighting matrix R and the
result of this is increasing the control values.

Therefore, the first path is the optimal path with the least
control values, whereas its angular velocity is of the largest
magnitude. Finally, for the considered problem, the optimal
path is the third one in which its velocity magnitudes are
bounded in ±0.8 rad/s interval and its torque values are
the lowest. On the basis of the objective contrast principle,
there is not a solution that satisfies all the desired objectives
simultaneously. For example the optimal path with minimum
effort has the maximum velocity and the optimal path with
minimum velocity has the maximum effort. Consequently,
in this method, designer compromises between the
different objectives by considering the proper penalty
matrices.

5.3. Maximum payload trajectory
In this section finding the maximum payload value carried
between the initial and final point, p0 (0.5, 0) and pf (0.5,
0.5) are presented. Using the obtained equations at Section 4
and on the basis of the presented algorithm in Fig. 3,
mp increases from mpmin, until mpmax is obtained. Desired
accuracy in the TPBVP solution and payload calculation is
considered as ε = 0.001 and e = 0.05. The penalty matrices
are considered to be Wp =Wv = diag(1), W1 = W2 = diag(0),

Table III. The values of mp used in the simulation.

4 3 2 1 i

5.85 5.5 4 1 mp (kg)

Table IV. The values of w2 used in the simulation.

4 3 2 1 i

1000 700 200 0 w2

4.6 5.1 5.5 5.85 mpmax (kg)

and R = diag(1/8). The maximum payload for these values of
penalty matrices is found to be 5.85 kg. The torque curves of
the first and second joints for a range of mp given in Table III
are shown in Fig. 9.

Figure 9 shows how the maximum payload trajectory is
obtained on the basis of the algorithm given in Fig. 2. As it can
be seen, increasing the payload increases the required torque
until the torque curves lay on their own limits completely.
For mp = 5.85 kg, the most possible values of the torques
are applied and increasing the payload more than this value
requires to applying torque beyond the limits. Because the
torque constraints are satisfied in each step of the TPBVP
solution, increasing the payload more than mpmax leading to
violate the boundary conditions at tf , so the solution cannot
converge to the desired accuracy ε.

mpmax = 5.85 kg is the maximum payload for the con-
sidering penalty matrices while choosing the other penalty
matrices, results in other optimal trajectories. To illustrate
this aspect, some simulations are done for different values
of W2 = (w2, w2, 0, 0, 0, 0) given in Table IV. In this
Table, w2 and the calculated maximum payload for each
case is indicated. The other penalty matrices remain without
changes: W1 = [0] and R = diag(1/8).
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Fig. 10. Maximum payload trajectories.

Figure 10 shows the different maximum payload
trajectories in XY plane. The corresponding joint angular
velocities are illustrated in Fig. 11. As it is expected, by
increasing the W2 the velocity values decrease and various
optimal paths have been attained. The torque curves and their
bounds are shown in Fig. 12. This simulation test shows
that by selecting the different objective functions, different
maximum payload-optimal paths are obtained. All of the
curves in Fig. 10 are optimal paths with maximum payload,
which depends on the limitations in workspace or other
wanted requirements, each of them may be selected.

In order to investigate the link flexibility on the maximum
payload value, and check the performance of the method for
different amount of elasticity, simulation is performed for

Table V. Maximum payload for different stiffness.

i 1 2 3

EI (N·m2) rigid 50 5
mpmax (kg) 5.85 5.8 5.75

the various stiffness properties. The same physical properties
shown in Table I and the same initial and final position are
considered for the simulation conditions. Penalty matrices
are considered to be: W1 = W2 = [0] and R = diag(1/8). The
values of stiffness EI, and the corresponding maximum
payloads are given in Table V.

It is found that the maximum payload for flexible cases
are approximately close to the rigid case and decreasing the
rigidity leads to a fewer maximum payload. The maximum
payload paths for these cases are shown in Fig. 13 and the
torque curves are given in Fig. 14. It can be seen that the
oscillation of torque curves becomes more by decreasing
the stiffness value.

5.4. Minimum effort trajectory
In order to verify the method, in this section simulation is
performed for a flexible manipulator studied in ref. [17] and
the obtained results from the proposed method are compared
with it. The parameters of this manipulator are given in
Table VI. A schematic view of this robot is also shown in
Fig. 15. Problem is to find the optimal path with minimum ef-
fort, so penalty matrices can be considered to be R = diag(1),
W1 = [0] and W2 = [0]. One simply support mode shape for
each link is considered. The system is initially at rest, thus the
initial conditions are θ1(0) = θ̇1(0) = θ̇2(0) = 0, θ2(0) = 180◦.
The final time is set to tf = 2.0 s and the final conditions
are θ2(tf ) = θ̇1(tf ) = θ̇2(tf ) = 0, θ1(tf ) = 180◦. So the 16
boundary conditions can be considered as follows:

x10 = 0, x30 = 180◦; x1f = 180◦, x3f = 0
(35)

xi0 = xif = 0, i = 2, 4; xi0 = xif = 0, i = 5, . . . , 8
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Fig. 11. Angular velocities of joint 1 and 2.

Table VI. Physical parameters of flexible manipulator.

Description Symbol Value

Thickness, Links 1 and 2 (mm) t1, t2 5.537, 1.574
Length, Links 1 and 2 (m) L1, L2 0.5969, 0.4842
Width, Links 1 and 2 (m) w1, w2 0.1524, 0.0762
Moment of inertia (kg·m2) J1, J2, J3 1, 1, 1
Mass at 2nd, 3rd nodes (kg) m2, m3 5.415, 0.83
Viscous friction, Joint 1 and 2 (kg·m2/s) c1, c2 0.05, 0.05
Density of links (kg/m) ρ 2700
Modulus of elasticity (N/m2) E 6.9 × 10−10

The upper and lower bounds of each motor are Umax,min 1 =
±13.5 N · m and Umax,min 2 = ±4.0 N · m. The obtained
results of this simulation are shown in Fig. 16. The angular
positions of links, corresponding velocities and the minimum

effort torque profiles are shown in this figure. Note that
for torque profiles, each actuator saturates at the maximum
and minimum bounds at the beginning and the end of
the maneuver, respectively. The obtained results from the
proposed method given in Fig. 16 show a reasonable
agreement with those reported in ref. [17]. With a rough
comparison, the features of velocity and torque curves in
both the different methods are similar to each others. Also,
the amplitude and frequency of oscillations in velocity and
torque curves in Fig. 16 are equal to the ones given in ref. [17].
The other parameters such as the maximum velocities and
the rate of the torque curves are equal in both methods.

5.5. Minimum vibration trajectory
An important path planning problem for flexible
manipulators studied by many researchers is to obtain
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Fig. 12. Torque curves of motor 1 and 2.
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the minimum vibration trajectory.14–16 In this section, this
problem is considered and the ability of the proposed method
to solve it is shown. Simulations are performed for two
cases. In the first case weighting factors are selected as
R = diag(1), W1 = [0], and W2 = [0], which is the minimum
effort trajectory, and in the second case weighting factors are
considered to be: R = diag(1), W1 = [0], and W2 = diag(0, 0,
500, 500). By increasing the weighting factors corresponding
to the derivative of mode shapes (q̇11, q̇21), the vibrational
motions will be suppressed. The bounds on the motors
capacity are not considered. The results of these simulations
are illustrated in Figs. 17–20. The velocity and torque curves
are given in Fig. 17. As it can be seen, for the minimum
vibration trajectory, the oscillation amplitudes in velocity
curves has been reduced considerably, but the magnitude of
motor torques has been increased. It means that for achieving
a smoother path, more effort must be applied. The mode
shapes and the derivations are given in Fig. 18. It is observed
that the mode shape amplitudes for the minimum vibration

Y

X

J3, m3

J2, m3L1

J1

L2

θ2

θ1

Fig. 15. Schematic view of two-link manipulator.

trajectory are much less than the minimum effort trajectory.
It is difficult to identify the frequency components by looking
at the mode shape curves. Converting to the frequency
domain, the discrete Fourier transform of the mode shapes
is found by taking the 500-point fast Fourier transform. The
power spectrum, the power measurement of the mode shapes
at various frequencies, has been demonstrated in Fig. 19.
Finally the end effector path in XY plane is shown in Fig. 20.
It is clearly observed that the minimum vibration path is
smoother than the minimum effort path.

Conclusion
In this paper, formulation of the trajectory optimization
and finding the maximum payload trajectory for multiple
flexible links manipulator in point-to-point motion, based
on the indirect solution of optimal control problem is
presented. After deriving the dynamic equation using the
combined Euler–Lagrange formulation and assumed modes
method, optimality conditions are applied using the PMP.
The obtained equations lead to a standard form of a two-
point boundary value problem for which several commands
in different software such as MATLAB are available to solve
it. An efficient algorithm based on the solution of two-point
boundary value problem is proposed to optimize the path in
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Fig. 16. Minimum effort results.
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Fig. 17. Minimum vibration results.
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Fig. 18. Mode shapes of first and second link.
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Fig. 19. The frequency content of mode shapes: (a) first mode of link 1; (b) first mode of link 2; (c) first mode derivation of link 1; (d) first
mode derivation of link 2.

order to achieve the predefined objective. Another algorithm
is then developed to calculate the maximum payload
trajectory between two given points in the workspace. The
efficiency of the proposed method is investigated through

computer simulations by considering a simplified case
study of a two-link flexible manipulator. It is shown that
how this method is able to solve different path planning
problem especially the maximum payload trajectory. In
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Fig. 20. End effector path in XY plane.

these simulations, minimum effort, minimum effort-speed,
maximum payload, and minimum vibration problems are
studied. Minimum effort case is performed in order to verify
the method, and the obtained results are compared with
those reported in ref. [17]. In minimum effort-speed case, an
objective function consists of torque and speed is considered
to obtain a minimum effort optimal path in the presence of
limitations on joint angular velocities. In other simulation, the
maximum payload trajectory using the proposed algorithm is
obtained. It is observed that different maximum payload path
can be attained which depends on the wanted requirements,
each of them may be selected. Also, in order to investigate
the link flexibility on the maximum payload trajectory,
simulations are performed for a rigid link manipulator and
two different values of stiffness. Finally, the minimum
vibration problem is solved and it is shown that applying the
proper input torque can decrease the end effector vibration
significantly. The obtained results illustrate the power and
efficiency of the method to overcome the high nonlinearity
nature of the optimization problem which with other methods
may be very difficult or impossible. The optimal trajectory
and corresponding input control obtained using this method
can be used as a reference signal and feedforward command
in control structure of flexible manipulators.
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Appendix
The inertia matrix components in Eq. (25) are obtained as
follows:

Jr11 = (ρ/6)
(
3L1q

2
12 + 3L2q

2
22 + 3L1q

2
11 + 2L3

1 + 3L2q
2
21

− (24L2L1q21 sin(θ2))/π + 6L2L
2
1 + 2L3

2 + 6L2
2L1

× cos(θ2)
) + (

mpL2
1 + 2mpL1L2 cos(θ2)

) + mpL2
2

Jr12 = L2
(
ρ
(−12L1q21 sin(θ2)/π + 3q2

22 + 3L2L1 cos(θ2)

+ 2L2
2 + 3q2

21

)
/6 + mpL1 cos(θ2) + mpL2

)
Jr22 = ρL2

(
3q2

21 + 3q2
22 + 2L2

2

)/
6 + mpL2

2

Jff 11 = Jff 33 = ρL1
/

2; Jff 22 = Jff 44 = ρL2
/

2

Jrf 111 = ρL2
1

/
π ; Jrf 112 = (

L2
2 + 2L2L1 cos(θ2)

)/
(ρ

/
π)

Jrf 113 = −ρL2
1

/
(2π); Jrf 114 = Jrf 214 = −ρL2

2

/
(2π)

Jrf 211 = Jrf 213 = Jff 12 = Jff 13 = Jff 14

= Jff 23 = Jff 24 = Jff 34 = 0;

Jrf 212 = ρL2
2/π
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